1
|
Yu M, Bai M, Chen M, Zhang G, Zhao Y, Ma Q, Yang L, Gu C. Identification of bHLH transcription factors and screening of anthocyanin-related genes in Lagerstroemia indica. Genetica 2024; 152:179-197. [PMID: 39365430 DOI: 10.1007/s10709-024-00215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The basic helix-loop-helix (bHLH) family is one of the three major transcription factor families that play important transcriptional regulatory roles in plant growth and development. One of the most crucial elements in defining Lagerstroemia indica's decorative qualities is flower color. However, the function of the bHLH transcription factor family in L. indica anthocyanin glycoside synthesis has not been clarified. Using the transcriptome data of flower color, 79 LibHLH genes were found in this study. Phylogenetic analysis showed that the LibHLH genes can be divided into 16 subfamilies, and most of the genes in the same subfamily have similar conserved motifs. The total anthocyanin glycoside content of L. indica 'Zihua Guifei' petals was determined during three developmental stages of the petals' growth. The results showed that the total anthocyanin glycoside content grew gradually with growth and development, and that it accumulated most during the full bloom stage. By using gene expression analysis, protein interaction network analysis, and bioinformatics, it was possible to determine which member of the III f family, LibHLH29, is important for the synthesis of anthocyanin glycosides in L. indica. Its expression was confirmed by qRT-PCR, and the results were essentially compatible with the transcriptome data. It was more prominent in the light-colored bloom stage the color-transition stage of L. indica 'Zihua Guifei'. It can be further investigated as a major candidate gene for regulating anthocyanin glycoside synthesis in L. indica, thus laying the foundation for an in-depth study of the interactions among transcription factors.
Collapse
Affiliation(s)
- Mengxin Yu
- College of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Mingzhu Bai
- College of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Mengmeng Chen
- College of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Guozhe Zhang
- College of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yu Zhao
- College of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qingqing Ma
- College of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Liyuan Yang
- College of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China.
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Cuihua Gu
- College of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China.
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Yan T, Shu X, Ning C, Li Y, Wang Z, Wang T, Zhuang W. Functions and Regulatory Mechanisms of bHLH Transcription Factors during the Responses to Biotic and Abiotic Stresses in Woody Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2315. [PMID: 39204751 PMCID: PMC11360703 DOI: 10.3390/plants13162315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Environmental stresses, including abiotic and biotic stresses, have complex and diverse effects on the growth and development of woody plants, which have become a matter of contention due to concerns about the outcomes of climate change on plant resources, genetic diversity, and world food safety. Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes and play an important role in biotic and abiotic stress responses of woody plants. In recent years, an increasing body of studies have been conducted on the bHLH TFs in woody plants, and the roles of bHLH TFs in response to various stresses are increasingly clear and precise. Therefore, it is necessary to conduct a systematic and comprehensive review of the progress of the research of woody plants. In this review, the structural characteristics, research history and roles in the plant growth process of bHLH TFs are summarized, the gene families of bHLH TFs in woody plants are summarized, and the roles of bHLH TFs in biotic and abiotic stresses in woody plants are highlighted. Numerous studies mentioned in this review have shown that bHLH transcription factors play a crucial role in the response of woody plants to biotic and abiotic stresses. This review serves as a reference for further studies about enhancing the stress resistance and breeding of woody plants. Also, the future possible research directions of bHLH TFs in response to various stresses in woody plants will be discussed.
Collapse
Affiliation(s)
- Tengyue Yan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Chuanli Ning
- Yantai Agricultural Technology Extension Center, Yantai 264001, China
| | - Yuhang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| |
Collapse
|
3
|
Lei P, Jiang Y, Zhao Y, Jiang M, Ji X, Ma L, Jin G, Li J, Zhang S, Kong D, Zhao X, Meng F. Functions of Basic Helix-Loop-Helix (bHLH) Proteins in the Regulation of Plant Responses to Cold, Drought, Salt, and Iron Deficiency: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10692-10709. [PMID: 38712500 DOI: 10.1021/acs.jafc.3c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops. The bHLH proteins bind to E/G-box motifs in the target promoter and interact with various other factors to form a complex regulatory network. Through this network, they cooperatively activate or repress the transcription of downstream genes, thereby regulating various stress responses. Finally, we present some perspectives for future research focusing on the molecular mechanisms that integrate and coordinate these abiotic stresses. Understanding these molecular mechanisms is crucial for the development of stress-tolerant crops.
Collapse
Affiliation(s)
- Pei Lei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Yaxuan Jiang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Yong Zhao
- College of Life Sciences, Baicheng Normal University, Baicheng 137099, China
| | - Mingquan Jiang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130022, China
| | - Ximei Ji
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Le Ma
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Guangze Jin
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Jianxin Li
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Subin Zhang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Dexin Kong
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Fanjuan Meng
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Hou Q, Shen T, Yu R, Deng H, Wen X, Qiao G. Functional analysis of sweet cherry PavbHLH106 in the regulation of cold stress. PLANT CELL REPORTS 2023; 43:7. [PMID: 38133822 DOI: 10.1007/s00299-023-03115-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023]
Abstract
KEY MESSAGE Sweet cherry PavbHLH106 was up-regulated under cold induction and overexpressed to enhance the cold resistance in tobacco by mediating the scavenging of ROS through increasing of antioxidant enzyme activity. Sweet cherry (Prunus avium L.) is an economically important fruit. Chilling requirements are critical during dormancy, but abnormally low temperatures unfavorably affect fruit growth and development. Differences were found in the transcript level of PavbHLH106 under salt, dehydration, and low-temperature treatments, especially in response to cold stress, suggesting that this gene is involved in the regulation of different abiotic stresses. PavbHLH106 is homologous to Arabidopsis thaliana AtbHLH106 with a conserved bHLH domain, and transient expression in tobacco suggests that the protein is localized in the nucleus and has transcriptional activity in yeast. The PavbHLH106 overexpression in tobacco resulted in weaker electrolyte leakages, lower malondialdehyde, and higher proline content than the wild type at low-temperature treatment. Reactive oxygen species accumulation was significantly reduced in the overexpressed lines, negatively correlated with the antioxidant enzyme activity. In addition, overexpression of PavbHLH106 delayed the germination of tobacco seeds and promoted plant growth. Resistance-related genes were expressed more in the overexpressed plants compared to the wild type. PavbHLH106 bound to the PavACO promoter in yeast and potentially interacted with a bHLH162-like transcription factor. These results indicate that PavbHLH106 has various functions and is particularly active in controlling low-temperature stress.
Collapse
Affiliation(s)
- Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tianjiao Shen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Runrun Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
5
|
Liu Q, Wen J, Wang S, Chen J, Sun Y, Liu Q, Li X, Dong S. Genome-wide identification, expression analysis, and potential roles under low-temperature stress of bHLH gene family in Prunus sibirica. FRONTIERS IN PLANT SCIENCE 2023; 14:1267107. [PMID: 37799546 PMCID: PMC10548393 DOI: 10.3389/fpls.2023.1267107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
The basic helix-loop-helix (bHLH) family is one of the most well-known transcription factor families in plants, and it regulates growth, development, and abiotic stress responses. However, systematic analyses of the bHLH gene family in Prunus sibirica have not been reported to date. In this study, 104 PsbHLHs were identified and classified into 23 subfamilies that were unevenly distributed on eight chromosomes. Nineteen pairs of segmental replication genes and ten pairs of tandem replication genes were identified, and all duplicated gene pairs were under purifying selection. PsbHLHs of the same subfamily usually share similar motif compositions and exon-intron structures. PsbHLHs contain multiple stress-responsive elements. PsbHLHs exhibit functional diversity by interacting and coordinating with other members. Twenty PsbHLHs showed varying degrees of expression. Eleven genes up-regulated and nine genes down-regulated in -4°C. The majority of PsbHLHs were highly expressed in the roots and pistils. Transient transfection experiments demonstrated that transgenic plants with overexpressed PsbHLH42 have better cold tolerance. In conclusion, the results of this study have significant implications for future research on the involvement of bHLH genes in the development and stress responses of Prunus sibirica.
Collapse
Affiliation(s)
- Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Jiaxing Wen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Shipeng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Qingbai Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Xi Li
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Radani Y, Li R, Korboe HM, Ma H, Yang L. Transcriptional and Post-Translational Regulation of Plant bHLH Transcription Factors during the Response to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112113. [PMID: 37299095 DOI: 10.3390/plants12112113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Over the past decades, extensive research has been conducted to identify and characterize various plant transcription factors involved in abiotic stress responses. Therefore, numerous efforts have been made to improve plant stress tolerance by engineering these transcription factor genes. The plant basic Helix-Loop-Helix (bHLH) transcription factor family represents one of the most prominent gene families and contains a bHLH motif that is highly conserved in eukaryotic organisms. By binding to specific positions in promoters, they activate or repress the transcription of specific response genes and thus affect multiple variables in plant physiology such as the response to abiotic stresses, which include drought, climatic variations, mineral deficiencies, excessive salinity, and water stress. The regulation of bHLH transcription factors is crucial to better control their activity. On the one hand, they are regulated at the transcriptional level by other upstream components; on the other hand, they undergo various modifications such as ubiquitination, phosphorylation, and glycosylation at the post-translational level. Modified bHLH transcription factors can form a complex regulatory network to regulate the expression of stress response genes and thus determine the activation of physiological and metabolic reactions. This review article focuses on the structural characteristics, classification, function, and regulatory mechanism of bHLH transcription factor expression at the transcriptional and post-translational levels during their responses to various abiotic stress conditions.
Collapse
Affiliation(s)
- Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rongxue Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Harriet Mateko Korboe
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Han J, Li X, Li W, Yang Q, Li Z, Cheng Z, Lv L, Zhang L, Han D. Isolation and preliminary functional analysis of FvICE1, involved in cold and drought tolerance in Fragaria vesca through overexpression and CRISPR/Cas9 technologies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:270-280. [PMID: 36736009 DOI: 10.1016/j.plaphy.2023.01.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Cold and drought stresses are serious problems of strawberry cultivation in temperate and subtropical regions. In the molecular regulation system of cold and drought stresses, ICE transcription factors (TFs) are crucial. In this research, the FvICE1 was isolated from Fragaria vesca 'Hawaii 4', a bioinformatics analysis was conducted, overexpression vector and CRISPR/cas9 vector were constructed. The results showed that FvICE1 was a member of the bHLH TF family, with a length of 1608 bp, encoding 535 amino acids, and its molecular formula was C2504H3987N745O811S22. By observing the fusion protein 35S-FvICE1-GFP, it was found that FvICE1 was a nuclear protein. The qRT-PCR results demonstrated that FvICE1 was significantly upregulated in different tissues of Fragaria vesca after cold, drought, salt and heat treatments. The wild type (WT) strawberry was selected as the control group, FvICE1-overexpression strawberries showed high tolerance to cold and drought treatments at the phenotypic and physiological levels. On the contrary, fvice1 mutant strawberries obtained by CRISPR/cas9 editing technology had lower tolerance to cold and drought treatments. Moreover, the expression of FvCBF1, FvCBF2, FvCBF3, FvCOR413, FvRD22 and FvKIN1 was positively regulated in the FvICE1-overexpression strawberries and inhibited in fvice1 mutant strawberries. Overall, the current results suggested that FvICE1 functioned as a positively regulator of cold and drought resistances.
Collapse
Affiliation(s)
- Jiaxin Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Qian Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zhenghao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zhi Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Long Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Zhou Z, Wang J, Yu Q, Lan H. Promoter activity and transcriptome analyses decipher functions of CgbHLH001 gene (Chenopodium glaucum L.) in response to abiotic stress. BMC PLANT BIOLOGY 2023; 23:116. [PMID: 36849913 PMCID: PMC9969703 DOI: 10.1186/s12870-023-04128-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Our previous studies revealed that CgbHLH001 transcription factor (TF) played an important role in abiotic stress tolerance, suggesting that its promoter was a potential target in response to stress signals. In addition, the regulatory mechanism of CgbHLH001 TF is still limited. RESULTS In the present study, a 1512 bp of 5'-flanking sequence of CgbHLH001 gene was identified, and the sequence carried quite a few of cis-acting elements. The gene promoter displayed strong activity and was induced by multiple abiotic stress. A series of 5'-deletions of the promoter sequence resulted in a gradual decrease in its activity, especially, the 5' untranslated region (UTR) was necessary to drive promoter activity. Further, CgbHLH001 promoter drove its own gene overexpression ectopically at the transcriptional and translational levels, which in turn conferred the stress tolerance to transgenic Arabidopsis. Transcriptome analysis showed that salt stress induced a large number of genes involved in multiple biological regulatory processes. Differentially expressed genes (DEGs) that mediate phytohormone signal transduction and mitogen-activated protein kinase (MAPK) signaling pathway were widely induced and mostly upregulated under salt stress, and the transcription levels in PbHLH::bHLH-overexpressing transgenic lines were higher than that of 35S::bHLH overexpression. CONCLUSIONS The CgbHLH001 promoter exhibited a positive response to abiotic stress and its 5' UTR sequence enhanced the regulation of gene expression to stress. A few important pathways and putative key genes involved in salt tolerance were identified, which can be used to elucidate the mechanism of salt tolerance and decipher the regulatory mechanism of promoters to develop an adaptation strategy for desert halophytes.
Collapse
Affiliation(s)
- Zixin Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
9
|
Ben Saad R, Ben Romdhane W, Baazaoui N, Bouteraa MT, Chouaibi Y, Mnif W, Ben Hsouna A, Kačániová M. Functional Characterization of Lobularia maritima LmTrxh2 Gene Involved in Cold Tolerance in Tobacco through Alleviation of ROS Damage to the Plasma Membrane. Int J Mol Sci 2023; 24:ijms24033030. [PMID: 36769352 PMCID: PMC9917683 DOI: 10.3390/ijms24033030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Cold stress is a key environmental factor affecting plant growth and development, crop productivity, and geographic distribution. Thioredoxins (Trxs) are small proteins that are ubiquitously expressed in all organisms and implicated in several cellular processes, including redox reactions. However, their role in the regulation of cold stress in the halophyte plant Lobularia maritima remains unknown. We recently showed that overexpression of LmTrxh2, which is the gene that encodes the h-type Trx protein previously isolated from L. maritima, led to an enhanced tolerance to salt and osmotic stress in transgenic tobacco. This study functionally characterized the LmTrxh2 gene via its overexpression in tobacco and explored its cold tolerance mechanisms. Results of the RT-qPCR and western blot analyses indicated differential temporal and spatial regulation of LmTrxh2 in L. maritima under cold stress at 4 °C. LmTrxh2 overexpression enhanced the cold tolerance of transgenic tobacco, as evidenced by increased germination rate, fresh weight and catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) activities; reduced malondialdehyde levels, membrane leakage, superoxide anion (O2-), and hydrogen peroxide (H2O2) levels; and higher retention of chlorophyll than in non-transgenic plants (NT). Furthermore, the transcript levels of reactive oxygen species (ROS)-related genes (NtSOD and NtCAT1), stress-responsive late embryogenis abundant protein 5 (NtLEA5), early response to dehydration 10C (NtERD10C), DRE-binding proteins 1A (NtDREB1A), and cold-responsive (COR) genes (NtCOR15A, NtCOR47, and NtKIN1) were upregulated in transgenic lines compared with those in NT plants under cold stress, indicating that LmTrxh2 conferred cold stress tolerance by enhancing the ROS scavenging ability of plants, thus enabling them to maintain membrane integrity. These results suggest that LmTrxh2 promotes cold tolerance in tobacco and provide new insight into the improvement of cold-stress resistance to cold stress in non-halophyte plants and crops.
Collapse
Affiliation(s)
- Rania Ben Saad
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P “1177”, Sfax 3018, Tunisia
- Correspondence: (R.B.S.); (M.K.)
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P “1177”, Sfax 3018, Tunisia
| | - Yosra Chouaibi
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P “1177”, Sfax 3018, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha 61922, Saudi Arabia
| | - Anis Ben Hsouna
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P “1177”, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia 5100, Tunisia
| | - Miroslava Kačániová
- Faculty of Horticulture, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St, 35601 Rzeszow, Poland
- Correspondence: (R.B.S.); (M.K.)
| |
Collapse
|
10
|
Wang L, Wang S, Tong R, Wang S, Yao J, Jiao J, Wan R, Wang M, Shi J, Zheng X. Overexpression of PgCBF3 and PgCBF7 Transcription Factors from Pomegranate Enhances Freezing Tolerance in Arabidopsis under the Promoter Activity Positively Regulated by PgICE1. Int J Mol Sci 2022; 23:ijms23169439. [PMID: 36012703 PMCID: PMC9408969 DOI: 10.3390/ijms23169439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Cold stress limits plant growth, development and yields, and the C-repeat binding factors (CBFs) function in the cold resistance in plants. However, how pomegranate CBF transcription factors respond to cold signal remains unclear. Considering the significantly up-regulated expression of PgCBF3 and PgCBF7 in cold-tolerant Punica granatum ‘Yudazi’ in comparison with cold-sensitive ‘Tunisia’ under 4 °C, the present study focused on the two CBF genes. PgCBF3 was localized in the nucleus, while PgCBF7 was localized in the cell membrane, cytoplasm, and nucleus, both owning transcriptional activation activity in yeast. Yeast one-hybrid and dual-luciferase reporter assay further confirmed that PgICE1 could specifically bind to and significantly enhance the activation activity of the promoters of PgCBF3 and PgCBF7. Compared with the wild-type plants, the PgCBF3 and PgCBF7 transgenic Arabidopsis thaliana lines had the higher survival rate after cold treatment; exhibited increased the contents of soluble sugar and proline, while lower electrolyte leakage, malondialdehyde content, and reactive oxygen species production, accompanying with elevated enzyme activity of catalase, peroxidase, and superoxide dismutase; and upregulated the expression of AtCOR15A, AtCOR47, AtRD29A, and AtKIN1. Collectively, PgCBFs were positively regulated by the upstream PgICE1 and mediated the downstream COR genes expression, thereby enhancing freezing tolerance.
Collapse
|
11
|
Lu X, Zhang H, Hu J, Nie G, Khan I, Feng G, Zhang X, Wang X, Huang L. Genome-wide identification and characterization of bHLH family genes from orchardgrass and the functional characterization of DgbHLH46 and DgbHLH128 in drought and salt tolerance. Funct Integr Genomics 2022; 22:1331-1344. [PMID: 35941266 DOI: 10.1007/s10142-022-00890-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
Basic helix-loop-helix (bHLH) is the second largest family of transcription factors that widely exist in plants and animals, and plays a key role in a variety of biological processes. As an important forage crop worldwide, little information is available about the bHLH family in orchardgrass (Dactylis glomerata L.), although a huge number of bHLH family have been identified and characterized in plants. In this study, we performed genome-wide analysis of bHLH transcription factor family of orchardgrass and identified 132 DgbHLH genes. The phylogenetic tree was constructed by using bHLH proteins of orchardgrass, with Arabidopsis thaliana and Oryza sativa bHLH proteins, to elucidate their homology and classify them into 22 subfamilies. The results of conserved motifs and gene structure support the classification of DgbHLH family. In addition, chromosomal location and gene duplication events of DgbHLH genes were further studied. Transcriptome data exhibited that DgbHLH genes were differentially expressed in different tissues of orchardgrass. We analyzed the gene expression level of 12 DgbHLH genes in orchardgrass under three types of abiotic stresses (heat, salt, and drought). Finally, heterologous expression assays in yeast indicated that DgbHLH46 and DgbHLH128 may enhance the resistance to drought and salt stress. Furthermore, DgbHLH128 may also be involved in abiotic stress by binding to the MYC element. Our study provides a comprehensive assessment of DgbHLH family of orchardgrass, revealing new insights for enhancing gene utilization and improving forage performance.
Collapse
Affiliation(s)
- Xiaowen Lu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jialing Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
12
|
Imran M, Liu Y, Shafiq S, Abbas F, Ilahi S, Rehman N, Ahmar S, Fiaz S, Baran N, Pan S, Mo Z, Tang X. Transcriptional cascades in the regulation of 2-AP biosynthesis under Zn supply in fragrant rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13721. [PMID: 35598224 DOI: 10.1111/ppl.13721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Transcription factors (TFs) regulate gene expression to control certain genetic programs, such as growth and development, phytohormone regulation, and environmental stresses. 2-acetyl-1-pyrroline (2-AP) is the key element involved in aroma biosynthesis pathway, and the application of micronutrients can increase the 2-AP levels. However, little is known about the micronutrient-induced TFs involved in 2-AP biosynthesis. Here, we identify a number of TF families in two fragrant rice varieties, "Meixiangzhan-2" (M) and "Xiangyaxiangzhan" (X), in response to Zinc (Zn) application through transcriptomic analysis. A total of ~678 TFs were identified and grouped into 26 TF families, each of which was found to be involved in numerous signaling pathways. The WRKY TF family was found to be the most abundant, followed by bHLH and MYB. Furthermore, members of the WRKY, bHLH, MYB, ERF, HSF, MADS-box, NFY, and AP2 TF families were significantly upregulated and may be involved in the transcriptional regulation of aroma biosynthesis. In brief, this study enhances our understanding of the molecular mechanism of 2-AP biosynthesis and highlights the key TFs potentially involved in the production of aroma in fragrant rice.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, People's Republic of China
| | - Yanhua Liu
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, People's Republic of China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Sara Ilahi
- Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Naveed Rehman
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Nurettin Baran
- Bitkisel Uretim ve Teknolojileri Bolumu, Uygulamali Bilimler Faku Itesi, Mus Alparslan Universitesi, Mus, Turkey
| | - Shenggang Pan
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, People's Republic of China
| | - Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, People's Republic of China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
New Insights into the Roles of Osmanthus Fragrans Heat-Shock Transcription Factors in Cold and Other Stress Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Sweet osmanthus (Osmanthus fragrans) is an evergreen woody plant that emits a floral aroma and is widely used in the landscape and fragrance industries. However, its application and cultivation regions are limited by cold stress. Heat-shock transcription factor (HSF) family members are widely present in plants and participate in, and regulate, the defense processes of plants under various abiotic stress conditions, but now, the role of this family in the responses of O. fragrans to cold stress is still not clear. Here, 46 OfHSF members were identified in the O. fragrans genome and divided into three subfamilies on the basis of a phylogenetic analysis. The promoter regions of most OfHSFs contained many cis-acting elements involved in multiple hormonal and abiotic stresses. RNA-seq data revealed that most of OfHSF genes were differentially expressed in various tissues, and some OfHSF members were induced by cold stress. The qRT-PCR analysis identified four OfHSFs that were induced by both cold and heat stresses, in which OfHSF11 and OfHSF43 had contrary expression trends under cold stress conditions and their expression patterns both showed recovery tendencies after the cold stress. OfHSF11 and OfHSF43 localized to the nuclei and their expression patterns were also induced under multiple abiotic stresses and hormonal treatments, indicating that they play critical roles in responses to multiple stresses. Furthermore, after a cold treatment, transient expression revealed that the malondialdehyde (MDA) content of OfHSF11-transformed tobacco significantly increased, and the expression levels of cold-response regulatory gene NbDREB3, cold response gene NbLEA5 and ROS detoxification gene NbCAT were significantly inhibited, implying that OfHSF11 is a negative regulator of cold responses in O. fragrans. Our study contributes to the further functional characterization of OfHSFs and will be useful in developing improved cold-tolerant cultivars of O. fragrans.
Collapse
|
14
|
Sohrabi SS, Ismaili A, Nazarian-Firouzabadi F, Fallahi H, Hosseini SZ. Identification of key genes and molecular mechanisms associated with temperature stress in lentil. Gene 2022; 807:145952. [PMID: 34500049 DOI: 10.1016/j.gene.2021.145952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 02/03/2023]
Abstract
Extreme temperature is one of the serious threats to crop production in present and future scenarios of global climate changes. Lentil (Lens culinaris) is an important crop, and there is a serious lack of genetic information regarding environmental and temperature stresses responses. This study is the first report of evaluation of key genes and molecular mechanisms related to temperature stresses in lentil using the RNA sequencing technique. De novo transcriptome assembly created 44,673 contigs and differential gene expression analysis revealed 7494 differentially expressed genes between the temperature stresses and control group. Basic annotation of generated transcriptome assembly in our study led to the identification of 2765 novel transcripts that have not been identified yet in lentil genome draft v1.2. In addition, several unigenes involved in mechanisms of temperature sensing, calcium and hormone signaling and DNA-binding transcription factor activity were identified. Also, common mechanisms in response to temperature stresses, including the proline biosynthesis, the photosynthetic light reactions balancing, chaperone activity and circadian rhythms, are determined by the hub genes through the protein-protein interaction networks analysis. Deciphering the mechanisms of extreme temperature tolerance would be a new way for developing crops with enhanced plasticity against climate change. In general, this study has identified set of mechanisms and various genes related to cold and heat stresses which will be useful in better understanding of the lentil's reaction to temperature stresses.
Collapse
Affiliation(s)
- Seyed Sajad Sohrabi
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Farhad Nazarian-Firouzabadi
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran.
| | - Seyedeh Zahra Hosseini
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
15
|
Li J, Zhang M, Li X, Khan A, Kumar S, Allan AC, Lin-Wang K, Espley RV, Wang C, Wang R, Xue C, Yao G, Qin M, Sun M, Tegtmeier R, Liu H, Wei W, Ming M, Zhang S, Zhao K, Song B, Ni J, An J, Korban SS, Wu J. Pear genetics: Recent advances, new prospects, and a roadmap for the future. HORTICULTURE RESEARCH 2022; 9:uhab040. [PMID: 35031796 PMCID: PMC8778596 DOI: 10.1093/hr/uhab040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023]
Abstract
Pear, belonging to the genus Pyrus, is one of the most economically important temperate fruit crops. Pyrus is an important genus of the Rosaceae family, subfamily Maloideae, and has at least 22 different species with over 5000 accessions maintained or identified worldwide. With the release of draft whole-genome sequences for Pyrus, opportunities for pursuing studies on the evolution, domestication, and molecular breeding of pear, as well as for conducting comparative genomics analyses within the Rosaceae family, have been greatly expanded. In this review, we highlight key advances in pear genetics, genomics, and breeding driven by the availability of whole-genome sequences, including whole-genome resequencing efforts, pear domestication, and evolution. We cover updates on new resources for undertaking gene identification and molecular breeding, as well as for pursuing functional validation of genes associated with desirable economic traits. We also explore future directions for "pear-omics".
Collapse
Affiliation(s)
- Jiaming Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiaolong Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Awais Khan
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Satish Kumar
- Hawke’s Bay Research Centre, The New Zealand Institute for Plant and Food Research Limited, Havelock North 4157, New Zealand
| | - Andrew Charles Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Richard Victor Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Runze Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Mengfan Qin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Manyi Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Tegtmeier
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Hainan Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weilin Wei
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Ming
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kejiao Zhao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bobo Song
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangping Ni
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Schuyler S Korban
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Zeng X, Jiang J, Wang F, Liu W, Zhang S, Du J, Yang C. Rice OsClo5, a caleosin protein, negatively regulates cold tolerance through the jasmonate signalling pathway. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:52-61. [PMID: 34694678 DOI: 10.1111/plb.13350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Caleosin is a lipid droplet-binding protein involved in maintenance of the lipid droplet structure and in signal transduction. However, the role of caleosin proteins in stress resistance is limited. Here, we report data for a rice caleosin protein gene, OsClo5, involved in cold stress tolerance via influence and regulation of the JA signalling pathway. Overexpression lines and RNAi lines of OsClo5 were subjected to cold stress and recovery to measure electrolyte leakage and survival rate. Changes were also detected in the genome-wide transcriptome of OsClo5 overexpressed plants. OsClo5 is located mainly in lipid droplets and expressed in all tissues tested. Its expression was upregulated by various stress conditions when subjected to cold treatment. Overexpression of OsClo5 decreased cold tolerance, and RNAi lines of OsClo5 had higher survival than WT seedlings. OsClo5 inhibited one jasmonate biosynthetic gene and several jasmonate ZIM domain (JAZ) genes, which were upregulated in response to cold stress. OsClo5 is a constitutively expressed caleosin protein that regulates plant cold resistance through inhibition of jasmonate signalling and JA synthesis.
Collapse
Affiliation(s)
- X Zeng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - J Jiang
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - F Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - W Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - S Zhang
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - J Du
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - C Yang
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Gu X, Gao S, Li J, Song P, Zhang Q, Guo J, Wang X, Han X, Wang X, Zhu Y, Zhu Z. The bHLH transcription factor regulated gene OsWIH2 is a positive regulator of drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:269-279. [PMID: 34823144 DOI: 10.1016/j.plaphy.2021.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major abiotic stress limiting crop growth and yield. In this study, we characterized a novel drought tolerance induced WIH gene in rice, OsWIH2. Overexpression of OsWIH2 in rice resulted in significantly higher drought tolerance, probably due to the decreased water loss rate and reactive oxygen species (ROS) accumulation under drought stress. We identified a long-chain fatty acid HOTHEAD (HTH) that interacted with OsWIH2 using yeast two-hybrid screening. OsWIH2 is an enzyme which is involved in fatty acid synthesis. We further demonstrated that the drought-inducible bHLH transcription factor OsbHLH130 could activate the expression of OsWIH2. Overall, our results suggest that drought stress may induce OsbHLH130 accumulation, which in turn activates OsWIH2 expression, and the latter improves rice drought tolerance by participating in cuticular wax biosynthesis and reducing the water loss rate as well as ROS accumulation. This research provides new genes for crop improvement.
Collapse
Affiliation(s)
- Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shuxin Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Pengyu Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jinfeng Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyu Han
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoji Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
18
|
Qian Y, Zhang T, Yu Y, Gou L, Yang J, Xu J, Pi E. Regulatory Mechanisms of bHLH Transcription Factors in Plant Adaptive Responses to Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:677611. [PMID: 34220896 PMCID: PMC8250158 DOI: 10.3389/fpls.2021.677611] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/19/2021] [Indexed: 05/05/2023]
Abstract
Basic helix-loop-helix proteins (bHLHs) comprise one of the largest families of transcription factors in plants. They have been shown to be involved in responses to various abiotic stresses, such as drought, salinity, chilling, heavy metal toxicity, iron deficiency, and osmotic damages. By specifically binding to cis-elements in the promoter region of stress related genes, bHLHs can regulate their transcriptional expression, thereby regulating the plant's adaptive responses. This review focuses on the structural characteristics of bHLHs, the regulatory mechanism of how bHLHs are involved transcriptional activation, and the mechanism of how bHLHs regulate the transcription of target genes under various stresses. Finally, as increasing research demonstrates that flavonoids are usually induced under fluctuating environments, the latest research progress and future research prospects are described on the mechanisms of how flavonoid biosynthesis is regulated by bHLHs in the regulation of the plant's responses to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
19
|
Zhang Y, Zhang M, Hu H, Yang J, Cui J, Xu J. Cloning and cold-resistance analyses of CfICE1 gene in Cryptomeria fortunei. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:456-467. [PMID: 33744519 DOI: 10.1016/j.plaphy.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Cryptomeria fortunei is a conifer species that can attain a height of ~70 m and is cultivated for its timber as well as its ornamental value. It is a subtropical plant that prefers a warm and humid environment. Therefore, low temperature (LT) affects its growth, development, productivity and ecological distribution. Inducer of C-repeat binding factor (CBF) expression 1 (ICE1) plays an important role in the response to cold/freezing stress in plants through the CBF regulation pathway. To date, there is no research on homologue of ICE1 in C. fortunei. In this study, we first isolated the CfICE1 transcript from C. fortunei. The CfICE1 coding sequence was 1728 nucleotides encoding a 575-aa protein and contained a serine-rich motif, a basic helix-loop-helix-Zipper (bHLH-Zip), an ACT domain and a nuclear localization signal (NLS), which were conserved in ICE1 homologous genes. Phylogenetic analysis showed that CfICE1 and all dicots ICE1 proteins were clustered together. CfICE1 had transcriptional activity in yeast cells, was predominantly located in the nucleus and highly expressed in tender needles and roots. 35S::CfICE1 transgenic Arabidopsis thaliana could increase antioxidant enzyme activities and photosynthesis and reduce the malondialdehyde content compared to the wild-type to better cope with LT. Under LT, CfICE1 expression was higher; the C. fortunei clone with stronger cold resistance (CR) significantly upregulated the expression of CfICE1 compared to the weaker clone. In conclusion, these results suggest that CfICE1 plays an active role in CR, which provides a theoretical basis for breeding for CR in C. fortunei.
Collapse
Affiliation(s)
- Yingting Zhang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Meng Zhang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Hailiang Hu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Junjie Yang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jiebing Cui
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jin Xu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
20
|
Song Y, Cui H, Shi Y, Xue J, Ji C, Zhang C, Yuan L, Li R. Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress. BMC Genomics 2020; 21:786. [PMID: 33176698 PMCID: PMC7659147 DOI: 10.1186/s12864-020-07189-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Background WRKY transcription factors are a superfamily of regulators involved in diverse biological processes and stress responses in plants. However, there is limited knowledge about the WRKY family in camelina (Camelina sativa), an important Brassicaceae oil crop with strong tolerance for various stresses. Here, a genome-wide characterization of WRKY proteins is performed to examine their gene structures, phylogenetics, expression, conserved motif organizations, and functional annotation to identify candidate WRKYs that mediate stress resistance regulation in camelinas. Results A total of 242 CsWRKY proteins encoded by 224 gene loci distributed unevenly over the chromosomes were identified, and they were classified into three groups by phylogenetic analysis according to their WRKY domains and zinc finger motifs. The 15 CsWRKY gene loci generated 33 spliced variants. Orthologous WRKY gene pairs were identified, with 173 pairs in the C. sativa and Arabidopsis genomes as well as 282 pairs in the C. sativa and B. napus genomes, respectively. A total of 137 segmental duplication events were observed, but there was no tandem duplication in the camelina genome. Ten major conserved motifs were examined, with WRKYGQK being the most conserved, and several variants were present in many CsWRKYs. Expression analysis revealed that 50% more CsWRKY genes were expressed constitutively, and a set of them displayed tissue-specific expression. Notably, 11 CsWRKY genes exhibited significant expression changes in seedlings under cold, salt, and drought stresses, showing a preferentially inducible expression pattern in response to the stress. Conclusions The present article describes a detailed analysis of the CsWRKY gene family and its expression profiles in 12 tissues and under several stress conditions. Segmental duplication is the major force underlying the broad expansion of this gene family, and a strong purifying pressure occurred for CsWRKY proteins during their evolution. CsWRKY proteins play important roles in plant development, with differential functions in different tissues. Exceptionally, eleven CsWRKYs, particularly five alternative spliced isoforms, were found to be the possible key players in mediating plant responses to various stresses. Overall, our results provide a foundation for understanding the roles of CsWRKYs and the precise mechanism through which CsWRKYs regulate high stress resistance as well as the development of stress tolerance cultivars among Cruciferae crops. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07189-3.
Collapse
Affiliation(s)
- Yanan Song
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ying Shi
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jinai Xue
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunhui Zhang
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, Shanxi, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China.
| |
Collapse
|
21
|
Zhou Z, Wang J, Zhang S, Yu Q, Lan H. Investigation of the Nature of CgCDPK and CgbHLH001 Interaction and the Function of bHLH Transcription Factor in Stress Tolerance in Chenopodium glaucum. FRONTIERS IN PLANT SCIENCE 2020; 11:603298. [PMID: 33552098 PMCID: PMC7862342 DOI: 10.3389/fpls.2020.603298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/11/2020] [Indexed: 05/22/2023]
Abstract
Calcium-dependent protein kinase (CDPK) and its substrates play important roles in plant response to stress. So far, the documentation on the characterization of the CDPK and downstream interaction components (especially transcription factors, TFs) is limited. In the present study, an interaction between CgCDPK (protein kinase) (accession no. MW26306) and CgbHLH001 (TF) (accession no. MT797813) from a halophyte Chenopodium glaucum was further dissected. Firstly, we revealed that the probable nature between the CgCDPK and CgbHLH001 interaction was the phosphorylation, and the N-terminus of CgbHLH001, especially the 96th serine (the potential phosphorylation site) within it, was essential for the interaction, whereas the mutation of 96Ser to alanine did not change its nuclear localization, which was determined by the N-terminus and bHLH domain together. Furthermore, we verified the function of CgbHLH001 gene in response to stress by ectopic overexpression in tobacco; the transgenic lines presented enhanced stress tolerance probably by improving physiological performance and stress-related gene expression. In conclusion, we characterized the biological significance of the interaction between CDPK and bHLH in C. glaucum and verified the positive function of CgbHLH001 in stress tolerance, which may supply more evidence in better understanding of the CDPK signaling pathway in response to adversity.
Collapse
Affiliation(s)
- Zixin Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shiyue Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- *Correspondence: Qinghui Yu,
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Haiyan Lan,
| |
Collapse
|
22
|
Jiao H, Liu Q, Zhang H, Qi K, Liu Z, Wang P, Wu J, Zhang S. PbrPCCP1 mediates the PbrTTS1 signaling to control pollen tube growth in pear. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110244. [PMID: 31623778 DOI: 10.1016/j.plantsci.2019.110244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
In plants, genes containing the C2 domain have been identified and play a crucial role in many key physiological processes. One hundred and sixty-six genes containing a C2 domain were identified in pear and 38 genes contained multiple C2 domains. Whole genome duplication and tandem duplication events were the major forces driving the C2 superfamily expansion, and C2 superfamily members have evolved under negative selection. There were 104 C2 genes expressed during pollen tube growth. Here, we identified Pbr028378.1 containing the C2 domain from pear and named it PbrPCCP1. PbrPCCP1 was localized in the plasma membrane and mainly expressed in pollen. PbrPCCP1 interacted with PbrTTS1, which contained a Cys-rich C-terminal domain, and promoted pollen tube growth. The Pollen ole e I domain of PbrTTS1 was responsible for its interaction. Additionally, pollen tube growth was inhibited and the promoting effect of PbrTTS1 was attenuated when PbrPCCP1 expression level was knocked-down by antisense oligonucleotides. The qRT-PCR results indicated that PbrPCCP1 and PbrTTS1 expression levels were consistently present in the style after pollination, and their expression levels were up-regulated within 24 h. This implied that they could co-regulate pollen tube growth when the pollen tube grew in the pistil.
Collapse
Affiliation(s)
- HuiJun Jiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qian Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Hao Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhe Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Peng Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - JuYou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China.
| | - ShaoLing Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
23
|
Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, Yadav M, Upadhyay R. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 2019; 5:e02952. [PMID: 31872123 PMCID: PMC6909094 DOI: 10.1016/j.heliyon.2019.e02952] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In response to various environmental stresses, many plant species synthesize L-proline in the cytosol and accumulates in the chloroplasts. L-Proline accumulation in plants is a well-recognized physiological reaction to osmotic stress prompted by salinity, drought and other abiotic stresses. L-Proline plays several protective functions such as osmoprotectant, stabilizing cellular structures, enzymes, and scavenging reactive oxygen species (ROS), and keeps up redox balance in adverse situations. In addition, ample-studied osmoprotective capacity, L-proline has been also ensnared in the regulation of plant improvement, including flowering, pollen, embryo, and leaf enlargement. SCOPE AND CONCLUSIONS Albeit, ample is now well-known about L-proline metabolism, but certain characteristics of its biological roles are still indistinct. In the present review, we discuss the L-proline accumulation, metabolism, signaling, transport and regulation in the plants. We also discuss the effects of exogenous L-proline during different environmental conditions. L-Proline biosynthesis and catabolism are controlled by several cellular mechanisms, of which we identify only very fewer mechanisms. So, in the future, there is a requirement to identify such types of cellular mechanisms.
Collapse
Affiliation(s)
- Mukesh Meena
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vaishali Shukla
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mukesh Yadav
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - R.S. Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
24
|
Ren YR, Yang YY, Zhang R, You CX, Zhao Q, Hao YJ. MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110219. [PMID: 31521216 DOI: 10.1016/j.plantsci.2019.110219] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/11/2019] [Accepted: 08/12/2019] [Indexed: 05/22/2023]
Abstract
The 14-3-3 proteins are a family of highly conserved phosphoserine-binding proteins that participate in the regulation of diverse physiological and developmental processes. In this research, twenty 14-3-3 genes in apples, which contained a highly conserved 14-3-3 domain, were identified and divided into two subgroups. Among them, MdGRF11 was further cloned and investigated. qRT-PCR analyses and GUS staining show that MdGRF11 is expressed in various organs and tissues with the highest expression levels found in the fruit. MdGRF11 was upregulated by polyethylene glycol 6000 (PEG 6000), NaCl, abscisic acid (ABA) and low temperature (4 °C) treatments. MdGRF11-overexpressing transgenic Arabidopsis and apple calli exhibited reduced sensitivity to salt and PEG 6000 treatments. Moreover, the ectopic expression of MdGRF11 improved the tolerance of transgenic tobacco to salt and drought stresses, which grew longer roots, underwent more growth, and presented higher chlorophyll levels than the wild-type control under salt and drought stress conditions. Furthermore, MdGRF11 expression remarkably reduced electrolyte leakage, malondialdehyde content levels, H2O2 and O2- accumulation under salt and drought stress conditions, which relied on the regulation of ROS-scavenging signaling to reduce oxidative damage of cells after salt and drought stress treatment. MdGRF11 also enhanced tolerance to stress by upregulating expression levels of ROS-scavenging and stress-related genes, especially improving responses to drought stress by modifying the water loss rates and stomatal aperture. Moreover, MdGRF11 could interact with MdAREB/ABF transcription factors through yeast two hybrid analyses. In conclusion, our results indicate that MdGRF11 acts as a positive regulator of salt and drought stress responses through regulating ROS scavenging and other signaling systems.
Collapse
Affiliation(s)
- Yi-Ran Ren
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Ying Yang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Rui Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Qiang Zhao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
25
|
Zhao L, Yang T, Xing C, Dong H, Qi K, Gao J, Tao S, Wu J, Wu J, Zhang S, Huang X. The β-amylase PbrBAM3 from pear (Pyrus betulaefolia) regulates soluble sugar accumulation and ROS homeostasis in response to cold stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110184. [PMID: 31481191 DOI: 10.1016/j.plantsci.2019.110184] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 05/18/2023]
Abstract
β-Amylase (BAM) is involved in sugar metabolism, but the role of BAM genes in cold tolerance remains poorly understood. Here, we report the identification and functional characterization of the chloroplast-localized BAM-encoding gene PbrBAM3 isolated from Pyrus betulaefolia. The transcript levels of PbrBAM3 were up-regulated under cold, dehydration and ABA, but repressed by maltose. Overexpression of PbrBAM3 in tobacco (Nicotiana tabacum) and pear (P. ussuriensis) conferred increased BAM activity, promoted starch degradation after chilling treatments and enhanced tolerance to cold. Under the chilling stress, the transgenic tobacco and P. ussuriensis exhibited lessened reactive oxygen species (ROS) generation, higher levels of antioxidant enzymes activity, and greater accumulation of soluble sugars (specially maltose) than the corresponding wild type plants. Taken together, these results demonstrate that PbrBAM3 plays an important role in cold tolerance, at least in part, by raising the levels of soluble sugars capable of acting as osmolytes or antioxidants.
Collapse
Affiliation(s)
- Liangyi Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianyuan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Caihua Xing
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huizheng Dong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kaijie Qi
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junzhi Gao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shutian Tao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Juyou Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Li H, Gao W, Xue C, Zhang Y, Liu Z, Zhang Y, Meng X, Liu M, Zhao J. Genome-wide analysis of the bHLH gene family in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube. BMC Genomics 2019; 20:568. [PMID: 31291886 PMCID: PMC6617894 DOI: 10.1186/s12864-019-5936-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background The bHLH (basic helix-loop-helix) transcription factor is one of the largest families of transcription factors in plants, containing a large number of members with diverse functions. Chinese jujube (Ziziphus jujuba Mill.) is the species with the highest economic value in the family Rhamnaceae. However, the characteristics of the bHLH family in the jujube genome are still unclear. Hence, ZjbHLHs were first searched at a genome-wide level, their expression levels under various conditions were investigated systematically, and their protein-protein interaction networks were predicted. Results We identified 92 ZjbHLHs in the jujube genome, and these genes were classified into 16 classes according to bHLH domains. Ten ZjbHLHs with atypical bHLH domains were found. Seventy ZjbHLHs were mapped to but not evenly distributed on 12 pseudo- chromosomes. The domain sequences among ZjbHLHs were highly conserved, and their conserved residues were also identified. The tissue-specific expression of 37 ZjbHLH genes in jujube and wild jujube showed diverse patterns, revealing that these genes likely perform multiple functions. Many ZjbHLH genes were screened and found to be involved in flower and fruit development, especially in earlier developmental stages. A few genes responsive to phytoplasma invasion were also verified. Based on protein-protein interaction prediction and homology comparison, protein-protein interaction networks composed of 92 ZjbHLHs were also established. Conclusions This study provides a comprehensive bioinformatics analysis of 92 identified ZjbHLH genes. We explored their expression patterns in various tissues, the flowering process, and fruit ripening and under phytoplasma stress. The protein-protein interaction networks of ZjbHLHs provide valuable clues toward further studies of their biological functions. Electronic supplementary material The online version of this article (10.1186/s12864-019-5936-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Yu Zhang
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Xianwei Meng
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China. .,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
27
|
Liu YS, Geng JC, Sha XY, Zhao YX, Hu TM, Yang PZ. Effect of Rhizobium Symbiosis on Low-Temperature Tolerance and Antioxidant Response in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:538. [PMID: 31114600 PMCID: PMC6503086 DOI: 10.3389/fpls.2019.00538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Low temperature-induced stress is a major environmental factor limiting the growth and development of plants. Alfalfa (Medicago sativa L.) is a legume well known for its tolerance of extreme environments. In this study, we sought to experimentally investigate the role of rhizobium symbiosis in alfalfa's performance under a low-temperature stress condition. To do this, alfalfa "Ladak+" plants carrying active nodules (AN), inactive nodules (IN), or no nodules (NN) were exposed to an imposed low temperature stress and their survivorship calculated. The antioxidant defense responses, the accumulation of osmotic regulation substances, the cell membrane damage, and the expression of low temperature stress-related genes were determined in both the roots and the shoots of alfalfa plants. We found that more plants with AN survived than those with IN or NN under the same low temperature-stress condition. Greater activity of oxidation protective enzymes was observed in the AN and IN groups, conferring higher tolerance to low temperature in these plants. In addition, rhizobia nodulation also enhanced alfalfa's ability to tolerate low temperature by altering the expression of regulatory and metabolism-associated genes, which resulted in the accumulation of soluble proteins and sugars in the nodulated plants. Taken together, the findings of this study indicate that rhizobium inoculation offers a practical way to promote the persistence and growth potential of alfalfa "Ladak+" in cold areas.
Collapse
Affiliation(s)
- Yu-Shi Liu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | | | - Xu-Yang Sha
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yi-Xin Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tian-Ming Hu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Pei-Zhi Yang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
28
|
Das P, Majumder AL. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Funct Integr Genomics 2018; 19:61-73. [PMID: 30046943 DOI: 10.1007/s10142-018-0628-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/04/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023]
Abstract
The negative effects of soil salinity towards grape yield depend upon salt concentration, cultivar type, developmental stage, and rootstock. Thompson Seedless variety of grape plant is considered moderately sensitive to salinity when grown upon its own root stock. In recent epoch, identification of key genes responsive to salinity offers hope to generate salinity-tolerant crop plants by their overexpression through genetic manipulation. In the present report, salt responsive transcriptome analysis of Thompson Seedless grape variety was done to identify vital genes involved in salinity tolerance which could be used further to generate salt liberal grape plant or other crop plants. Transcriptome libraries for control and 150-mM-NaCl-treated grape leaves were sequenced on Illumina platform where 714 genes were found to be differentially expressed. Gene ontology analysis indicated that under salinity conditions, the genes involved in metabolic process were highly enriched. Keto Encyclopedia of Genes and Genomes analysis revealed that, among the top 22 enriched pathways for the salt stress upregulated genes, the carbohydrate metabolism, signal transduction, energy metabolism, amino acid metabolism, biosynthesis of secondary metabolite, and lipid metabolism pathways possessed the largest number of transcripts. Key salinity-induced genes were selected and validated through qRT-PCR analysis which was comparable to RNA-seq results. Real-time PCR analysis also revealed that after 24 days of salinity, the expression of most of the selected key genes was highest. These salinity-induced genes will be characterized further in a model plant and also in Vitis vinifera through transgenic approach to disclose their role towards salt tolerance.
Collapse
Affiliation(s)
- Priyanka Das
- Division of Plant Biology, Bose Institute, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata, West Bengal, 700054, India.
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
29
|
Khan SA, Li MZ, Wang SM, Yin HJ. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress. Int J Mol Sci 2018; 19:ijms19061634. [PMID: 29857524 PMCID: PMC6032162 DOI: 10.3390/ijms19061634] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.
Collapse
Affiliation(s)
- Sardar-Ali Khan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Meng-Zhan Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
30
|
Deep sequencing-based characterization of transcriptome of Pyrus ussuriensis in response to cold stress. Gene 2018; 661:109-118. [PMID: 29580898 DOI: 10.1016/j.gene.2018.03.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 01/14/2023]
Abstract
Pyrus ussuriensis is extremely cold hardy when fully acclimated, but knowledge relevant to the molecular mechanisms underlying this economically valuable trait is still limited so far. In this study, global transcriptome profiles of Pyrus ussuriensis under cold conditions (4 °C) over a time course were generated by high-throughput sequencing. In total, >57,121,199 high quality clean reads were obtained with approximately 11.0 M raw data for each library. Among them, the values of 66.84%-72.03% of clean reads in the digital transcript abundance measurement could be well mapped to the pear genome database, resulting in the identification of 8544 differentially expressed genes (DEGs) having 43 Gene Ontology (GO) terms and 17 clusters of orthologous groups (COG) involved in 385 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined pathways. These comprised 3124 (1033 up-regulated, 2091 down-regulated), 1243 (729 up-regulated, 514 down-regulated), and 750 (458 up-regulated, 292 down-regulated) genes from the cold-treated samples at 5, 12 and 24 h, respectively. The accuracy of the RNA-Seq derived transcript expression data was validated by analyzing the expression patterns of 16 DGEs by quantitative real-time PCR. Plant-pathogen interaction, plant hormone signal transduction, Photosynthesis, signal transduction, innate immune response and response to biotic stimulus were the most significantly enriched GO categories among in the DEGs. A total of 335 transcription factors were shown to be cold responsive. In addition, a number of genes involved in the catabolism and signaling of hormones were significantly affected by the cold stress. The RNA-Seq and digital expression profiling provides valuable insights into the understanding the molecular events related to cold responses in Pyrus ussuriensis and dataset may help guide future identification and functional analysis of potential genes that are important for enhancing cold hardiness.
Collapse
|
31
|
Zhao Q, Xiang X, Liu D, Yang A, Wang Y. Tobacco Transcription Factor NtbHLH123 Confers Tolerance to Cold Stress by Regulating the NtCBF Pathway and Reactive Oxygen Species Homeostasis. FRONTIERS IN PLANT SCIENCE 2018; 9:381. [PMID: 29643858 PMCID: PMC5882786 DOI: 10.3389/fpls.2018.00381] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/08/2018] [Indexed: 05/03/2023]
Abstract
Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from Nicotiana tabacum, NtbHLH123, in response to cold stress (4°C). Overexpression of NtbHLH123 enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, NtbHLH123 binds directly to the G-box/E-box motifs in the promoter of the NtCBF genes and positively regulates their expression. Furthermore, NtbHLH123-overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H2O2 and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And NtbHLH123 increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that NtbHLH123 is a transcriptional activator that functions as a positive regulator of cold tolerance by activating NtCBF, ROS scavenging-related, and stress-responsive genes.
Collapse
Affiliation(s)
- Qiang Zhao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Qiang Zhao, Yuanying Wang,
| | | | - Dan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuanying Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Qiang Zhao, Yuanying Wang,
| |
Collapse
|
32
|
Identification and expression analysis of the apple (Malus × domestica) basic helix-loop-helix transcription factor family. Sci Rep 2017; 7:28. [PMID: 28174429 PMCID: PMC5428380 DOI: 10.1038/s41598-017-00040-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023] Open
Abstract
Basic helix-loop-helix (bHLH) proteins, which are characterized by a conserved bHLH domain, comprise one of the largest families of transcription factors in both plants and animals, and have been shown to have a wide range of biological functions. However, there have been very few studies of bHLH proteins from perennial tree species. We describe here the identification and characterization of 175 bHLH transcription factors from apple (Malus × domestica). Phylogenetic analysis of apple bHLH (MdbHLH) genes and their Arabidopsis thaliana (Arabidopsis) orthologs indicated that they can be classified into 23 subgroups. Moreover, integrated synteny analysis suggested that the large-scale expansion of the bHLH transcription factor family occurred before the divergence of apple and Arabidopsis. An analysis of the exon/intron structure and protein domains was conducted to suggest their functional roles. Finally, we observed that MdbHLH subgroup III and IV genes displayed diverse expression profiles in various organs, as well as in response to abiotic stresses and various hormone treatments. Taken together, these data provide new information regarding the composition and diversity of the apple bHLH transcription factor family that will provide a platform for future targeted functional characterization.
Collapse
|
33
|
Zarattini M, Forlani G. Toward Unveiling the Mechanisms for Transcriptional Regulation of Proline Biosynthesis in the Plant Cell Response to Biotic and Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:927. [PMID: 28626464 PMCID: PMC5454058 DOI: 10.3389/fpls.2017.00927] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/17/2017] [Indexed: 05/18/2023]
Abstract
Proline accumulation occurs in plants following the exposure to a wide array of stress conditions, as well as during numerous physiological and adaptive processes. Increasing evidence also supports the involvement of proline metabolism in the plant response to pathogen attack. This requires that the biosynthetic pathway is triggered by components of numerous and different signal transduction chains. Indeed, several reports recently described activation of genes coding for enzymes of the glutamate pathway by transcription factors (TFs) belonging to various families. Here, we summarize some of these findings with special emphasis on rice, and show the occurrence of a plethora of putative TF binding sites in the promoter of such genes.
Collapse
|
34
|
Wu J, Chen J, Wang L, Wang S. Genome-Wide Investigation of WRKY Transcription Factors Involved in Terminal Drought Stress Response in Common Bean. FRONTIERS IN PLANT SCIENCE 2017; 8:380. [PMID: 28386267 PMCID: PMC5362628 DOI: 10.3389/fpls.2017.00380] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/06/2017] [Indexed: 05/03/2023]
Abstract
WRKY transcription factor plays a key role in drought stress. However, the characteristics of the WRKY gene family in the common bean (Phaseolus vulgaris L.) are unknown. In this study, we identified 88 complete WRKY proteins from the draft genome sequence of the "G19833" common bean. The predicted genes were non-randomly distributed in all chromosomes. Basic information, amino acid motifs, phylogenetic tree and the expression patterns of PvWRKY genes were analyzed, and the proteins were classified into groups 1, 2, and 3. Group 2 was further divided into five subgroups: 2a, 2b, 2c, 2d, and 2e. Finally, we detected 19 WRKY genes that were responsive to drought stress using qRT-PCR; 11 were down-regulated, and 8 were up-regulated under drought stress. This study comprehensively examines WRKY proteins in the common bean, a model food legume, and it provides a foundation for the functional characterization of the WRKY family and opportunities for understanding the mechanisms of drought stress tolerance in this plant.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing, China
| | - Jibao Chen
- College of Agricultural Engineering, Nanyang Normal University,Nanyang, China
| | - Lanfen Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing, China
| | - Shumin Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing, China
- *Correspondence: Shumin Wang,
| |
Collapse
|
35
|
Wu J, Wang L, Wang S. Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean. BMC PLANT BIOLOGY 2016; 16:193. [PMID: 27604581 PMCID: PMC5013670 DOI: 10.1186/s12870-016-0882-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/24/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is an important warm-season food legume. Drought is the most important environmental stress factor affecting large areas of common bean via plant death or reduced global production. The NAM, ATAF1/2 and CUC2 (NAC) domain protein family are classic transcription factors (TFs) involved in a variety of abiotic stresses, particularly drought stress. However, the NAC TFs in common bean have not been characterized. RESULTS In the present study, 86 putative NAC TF proteins were identified from the common bean genome database and located on 11 common bean chromosomes. The proteins were phylogenetically clustered into 8 distinct subfamilies. The gene structure and motif composition of common bean NACs were similar in each subfamily. These results suggest that NACs in the same subfamily may possess conserved functions. The expression patterns of common bean NAC genes were also characterized. The majority of NACs exhibited specific temporal and spatial expression patterns. We identified 22 drought-related NAC TFs based on transcriptome data for drought-tolerant and drought-sensitive genotypes. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression patterns of the 20 drought-related NAC genes. CONCLUSIONS Based on the common bean genome sequence, we analyzed the structural characteristics, genome distribution, and expression profiles of NAC gene family members and analyzed drought-responsive NAC genes. Our results provide useful information for the functional characterization of common bean NAC genes and rich resources and opportunities for understanding common bean drought stress tolerance mechanisms.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lanfen Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shumin Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|