1
|
Jia H, Shi Y, Dai Z, Sun Y, Shu X, Li B, Wu R, Lv S, Shou J, Yang X, Jiang G, Zhang Y, Allan AC, Chen K. Phosphorylation of the strawberry MADS-box CMB1 regulates ripening via the catabolism of abscisic acid. THE NEW PHYTOLOGIST 2025; 246:1627-1646. [PMID: 40172024 PMCID: PMC12018792 DOI: 10.1111/nph.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/19/2025] [Indexed: 04/04/2025]
Abstract
Research on the ripening of fleshy fruits has relied on techniques that measure transcriptional changes. How ripening is linked to posttranslational modifications such as protein phosphorylation remains less studied. Here, we characterize the MADS-box SEPALLATA 4 (SEP4) subfamily transcription factor FaCMB1, a key negative regulator controlling strawberry ripening, whose transcript and protein abundance decrease progressively with fruit development and are repressed by abscisic acid (ABA). Transient RNAi or overexpression of FaCMB1 significantly altered the fruit ripening process and affected the content of endogenous ABA and ripening-related quality. Transcriptome sequencing (RNA-seq) analysis suggested that manipulation of FaCMB1 expression levels affected the transcription of FaASR (ABA-, stress-, ripening-induced), while FaCMB1 can repress the gene expression of FaASR by directly binding to its promoter. Furthermore, FaASR inhibited the transcriptional activity of FaCYP707A4, a key ABA 8'-hydroxylase enzyme involved in ABA catabolism. We show that FaCMB1 can be phosphorylated by the kinase FaSTPK, and Phos-tag assays indicated that the phosphorylation level of FaCMB1 increases during fruit ripening. This phosphorylation of FaCMB1 affects the binding ability of FaCMB1 to the FaASR promoter and alleviates its transcriptional repression. In conclusion, we elucidated a feedback regulatory path involving FaCMB1-FaASR-FaCYP707A4-ABA. During the fruit ripening process, an increase in ABA content led to a decrease in FaCMB1 transcript and protein levels, which, combined with increased phosphorylation levels, collectively impaired the transcriptional repression of FaASR by FaCMB1. Meanwhile, the increased transcriptional level of FaASR further repressed the expression level of FaCYP707A4, leading to ABA accumulation and fruit ripening.
Collapse
Affiliation(s)
- Haoran Jia
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Yanna Shi
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityZijingang CampusHangzhou310058China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality ImprovementZhejiang UniversityZijingang CampusHangzhou310058China
| | - Zhengrong Dai
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Yunfan Sun
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Xiu Shu
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Baijun Li
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of AgricultureGuangxi UniversityNanning530004China
| | - Rongrong Wu
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Shouzheng Lv
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Jiahan Shou
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Xiaofang Yang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Guihua Jiang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Yuchao Zhang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Andrew C. Allan
- New Zealand Institute for Plant & Food Research LtdPrivate Bag 92169Auckland1142New Zealand
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Kunsong Chen
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityZijingang CampusHangzhou310058China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality ImprovementZhejiang UniversityZijingang CampusHangzhou310058China
| |
Collapse
|
2
|
Jan R, Kim N, Asif S, Asaf S, Lubna, Farooq M, Khan Z, Kim KM. Identification and evaluation of low-pH-tolerant Cheongcheong/Nagdong-double haploid rice lines via QTL analysis. BMC PLANT BIOLOGY 2025; 25:525. [PMID: 40275129 PMCID: PMC12023450 DOI: 10.1186/s12870-025-06538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Low soil pH (acidic soil) is one of the most severe environmental constraints that severely inhibits crop production. Here, we screened 134 lines of the Cheongcheong/Nagdong Double Haploid (CNDH) rice population under low pH conditions to uncover candidate QTLs and identify low pH-resistant lines. A total of 17 QTLs against shoot length, root length and standard evaluation score in response to low pH were identified on 8 chromosomes (1, 2, 6, 7, 8, 9, 10, and 12). A QTL related to shoot length, qSL-6b, on chromosome 6 with an LOD of 5 and a QTL related to the standard evaluation score, qSES-9, on chromosome 6 with an LOD of 3 were further investigated for candidate genes. A total of 24 genes were predicted, i.e., 17 genes on qSL-6b and 7 genes on qSES-9 on the basis of closely related functional annotations via the NCBI and RiceXPro databases. Through qRT‒PCR of the resistant and susceptible lines, we identified four genes (Os06g0211200, Os09g0448200, Os09g0456200, and Os09g0472100) that were significantly expressed in the resistant lines but expressed at lower levels in the susceptible lines under low-pH soil stress. During early germination, ABA levels decreased in all the resistant lines but increased in all the susceptible lines. However, the ABA level at the seedling stage significantly increased in the resistant lines but decreased in all the susceptible lines. Our results suggest that the genes responsible for K+ ion homeostasis and ABA regulation play key roles in resistance to low pH in rice.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Nari Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman.
| | - Lubna
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Muhammad Farooq
- Department of Agriculture Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
3
|
Jafari F, Dolatabadian A. A critical review of the importance of Far-Related Sequence (FRS)- FRS-Related Factor (FRF) transcription factors in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112410. [PMID: 39900189 DOI: 10.1016/j.plantsci.2025.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/05/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Transposable elements have long been recognised as critical drivers of genetic diversity and evolution in plant genomes, influencing various physiological and developmental processes. The transcription factor family FAR-RED ELONGATED HYPOCOTYLS3 (FHY3), and its homologue FAR-RED IMPAIRED RESPONSE1 (FAR1), initially identified as key components of phytochrome A (phyA)-mediated far-red (FR) light signalling in Arabidopsis thaliana, are derived from transposases and are essential for light signal transduction, plant growth, and development. FHY3 and FAR1 are also the founding members of the FAR1-RELATED SEQUENCE (FRS) family, which is conserved across terrestrial plants. While the coding sequences of many putative FRS and FAR1-RELATED FACTOR (FRF) orthologs have been identified in various angiosperm clades, their physiological functions remain largely unexplored. The FRF genes are considered truncated forms of FRS proteins that compete with FRS for DNA binding sites, thereby regulating gene expression. This review highlights recent advances in characterising the molecular mechanisms of FHY3, FAR1, and other members of the FRS-FRF protein family. We examine their roles in key processes such as regulating flowering time, controlling branching, integrating leaf aging and senescence, modulating the circadian clock, maintaining meristem function, starch synthesis, seed germination, and responding to Starch synthesis and carbon starvation. Additionally, we explore their contributions to plant immunity under biotic and abiotic stresses. Finally, we suggest future directions for functional characterising other FRS-FRF family proteins in plants, which could provide deeper insights into their regulatory roles in plant biology.
Collapse
Affiliation(s)
- Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aria Dolatabadian
- School of Biological Sciences, The University of Western Australia, Crawley 6009, Australia.
| |
Collapse
|
4
|
Chung S, Lee SJ, Yun HS, Lee JH, Kim WT. Role of Arabidopsis monomeric E3 ubiquitin ligases in the ABA signaling pathway. BMB Rep 2025; 58:147-157. [PMID: 40058874 PMCID: PMC12041924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 04/30/2025] Open
Abstract
Abscisic acid (ABA) is a key phytohormone that regulates multiple biological processes in plants, including seed germination, seedling growth, and abiotic stress response. ABA enhances drought tolerance by promoting stomatal closure, thereby improving crop productivity under unfavorable stress conditions. Extensive research efforts have focused on understanding ABA signaling more clearly for its potential application in agriculture. The accumulation and stability of signaling components involved in the efficient transduction of downstream ABA signaling are affected by both transcriptional regulation and post-translational modifications. Ubiquitination is a representative post-translational modification that regulates protein stability, and E3 ubiquitin ligase is a key enzyme that determines target substrates for ubiquitination. To date, many E3 ligases functioning as a monomeric form such as RING-, HECT- and Ubox- types have been known to participate in the ABA signaling process. In this review, we summarize the current understanding of ABA-related monomeric E3 ligases, their regulation, and mode of action in Arabidopsis, which will help develop a detailed and integrated understanding of the ABA signaling process in Arabidopsis. [BMB Reports 2025; 58(4): 147-157].
Collapse
Affiliation(s)
- Sunglan Chung
- Underwood International College, Yonsei University, Seoul 03722, Korea
| | - Su-Jung Lee
- Department of Biology Education, Pusan National University, Busan 46241, Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan 46241, Korea
| | - Woo Taek Kim
- Department of Systems Biology and Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
5
|
Mu T, Luo S, Li L, Zhang R, Wang P, Zhang G. A review of the interaction mechanisms between jasmonic acid (JA) and various plant hormones, as well as the core regulatory role of MYC2. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112407. [PMID: 39894056 DOI: 10.1016/j.plantsci.2025.112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/12/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Jasmonic acid (JA), as a defensive plant hormone, can synergistically or antagonistically interact with common hormones such as gibberellin (GA), abscisic acid (ABA), indole-3-acetic hormone acid (IAA), and ethylene (ETH) during the plant growth process, as well as interact with hormones such as melatonin (MT), brassinolide (BR), and resveratrol to regulate plant growth and development processes such as metabolite synthesis, pest and disease defense, and organ growth. The core regulatory factor MYC2 of JA mainly mediates the signal transduction pathways of these hormone interactions by interacting with other genes or regulating transcription. This article reviews the mechanism of cross-talk between JA and hormones such as ABA, GA, and salicylic acid (SA), and discusses the role of MYC2 in hormone interactions.
Collapse
Affiliation(s)
- Tingting Mu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Long Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Rongrong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou 730070, China.
| |
Collapse
|
6
|
Guo XL, Wang DR, Liu B, Han Y, You CX, An JP. The E3 ubiquitin ligase BRG3 and the protein kinase MPK7 antagonistically regulate LBD36 turnover, a key node for integrating nitrate and gibberellin signaling in apple. THE NEW PHYTOLOGIST 2025. [PMID: 40084628 DOI: 10.1111/nph.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
Nitrate is the main source of nitrogen in plants. Nitrate stimulation causes changes in plant secondary metabolites, including anthocyanins. However, the molecular mechanism underlying how nitrate regulates anthocyanin biosynthesis remains unclear. In this study, we identified a nitrate response factor MdLBD36 in apple. This factor positively regulated nitrate deficiency-induced anthocyanin biosynthesis by promoting the transcriptional activity of MdABI5, an important regulator of anthocyanins, and directly activated MdABI5 expression. The E3 ubiquitin ligase MdBRG3 promoted the ubiquitinated degradation of MdLBD36 to reduce anthocyanin biosynthesis under nitrate-sufficient conditions. Nitrate deficiency-activated MdMPK7 maintained the stimulating effect of MdLBD36 on anthocyanin biosynthesis by counteracting the MdBRG3-mediated degradation of MdLBD36. Nitrate coordinated gibberellin (GA) signaling to regulate anthocyanin biosynthesis. The GA signaling repressor MdRGL2a contributed to MdLBD36-promoted anthocyanin biosynthesis by enhancing the MdLBD36-MdABI5 interaction and increasing the MdLBD36 transcriptional activation of MdABI5. In summary, our results elucidate the molecular framework of the coordinated regulation of the nitrate signaling response and anthocyanin biosynthesis by ubiquitination and phosphorylation. This study revealed the cross talk between nitrate and GA signaling in the regulation of anthocyanin biosynthesis and provides references for an in-depth exploration of the nitrate signal transduction pathway and its interactions with hormones.
Collapse
Affiliation(s)
- Xin-Long Guo
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yan-Tai, 265599, Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| |
Collapse
|
7
|
Jurkonienė S, Gavelienė V, Mockevičiūtė R, Jankovska-Bortkevič E, Šveikauskas V, Jankauskienė J, Žalnierius T, Kozeko L. GABA and Proline Application Induce Drought Resistance in Oilseed Rape. PLANTS (BASEL, SWITZERLAND) 2025; 14:860. [PMID: 40265797 PMCID: PMC11944633 DOI: 10.3390/plants14060860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025]
Abstract
This study investigates the effects of γ-aminobutyric acid (GABA) and proline, both individually and in combination, on the growth of oilseed rape under drought stress and following the resumption of irrigation. The goal was to determine whether the exogenous application of these compounds enhances the plants response to prolonged water deficit and, if so, to identify the biochemical processes involved in the plant tissue. The experiment was conducted under controlled laboratory conditions. After 21 days of plant cultivation, at the 3-4 leaf stage, seedlings were sprayed with aqueous solutions of GABA (0.1 mM) and proline (0.1 mM). The plants were then subjected to 8 days of severe drought stress, after which irrigation was resumed, and recovery was assessed over 4 days. The results showed that both amino acids alleviated the drought-induced stress as indicated by higher relative water content (RWC), increased levels of endogenous proline and photosynthetic pigments in leaves, and enhanced survival and growth recovery after drought. GABA-treated plants maintained membrane integrity and preserved plasma membrane (PM) ATPase activity during prolonged drought stress while reducing ethylene, H2O2, and MDA levels. Proline also influenced these biochemical responses, though to a lesser extent. The combination of GABA and proline facilitated better recovery of oilseed rape compared to the drought control group following rewatering. Notably, GABA treatment resulted in a significant increase in gene expression compared to the untreated control. Molecular analysis of drought-responsive genes revealed that the gene expression in plants treated with both proline and GABA was typically intermediate between those treated with proline alone and those treated with GABA alone. Based on these findings, we propose that GABA application could serve as an alternative to proline for improving oilseed rape's drought tolerance, potentially increasing both crop yield and quality.
Collapse
Affiliation(s)
- Sigita Jurkonienė
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (R.M.); (E.J.-B.); (V.Š.); (J.J.); (T.Ž.); (L.K.)
| | - Virgilija Gavelienė
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (R.M.); (E.J.-B.); (V.Š.); (J.J.); (T.Ž.); (L.K.)
| | - Rima Mockevičiūtė
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (R.M.); (E.J.-B.); (V.Š.); (J.J.); (T.Ž.); (L.K.)
| | - Elžbieta Jankovska-Bortkevič
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (R.M.); (E.J.-B.); (V.Š.); (J.J.); (T.Ž.); (L.K.)
| | - Vaidevutis Šveikauskas
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (R.M.); (E.J.-B.); (V.Š.); (J.J.); (T.Ž.); (L.K.)
| | - Jurga Jankauskienė
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (R.M.); (E.J.-B.); (V.Š.); (J.J.); (T.Ž.); (L.K.)
| | - Tautvydas Žalnierius
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (R.M.); (E.J.-B.); (V.Š.); (J.J.); (T.Ž.); (L.K.)
| | - Liudmyla Kozeko
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (R.M.); (E.J.-B.); (V.Š.); (J.J.); (T.Ž.); (L.K.)
- Department of Cell Biology and Anatomy, M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereshchenkivska Str. 2, 01601 Kyiv, Ukraine
| |
Collapse
|
8
|
Şekerci K, Higashitani N, Ozgur R, Higashitani A, Turkan I, Uzilday B. Gene expression and mucilage adaptations to salinity in germination of extreme halophyte Schrenkiella parvula seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109517. [PMID: 39832394 DOI: 10.1016/j.plaphy.2025.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking. However, limited information is available on the structure and thickness of seed mucilage in halophytes under different salinity conditions. In this study, the mucilage structure of the extreme halophyte Schrenkiella parvula was compared with the glycophyte Arabidopsis thaliana in response to salinity. We found differences in the expression levels of genes such as ABI5, RGL2, DOG1, ENO2, and DHAR2, which are involved in seed germination and antioxidant activity, as well as in the mucilage structure of seeds of S. parvula and A. thaliana seeds at different salt concentrations. The responses of seed germination of S. parvula to salinity indicate that it is more salt-tolerant than A. thaliana. Additionally, it was found that S. parvula mucilage decreased under salt conditions but not under mannitol conditions, whereas in A. thaliana mucilage did not change under both conditions, which is one of the adaptation strategies of S. parvula to salt conditions. We believe that these fundamental analyzes will provide a foundation for future molecular and biochemical studies comparing the responses of crops and halophytes to salinity stress.
Collapse
Affiliation(s)
- Keriman Şekerci
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan; Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Nahoko Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Ismail Turkan
- Department of Soil Science and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, 35100, Bornova, Izmir, Türkiye
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye.
| |
Collapse
|
9
|
Dong B, Lang S, Gu Y, Liu X, Song X. Identification of the bHLH gene family and functional analysis of ChMYC2 in drought stress of Cerasus humilis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109519. [PMID: 39837211 DOI: 10.1016/j.plaphy.2025.109519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) play a crucial regulatory role in the growth and development of plants, as well as in their response to environmental stresses. In this study, we identified 94 ChbHLHs from Cerasus humilis, an economically valuable tree native to northern China. We analyzed their evolutionary relationships, gene structures, chromosome distributions, promoter cis-regulatory elements, and collinearity. Our analysis revealed numerous cis-regulatory elements associated with phytohormone responses and abiotic stress within the upstream promoter sequences of ChbHLH genes. The transcriptome results indicated that 84 ChbHLHs exhibited differential expression under drought conditions. Among those with upregulated expression levels, we selected ChMYC2 (ChbHLH93) for further investigation. Overexpressing ChMYC2 in Arabidopsis thaliana led to significantly elevated expression of drought-responsive genes compared to wild-type (WT) plants, resulting in enhanced drought resistance. Furthermore, we identified a gene, ChABI5 (ABA-insensitive 5), which interacts with ChMYC2. This study provides valuable genetic resources for future cultivation efforts aimed at developing stress-resistant and economically viable trees.
Collapse
Affiliation(s)
- Buming Dong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Shaoyu Lang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yongmei Gu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xin Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xingshun Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
10
|
Choi J, Lim CW, Lee SC. Role of pepper bZIP transcription factor CaADBZ1 in abscisic acid signalling and drought stress response. PHYSIOLOGIA PLANTARUM 2025; 177:e70159. [PMID: 40104962 PMCID: PMC11920937 DOI: 10.1111/ppl.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 02/04/2025] [Indexed: 03/20/2025]
Abstract
In plants, basic-region/leucine-zipper (bZIP) transcription factors are key regulators of stress responses mediated by various phytohormone signalling pathways. However, the roles of bZIP transcription factors in pepper, particularly those associated with ABA signalling and drought stress, remain poorly understood. In this study, we isolated the CaADBZ1 (Capsicum annuum ABA and Dehydration-Induced bZIP transcription factor 1) gene, a member of the group A family, and analysed its functions in response to dehydration stress and ABA signalling. The expression of CaADBZ1 was specifically induced by dehydration and exogenous ABA treatment, not salinity and osmotic stress. CaADBZ1 was found to have transactivation activity in yeast cells, which was dependent on the N-terminal of CaADBZ1 (amino acids 1-112), harbouring a highly conserved C1 domain. Notably, a dual-luciferase reporter assay revealed that CaADBZ1 modulated the expression of CaOSR1, a dehydration stress-responsive gene in pepper plants. Functional studies in both pepper and Arabidopsis plants revealed that the modulation of CaADBZ1 expression level affected dehydration stress resistance in pepper and Arabidopsis plants. CaADBZ1-silenced pepper Arabidopsis plants showed dehydration stress-sensitive phenotypes characterized by higher transpiration rates and reduced expression of dehydration-responsive genes compared to control plants. Conversely, overexpression of the CaADBZ1 gene in Arabidopsis plants enhanced dehydration stress resistance. Moreover, CaADBZ1-overexpressing Arabidopsis transgenic plants showed increased ABA sensitivity during the seedling stage. Collectively, our findings suggest that CaADBZ1 plays a crucial role in enhancing dehydration stress tolerance in plants by positively regulating ABA sensitivity and dehydration-responsive gene expression.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| |
Collapse
|
11
|
Sun X, Tian R, Zhao M, Yan J, Chu J, Zhang WH. MtCIR2 negatively regulates seed germination to salt stress by disrupting metabolisms and signaling of abscisic acid and gibberellins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109493. [PMID: 39826347 DOI: 10.1016/j.plaphy.2025.109493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Emerging evidence indicates that long non-coding RNAs (lncRNAs) play a regulatory role in plant response to environmental stresses. Seed germination is a complex physiological process modulated by many environmental and phytohormonal cues. However, how lncRNAs and phytohormones interactively regulate the response of seed germination to salt stress remain largely unknown. Here, we functionally characterized a salt-responsive lncRNA from legume species Medicago truncatula, referred to as MtCIR2, in response to salt stress during seed germination by heterologously expressing MtCIR2 in Arabidopsis in which none such homologous sequence was detected. Expressing MtCIR2 in Arabidopsis rendered the seed germination more sensitive to salt stress. We further evaluated whether and how abscisic acid (ABA) and gibberellin (GA) were involved in the MtCIR2-mediated seed germination in response to salt stress. We found that expression of MtCIR2 led to an increase in endogenous ABA concentration and a decrease in overall GA concentration due to enhanced expression of ABA catabolic gene CYP707A2 and suppressed expression of the genes of GA20ox1, GA20ox2, and GA20ox5 involved in GA synthesis under salt stress, respectively. The MtCIR2-dependent enhanced endogenous ABA and reduced endogenous GA concentrations in seeds resulted in greater suppression of seed germination in transgenic seeds than in wild-type seeds when exposed to salt stress. These findings highlight a regulatory role of lncRNAs in response to salt stress during seed germination.
Collapse
Affiliation(s)
- Xiaohan Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 10009, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Rui Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 10009, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Mingui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 10009, PR China.
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 10009, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
12
|
Guo X, Su J, Xue H, Sun Y, Lian M, Ma J, Lei T, He Y, Li Q, Chen S, Yao L. Genome-wide identification and expression analyses of ABSCISIC ACID-INSENSITIVE 5 (ABI5) genes in Citrus sinensis reveal CsABI5-5 confers dual resistance to Huanglongbing and citrus canker. Int J Biol Macromol 2025:141611. [PMID: 40024407 DOI: 10.1016/j.ijbiomac.2025.141611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Huanglongbing (HLB) and citrus canker are two major destructive bacterial diseases in the citrus industry caused by Candidatus Liberibacter asiaticus (CLas) and Xanthomonas citri subsp. Citri (Xcc), respectively. ABI5 transcription factors are crucial for plant growth and development as well as for responses to various abiotic and biotic stresses, including viruses and fungi. This study aimed to identify and characterize ABI5 genes in the Citrus sinensis genome and investigate their functions in response to CLas and Xcc infections. We identified five putative CsABI5 genes on three citrus chromosomes, named CsABI5-1 to CsABI5-5, which share high identity with Arabidopsis ABI5 subfamily proteins and function in the nucleus. The expression of CsABI5s was differentially altered in citrus leaves under HLB and citrus canker stress, as well as in response to exogenous phytohormones. Notably, CsABI5-5 was upregulated by abscisic acid (ABA), salicylic acid (SA), and ethylene, whereas it was downregulated by methyl jasmonate, CLas, and Xcc. Overexpression of CsABI5-5 inhibited the propagation of CLas in citrus hairy roots and reduced leaf susceptibility to Xcc. This resistance was associated with increased levels of SA, jasmonaic acid, callose, and reactive oxygen species, along with decreased ABA, compared to non-transgenic samples. This study highlights the critical role of CsABI5-5 in regulating plant resistance to biotic stresses and demonstrates its potential utility as a powerful gene for biotechnology-assisted plant breeding aimed at improving citrus resistance to bacterial diseases.
Collapse
Affiliation(s)
- Xingru Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Juan Su
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Hao Xue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Yijia Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Mengyao Lian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Juanjuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Tiangang Lei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| | - Lixiao Yao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| |
Collapse
|
13
|
Yi Y, Qiu Y, Hu H, Qin D, Huang H, Chen T, Zha W, Shen Y. Genome-wide identification and characterization of the bZIP family in the Mangrove Plant Kandelia obovata and its role in response to stress. BMC PLANT BIOLOGY 2025; 25:161. [PMID: 39915747 PMCID: PMC11804082 DOI: 10.1186/s12870-025-06175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND The basic leucine zipper (bZIP) transcription factors play crucial roles in plant growth, development, and responses to environmental changes. The mangrove plant Kandelia obovata, native to subtropical and tropical coastal intertidal zones, has evolved various adaptive mechanisms to cope with unstable muddy substrates, tidal fluctuations, saltwater intrusion, and intense ultraviolet radiation. This study aims to provide a comprehensive characterization of the bZIP gene family in K. obovata and investigate its functional roles in response to environmental stresses. RESULTS In the K. obovata genome, 66 bZIP genes were identified and named KobZIP1 to KobZIP66, categorized based on their chromosomal locations. These KobZIP genes exhibited diversity in physicochemical properties, such as protein length, molecular weight, and isoelectric point, and were all predicted to localize to the nucleus. Phylogenetic and structural analyses classified the KobZIP genes into 12 subfamilies, with subfamily A containing the majority of members. Gene structure analysis revealed variations in the number and position of exons and introns among subfamilies, reflecting their evolutionary history and potential functional diversity. Conserved motif analysis showed that all bZIP family members contained motifs in the basic and hinge regions, with subfamily D displaying the greatest motif diversity. Promoter region analysis identified various cis-acting elements associated with responses to phytohormones (ABA, GA, ET, IAA, MeJA, SA) and environmental stress. The expression patterns of KobZIP genes across different tissues and under various abiotic stress conditions were analyzed using transcriptomic data and experimental validation. CONCLUSION This study provides a comprehensive characterization and functional analysis of the bZIP gene family in K. obovata, offering new insights into their roles in plant development and environmental adaptation. The expression profiles of KobZIP genes during root development and post-embryonic stages, along with their responses to ABA, low temperature, and salt stress, underscore their potential significance in the adaptation of mangrove plants to the intertidal environment.
Collapse
Affiliation(s)
- Yuchong Yi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Yuting Qiu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hongyao Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Dandan Qin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hechen Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Taiping Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Wenqi Zha
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
14
|
Veselova S, Nuzhnaya T, Burkhanova G, Rumyantsev S, Maksimov I. Abscisic Acid Can Play a Dual Role in the Triticum aestivum- Stagonospora nodorum Pathosystem. PLANTS (BASEL, SWITZERLAND) 2025; 14:355. [PMID: 39942917 PMCID: PMC11820657 DOI: 10.3390/plants14030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Abscisic acid (ABA) is not only important for plant responses to abiotic stresses, but also plays a key and multifaceted role in plant immunity. In this work, we analyzed the role of ABA in the development of resistance/susceptibility in the wheat (Triticum aestivum L.)-Stagonospora nodorum Berk. pathosystem, which includes the recognition of the necrotic effectors (NEs) of a pathogen by the corresponding wheat susceptibility genes. We studied the interaction of the S. nodorum SnB isolate, which produces two NEs, SnToxA and SnTox3, with three wheat genotypes having different combinations of the corresponding host susceptibility genes (Tsn1 and Snn3-B1). The results of this work on the gene expression and redox status of resistant and sensitive wheat genotypes treated with ABA show that ABA signaling is directed at inducing the resistance of wheat plants to S. nodorum SnB isolate through the activation of the early post-invasive defense genes TaERD15 and TaABI5. The induction of the expression of these genes leads to reactive oxygen species (ROS) accumulation during the early stage of infection, with the subsequent limitation of the pathogen's growth. In the presence of a compatible interaction of SnTox3-Snn3-B1, ABA signaling is suppressed. On the contrary, in the presence of a compatible interaction of SnToxA-Tsn1, ABA signaling is activated, but the activity of the early post-invasive defense genes TaERD15 and TaABI5 is inhibited, and the expression of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family genes TaNAC29 and TaNAC21/22 is induced. The TF genes TaNAC29 and TaNAC21/22 in the presence of SnToxA induce the development of the susceptibility of wheat plants to S. nodorum SnB, associated with a decrease in the oxidative burst during the early stage of infection. Thus, our study provides new data on the role of the NEs SnTox3 and SnToxA in manipulating ABA signaling in the development of the susceptibility of wheat to S. nodorum. Deepening our knowledge in this area will be instrumental for developing new strategies for breeding programs and will contribute to the development of environmentally friendly sustainable agriculture.
Collapse
Affiliation(s)
- Svetlana Veselova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
| | - Tatyana Nuzhnaya
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Burkhanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
| | - Sergey Rumyantsev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
| | - Igor Maksimov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
| |
Collapse
|
15
|
Feng X, Wang C, Jia S, Wang J, Zhou L, Song Y, Guo Q, Zhang C. Genome-Wide Analysis of bZIP Transcription Factors and Expression Patterns in Response to Salt and Drought Stress in Vaccinium corymbosum. Int J Mol Sci 2025; 26:843. [PMID: 39859558 PMCID: PMC11766362 DOI: 10.3390/ijms26020843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025] Open
Abstract
The basic leucine zipper (bZIP) transcription factors play essential roles in multiple stress responses and have been identified and functionally characterized in many plant species. However, the bZIP family members in blueberry are unclear. In this study, we identified 102 VcbZIP genes in Vaccinium corymbosum. VcbZIPs were divided into 10 groups based on phylogenetic analysis, and each group shared similar motifs, domains, and gene structures. Predictions of cis-regulatory elements in the upstream sequences of VcbZIP genes indicated that VcbZIP proteins are likely involved in phytohormone signaling pathways and abiotic stress responses. Analyses of RNA deep sequencing data showed that 18, 13, and 7 VcbZIP genes were differentially expressed in response to salt, drought, and ABA stress, respectively, for the blueberry cultivar Northland. Ten VcbZIP genes responded to both salt and drought stress, indicating that salt and drought have unique and overlapping signals. Of these genes, VcbZIP1-3 are responsive to salt, drought, and abscisic acid treatments, and their encoded proteins may integrate salt, drought, and ABA signaling. Furthermore, VcbZIP1-3 from group A and VcbZIP83-84 and VcbZIP75 from group S exhibited high or low expression under salt or drought stress and might be important regulators for improving drought or salt tolerance. Pearson correlation analyses revealed that VcbZIP transcription factors may regulate stress-responsive genes to improve drought or salt tolerance in a functionally redundant manner. Our study provides a useful reference for functional analyses of VcbZIP genes and for improving salt and drought stress tolerance in blueberry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingxun Guo
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Chunyu Zhang
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
16
|
Valmonte-Cortes GR, Higgins CM, MacDiarmid RM. Arabidopsis Calcium Dependent Protein Kinase 3, and Its Orthologues OsCPK1, OsCPK15, and AcCPK16, Are Involved in Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2025; 14:294. [PMID: 39861648 PMCID: PMC11768100 DOI: 10.3390/plants14020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. Arabidopsis thaliana CPK3 (AtCPK3) is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, AtCPK3 and its orthologues in relatively distant plant species such as rice (Oryza sativa, monocot) and kiwifruit (Actinidia chinensis, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections. Two orthologues were studied in O. sativa, namely OsCPK1 and OsCPK15, while one orthologue-AcCPK16-was identified in A. chinensis. Reverse-transcriptase quantitative PCR (RT-qPCR) analysis revealed that OsCPK1 and AcCPK16 exhibit similar responses to stressors to AtCPK3. OsCPK15 responded differently, particularly in bacterial and fungal infections. An increase in expression was consistently observed among AtCPK3 and its orthologues in response to virus infection. Overexpression mutants in both Arabidopsis and kiwifruit showed slight tolerance to drought, while knockout mutants were slightly more susceptible or had little difference with wild-type plants. Overexpression mutants in Arabidopsis showed slight tolerance to virus infection. These findings highlight the importance of AtCPK3 and its orthologues in drought and pathogen responses and suggest such function must be conserved in its orthologues in a wide range of plants.
Collapse
Affiliation(s)
| | - Colleen M. Higgins
- School of Science, AUT City Campus, Auckland University of Technology, Auckland 1142, New Zealand;
| | - Robin M. MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand;
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
17
|
Chitkara P, Singh A, Gangwar R, Bhardwaj R, Zahra S, Arora S, Hamid F, Arya A, Sahu N, Chakraborty S, Ramesh M, Kumar S. The landscape of fusion transcripts in plants: a new insight into genome complexity. BMC PLANT BIOLOGY 2024; 24:1162. [PMID: 39627690 PMCID: PMC11616359 DOI: 10.1186/s12870-024-05900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Fusion transcripts (FTs), generated by the fusion of genes at the DNA level or RNA-level splicing events significantly contribute to transcriptome diversity. FTs are usually considered unique features of neoplasia and serve as biomarkers and therapeutic targets for multiple cancers. The latest findings show the presence of FTs in normal human physiology. Several discrete reports mentioned the presence of fusion transcripts in planta, has important roles in stress responses, morphological alterations, or traits (e.g. seed size, etc.). RESULTS In this study, we identified 169,197 fusion transcripts in 2795 transcriptome datasets of Arabidopsis thaliana, Cicer arietinum, and Oryza sativa by using a combination of tools, and confirmed the translational activity of 150 fusion transcripts through proteomic datasets. Analysis of the FT junction sequences and their association with epigenetic factors, as revealed by ChIP-Seq datasets, demonstrated an organised process of fusion formation at the DNA level. We investigated the possible impact of three-dimensional chromatin conformation on intra-chromosomal fusion events by leveraging the Hi-C datasets with the incidence of fusion transcripts. We further utilised the long-read RNA-Seq datasets to validate the most reoccurring fusion transcripts in each plant species followed by further authentication through RT-PCR and Sanger sequencing. CONCLUSIONS Our findings suggest that a significant portion of fusion events may be attributed to alternative splicing during transcription, accounting for numerous fusion events without a proportional increase in the number of RNA pairs. Even non-nuclear DNA transcripts from mitochondria and chloroplasts can participate in intra- and inter-chromosomal fusion formation. Genes in close spatial proximity are more prone to undergoing fusion formation, especially in intra-chromosomal FTs. Most of the fusion transcripts may not undergo translation and serve as long non-coding RNAs. The low validation rate of FTs in plants indicated that the fusion transcripts are expressed at very low levels, like in the case of humans. FTs often originate from parental genes involved in essential biological processes, suggesting their relevance across diverse tissues and stress conditions. This study presents a comprehensive repository of fusion transcripts, offering valuable insights into their roles in vital physiological processes and stress responses.
Collapse
Affiliation(s)
- Pragya Chitkara
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajeet Singh
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Baylor College of Medicine, Houston, TX, USA
| | - Rashmi Gangwar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rohan Bhardwaj
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Technical University of Munich, Freising, Germany
| | - Shafaque Zahra
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Simran Arora
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Fiza Hamid
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajay Arya
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namrata Sahu
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srija Chakraborty
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Madhulika Ramesh
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
18
|
Hua X, Shi H, Zhuang G, Lan Y, Zhou S, Zhao D, Lyu MJA, Akbar S, Liu J, Yuan Y, Li Z, Jiang Q, Huang K, Zhang Y, Zhang Q, Wang G, Wang Y, Yu X, Li P, Zhang X, Wang J, Xiao S, Yao W, Ming R, Zhu XG, Zhang M, Tang H, Zhang J. Regulatory network of the late-recruited primary decarboxylase C4NADP-ME in sugarcane. PLANT PHYSIOLOGY 2024; 196:2685-2700. [PMID: 39276364 DOI: 10.1093/plphys/kiae455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/17/2024]
Abstract
In agronomically important C4 grasses, efficient CO2 delivery to Rubisco is facilitated by NADP-malic enzyme (C4NADP-ME), which decarboxylates malate in bundle sheath cells. However, understanding the molecular regulation of the C4NADP-ME gene in sugarcane (Saccharum spp.) is hindered by its complex genetic background. Enzymatic activity assays demonstrated that decarboxylation in sugarcane Saccharum spontaneum predominantly relies on the NADP-ME pathway, similar to sorghum (Sorghum bicolor) and maize (Zea mays). Comparative genomics analysis revealed the recruitment of 8 core C4 shuttle genes, including C4NADP-ME (SsC4NADP-ME2), in the C4 pathway of sugarcane. Contrasting to sorghum and maize, the expression of SsC4NADP-ME2 in sugarcane is regulated by different transcription factors (TFs). We propose a gene regulatory network for SsC4NADP-ME2, involving candidate TFs identified through gene coexpression analysis and yeast 1-hybrid experiment. Among these, ABA INSENSITIVE5 (ABI5) was validated as the predominant regulator of SsC4NADP-ME2 expression, binding to a G-box within its promoter region. Interestingly, the core element ACGT within the regulatory G-box was conserved in sugarcane, sorghum, maize, and rice (Oryza sativa), suggesting an ancient regulatory code utilized in C4 photosynthesis. This study offers insights into SsC4NADP-ME2 regulation, crucial for optimizing sugarcane as a bioenergy crop.
Collapse
Affiliation(s)
- Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihong Shi
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Gui Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuhong Lan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shaoli Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Dongxu Zhao
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ming-Ju Amy Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200032, China
| | - Sehrish Akbar
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jia Liu
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qing Jiang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kaixin Huang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yating Zhang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Gang Wang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Wang
- Department of Plant Biology, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Pinghua Li
- The State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Shenghua Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ray Ming
- Department of Plant Biology, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200032, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
19
|
Hao CH, Pang C, Yang LN, Xiong F, Li S. Myosin-binding protein 13 mediates primary seed dormancy via abscisic acid biosynthesis and signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2193-2206. [PMID: 39476328 DOI: 10.1111/tpj.17112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 12/11/2024]
Abstract
Dormancy is an essential characteristic that enables seeds to survive in unfavorable conditions while germinating when conditions are favorable. Myosin-binding proteins (MyoBs) assist in the movement of organelles along actin microfilaments by attaching to both organelles and myosins. In contrast to studies on yeast and metazoans, research on plant MyoBs is still in its early stages and primarily focuses on tip-growing cells. In this study, we found that Arabidopsis MyoB13 is highly expressed in dry mature seeds. The myob13 mutant, created using CRISPR/Cas9, exhibits a preharvest sprouting phenotype, which can be mitigated by after-ripening treatment, indicating that MyoB13 plays a positive role in primary seed dormancy. Furthermore, we show that MyoB13 negatively regulates ABA biosynthesis and signaling pathways. Notably, the expression of MyoB13 orthologs from maize and soybean can completely restore the phenotype of the Arabidopsis myob13 mutant, suggesting that the function of MyoB13 in ABA-induced seed dormancy is evolutionarily conserved. Therefore, the functional characterization of MyoB13 offers an additional genetic resource to help prevent vivipary in crop species.
Collapse
Affiliation(s)
- Cui-Hong Hao
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chen Pang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Li-Na Yang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Feng Xiong
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
20
|
Kuwada E, Takeshita K, Kawakatsu T, Uchida S, Akagi T. Identification of lineage-specific cis-trans regulatory networks related to kiwifruit ripening initiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1987-1999. [PMID: 39462454 PMCID: PMC11629749 DOI: 10.1111/tpj.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Previous research on the ripening process of many fruit crop varieties typically involved analyses of the conserved genetic factors among species. However, even for seemingly identical ripening processes, the associated gene expression networks often evolved independently, as reflected by the diversity in the interactions between transcription factors (TFs) and the targeted cis-regulatory elements (CREs). In this study, explainable deep learning (DL) frameworks were used to predict expression patterns on the basis of CREs in promoter sequences. We initially screened potential lineage-specific CRE-TF interactions influencing the kiwifruit ripening process, which is triggered by ethylene, similar to the corresponding processes in other climacteric fruit crops. Some novel regulatory relationships affecting ethylene-induced fruit ripening were identified. Specifically, ABI5-like bZIP, G2-like, and MYB81-like TFs were revealed as trans-factors modulating the expression of representative ethylene signaling/biosynthesis-related genes (e.g., ACS1, ERT2, and ERF143). Transient reporter assays and DNA affinity purification sequencing (DAP-Seq) analyses validated these CRE-TF interactions and their regulatory relationships. A comparative analysis with co-expression networking suggested that this DL-based screening can identify regulatory networks independently of co-expression patterns. Our results highlight the utility of an explainable DL approach for identifying novel CRE-TF interactions. These imply that fruit crop species may have evolved lineage-specific fruit ripening-related cis-trans regulatory networks.
Collapse
Affiliation(s)
- Eriko Kuwada
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayama700‐8530Japan
| | - Kouki Takeshita
- Department of Advanced Information TechnologyKyushu UniversityFukuoka819‐0395Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukuba305‐8602IbarakiJapan
| | - Seiichi Uchida
- Department of Advanced Information TechnologyKyushu UniversityFukuoka819‐0395Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayama700‐8530Japan
- Japan Science and Technology AgencyPRESTOKawaguchi332‐0012SaitamaJapan
| |
Collapse
|
21
|
Xue C, Huang X, Zhao Y. CsWRKY29, a key transcription factor in tea plant for freezing tolerance, ABA sensitivity, and sugar metabolism. Sci Rep 2024; 14:28620. [PMID: 39562785 PMCID: PMC11576853 DOI: 10.1038/s41598-024-80143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Tea plants (Camellia sinensis L.) are prone to spring frosts, leading to substantial economic damage. WRKY transcription factors are key in plant abiotic stress responses, yet the role of CsWRKY29 in freezing tolerance is unclear. In this study, quantitative real-time PCR (qRT-PCR) and transient green fluorescent protein assay revealed that CsWRKY29 localizes to the nucleus and its expression is induced by cold and abscisic acid (ABA). CsWRKY29 overexpression in Arabidopsis enhanced freezing tolerance, reduced electrolyte leakage, increased soluble sugars, and boosted superoxide dismutase activity, with upregulated COR genes. These lines also showed heightened ABA and glucose sensitivity. Cold treatment of CsWRKY29-overexpressing lines upregulated AtABI5, AtHXK1, and AtSUS4 compared to wild type, and yeast one-hybrid assays confirmed CsWRKY29 binding to the W-box in the CsABI5 promoter. Furthermore, the application of virus-induced gene silencing (VIGS) technology to reduce CsWRKY29 expression in tea plants revealed a significant decrease in the transcript levels of CsCBFs, CsABI5, CsHXK1, and CsSUS4 in the silenced plants. In summary, our findings indicate that CsWRKY29 may serve as a critical transcription factor that contributes to freezing tolerance, ABA responsiveness, and sugar metabolism within tea plants.
Collapse
Affiliation(s)
- Chengjin Xue
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Xiaozhen Huang
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| | - Yichen Zhao
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
22
|
Chen M, Liu M, Wang C, Sun Z, Lu A, Yang X, Ma J. Critical radicle length window governing loss of dehydration tolerance in germinated Perilla seeds: insights from physiological and transcriptomic analyses. BMC PLANT BIOLOGY 2024; 24:1078. [PMID: 39543497 PMCID: PMC11566475 DOI: 10.1186/s12870-024-05801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Perilla (Perilla frutescens L. Britt.) is an important oilseed and medicinal crop that frequently faces seasonal drought stress during seed germination, leading to a loss of dehydration tolerance (DT), which affects seed emergence and significantly reduces yield. DT has been successfully re-established for many species seeds. However, the physiological mechanisms and gene networks that regulate Perilla's response to DT loss remain unclear. RESULTS Phenotypic analysis determined that the window for DT in Perilla seeds occurs at radicle lengths of 0-4 mm. Integrating physiological and transcriptomic analyses revealed that the loss of DT promotes the production of reactive oxygen species (ROS) and regulates oxidase activity and gene expression. This implies that DT may influence seed germination by modulating ROS activity. Four radicle length (i.e., 0, 1, 3, and 4 mm) stages were analyzed, and 262 differentially expressed genes (DEGs) were identified that responded to DT. The majority of these genes were associated with epigenetics, cell function, and transport mechanisms. Analysis of expression data shows that desiccation inhibits the signaling network of genes encoding small secreted peptides (SSPs) and receptor-like protein kinases (RLKs). Finally, a relevant network diagram of DT response was proposed. Based on this information, we have revealed the metabolism regulation maps of the four main pathways involving these DEGs (i.e., metabolic pathways, cell cycle, plant hormone signal transduction, and motor proteins). CONCLUSIONS In conclusion, these findings deepen our understanding of gene network responses to DT during Perilla seed germination and provide potential target genes for the genetic improvement of drought resistance in this crop.
Collapse
Affiliation(s)
- Minghao Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mingwang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenglong Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhichao Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ailian Lu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xiaohuan Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinhu Ma
- School of Innovation and Intrepreneurship, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
23
|
Chen X, Han C, Yang R, Wang X, Ma J, Wang Y. Influence of the transcription factor ABI5 on growth and development in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154316. [PMID: 39098091 DOI: 10.1016/j.jplph.2024.154316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
ABA-insensitive 5 (ABI5) belongs to the basic leucine zipper class of transcription factors and is named for being the fifth identified Arabidopsis mutant unresponsive to ABA. To understand the influence of ABI5 in its active state on downstream gene expression and plant growth and development, we overexpressed the full-length ABI5 (A.t.MX-4) and the active forms of ABI5 with deleted transcriptional repression domains (A.t.MX-1, A.t.MX-2, and A.t.MX-3). Compared with the wild type, A.t.MX-1, A.t.MX-2, and A.t.MX-3 exhibited an increase in rosette leaf number and size, earlier flowering, increased thousand-seed weight, and significantly enhanced drought resistance. Thirty-five upregulated/downregulated proteins in the A.t.MX-1 were identified by proteomic analysis, and these proteins were involved in ABA biosynthesis and degradation, abiotic stress, fatty acid synthesis, and energy metabolism. These proteins participate in the regulation of plant drought resistance, flowering timing, and seed size at the levels of transcription and post-translational modification.
Collapse
Affiliation(s)
- Xin Chen
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Changze Han
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Rongrong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Xinwen Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| |
Collapse
|
24
|
Suranjika S, Barla P, Sharma N, Dey N. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112180. [PMID: 38964613 DOI: 10.1016/j.plantsci.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha, India
| | - Preeti Barla
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Namisha Sharma
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
25
|
Xue L, Bu D, Fu J, Zhou Z, Gao M, Wang R, Xu S. Functional characterization of Arabidopsis hydroxynitrile lyase in response to abiotic stress and the regulation of flowering time. Mol Biol Rep 2024; 51:1025. [PMID: 39340719 DOI: 10.1007/s11033-024-09957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Hydroxynitrile lyases (HNLs) are a class of hydrolytic enzymes from a wide range of sources, which play crucial roles in the catalysis of the reversible conversion of carbonyl compounds derived from cyanide and free cyanide in cyanogenic plant species. HNLs were also discovered in non-cyanogenic plants, such as Arabidopsis thaliana, and their roles remain unclear even during plant growth and reproduction. METHODS AND RESULTS The pattern of expression of the HNL in A. thaliana (AtHNL) in different tissues, as well as under abiotic stresses and hormone treatments, was examined by real-time quantitative reverse transcription PCR (qRT-PCR) and an AtHNL promoter-driven histochemical β-glucuronidase (GUS) assay. AtHNL is highly expressed in flowers and siliques, and the expression of AtHNL was dramatically affected by abiotic stresses and hormone treatments. The overexpression of AtHNL resulted in transgenic A. thaliana seedlings that were more tolerance to mannitol and salinity. Moreover, transgenic lines of A. thaliana that overexpressed this gene were less sensitive to abscisic acid (ABA). Altered expression of ABA/stress responsive genes was also observed in hnl mutant and AtHNL-overexpressing plants, suggesting AtHNL may play functional roles on regulating Arabidopsis resistance to ABA and abiotic stresses by affecting ABA/stress responsive gene expression. In addition, the overexpression of AtHNL resulted in earlier flowering, whereas the AtHNL mutant flowered later than the wild type (WT) plants. The expression of the floral stimulators CONSTANS (CO), SUPPRESSOR OF OVER EXPRESSION OF CO 1 (SOC1) and FLOWERING LOCUS T (FT) was upregulated in plants that overexpressed AtHNL when compared with the WT plants. In contrast, expression of the floral repressor FLOWERING LOCUS C (FLC) was upregulated in AtHNL mutants and downregulated in plants that overexpressed AtHNL compared to the WT plants. CONCLUSION This study revealed that AtHNL can be induced under abiotic stresses and ABA treatment, and genetic analysis showed that AtHNL could also act as a positive regulator of abiotic stress and ABA tolerance, as well as flowering time.
Collapse
Affiliation(s)
- Lei Xue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Duo Bu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jiangyan Fu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221121, China
| | - Zhe Zhou
- Department of Basic Medicine, School of Health and Nursing, Wuxi Taihu University, Wuxi, 214000, China
| | - Meng Gao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
26
|
Han Y, Wang Z, Han B, Zhang Y, Liu J, Yang Y. Allelic variation of TaABI5-A4 significantly affects seed dormancy in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:240. [PMID: 39341982 DOI: 10.1007/s00122-024-04753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE We identified a pivotal transcription factor TaABI5-A4 that is significantly associated with pre-harvest sprouting in wheat; its function in regulating seed dormancy was confirmed in transgenic rice. ABI5 is a critical transcription factor in regulation of crop seed maturation, dormancy, germination, and post-germination. Sixteen copies of homologous sequences of ABI5 were identified in Chinese wheat line Zhou 8425B. Cultivars of two haplotypes TaABI5-A4a and TaABI5-A4b showed significantly different seed dormancies. Based on two SNPs between the sequences of TaABI5-A4a and TaABI5-A4b, two complementary dominant sequence-tagged site (STS) markers were developed and validated in a natural population of 103 Chinese wheat cultivars and advanced lines and 200 recombinant inbred lines (RILs) derived from the Yangxiaomai/Zhongyou 9507 cross; the STS markers can be used efficiently and reliably to evaluate the dormancy of wheat seeds. The transcription level of TaABI5-A4b was significantly increased in TaABI5-A4a-GFP transgenic rice lines compared with that in TaABI5-A4b-GFP. The average seed germination index of TaABI5-A4a-GFP transgenic rice lines was significantly lower than those of TaABI5-A4b-GFP. In addition, seeds of TaABI5-A4a-GFP transgenic lines had higher ABA sensitivity and endogenous ABA content, lower endogenous GA content and plant height, and thicker stem internodes than those of TaABI5-A4b-GFP. Allelic variation of TaABI5-A4-affected wheat seed dormancy and the gene function was confirmed in transgenic rice. The transgenic rice lines of TaABI5-A4a and TaABI5-A4b had significantly different sensitivities to ABA and contents of endogenous ABA and GA in mature seeds, thereby influencing the seed dormancy, plant height, and stem internode length and diameter.
Collapse
Affiliation(s)
- Yang Han
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Zeng Wang
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Bing Han
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Yingjun Zhang
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, Hebei, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Yang
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
27
|
Aerts N, Hickman R, Van Dijken AJH, Kaufmann M, Snoek BL, Pieterse CMJ, Van Wees SCM. Architecture and dynamics of the abscisic acid gene regulatory network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2538-2563. [PMID: 38949092 DOI: 10.1111/tpj.16899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
The plant hormone abscisic acid (ABA) regulates essential processes in plant development and responsiveness to abiotic and biotic stresses. ABA perception triggers a post-translational signaling cascade that elicits the ABA gene regulatory network (GRN), encompassing hundreds of transcription factors (TFs) and thousands of transcribed genes. To further our knowledge of this GRN, we performed an RNA-seq time series experiment consisting of 14 time points in the 16 h following a one-time ABA treatment of 5-week-old Arabidopsis rosettes. During this time course, ABA rapidly changed transcription levels of 7151 genes, which were partitioned into 44 coexpressed modules that carry out diverse biological functions. We integrated our time-series data with publicly available TF-binding site data, motif data, and RNA-seq data of plants inhibited in translation, and predicted (i) which TFs regulate the different coexpression clusters, (ii) which TFs contribute the most to target gene amplitude, (iii) timing of engagement of different TFs in the ABA GRN, and (iv) hierarchical position of TFs and their targets in the multi-tiered ABA GRN. The ABA GRN was found to be highly interconnected and regulated at different amplitudes and timing by a wide variety of TFs, of which the bZIP family was most prominent, and upregulation of genes encompassed more TFs than downregulation. We validated our network models in silico with additional public TF-binding site data and transcription data of selected TF mutants. Finally, using a drought assay we found that the Trihelix TF GT3a is likely an ABA-induced positive regulator of drought tolerance.
Collapse
Affiliation(s)
- Niels Aerts
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Anja J H Van Dijken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Michael Kaufmann
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
28
|
Agarwal P, Chittora A, Baraiya BM, Fatnani D, Patel K, Akhyani DD, Parida AK, Agarwal PK. Rab7 GTPase-Mediated stress signaling enhances salinity tolerance in AlRabring7 tobacco transgenics by modulating physio-biochemical parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108928. [PMID: 39033652 DOI: 10.1016/j.plaphy.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The RING-type E3 ligases play a significant role in stress signaling, primarily through post-translational regulation. Ubiquitination is a crucial post-translational modification that regulates the turnover and activity of proteins. The overexpression of AlRabring7, RING-HC E3 Ub ligase in tobacco provides insights into the regulation of salinity and ABA signaling in transgenic tobacco. The seed germination potential of AlRabring7 transgenics was higher than WT, with NaCl and ABA treatments. The transgenics showed improved morpho-physio-biochemical parameters in response to salinity and ABA treatments. The photosynthetic pigments, soluble sugars, reducing sugars and proline increased in transgenics in response to NaCl and ABA treatments. The decreased ROS accumulation in transgenics on NaCl and ABA treatments can be co-related to improved activity of enzymatic and non-enzymatic antioxidants. The potential of transgenics to maintain ABA levels with ABA treatment, highlights the active participation of ABA feedback loop mechanism. Interestingly, the ability of AlRabring7 transgenics to upregulate Rab7 protein, suggests its role in facilitating vacuolar transport. Furthermore, the improved potassium accumulation and reduced sodium content indicate an efficient ion regulation mechanism in transgenic plants facilitating higher stomatal opening. The expression of downstream ion transporter (NbNHX1 and NbVHA1), ABA signaling (NbABI2 and NbABI5) and vesicle trafficking (NbMON1) responsive genes were upregulated with stress. The present study, reports that AlRabring7 participates in maintaining vacuolar transport, ion balance, ROS homeostasis, stomatal regulation through activation of Rab7 protein and regulation of downstream stress-responsive during stress. This emphasizes the potential of AlRabring7 gene for improved performance and resilience in challenging environments.
Collapse
Affiliation(s)
- Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India.
| | - Anjali Chittora
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagirath M Baraiya
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khantika Patel
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhanvi D Akhyani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Asish K Parida
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
29
|
Mandal D, Datta S, Mitra S, Nag Chaudhuri R. ABSCISIC ACID INSENSITIVE 3 promotes auxin signalling by regulating SHY2 expression to control primary root growth in response to dehydration stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5111-5129. [PMID: 38770693 DOI: 10.1093/jxb/erae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Plants combat dehydration stress through different strategies including root architectural changes. Here we show that when exposed to varying levels of dehydration stress, primary root growth in Arabidopsis is modulated by regulating root meristem activity. Abscisic acid (ABA) in concert with auxin signalling adjust primary root growth according to stress levels. ABSCISIC ACID INSENSITIVE 3 (ABI3), an ABA-responsive transcription factor, stands at the intersection of ABA and auxin signalling and fine-tunes primary root growth in response to dehydration stress. Under low ABA or dehydration stress, induction of ABI3 expression promotes auxin signalling by decreasing expression of SHY2, a negative regulator of auxin response. This further enhances the expression of auxin transporter gene PIN1 and cell cycle gene CYCB1;1, resulting in an increase in primary root meristem size and root length. Higher levels of dehydration stress or ABA repress ABI3 expression and promote ABSCISIC ACID INSENSITIVE 5 (ABI5) expression. This elevates SHY2 expression, thereby impairing primary root meristem activity and retarding root growth. Notably, ABI5 can promote SHY2 expression only in the absence of ABI3. Such ABA concentration-dependent expression of ABI3 therefore functions as a regulatory sensor of dehydration stress levels and orchestrates primary root growth by coordinating its downstream regulation.
Collapse
Affiliation(s)
- Drishti Mandal
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Saptarshi Datta
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Sicon Mitra
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| |
Collapse
|
30
|
Sybilska E, Collin A, Sadat Haddadi B, Mur LAJ, Beckmann M, Guo W, Simpson CG, Daszkowska-Golec A. The cap-binding complex modulates ABA-responsive transcript splicing during germination in barley (Hordeum vulgare). Sci Rep 2024; 14:18278. [PMID: 39107424 PMCID: PMC11303550 DOI: 10.1038/s41598-024-69373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
To decipher the molecular bases governing seed germination, this study presents the pivotal role of the cap-binding complex (CBC), comprising CBP20 and CBP80, in modulating the inhibitory effects of abscisic acid (ABA) in barley. Using both single and double barley mutants in genes encoding the CBC, we revealed that the double mutant hvcbp20.ab/hvcbp80.b displays ABA insensitivity, in stark contrast to the hypersensitivity observed in single mutants during germination. Our comprehensive transcriptome and metabolome analysis not only identified significant alterations in gene expression and splicing patterns but also underscored the regulatory nexus among CBC, ABA, and brassinosteroid (BR) signaling pathways.
Collapse
Affiliation(s)
- Ewa Sybilska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Anna Collin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | | | - Luis A J Mur
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Manfred Beckmann
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Craig G Simpson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
31
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
32
|
Li HL, Xu RR, Guo XL, Liu YJ, You CX, Han Y, An JP. The MdNAC72-MdABI5 module acts as an interface integrating jasmonic acid and gibberellin signals and undergoes ubiquitination-dependent degradation regulated by MdSINA2 in apple. THE NEW PHYTOLOGIST 2024; 243:997-1016. [PMID: 38849319 DOI: 10.1111/nph.19888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.
Collapse
Affiliation(s)
- Hong-Liang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Xin-Long Guo
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Jing Liu
- School of Horticulture, Anhui Agricultural University, He-Fei, 230036, Anhui, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| |
Collapse
|
33
|
Guo Z, Dzinyela R, Yang L, Hwarari D. bZIP Transcription Factors: Structure, Modification, Abiotic Stress Responses and Application in Plant Improvement. PLANTS (BASEL, SWITZERLAND) 2024; 13:2058. [PMID: 39124175 PMCID: PMC11313983 DOI: 10.3390/plants13152058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Plant growth, yield, and distribution are significantly impacted by abiotic stresses, affecting global ecosystems and forestry practices. However, plants have evolved complex adaptation mechanisms governed by numerous genes and transcription factors (TFs) to manage these stresses. Among these, bZIP (basic leucine zipper) is a crucial regulator orchestrating morphological adaptations. This review aims to elucidate the multifaceted roles of bZIP TFs in plant species. We discuss the morphological changes induced by stress stimuli and the pivotal functions of bZIP TFs in mediating these responses. While several publications have explored the mechanisms of bZIP TFs in response to abiotic stresses, this review delves into the intricate regulatory networks, summarizing alternative splicing and post-translational modifications, signaling networks interacting with bZIP TFs, and genetic engineering of bZIP TFs. By synthesizing current research, this review provides an updated discussion on bZIP interactions with other proteins to regulate stresses such as cold, heat, drought, and salt. Additionally, it offers avenues for future research and applications of bZIP TFs to improve abiotic stress resilience in plants through genetic engineering.
Collapse
Affiliation(s)
| | | | | | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing 213007, China; (Z.G.); (R.D.); (L.Y.)
| |
Collapse
|
34
|
Ko DK, Brandizzi F. Dynamics of ER stress-induced gene regulation in plants. Nat Rev Genet 2024; 25:513-525. [PMID: 38499769 PMCID: PMC11186725 DOI: 10.1038/s41576-024-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Endoplasmic reticulum (ER) stress is a potentially lethal condition that is induced by the abnormal accumulation of unfolded or misfolded secretory proteins in the ER. In eukaryotes, ER stress is managed by the unfolded protein response (UPR) through a tightly regulated, yet highly dynamic, reprogramming of gene transcription. Although the core principles of the UPR are similar across eukaryotes, unique features of the plant UPR reflect the adaptability of plants to their ever-changing environments and the need to balance the demands of growth and development with the response to environmental stressors. The past decades have seen notable progress in understanding the mechanisms underlying ER stress sensing and signalling transduction pathways, implicating the UPR in the effects of physiological and induced ER stress on plant growth and crop yield. Facilitated by sequencing technologies and advances in genetic and genomic resources, recent efforts have driven the discovery of transcriptional regulators and elucidated the mechanisms that mediate the dynamic and precise gene regulation in response to ER stress at the systems level.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
35
|
Dang TT, Lalanne D, Ly Vu J, Ly Vu B, Defaye J, Verdier J, Leprince O, Buitink J. BASIC PENTACYSTEINE1 regulates ABI4 by modification of two histone marks H3K27me3 and H3ac during early seed development of Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2024; 15:1395379. [PMID: 38916028 PMCID: PMC11194320 DOI: 10.3389/fpls.2024.1395379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024]
Abstract
Introduction The production of highly vigorous seeds with high longevity is an important lever to increase crop production efficiency, but its acquisition during seed maturation is strongly influenced by the growth environment. Methods An association rule learning approach discovered MtABI4, a known longevity regulator, as a gene with transcript levels associated with the environmentally-induced change in longevity. To understand the environmental sensitivity of MtABI4 transcription, Yeast One-Hybrid identified a class I BASIC PENTACYSTEINE (MtBPC1) transcription factor as a putative upstream regulator. Its role in the regulation of MtABI4 was further characterized. Results and discussion Overexpression of MtBPC1 led to a modulation of MtABI4 transcripts and its downstream targets. We show that MtBPC1 represses MtABI4 transcription at the early stage of seed development through binding in the CT-rich motif in its promoter region. To achieve this, MtBPC1 interacts with SWINGER, a sub-unit of the PRC2 complex, and Sin3-associated peptide 18, a sub-unit of the Sin3-like deacetylation complex. Consistent with this, developmental and heat stress-induced changes in MtABI4 transcript levels correlated with H3K27me3 and H3ac enrichment in the MtABI4 promoter. Our finding reveals the importance of the combination of histone methylation and histone de-acetylation to silence MtABI4 at the early stage of seed development and during heat stress.
Collapse
Affiliation(s)
- Thi Thu Dang
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
- LIPME - Laboratoire des interactions plantes-microbes-environnement. UMR CNRS–INRAE, Castanet Tolosan, France
| | - David Lalanne
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Joseph Ly Vu
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Benoit Ly Vu
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Johan Defaye
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Jerome Verdier
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Olivier Leprince
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Julia Buitink
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| |
Collapse
|
36
|
Fu Y, Ma L, Li J, Hou D, Zeng B, Zhang L, Liu C, Bi Q, Tan J, Yu X, Bi J, Luo L. Factors Influencing Seed Dormancy and Germination and Advances in Seed Priming Technology. PLANTS (BASEL, SWITZERLAND) 2024; 13:1319. [PMID: 38794390 PMCID: PMC11125191 DOI: 10.3390/plants13101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Seed dormancy and germination play pivotal roles in the agronomic traits of plants, and the degree of dormancy intuitively affects the yield and quality of crops in agricultural production. Seed priming is a pre-sowing seed treatment that enhances and accelerates germination, leading to improved seedling establishment. Seed priming technologies, which are designed to partially activate germination, while preventing full seed germination, have exerted a profound impact on agricultural production. Conventional seed priming relies on external priming agents, which often yield unstable results. What works for one variety might not be effective for another. Therefore, it is necessary to explore the internal factors within the metabolic pathways that influence seed physiology and germination. This review unveils the underlying mechanisms of seed metabolism and germination, the factors affecting seed dormancy and germination, as well as the current seed priming technologies that can result in stable and better germination.
Collapse
Affiliation(s)
- Yanfeng Fu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Ma
- Institute for Sustainable Horticulture, Kwantlen Polytechnic University, 20901 Langley Bypass, Langley, BC V3A 8G9, Canada;
| | - Juncai Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Danping Hou
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zeng
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Like Zhang
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Chunqing Liu
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Qingyu Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Tan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junguo Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
37
|
Panigrahi S, Kumar U, Swami S, Singh Y, Balyan P, Singh KP, Dhankher OP, Varshney RK, Roorkiwal M, Amiri KM, Mir RR. Meta QTL analysis for dissecting abiotic stress tolerance in chickpea. BMC Genomics 2024; 25:439. [PMID: 38698307 PMCID: PMC11067088 DOI: 10.1186/s12864-024-10336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Chickpea is prone to many abiotic stresses such as heat, drought, salinity, etc. which cause severe loss in yield. Tolerance towards these stresses is quantitative in nature and many studies have been done to map the loci influencing these traits in different populations using different markers. This study is an attempt to meta-analyse those reported loci projected over a high-density consensus map to provide a more accurate information on the regions influencing heat, drought, cold and salinity tolerance in chickpea. RESULTS A meta-analysis of QTL reported to be responsible for tolerance to drought, heat, cold and salinity stress tolerance in chickpeas was done. A total of 1512 QTL responsible for the concerned abiotic stress tolerance were collected from literature, of which 1189 were projected on a chickpea consensus genetic map. The QTL meta-analysis predicted 59 MQTL spread over all 8 chromosomes, responsible for these 4 kinds of abiotic stress tolerance in chickpea. The physical locations of 23 MQTL were validated by various marker-trait associations and genome-wide association studies. Out of these reported MQTL, CaMQAST1.1, CaMQAST4.1, CaMQAST4.4, CaMQAST7.8, and CaMQAST8.2 were suggested to be useful for different breeding approaches as they were responsible for high per cent variance explained (PVE), had small intervals and encompassed a large number of originally reported QTL. Many putative candidate genes that might be responsible for directly or indirectly conferring abiotic stress tolerance were identified in the region covered by 4 major MQTL- CaMQAST1.1, CaMQAST4.4, CaMQAST7.7, and CaMQAST6.4, such as heat shock proteins, auxin and gibberellin response factors, etc. CONCLUSION: The results of this study should be useful for the breeders and researchers to develop new chickpea varieties which are tolerant to drought, heat, cold, and salinity stresses.
Collapse
Affiliation(s)
- Sourav Panigrahi
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India.
- Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India.
| | - Sonu Swami
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
- Department of Botany & Plant Physiology, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India
- Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, USA
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Khaled Ma Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-Kashmir), Srinagar, J&K, India.
| |
Collapse
|
38
|
Sajeev N, Koornneef M, Bentsink L. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination. THE PLANT CELL 2024; 36:1358-1376. [PMID: 38215009 PMCID: PMC11062444 DOI: 10.1093/plcell/koad328] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Seeds are unique time capsules that can switch between 2 complex and highly interlinked stages: seed dormancy and germination. Dormancy contributes to the survival of plants because it allows to delay germination to optimal conditions. The switch between dormancy and germination occurs in response to developmental and environmental cues. In this review we provide a comprehensive overview of studies that have helped to unravel the molecular mechanisms underlying dormancy and germination over the last decades. Genetic and physiological studies provided a strong foundation for this field of research and revealed the critical role of the plant hormones abscisic acid and gibberellins in the regulation of dormancy and germination, and later natural variation studies together with quantitative genetics identified previously unknown genetic components that control these processes. Omics technologies like transcriptome, proteome, and translatomics analysis allowed us to mechanistically dissect these processes and identify new components in the regulation of seed dormancy and germination.
Collapse
Affiliation(s)
- Nikita Sajeev
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, 6708PB Wageningen, the Netherlands
- Max Planck Institute for Plant Breeding Research, Former Department of Plant Breeding and Genetics, Koeln 50829, Germany
| | - Leónie Bentsink
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| |
Collapse
|
39
|
Sato Y, Minamikawa MF, Pratama BB, Koyama S, Kojima M, Takebayashi Y, Sakakibara H, Igawa T. Autonomous differentiation of transgenic cells requiring no external hormone application: the endogenous gene expression and phytohormone behaviors. FRONTIERS IN PLANT SCIENCE 2024; 15:1308417. [PMID: 38633452 PMCID: PMC11021773 DOI: 10.3389/fpls.2024.1308417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The ectopic overexpression of developmental regulator (DR) genes has been reported to improve the transformation in recalcitrant plant species because of the promotion of cellular differentiation during cell culture processes. In other words, the external plant growth regulator (PGR) application during the tissue and cell culture process is still required in cases utilizing DR genes for plant regeneration. Here, the effect of Arabidopsis BABY BOOM (BBM) and WUSCHEL (WUS) on the differentiation of tobacco transgenic cells was examined. We found that the SRDX fusion to WUS, when co-expressed with the BBM-VP16 fusion gene, significantly influenced the induction of autonomous differentiation under PGR-free culture conditions, with similar effects in some other plant species. Furthermore, to understand the endogenous background underlying cell differentiation toward regeneration, phytohormone and RNA-seq analyses were performed using tobacco leaf explants in which transgenic cells were autonomously differentiating. The levels of active auxins, cytokinins, abscisic acid, and inactive gibberellins increased as cell differentiation proceeded toward organogenesis. Gene Ontology terms related to phytohormones and organogenesis were identified as differentially expressed genes, in addition to those related to polysaccharide and nitrate metabolism. The qRT-PCR four selected genes as DEGs supported the RNA-seq data. This differentiation induction system and the reported phytohormone and transcript profiles provide a foundation for the development of PGR-free tissue cultures of various plant species, facilitating future biotechnological breeding.
Collapse
Affiliation(s)
- Yuka Sato
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mai F. Minamikawa
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
| | - Berbudi Bintang Pratama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Shohei Koyama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomoko Igawa
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
40
|
Chen C, Zhang Z, Lei YY, Chen WJ, Zhang ZH, Li XM, Dai HY. MdMYB44-like positively regulates salt and drought tolerance via the MdPYL8-MdPP2CA module in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:24-41. [PMID: 38102874 DOI: 10.1111/tpj.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Abscisic acid (ABA) is involved in salt and drought stress responses, but the underlying molecular mechanism remains unclear. Here, we demonstrated that the overexpression of MdMYB44-like, an R2R3-MYB transcription factor, significantly increases the salt and drought tolerance of transgenic apples and Arabidopsis. MdMYB44-like inhibits the transcription of MdPP2CA, which encodes a type 2C protein phosphatase that acts as a negative regulator in the ABA response, thereby enhancing ABA signaling-mediated salt and drought tolerance. Furthermore, we found that MdMYB44-like and MdPYL8, an ABA receptor, form a protein complex that further enhances the transcriptional inhibition of the MdPP2CA promoter by MdMYB44-like. Significantly, we discovered that MdPP2CA can interfere with the physical association between MdMYB44-like and MdPYL8 in the presence of ABA, partially blocking the inhibitory effect of the MdMYB44-like-MdPYL8 complex on the MdPP2CA promoter. Thus, MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop that tightly modulates ABA signaling homeostasis under salt and drought stress. Our data reveal that MdMYB44-like precisely modulates ABA-mediated salt and drought tolerance in apples through the MdPYL8-MdPP2CA module.
Collapse
Affiliation(s)
- Cui Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Ying-Ying Lei
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Wen-Jun Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Zhi-Hong Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Xiao-Ming Li
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hong-Yan Dai
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| |
Collapse
|
41
|
Yang F, Zhao LL, Song LQ, Han Y, You CX, An JP. Apple E3 ligase MdPUB23 mediates ubiquitin-dependent degradation of MdABI5 to delay ABA-triggered leaf senescence. HORTICULTURE RESEARCH 2024; 11:uhae029. [PMID: 38585016 PMCID: PMC10995623 DOI: 10.1093/hr/uhae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 04/09/2024]
Abstract
ABSCISIC ACID-INSENSITIVE5 (ABI5) is a core regulatory factor that mediates the ABA signaling response and leaf senescence. However, the molecular mechanism underlying the synergistic regulation of leaf senescence by ABI5 with interacting partners and the homeostasis of ABI5 in the ABA signaling response remain to be further investigated. In this study, we found that the accelerated effect of MdABI5 on leaf senescence is partly dependent on MdbHLH93, an activator of leaf senescence in apple. MdABI5 directly interacted with MdbHLH93 and improved the transcriptional activation of the senescence-associated gene MdSAG18 by MdbHLH93. MdPUB23, a U-box E3 ubiquitin ligase, physically interacted with MdABI5 and delayed ABA-triggered leaf senescence. Genetic and biochemical analyses suggest that MdPUB23 inhibited MdABI5-promoted leaf premature senescence by targeting MdABI5 for ubiquitin-dependent degradation. In conclusion, our results verify that MdABI5 accelerates leaf senescence through the MdABI5-MdbHLH93-MdSAG18 regulatory module, and MdPUB23 is responsible for the dynamic regulation of ABA-triggered leaf senescence by modulating the homeostasis of MdABI5.
Collapse
Affiliation(s)
- Fei Yang
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ling-Ling Zhao
- Yantai Academy of Agricultural Sciences, Yan-Tai 265599, Shandong, China
| | - Lai-Qing Song
- Yantai Academy of Agricultural Sciences, Yan-Tai 265599, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
42
|
Kocot D, Nowak B, Sitek E. Long-term organogenic callus cultivation of Ranunculus illyricus L.: a blueprint for sustainable ex situ conservation of the species in urban greenery. BMC PLANT BIOLOGY 2024; 24:212. [PMID: 38528451 DOI: 10.1186/s12870-024-04901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
The growing trend of introducing wild plant species into urban environments necessitates the identification of novel species adapted to prevailing conditions. A promising reservoir of such species may be xerothermic communities where Ranunculus illyricus occurs. This study aimed to establish a micropropagation protocol for R. illyricus using indirect organogenesis. The protocol includes initiation of culture from various explants, callus proliferation, shoot regeneration, multiplication, and concurrent rooting. Callus appeared on most types of vegetative explants tested, but stolons were considered the best due to their good availability, high disinfection (85%), and robust callus production (maximum increase - 363.1%). The growth rate of the callus fresh matter (CFM) obtained from stolons was calculated. Greater CFM was obtained on the medium with the supplemented picloram 8.0 mg L- 1 with kinetin 5.0 mg L- 1 and in second part of experiment on medium with the addition of 2,4-D (2,4-dichlorophenoxyacetic acid) 2.0 mg L- 1 alone or picloram 6.0 mg L- 1 with kinetin 8.0 mg L- 1. Shoot organogenesis was observed on macronutrients B5 (Gamborg medium), micronutrients MS (Murashige and Skoog) medium with the addition of 2.0 mg L- 1 IBA (indole-3-butyric acid) and 4.0 mg L- 1 BAP (6-benzylaminopurine). To document the process of callus differentiation, microscopic preparations were prepared. Subsequently, the regenerated plants underwent acclimatisation and their growth in an ex situ collection was monitored over three growing seasons. In particular, in vitro-origin plants exhibited developmental patterns similar to those of their seed-origin counterparts. The incorporation of R. illyricus into urban landscapes not only increases aesthetic appeal, but also ensures the preservation of valuable genetic resources for this rare species, potentially contributing to effective ex situ conservation in the future. This marks the first scientific report on in vitro cultures of R. illyricus.
Collapse
Affiliation(s)
- Dawid Kocot
- Department of Ornamental Plants and Garden Art, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, Krakow, 31-425, Poland.
| | - Barbara Nowak
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, Krakow, 31-425, Poland
| | - Ewa Sitek
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, Krakow, 31-425, Poland
| |
Collapse
|
43
|
Liu C, Chang J, Yang J, Li H, Wu J, Wu J, Dai X, Wei F, Zhang X, Su X, Xia Z. Overexpression of NtDOGL4 improves cadmium tolerance through abscisic acid signaling pathway in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133462. [PMID: 38215520 DOI: 10.1016/j.jhazmat.2024.133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The DELAY OF GERMINATION1-LIKE (DOGL) genes play an essential role in diverse biological processes in plants. However, their exact involvement in the response to cadmium (Cd) stress via the ABA pathway remains unclear. Here, we focused on NtDOGL4, a tobacco DOGL gene whose expression is highly induced upon exposure to Cd. Overexpression of NtDOGL4 in tobacco resulted in elevated endogenous ABA levels, reduced Cd accumulation, and increased tolerance to Cd. Moreover, NtDOGL4 overexpression led to decreased accumulation of reactive oxygen species (ROS) and improved ROS scavenging capacity under Cd stress. Further analyses revealed the direct binding of the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) to the NtDOGL4 promoter, positively regulating its expression in tobacco. Notably, NtDOGL4 overexpression promoted suberin formation and deposition, while suppressing the expression of Cd transporter genes in tobacco roots, as evidenced by histochemical staining, suberin fraction determination, and qRT-PCR assays. Collectively, our results demonstrate that NtDOGL4 overexpression reduces Cd accumulation, thereby improving Cd stress tolerance through the modulation of antioxidant system, transcription of Cd transporters, and suberin deposition. Notably, the NtABI5-NtDOGL4 module functions as a positive regulator in tobacco's Cd tolerance, underscoring its potential as a molecular target for developing low-Cd crops to ensure environmental safety.
Collapse
Affiliation(s)
- Can Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China; College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianbo Chang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jianxin Yang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Hongchen Li
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jiang Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Junlin Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Xiaoyan Dai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Fengjie Wei
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xinhong Su
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
44
|
Wen Y, Zhao Z, Cheng L, Zhou S, An M, Zhao J, Dong S, Yuan X, Yin M. Genome-wide identification and expression profiling of the ABI5 gene family in foxtail millet (Setaria italica). BMC PLANT BIOLOGY 2024; 24:164. [PMID: 38431546 PMCID: PMC10908088 DOI: 10.1186/s12870-024-04865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that crucially influences plant growth, development, and stress response. However, there is minimal research on the ABI5 family in foxtail millet. RESULTS In this study, 16 ABI5 genes were identified in foxtail millet, and their sequence composition, gene structures, cis-acting elements, chromosome positions, and gene replication events were analyzed. To more thoroughly evaluate the developmental mechanisms of the SiABI5 family during evolution, we selected three dicotyledons (S. lycopersicum, A. thaliana, F. tataricum) and three (Z. mays, O. sativa, S. bicolor) specific representative monocotyledons associated with foxtail millet for comparative homology mapping. The results showed that foxtail millet ABI5 genes had the best homology with maize. A promoter sequence analysis showed that the SiABI5s contain numerous cis-acting elements related to hormone and stress responses, indicating that the regulation of SiABI5 expression was complex. The expression responses of 16 genes in different tissues, seed germination, and ear development were analyzed. A total of six representative genes were targeted from five subfamilies to characterize their gene expression responses to four different abiotic stresses. Overexpression of SiABI5.12 confers tolerance to osmotic stress in transgenic Arabidopsis thaliana, which demonstrated the function of SiABI5 responded to abiotic stress. CONCLUSIONS In summary, our research results comprehensively characterized the SiABI5 family and can provide a valuable reference for demonstrating the role of SiABI5s in regulating abiotic stress responses in foxtail millet.
Collapse
Affiliation(s)
- Yinyuan Wen
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Zeya Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Liuna Cheng
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Shixue Zhou
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Mengyao An
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Juan Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China.
| | - Meiqiang Yin
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
45
|
Zhang Z, Zhang A, Zhang Y, Zhao J, Wang Y, Zhang L, Zhang S. Ectopic expression of HaPEPC1 from the desert shrub Haloxylon ammodendron confers drought stress tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108536. [PMID: 38507839 DOI: 10.1016/j.plaphy.2024.108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) plays a crucial role in the initial carbon fixation process in C4 plants. However, its nonphotosynthetic functions in Haloxylon ammodendron, a C4 perennial xerohalophytic shrub, are still poorly understood. Previous studies have reported the involvement of PEPC in plant responses to abiotic stresses such as drought and salt stress. However, the underlying mechanism of PEPC tolerance to drought stress has not been determined. In this study, we cloned the C4-type PEPC gene HaPEPC1 from H. ammodendron and investigated its biological function by generating transgenic Arabidopsis plants with ectopic expression of HaPEPC1. Our results showed that, compared with WT (wild-type) plants, ectopic expression of HaPEPC1 plants exhibited significantly greater germination rates and chlorophyll contents. Furthermore, under drought stress, the transgenic plants presented increased root length, fresh weight, photosynthetic capacity, and antioxidant enzyme activities, particularly ascorbate peroxidase and peroxidase. Additionally, the transgenic plants exhibited reduced levels of malondialdehyde, H2O2 (hydrogen peroxide), and O2- (superoxide radical). Transcriptome analysis indicated that ectopic expression of HaPEPC1 primarily regulated the expression of genes associated with the stress defence response, glutathione metabolism, and abscisic acid (ABA) synthesis and signalling pathways in response to drought stress. Taken together, these findings suggest that the ectopic expression of HaPEPC1 enhances the reduction of H2O2 and O2- in transgenic plants, thereby improving reactive oxygen species (ROS) scavenging capacity and enhancing drought tolerance. Therefore, the HaPEPC1 gene holds promise as a candidate gene for crop selection aimed at enhancing drought tolerance.
Collapse
Affiliation(s)
- Zhilong Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Anna Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaru Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Juan Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanyuan Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingling Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sheng Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
46
|
Chandran AEJ, Finkler A, Hait TA, Kiere Y, David S, Pasmanik-Chor M, Shkolnik D. Calcium regulation of the Arabidopsis Na+/K+ transporter HKT1;1 improves seed germination under salt stress. PLANT PHYSIOLOGY 2024; 194:1834-1852. [PMID: 38057162 PMCID: PMC10904324 DOI: 10.1093/plphys/kiad651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Calcium is known to improve seed-germination rates under salt stress. We investigated the involvement of calcium ions (Ca2+) in regulating HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1; 1), which encodes a Na+/K+ transporter, and its post-translational regulator TYPE 2C PROTEIN PHOSPHATASE 49 (PP2C49), in germinating Arabidopsis (Arabidopsis thaliana) seedlings. Germination rates of hkt1 mutant seeds under salt stress remained unchanged by CaCl2 treatment in wild-type Arabidopsis, whereas pp2c49 mutant seeds displayed improved salt-stress tolerance in the absence of CaCl2 supplementation. Analysis of HKT1;1 and PP2C49 promoter activity revealed that CaCl2 treatment results in radicle-focused expression of HKT1;1 and reduction of the native radicle-exclusive expression of PP2C49. Ion-content analysis indicated that CaCl2 treatment improves K+ retention in germinating wild-type seedlings under salt stress, but not in hkt1 seedlings. Transgenic seedlings designed to exclusively express HKT1;1 in the radicle during germination displayed higher germination rates under salt stress than the wild type in the absence of CaCl2 treatment. Transcriptome analysis of germinating seedlings treated with CaCl2, NaCl, or both revealed 118 upregulated and 94 downregulated genes as responsive to the combined treatment. Bioinformatics analysis of the upstream sequences of CaCl2-NaCl-treatment-responsive upregulated genes revealed the abscisic acid response element CACGTGTC, a potential CaM-binding transcription activator-binding motif, as most prominent. Our findings suggest a key role for Ca2+ in mediating salt-stress responses during germination by regulating genes that function to maintain Na+ and K+ homeostasis, which is vital for seed germination under salt stress.
Collapse
Affiliation(s)
- Ancy E J Chandran
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aliza Finkler
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tom Aharon Hait
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yvonne Kiere
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sivan David
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Metsada Pasmanik-Chor
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Doron Shkolnik
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
47
|
Jha DK, Chanwala J, Barla P, Dey N. "Genome-wide identification of bZIP gene family in Pearl millet and transcriptional profiling under abiotic stress, phytohormonal treatments; and functional characterization of PgbZIP9". FRONTIERS IN PLANT SCIENCE 2024; 15:1352040. [PMID: 38469329 PMCID: PMC10925649 DOI: 10.3389/fpls.2024.1352040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
Abiotic stresses are major constraints in crop production, and are accountable for more than half of the total crop loss. Plants overcome these environmental stresses using coordinated activities of transcription factors and phytohormones. Pearl millet an important C4 cereal plant having high nutritional value and climate resilient features is grown in marginal lands of Africa and South-East Asia including India. Among several transcription factors, the basic leucine zipper (bZIP) is an important TF family associated with diverse biological functions in plants. In this study, we have identified 98 bZIP family members (PgbZIP) in pearl millet. Phylogenetic analysis divided these PgbZIP genes into twelve groups (A-I, S, U and X). Motif analysis has shown that all the PgbZIP proteins possess conserved bZIP domains and the exon-intron organization revealed conserved structural features among the identified genes. Cis-element analysis, RNA-seq data analysis, and real-time expression analysis of PgbZIP genes suggested the potential role of selected PgbZIP genes in growth/development and abiotic stress responses in pearl millet. Expression profiling of selected PgbZIPs under various phytohormones (ABA, SA and MeJA) treatment showed differential expression patterns of PgbZIP genes. Further, PgbZIP9, a homolog of AtABI5 was found to localize in the nucleus and modulate gene expression in pearl millet under stresses. Our present findings provide a better understanding of bZIP genes in pearl millet and lay a good foundation for the further functional characterization of multi-stress tolerant PgbZIP genes, which could become efficient tools for crop improvement.
Collapse
Affiliation(s)
- Deepak Kumar Jha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jeky Chanwala
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Preeti Barla
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
48
|
Feng X, Chen Q, Wu W, Wang J, Li G, Xu S, Shao S, Liu M, Zhong C, Wu CI, Shi S, He Z. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nat Commun 2024; 15:1635. [PMID: 38388712 PMCID: PMC10884412 DOI: 10.1038/s41467-024-46080-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Whole-genome duplication (WGD), or polyploidy, events are widespread and significant in the evolutionary history of angiosperms. However, empirical evidence for rediploidization, the major process where polyploids give rise to diploid descendants, is still lacking at the genomic level. Here we present chromosome-scale genomes of the mangrove tree Sonneratia alba and the related inland plant Lagerstroemia speciosa. Their common ancestor has experienced a whole-genome triplication (WGT) approximately 64 million years ago coinciding with a period of dramatic global climate change. Sonneratia, adapting mangrove habitats, experienced extensive chromosome rearrangements post-WGT. We observe the WGT retentions display sequence and expression divergence, suggesting potential neo- and sub-functionalization. Strong selection acting on three-copy retentions indicates adaptive value in response to new environments. To elucidate the role of ploidy changes in genome evolution, we improve a model of the polyploidization-rediploidization process based on genomic evidence, contributing to the understanding of adaptive evolution during climate change.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Qipian Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiexin Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Guohong Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), 571100, Haikou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
49
|
Lee JHJ, Kasote DM. Nano-Priming for Inducing Salinity Tolerance, Disease Resistance, Yield Attributes, and Alleviating Heavy Metal Toxicity in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:446. [PMID: 38337979 PMCID: PMC10857146 DOI: 10.3390/plants13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In today's time, agricultural productivity is severely affected by climate change and increasing pollution. Hence, several biotechnological approaches, including genetic and non-genetic strategies, have been developed and adapted to increase agricultural productivity. One of them is nano-priming, i.e., seed priming with nanomaterials. Thus far, nano-priming methods have been successfully used to mount desired physiological responses and productivity attributes in crops. In this review, the literature about the utility of nano-priming methods for increasing seed vigor, germination, photosynthetic output, biomass, early growth, and crop yield has been summarized. Moreover, the available knowledge about the use of nano-priming methods in modulating plant antioxidant defenses and hormonal networks, inducing salinity tolerance and disease resistance, as well as alleviating heavy metal toxicity in plants, is reviewed. The significance of nano-priming methods in the context of phytotoxicity and environmental safety has also been discussed. For future perspectives, knowledge gaps in the present literature are highlighted, and the need for optimization and validation of nano-priming methods and their plant physiological outcomes, from lab to field, is emphasized.
Collapse
Affiliation(s)
- Jisun H. J. Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Deepak M. Kasote
- Agricultural Research Station, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
50
|
Xiang Y, Zhao C, Li Q, Niu Y, Pan Y, Li G, Cheng Y, Zhang A. Pectin methylesterase 31 is transcriptionally repressed by ABI5 to negatively regulate ABA-mediated inhibition of seed germination. FRONTIERS IN PLANT SCIENCE 2024; 15:1336689. [PMID: 38371403 PMCID: PMC10869471 DOI: 10.3389/fpls.2024.1336689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
Pectin methylesterase (PME), a family of enzymes that catalyze the demethylation of pectin, influences seed germination. Phytohormone abscisic acid (ABA) inhibits seed germination. However, little is known about the function of PMEs in response to ABA-mediated seed germination. In this study, we found the role of PME31 in response to ABA-mediated inhibition of seed germination. The expression of PME31 is prominent in the embryo and is repressed by ABA treatment. Phenotype analysis showed that disruption of PME31 increases ABA-mediated inhibition of seed germination, whereas overexpression of PME31 attenuates this effect. Further study found that ABI5, an ABA signaling bZIP transcription factor, is identified as an upstream regulator of PME31. Genetic analysis showed that PME31 functions downstream of ABI5 in ABA-mediated seed germination. Detailed studies showed that ABI5 directly binds to the PME31 promoter and inhibits its expression. In the plants, PME31 expression is reduced by ABI5 in ABA-mediated seed germination. Taken together, PME31 is transcriptionally inhibited by ABI5 and negatively regulates ABA-mediated seed germination inhibition. These findings shed new light on the mechanisms of PMEs in response to ABA-mediated seed germination.
Collapse
Affiliation(s)
- Yang Xiang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Chongyang Zhao
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qian Li
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yingxue Niu
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yitian Pan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Guangdong Li
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yuan Cheng
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Aying Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
| |
Collapse
|