1
|
Muhammad A, Khan MHU, Kong X, Zheng S, Bai N, Li L, Zhang N, Muhammad S, Li Z, Zhang X, Miao C, Zhang Z. Rhizospheric crosstalk: A mechanistic overview of how plant secondary metabolites alleviate abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112431. [PMID: 39993645 DOI: 10.1016/j.plantsci.2025.112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Plants often encounter incompatible growing conditions, such as drought, extreme temperatures, salinity, and heavy metals, which negatively impact their growth and development, resulting in reduced yield and, in severe cases, plant death. These stresses trigger the synthesis of plant secondary metabolites (PSMs), which help plants develop strategies to deter enemies, combat pathogens, outcompete competitors, and overcome environmental restraints. PSMs are released into the rhizosphere and play crucial roles in plant defense and communication. The multifunctionality of PSMs offers new insights into the plant intricate adaptive responses, which can refine our understanding of plant tolerance mechanisms in challenging environments. Thus, elucidating the chemical composition and functions of plant-derived specialized metabolites in the rhizosphere is the key to understanding interactions in this belowground environment. In this review, we aim to elucidate how PSMs exudation shapes the activities and abundance of the rhizosphere microbiome. We also highlight key environmental factors that regulate the structure and diversity of microbial communities. Finally, we discuss various preventive roles of PSMs, exploring how plants recruit microbes preemptively to mitigate diverse abiotic stresses. Additionally, we emphasize the significant contribution of phenolic compounds to the antioxidant defense response in plants, regulated through the shikimate pathway and is considered as a distinctive plant stress resilience component as compared to other PSMs under abiotic stress. Collectively, this study reveals the significance of understanding the multifaceted crosstalk between PSMs and the microbiome, which will facilitate the potential for developing methods to manipulate PSMs-microbiome interaction with predictive outcomes for sustainable crop production.
Collapse
Affiliation(s)
- Ali Muhammad
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Muhammad Hafeez Ullah Khan
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiangjun Kong
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shuaichao Zheng
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Na Bai
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lijie Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Nina Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zengqiang Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
2
|
Jiang Z, van Zanten M, Sasidharan R. Mechanisms of plant acclimation to multiple abiotic stresses. Commun Biol 2025; 8:655. [PMID: 40269242 DOI: 10.1038/s42003-025-08077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Plants frequently encounter a range of abiotic stresses and their combinations. Even though stresses rarely occur in isolation, research on plant stress resilience typically focuses on single environmental stressors. Plant responses to abiotic stress combinations are often distinct from corresponding individual stresses. Factors determining the outcomes of combined stresses are complex and multifaceted. In this review, we summarize advancements in our understanding of the mechanisms underlying plant responses to co-occurring (combined and sequential) abiotic stresses, focusing on morphological, physiological, developmental, and molecular aspects. Comprehensive understanding of plant acclimation, including the signaling and response mechanisms to combined and individual stresses, can contribute to the development of strategies for enhancing plant resilience in dynamic environments.
Collapse
Affiliation(s)
- Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Adamik L, Dou PS, Philippe G, Blanc R, Vásquez-Ocmín P, Marti G, Langin T, Bonhomme L. Suboptimal pre-anthesis water status mitigates wheat susceptibility to fusarium head blight and triggers specific metabolic responses. Sci Rep 2025; 15:11773. [PMID: 40189612 PMCID: PMC11973212 DOI: 10.1038/s41598-025-96159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
The impact of abiotic challenges on plant physiology reshapes plant-pathogen interactions by modulating the plant immune responses. In wheat, the development of Fusarium Head Blight (FHB) is heavily influenced by environmental conditions, especially during the pre-anthesis stage, just before fungal infection occurs. The early stages of infection are thus likely conditioned by prior environmental changes with consequences on the disease outcome that require further characterization. In this study, we aimed to assess the impact of pre-anthesis water depletion followed by rapid rehydration at inoculation on the expression of FHB-related molecular determinants with emphasis on susceptibility factors and metabolism-related processes. Water depletion altered plant physiology and its effects remained detectable after three days after rehydration, leading to significantly reduced FHB symptoms. Dual-transcriptomics, combined with untargeted metabolomics, revealed two key findings including (i) extensive metabolic changes specific to prior water stress, and (ii) the strong conservation of previously identified candidate susceptibility genes regulation. Considering the combined stress effects, a unique response signature emerged, highlighting that immune responses are strongly interwoven with physiological adjustments. Our findings provide new insights into the trade-offs that plants make under multiple challenges and identify original wheat metabolic determinants that may improve FHB resistance even in suboptimal physiological conditions.
Collapse
Affiliation(s)
- Larissa Adamik
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
| | - Paul Samir Dou
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
- Université Clermont Auvergne, INRAE, UMR Herbivores, VetAgroSup, Saint-Genès- Champanelle, France
| | - Géraldine Philippe
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
| | - Richard Blanc
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
| | - Pedro Vásquez-Ocmín
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Guillaume Marti
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Laboratoire de Recherche en Sciences Végétales, Metatoul-AgromiX Platform, Université de Toulouse, CNRS, INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane, 31320, France
| | - Thierry Langin
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
| | - Ludovic Bonhomme
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Cho Y, Kwon H, Kim BC, Shim D, Ha J. Identification of genetic factors influencing flavonoid biosynthesis through pooled transcriptome analysis in mungbean sprouts. FRONTIERS IN PLANT SCIENCE 2025; 16:1540674. [PMID: 40144759 PMCID: PMC11936997 DOI: 10.3389/fpls.2025.1540674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/20/2025] [Indexed: 03/28/2025]
Abstract
Introduction Mungbean (Vigna radiata L.) is gaining increasing interest among legume crops because of its nutritional value. Various secondary metabolites that act as antioxidants and bioactive compounds are beneficial for human health. The secondary metabolite content in plants is easily influenced by environmental conditions, and this influence varies depending on the genotype. Materials and Methods Here, we screened six genotypes with consistently high and low content of major secondary metabolites (gallic acid, chlorogenic acid, neo-chlorogenic acid, genistin, formononetin, catechin, syringic acid, and resveratrol) across environmental replicates. Transcriptome data obtained from the individual genotypes were pooled into two groups: high and low levels of secondary metabolites. Results and Discussion Of the 200 differentially expressed genes identified using stringent criteria, 23 were annotated in the secondary metabolite pathway. By combining the results of the secondary metabolite and transcriptome data, we identified six key genes encoding four enzymes (CCoAOMT1; Caffeoyl-CoA O-methyltransferase, CYP81E1; 4'-methoxyisoflavone 2'-hydroxylase, DFR; dihydroflavonol-4-reductase, and HCT; shikimate O-hydroxycinnamoyltransferase) that commonly influence the content of secondary metabolites (catechin, chlorogenic acid, formononetin, and genistin) in mungbeans. Through regulatory network analysis, NAC042 and MYB74 transcription factors were identified. These transcription factors regulate the expression of four key genes in mungbean, CCoAOMT1(Vradi02g00000724.1), CYP81E1(Vradi09g00002897.1), DFR(Vradi07g00001336.1), and HCT(Vradi07g00000614.1) leading to high flavonoid content. Conclusion These results provide information on the common genetic factors involved in the production of secondary metabolites, which can improve the nutritional value of mungbeans and contribute to the development of elite mungbean cultivars.
Collapse
Affiliation(s)
- Yeonghun Cho
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hakyung Kwon
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Crop Genomics Lab, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Byeong Cheol Kim
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Jungmin Ha
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Crop Genomics Lab, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Senizza B, Araniti F, Lewin S, Wende S, Kolb S, Lucini L. A multi-omics approach to unravel the interaction between heat and drought stress in the Arabidopsis thaliana holobiont. FRONTIERS IN PLANT SCIENCE 2024; 15:1484251. [PMID: 39748821 PMCID: PMC11693709 DOI: 10.3389/fpls.2024.1484251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
The impact of combined heat and drought stress was investigated in Arabidopsis thaliana and compared to individual stresses to reveal additive effects and interactions. A combination of plant metabolomics and root and rhizosphere bacterial metabarcoding were used to unravel effects at the plant holobiont level. Hierarchical cluster analysis of metabolomics signatures pointed out two main clusters, one including heat and combined heat and drought, and the second cluster that included the control and drought treatments. Overall, phenylpropanoids and nitrogen-containing compounds, hormones and amino acids showed the highest discriminant potential. A decrease in alpha-diversity of Bacteria was observed upon stress, with stress-dependent differences in bacterial microbiota composition. The shift in beta-diversity highlighted the pivotal enrichment of Proteobacteria, including Rhizobiales, Enterobacteriales and Azospirillales. The results corroborate the concept of stress interaction, where the combined heat and drought stress is not the mere combination of the single stresses. Intriguingly, multi-omics interpretations evidenced a good correlation between root metabolomics and root bacterial microbiota, indicating an orchestrated modulation of the whole holobiont.
Collapse
Affiliation(s)
- Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia (Di.S.A.A.), Università degli Studi di Milano, Milano, Italy
| | - Simon Lewin
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Muencheberg, Germany
| | - Sonja Wende
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Muencheberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Muencheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
6
|
Zhang W, Jin Z, Huang R, Huang W, Li L, He Y, Zhou J, Tian C, Xiao L, Li P, Quan M, Zhang D, Du Q. Multi-omics analysis reveals genetic architecture and local adaptation of coumarins metabolites in Populus. BMC PLANT BIOLOGY 2024; 24:1170. [PMID: 39643871 PMCID: PMC11622574 DOI: 10.1186/s12870-024-05894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Accumulation of coumarins plays key roles in response to immune and abiotic stress in plants, but the genetic adaptation basis of controlling coumarins in perennial woody plants remain unclear. RESULTS We detected 792 SNPs within 334 genes that were significantly associated with the phenotypic variations of 15 single-metabolic traits and multiple comprehensive index, such as principal components (PCs) of coumarins metabolites. Expression quantitative trait locus mapping uncovered that 337 eQTLs associated with the expression levels of 132 associated genes. Selective sweep revealed 55 candidate genes have potential selective signature among three geographical populations, highlighting that the coumarins biosynthesis have been encountered forceful local adaptation. Furthermore, we constructed a genetic network of seven candidate genes that coordinately regulate coumarins biosynthesis, revealing the multiple regulatory patterns affecting coumarins accumulation in Populus tomentosa. Validation of candidate gene variations in a drought-tolerated population and DUF538 heterologous transformation experiments verified the function of candidate genes and their roles in adapting to the different geographical conditions in poplar. CONCLUSIONS Our study uncovered the genetic regulation of the coumarins metabolic biosynthesis of Populus, and offered potential clues for drought-tolerance evaluation and regional improvement in woody plants.
Collapse
Affiliation(s)
- Wenke Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Zhuoying Jin
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Rui Huang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Weixiong Huang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Lianzheng Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Yuling He
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Chongde Tian
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Peng Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
7
|
Khan TA, Ahmad A, Saeed T, Yusuf M, Faisal M, Alatar AA. Investigating the influence of selenium and epibrassinolide on antioxidant activity, proline accumulation, and protein expression profiles in wheat plants experiencing heat and drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1441483. [PMID: 39502922 PMCID: PMC11534860 DOI: 10.3389/fpls.2024.1441483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/28/2024] [Indexed: 11/08/2024]
Abstract
In the current investigation, the combination of selenium (Se) and epibrassinolide (EBL) exhibited a promising alleviative response against the concurrent stress of heat and drought in wheat plants. The compromised growth and photosynthetic performance of wheat plants under the combined stress of heat and drought were substantially improved with the treatment involving Se and EBL. This improvement was facilitated through the expression of Q9FIE3 and O04939 proteins, along with enhanced antioxidant activities. The heightened levels of antioxidant enzymes and the accumulation of osmoprotectant proline helped mitigate the overaccumulation of reactive oxygen species (ROS), including electrolyte leakage, H2O2 accumulation, and lipid peroxidation, thus conferring tolerance against the combined stress of heat and drought. Studies have demonstrated that Se and EBL can assist wheat plants in recuperating from the adverse effects of heat and drought. As such, they are essential components of sustainable farming methods that aim to increase crop productivity.
Collapse
Affiliation(s)
- Tanveer Alam Khan
- Department of Biology, College of Science, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Taiba Saeed
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Yusuf
- Department of Biology, College of Science, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alatar Alatar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Amin B, Atif MJ, Kandegama W, Nasar J, Alam P, Fang Z, Cheng Z. Low temperature and high humidity affect dynamics of chlorophyll biosynthesis and secondary metabolites in Cucumber. BMC PLANT BIOLOGY 2024; 24:903. [PMID: 39350005 PMCID: PMC11441134 DOI: 10.1186/s12870-024-05615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND During the cold season, low temperature (LT) and high relative humidity (HRH) are significant environmental factors in greenhouses and plastic tunnels, often hindering plant growth and development. The chlorophyll (Chl) biosynthesis inhibitory mechanisms under LT and HRH stress are still widely unclear. To understand how cucumbers seedlings respond to LT and HRH stress, we investigated the impact of these stressors on Chl biosynthesis. RESULTS Our results revealed that individual LT, HRH and combined LT + HRH stress conditions affected chlorophyll a, b, total chlorophyll and carotenoid content, reducing the levels of these pigments. The levels of Chlorophyll precursors were also markedly reduced under LT and HRH stresses, with the greatest reduction observed in cucumber seedlings exposed to LT + HRH conditions (9/5℃, 95%HRH). The activities of glutamate-1-semialdehyde transaminase (GSA-AT), ALA dehydratase (ALAD), Mg-chelatase, and protochlorophyllide oxidoreductase (POR) were increased under individual LT, HRH, conditions but decreased by combination of LT + HRH stress condition. In addition, Chl biosynthesis related genes (except PBG) were upregulated by the HRH stress but were significantly downregulated under the LT + HRH stress condition in cucumber seedlings. Furthermore, the content of phenols, flavonoids and phenolic acids (cinnamic acid and caffeic acid) were significantly surged under LT + HRH treatment over the control. Histochemical observation showed higher O2- and H2O2 content in cucumber leaves during the LT and HRH stress. CONCLUSION The results indicate that LT + HRH stress significantly impairs chlorophyll biosynthesis in cucumber seedlings by drastically reducing pigment accumulation, altering enzyme activity and gene expression. Additionally, LT + HRH stress induces oxidative damage, which further exacerbates the decline in chlorophyll content and affects overall cucumber metabolism.
Collapse
Affiliation(s)
- Bakht Amin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, 550025, China
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Muhammad Jawaad Atif
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
- Horticultural Research Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - Wmww Kandegama
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jamal Nasar
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, 11942, Kingdom of Saudi Arabia
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, China.
| |
Collapse
|
9
|
Zheng X, Zhu Q, Liu Y, Chen J, Wang L, Xiu Y, Zheng H, Lin S, Ling P, Tang M. Combined Analysis of Transcriptome and Metabolome Provides Insights in Response Mechanism under Heat Stress in Avocado ( Persea americana Mill.). Int J Mol Sci 2024; 25:10312. [PMID: 39408642 PMCID: PMC11477099 DOI: 10.3390/ijms251910312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Plants generate a range of physiological and molecular responses to sustain their growth and development when suffering heat stress. Avocado is a type of tropical fruit tree with high economic value. Most avocado cultivars delete, wither, or even die when exposed to heat stress for a long time, which seriously restricts the introduction and cultivation of avocados. In this study, samples of a heat-intolerant variety ('Hass') were treated under heat stress, and the transcriptomics and metabolomics were analyzed, with the expectation of providing information on the variety improvement and domestication of avocados. The differentially expressed genes identified using transcriptome analysis mainly involved metabolic pathways such as plant hormone signal transduction, plant-pathogen interaction, and protein processing in the endoplasmic reticulum. Combined transcriptome and metabolome analysis indicated that the down-regulation of Hass.g03.10206 and Hass.g03.10205 in heat shock-like proteins may result in the reduced Trehalose and Sinapoyl aldehyde content. Metabolomics analysis results indicated that the decrease in Trehalose and Sinapoyl aldehyde content may be an important factor for heat intolerance. These results provide important clues for understanding the physiological mechanisms of adaptation to heat stress in avocados.
Collapse
Affiliation(s)
- Xinyi Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Qing Zhu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Yi Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Junxiang Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Lingxia Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China (S.L.)
| | - Haoyue Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China (S.L.)
| | - Peng Ling
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| |
Collapse
|
10
|
Rao MJ, Duan M, Eman M, Yuan H, Sharma A, Zheng B. Comparative Analysis of Citrus Species' Flavonoid Metabolism, Gene Expression Profiling, and Their Antioxidant Capacity under Drought Stress. Antioxidants (Basel) 2024; 13:1149. [PMID: 39334808 PMCID: PMC11428974 DOI: 10.3390/antiox13091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Citrus species are widely cultivated across the globe and frequently encounter drought stress during their growth and development phases. Previous research has indicated that citrus species synthesize flavonoids as a response mechanism to drought stress. This study aimed to comprehensively quantify and analyze the presence of 85 distinct flavonoids in the leaf and root tissues of lemon (drought susceptible) and sour orange (drought tolerant). In drought-stressed sour orange roots, flavonoids, such as isosakuranin, mangiferin, trilobatin, liquiritigenin, avicularin, silibinin, and glabridin, were more elevated than control sour orange roots and drought-stressed lemon roots. Additionally, hydroxysafflor yellow A, cynaroside, tiliroside, and apigenin 7-glucoside were increased in drought-stressed sour orange leaves compared to drought-stressed lemon leaves. Under drought stress, flavonoids such as (-)-epigallocatechin, silibinin, benzylideneacetophenone, trilobatin, isorhamnetin, 3,7,4'-trihydroxyflavone, and liquiritigenin were significantly increased, by 3.01-, 3.01-, 2.59-, 2.43-, 2.07-, 2.05-, and 2.01-fold, in sour orange roots compared to control sour orange roots. Moreover, the total flavonoid content and antioxidant capacity were significantly increased in drought-stressed sour orange leaves and root tissues compared to drought-stressed lemon leaves and root tissues. The expression levels of genes involved in flavonoid biosynthesis were highly expressed in sour orange leaves and roots, compared to lemon leaves and root tissues, post-drought stress. These findings indicate that lemons fail to synthesize protective flavonoids under drought conditions, whereas sour orange leaves and root tissues enhance flavonoid synthesis, with higher antioxidant activities to mitigate the adverse effects of reactive oxygen species generated during drought stress.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Mingzheng Duan
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China
| | - Momina Eman
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Pure & Applied Biology (IP&AB), Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
11
|
Madheshiya P, Gupta GS, Tiwari S. Cross-talk between antioxidant production and secondary metabolite biosynthesis under combined effects of ozone stress and nitrogen amendments: A case study of lemongrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108876. [PMID: 38945097 DOI: 10.1016/j.plaphy.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The present experiment was done to study the interactive effects of soil nitrogen (N) amendments and elevated ozone (O3) (N-O3) on a medicinal plant, lemongrass [Cymbopogon flexuosus (Steud.) (Wats.)]. The experiment used two doses of inorganic soil nitrogen (N1, recommended and N2, 1.5-times recommended dose) in open-top chambers under ambient and elevated (ambient + 15 ppb and ambient + 30 ppb) O3 conditions. To analyze various characteristics, samples were collected at 45 and 90 days after transplantation (DAT). Additionally, at 110 days after transplantation (DAT), the metabolite contents of the leaves and essential oils were analyzed. The present study aims to investigate the mechanistic approach involving the crosstalk between antioxidant production and secondary metabolite biosynthesis in lemongrass upon N-O3 interactions. The present experiment showed that N amendments can be an efficient measure to manage O3 injury in plants, along with ensuring a balance between primary and secondary metabolic pathways, thus sustaining the plant defense and production of bioactive compounds, simultaneously. Under N-O3, not only the Halliwell asada pathway was stimulated resulting in the increased activities and concentrations of antioxidant pools; the shikimate, phenylpropanoid and mevalonic acid pathways were also invigorated, producing more number and contents of secondary metabolites (SMs), compared with plants that were not treated with N doses. This study suggests that soil nitrogen amendments will improve the therapeutic qualities of lemongrass, along with the strengthening of its antioxidant machinery, upon exposure to O3 stress.
Collapse
Affiliation(s)
- Parvati Madheshiya
- Lab of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Gereraj Sen Gupta
- Lab of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Supriya Tiwari
- Lab of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Li S, Yang L, Wang M, Chen Y, Yu J, Chen H, Yang H, Wang W, Cai Z, Hong L. Effects of rootstocks and developmental time on the dynamic changes of main functional substances in 'Orah' ( Citrus reticulata Blanco) by HPLC coupled with UV detection. FRONTIERS IN PLANT SCIENCE 2024; 15:1382768. [PMID: 39263418 PMCID: PMC11388320 DOI: 10.3389/fpls.2024.1382768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Introduction Citrus fruit is rich in important functional constituents such as flavonoids, phenolic acids terpenes and other functional substances that play an important role for treating clinical diseases or controlling major agricultural diseases and pests. Plant secondary metabolites have become one of the most important resources of novel lead compounds, especially young citrus fruits contain multiple functional substances. 'Orah', a type of citrus reticulata, is known for its fine appearance, productivity, delicious sweetness, late-maturing characteristics, and is widely cultivated in China. Fruit thinning and rootstock selection are commonly used agronomic measures in its production to ensure its quality and tree vigor. However, few studies have demonstrated the effects of these agronomic measures on the functional substances of 'Orah'. Methods In this study, we used HPLC coupled with UV to detect the dynamic changes of fruit quality, 13 main flavonoids, 7 phenolic acids, 2 terpenes, synephrine and antioxidant capacity in both peel and pulp of citrus fruits grafted on four rootstocks (Red orange Citrus reticulata Blanco cv. red tangerine, Ziyang xiangcheng Citrus junos Sieb. ex Tanaka, Trifoliate orange Poncirus trifoliata L. Raf, and Carrizo citrange Citrus sinensis Osb.×P.trifoliate Raf) at six different developmental stages (from 90 DAF to 240 DAF). Results The results indicated that rootstock can significantly affect the contents of functional constituents and antioxidant capacity in 'Orah'. Additionally, it was found that pruning at either 90 DAF (days after flowering) or 150 DAF produced the most favorable outcomes for extracting functional substances. We also identified rootstock 'Trifoliate orange' has the highest total soluble solids (TSS) and 'Ziyang xiangcheng' to be the optimal in terms of comprehensive sensory of fruit quality, while 'Red orange' and 'Ziyang xiangcheng' are optimal in terms of functional substance quality, and 'Red orange' excels in antioxidant capacity. Discussion Overall, the findings demonstrate the important role of rootstocks and developmental stage in shaping fruit sensory quality and functional substance synthesis, providing valuable insights for guiding rootstock selection, determining thinning time, and utilizing pruned fruits in a more informed manner.
Collapse
Affiliation(s)
- Shuang Li
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Lei Yang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Min Wang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yang Chen
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Jianjun Yu
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Hao Chen
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Haijian Yang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Wu Wang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zhiyong Cai
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Lin Hong
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
13
|
Terán F, Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Facing climate change: plant stress mitigation strategies in agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14484. [PMID: 39157905 DOI: 10.1111/ppl.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Climate change poses significant challenges to global agriculture, with rising temperatures, altered precipitation patterns, and increased frequency of extreme weather events threatening crop yields. These changes exceed the adaptability thresholds of many crops, decreasing their yield and threatening food security. At plant physiological levels, climate change-induced stressors disrupt photosynthesis, growth, and reproductive processes, contributing to a reduced productivity. Furthermore, the negative impacts of climate change on agriculture are exacerbated by anthropogenic factors, with agriculture itself contributing significantly to greenhouse gas emissions. To mitigate these challenges, various approaches have been explored. This work reviews the most important physical, chemical, and biological strategies most commonly used in a broad range of agricultural crops. Among physical strategies, increasing water use efficiency without yield reduction through different irrigation strategies, and the use of foliar treatments with reflective properties to mitigate the negative effects of different stresses have been proven to be effective. Concerning chemical approaches, the exogenous treatment of plants with chemicals induces existing molecular and physiological plant defense mechanisms, enhancing abiotic stress tolerance. Regarding biological treatments, plant inoculation with mycorrhiza and plant growth-promoting rhizobacteria (PGPR) can improve enzymatic antioxidant capacity and mineral solubilization, favoring root and plant growth and enhance plant performance under stressful conditions. While these strategies provide valuable short- to medium-term solutions, there is a pressing need for new biotechnological approaches aimed at developing genotypes resistant to stressful conditions. Collaborative efforts among researchers, policymakers, and agricultural stakeholders are essential to ensure global food security in the face of ongoing climate challenges.
Collapse
Affiliation(s)
- Fátima Terán
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicente Vives-Peris
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Rosa M Pérez-Clemente
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
14
|
Mishra SK, Chaudhary C, Baliyan S, Poonia AK, Sirohi P, Kanwar M, Gazal S, Kumari A, Sircar D, Germain H, Chauhan H. Heat-stress-responsive HvHSFA2e gene regulates the heat and drought tolerance in barley through modulation of phytohormone and secondary metabolic pathways. PLANT CELL REPORTS 2024; 43:172. [PMID: 38874775 DOI: 10.1007/s00299-024-03251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
KEY MESSAGE The heat stress transcription factor HSFA2e regulates both temperature and drought response via hormonal and secondary metabolism alterations. High temperature and drought are the primary yield-limiting environmental constraints for staple food crops. Heat shock transcription factors (HSF) terminally regulate the plant abiotic stress responses to maintain growth and development under extreme environmental conditions. HSF genes of subclass A2 predominantly express under heat stress (HS) and activate the transcriptional cascade of defense-related genes. In this study, a highly heat-inducible HSF, HvHSFA2e was constitutively expressed in barley (Hordeum vulgare L.) to investigate its role in abiotic stress response and plant development. Transgenic barley plants displayed enhanced heat and drought tolerance in terms of increased chlorophyll content, improved membrane stability, reduced lipid peroxidation, and less accumulation of ROS in comparison to wild-type (WT) plants. Transcriptome analysis revealed that HvHSFA2e positively regulates the expression of abiotic stress-related genes encoding HSFs, HSPs, and enzymatic antioxidants, contributing to improved stress tolerance in transgenic plants. The major genes of ABA biosynthesis pathway, flavonoid, and terpene metabolism were also upregulated in transgenics. Our findings show that HvHSFA2e-mediated upregulation of heat-responsive genes, modulation in ABA and flavonoid biosynthesis pathways enhance drought and heat stress tolerance.
Collapse
Affiliation(s)
- Sumit Kumar Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
- Magadh University, BodhGaya, 824234, Bihar, India
| | - Chanderkant Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Suchi Baliyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Anuj Kumar Poonia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Meenakshi Kanwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Snehi Gazal
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G9A 5H9, Canada
| | - Annu Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G9A 5H9, Canada
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India.
| |
Collapse
|
15
|
García-Jorgensen DB, Holbak M, Hansen HCB, Abrahamsen P, Diamantopoulos E. Modeling the environmental fate of bracken toxin ptaquiloside: Production, release and transport in the rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170658. [PMID: 38340825 DOI: 10.1016/j.scitotenv.2024.170658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Plants produce a diverse array of toxic compounds which may be released by precipitation, explaining their wide occurrence in surrounding soil and water. This study presents the first mechanistic model for describing the generation and environmental fate of a natural toxin, i.e. ptaquiloside (PTA), a carcinogenic phytotoxin produced by bracken fern (Pteridium aquilinum L. Kuhn). The newly adapted DAISY model was calibrated based on two-year monitoring performed in the period 2018-2019 in a Danish bracken population located in a forest glade. Several functions related to the fate of PTA were calibrated, covering processes from toxin generation in the canopy, wash off by precipitation and degradation in the soil. Model results show a good description of observed bracken biomass and PTA contents, supporting the assumption that toxin production can be explained by the production of new biomass. Model results show that only 4.4 % of the PTA produced in bracken is washed off by precipitation, from both canopy and litter. Model simulations showed that PTA degrades rapidly once in the soil, especially during summer due to the high soil temperatures. Leaching takes place in form of pulses directly connected to precipitation events, with maximum simulated concentrations up to 4.39 μg L-1 at 50 cm depth. Macropore transport is mainly responsible for the events with the highest PTA concentrations, contributing to 72 % of the total mass of PTA leached. Based on the results, we identify areas with high density of bracken, high precipitation during the summer and soils characterized by fast transport, as the most vulnerable to surface and groundwater pollution by phytotoxins.
Collapse
Affiliation(s)
- Daniel B García-Jorgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark; National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Maja Holbak
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Per Abrahamsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Efstathios Diamantopoulos
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark; Chair of Soil Physics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
16
|
Chauhan PK, Upadhyay SK, Rajput VD, Dwivedi P, Minkina T, Wong MH. Fostering plant growth performance under drought stress using rhizospheric microbes, their gene editing, and biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:41. [PMID: 38227068 DOI: 10.1007/s10653-023-01823-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, 999077, China
| |
Collapse
|
17
|
Salami M, Heidari B, Batley J, Wang J, Tan XL, Richards C, Tan H. Integration of genome-wide association studies, metabolomics, and transcriptomics reveals phenolic acid- and flavonoid-associated genes and their regulatory elements under drought stress in rapeseed flowers. FRONTIERS IN PLANT SCIENCE 2024; 14:1249142. [PMID: 38273941 PMCID: PMC10808681 DOI: 10.3389/fpls.2023.1249142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/03/2023] [Indexed: 01/27/2024]
Abstract
Introduction Biochemical and metabolic processes help plants tolerate the adverse effects of drought. In plants accumulating bioactive compounds, understanding the genetic control of the biosynthesis of biochemical pathways helps the discovery of candidate gene (CG)-metabolite relationships. Methods The metabolic profile of flowers in 119 rapeseed (Brassica napus) accessions was assessed over two irrigation treatments, one a well-watered (WW) condition and the other a drought stress (DS) regime. We integrated information gained from 52,157 single-nucleotide polymorphism (SNP) markers, metabolites, and transcriptomes to identify linked SNPs and CGs responsible for the genetic control of flower phenolic compounds and regulatory elements. Results In a genome-wide association study (GWAS), of the SNPs tested, 29,310 SNPs were qualified to assess the population structure and linkage disequilibrium (LD), of which several SNPs for radical scavenging activity (RSA) and total flavanol content (TFLC) were common between the two irrigation conditions and pleiotropic SNPs were found for chlorogenic and coumaric acids content. The principal component analysis (PCA) and stepwise regression showed that chlorogenic acid and epicatechin in WW and myricetin in DS conditions were the most important components for RSA. The hierarchical cluster analysis (HCA) showed that vanillic acid, myricetin, gallic acid, and catechin were closely associated in both irrigation conditions. Analysis of GWAS showed that 60 CGs were identified, of which 18 were involved in stress-induced pathways, phenylpropanoid pathway, and flavonoid modifications. Of the CGs, PAL1, CHI, UGT89B1, FLS3, CCR1, and CYP75B137 contributed to flavonoid biosynthetic pathways. The results of RNA sequencing (RNA-seq) revealed that the transcript levels of PAL, CHI, and CYP75B137 known as early flavonoid biosynthesis-related genes and FLS3, CCR1, and UGT89B1 related to the later stages were increased during drought conditions. The transcription factors (TFs) NAC035 and ERF119 related to flavonoids and phenolic acids were upregulated under drought conditions. Discussion These findings expand our knowledge on the response mechanisms to DS, particularly regarding the regulation of key phenolic biosynthetic genes in rapeseed. Our data also provided specific linked SNPs for marker-assisted selection (MAS) programs and CGs as resources toward realizing metabolomics-associated breeding of rapeseed.
Collapse
Affiliation(s)
- Maryam Salami
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Christopher Richards
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| | - Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Zhang XJ, Wu C, Liu BY, Liang HL, Wang ML, Li H. Transcriptomic and metabolomic profiling reveals the drought tolerance mechanism of Illicium difengpi (Schisandraceae). FRONTIERS IN PLANT SCIENCE 2024; 14:1284135. [PMID: 38259923 PMCID: PMC10800416 DOI: 10.3389/fpls.2023.1284135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Illicium difengpi (Schisandraceae), an endangered medicinal plant endemic to karst areas, is highly tolerant to drought and thus can be used as an ideal material for investigating adaptive mechanism to drought stress. The understanding of the drought tolerance of I. difengpi, especially at the molecular level, is lacking. In the present study, we aimed to clarify the molecular mechanism underlying drought tolerance in endemic I. difengpi plant in karst regions. The response characteristics of transcripts and changes in metabolite abundance of I. difengpi subjected to drought and rehydration were analyzed, the genes and key metabolites responsive to drought and rehydration were screened, and some important biosynthetic and secondary metabolic pathways were identified. A total of 231,784 genes and 632 metabolites were obtained from transcriptome and metabolome analyses, and most of the physiological metabolism in drought-treated I. difengpi plants recovered after rehydration. There were more upregulated genes than downregulated genes under drought and rehydration treatments, and rehydration treatment induced stable expression of 65.25% of genes, indicating that rehydration alleviated drought stress to some extent. Drought and rehydration treatment generated flavonoids, phenolic acids, flavonols, amino acids and their derivatives, as well as metabolites such as saccharides and alcohols in the leaves of I. difengpi plants, which alleviated the injury caused by excessive reactive oxygen species. The integration of transcriptome and metabolome analyses showed that, under drought stress, I. difengpi increased glutathione, flavonoids, polyamines, soluble sugars and amino acids, contributing to cell osmotic potential and antioxidant activity. The results show that the high drought tolerance and recovery after rehydration are the reasons for the normal growth of I. difengpi in karst mountain areas.
Collapse
Affiliation(s)
| | - Chao Wu
- *Correspondence: Chao Wu, ; Hui-Ling Liang,
| | | | - Hui-Ling Liang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | | | | |
Collapse
|
19
|
Janni M, Maestri E, Gullì M, Marmiroli M, Marmiroli N. Plant responses to climate change, how global warming may impact on food security: a critical review. FRONTIERS IN PLANT SCIENCE 2024; 14:1297569. [PMID: 38250438 PMCID: PMC10796516 DOI: 10.3389/fpls.2023.1297569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Global agricultural production must double by 2050 to meet the demands of an increasing world human population but this challenge is further exacerbated by climate change. Environmental stress, heat, and drought are key drivers in food security and strongly impacts on crop productivity. Moreover, global warming is threatening the survival of many species including those which we rely on for food production, forcing migration of cultivation areas with further impoverishing of the environment and of the genetic variability of crop species with fall out effects on food security. This review considers the relationship of climatic changes and their bearing on sustainability of natural and agricultural ecosystems, as well as the role of omics-technologies, genomics, proteomics, metabolomics, phenomics and ionomics. The use of resource saving technologies such as precision agriculture and new fertilization technologies are discussed with a focus on their use in breeding plants with higher tolerance and adaptability and as mitigation tools for global warming and climate changes. Nevertheless, plants are exposed to multiple stresses. This study lays the basis for the proposition of a novel research paradigm which is referred to a holistic approach and that went beyond the exclusive concept of crop yield, but that included sustainability, socio-economic impacts of production, commercialization, and agroecosystem management.
Collapse
Affiliation(s)
- Michela Janni
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Bari, Italy
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Nelson Marmiroli
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA) Interuniversity Consortium for Environmental Sciences, Parma/Venice, Italy
| |
Collapse
|
20
|
Segarra-Medina C, Pascual LS, Alseekh S, Fernie AR, Rambla JL, Gómez-Cadenas A, Zandalinas SI. Comparison of metabolomic reconfiguration between Columbia and Landsberg ecotypes subjected to the combination of high salinity and increased irradiance. BMC PLANT BIOLOGY 2023; 23:406. [PMID: 37620776 PMCID: PMC10463500 DOI: 10.1186/s12870-023-04404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Plants growing in the field are subjected to combinations of abiotic stresses. These conditions pose a devastating threat to crops, decreasing their yield and causing a negative economic impact on agricultural production. Metabolic responses play a key role in plant acclimation to stress and natural variation for these metabolic changes could be key for plant adaptation to fluctuating environmental conditions. RESULTS Here we studied the metabolomic response of two Arabidopsis ecotypes (Columbia-0 [Col] and Landsberg erecta-0 [Ler]), widely used as genetic background for Arabidopsis mutant collections, subjected to the combination of high salinity and increased irradiance. Our findings demonstrate that this stress combination results in a specific metabolic response, different than that of the individual stresses. Although both ecotypes displayed reduced growth and quantum yield of photosystem II, as well as increased foliar damage and malondialdehyde accumulation, different mechanisms to tolerate the stress combination were observed. These included a relocation of amino acids and sugars to act as potential osmoprotectants, and the accumulation of different stress-protective compounds such as polyamines or secondary metabolites. CONCLUSIONS Our findings reflect an initial identification of metabolic pathways that differentially change under stress combination that could be considered in studies of stress combination of Arabidopsis mutants that include Col or Ler as genetic backgrounds.
Collapse
Affiliation(s)
- Clara Segarra-Medina
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Lidia S Pascual
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - José L Rambla
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| | - Sara I Zandalinas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| |
Collapse
|
21
|
Rao MJ, Feng B, Ahmad MH, Tahir ul Qamar M, Aslam MZ, Khalid MF, Hussain S, Zhong R, Ali Q, Xu Q, Ma C, Wang L. LC-MS/MS-based metabolomics approach identified novel antioxidant flavonoids associated with drought tolerance in citrus species. FRONTIERS IN PLANT SCIENCE 2023; 14:1150854. [PMID: 37636085 PMCID: PMC10450343 DOI: 10.3389/fpls.2023.1150854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/27/2023] [Indexed: 08/29/2023]
Abstract
Citrus fruits are cultivated around the world, and they face drought stress frequently during their growth and development. Previous studies showed that citrus plants biosynthesized flavonoid compounds in response to abiotic stress. In this study, we have quantified 37 flavonoid compounds from the leaves of three distinct citrus species including sour orange (drought-tolerant), pummelo 'Majia you pummelo' (drought-sensitive), and lemon (drought-sensitive). The 37 flavonoids consisted of 12 flavones, 10 flavonols, 6 flavanones, 5 isoflavanones, and 1 each for chalcone, flavanol, flavanonol, and flavone glycoside. Drought stress differentially altered the flavonoid metabolism in drought-tolerant and drought-sensitive citrus species. The kaempferol 3-neohesperidoside was 17-fold higher in sour orange (124.41 nmol/L) after 18 days of drought stress than lemon (7.33 nmol/L). In sour orange, neohesperidin (69.49 nmol/L) was 1,407- and 37-fold higher than pummelo and lemon, respectively. In sour orange, some flavonoids were significantly increased, such as vitexin, neohesperidin, cynaroside, hyperoside, genistin, kaempferol 3-neohesperidoside, eriocitrin, and luteolin, in response to drought stress, whereas in lemon, these flavonoids were significantly decreased or not altered significantly in response to drought stress. Moreover, the total contents of flavonoids and antioxidant activity were increased in sour orange as compared with pummelo and lemon. The genes associated with flavonoid biosynthesis (PAL, CHI, FLS, GT1, F3H, F3'M, C4H, 4CL, FLS, FG2, FG3, and CYP81E1) were more highly expressed in sour orange leaves than in pummelo and lemon after drought stress. These outcomes showed that pummelo and lemon failed to biosynthesize antioxidant flavonoids to cope with the prolonged drought stress, whereas the sour orange biosynthesized fortified flavonoid compounds with increased antioxidant activity to detoxify the harmful effects of reactive oxygen species produced during drought stress.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bihong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Muhammad Husnain Ahmad
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Zeshan Aslam
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Muhammad Fasih Khalid
- Southwest Florida Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Science, University of Florida, Immokalee, FL, United States
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Ruimin Zhong
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chongjian Ma
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
22
|
Reshi ZA, Ahmad W, Lukatkin AS, Javed SB. From Nature to Lab: A Review of Secondary Metabolite Biosynthetic Pathways, Environmental Influences, and In Vitro Approaches. Metabolites 2023; 13:895. [PMID: 37623839 PMCID: PMC10456650 DOI: 10.3390/metabo13080895] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Secondary metabolites are gaining an increasing importance in various industries, such as pharmaceuticals, dyes, and food, as is the need for reliable and efficient methods of procuring these compounds. To develop sustainable and cost-effective approaches, a comprehensive understanding of the biosynthetic pathways and the factors influencing secondary metabolite production is essential. These compounds are a unique type of natural product which recognizes the oxidative damage caused by stresses, thereby activating the defence mechanism in plants. Various methods have been developed to enhance the production of secondary metabolites in plants. The elicitor-induced in vitro culture technique is considered an efficient tool for studying and improving the production of secondary metabolites in plants. In the present review, we have documented various biosynthetic pathways and the role of secondary metabolites under diverse environmental stresses. Furthermore, a practical strategy for obtaining consistent and abundant secondary metabolite production via various elicitation agents used in culturing techniques is also mentioned. By elucidating the intricate interplay of regulatory factors, this review paves the way for future advancements in sustainable and efficient production methods for high-value secondary metabolites.
Collapse
Affiliation(s)
- Zubair Altaf Reshi
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (Z.A.R.); (W.A.)
| | - Waquar Ahmad
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (Z.A.R.); (W.A.)
| | - Alexander S. Lukatkin
- Department of General Biology and Ecology, N.P. Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Saad Bin Javed
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (Z.A.R.); (W.A.)
| |
Collapse
|
23
|
Kantharaj V, Yoon YE, Lee KA, Choe H, Chohra H, Seo WD, Kim YN, Lee YB. Saponarin, a Di-glycosyl Flavone from Barley ( Hordeum vulgare L.): An Effective Compound for Plant Defense and Therapeutic Application. ACS OMEGA 2023; 8:22285-22295. [PMID: 37396229 PMCID: PMC10308553 DOI: 10.1021/acsomega.3c00267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Saponarin (SA) is a major di-C-glycosyl-O-glycosyl flavone, which is predominantly accumulated in the young green leaves of barley (Hordeum vulgare L.), with numerous biological functions in plants, such as protection against environmental stresses. Generally, SA synthesis and its localization in the mesophyll vacuole or leaf epidermis are largely stimulated in response to biotic and abiotic stresses to participate in a plant's defense response. In addition, SA is also credited for its pharmacological properties, such as the regulation of signaling pathways associated with antioxidant and anti-inflammatory responses. In recent years, many researchers have shown the potential of SA to treat oxidative and inflammatory disorders, such as in protection against liver diseases, and reducing blood glucose, along with antiobesity effects. This review aims to highlight natural variations of SA in plants, biosynthesis pathway, and SA's role in response to environmental stress and implications in various therapeutic applications. In addition, we also discuss the challenges and knowledge gaps concerning SA use and commercialization.
Collapse
Affiliation(s)
- Vimalraj Kantharaj
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Young-Eun Yoon
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Keum-Ah Lee
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeonji Choe
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Hadjer Chohra
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Woo Duck Seo
- Division
of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Nam Kim
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Yong Bok Lee
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| |
Collapse
|
24
|
Kim BC, Lim I, Ha J. Metabolic profiling and expression analysis of key genetic factors in the biosynthetic pathways of antioxidant metabolites in mungbean sprouts. FRONTIERS IN PLANT SCIENCE 2023; 14:1207940. [PMID: 37396630 PMCID: PMC10313209 DOI: 10.3389/fpls.2023.1207940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Mungbeans (Vigna radiata L.), a major legume crop in Asia, contain higher amounts of functional substances than other legumes, such as catechin, chlorogenic acid, and vitexin. Germination can improve the nutritional value of legume seeds. Here, 20 functional substances were profiled in germinated mungbeans and the expression levels of the transcripts of key enzymes in targeted secondary metabolite biosynthetic pathways were identified. VC1973A, a reference mungbean elite cultivar, had the highest amount of gallic acid (99.93 ± 0.13 mg/100 g DW) but showed lower contents of most metabolites than the other genotypes. Wild mungbeans contained a large amount of isoflavones compared with cultivated genotypes, especially for daidzin, genistin and glycitin. The expression of key genes involved in biosynthetic pathways had significant positive or negative correlations with the target secondary metabolite contents. The results indicate that functional substance contents are regulated at the transcriptional level, which can be applied to improve the nutritional value of mungbean sprouts in molecular breeding or genetic engineering, and wild mungbeans are a useful resource to improve the quality of mungbean sprouts.
Collapse
Affiliation(s)
- Byeong Cheol Kim
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Insu Lim
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Jungmin Ha
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Haeram Institute of Bakery Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
25
|
Effah Z, Li L, Xie J, Karikari B, Xu A, Wang L, Du C, Duku Boamah E, Adingo S, Zeng M. Widely untargeted metabolomic profiling unearths metabolites and pathways involved in leaf senescence and N remobilization in spring-cultivated wheat under different N regimes. FRONTIERS IN PLANT SCIENCE 2023; 14:1166933. [PMID: 37260937 PMCID: PMC10227437 DOI: 10.3389/fpls.2023.1166933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 06/02/2023]
Abstract
Progression of leaf senescence consists of both degenerative and nutrient recycling processes in crops including wheat. However, the levels of metabolites in flag leaves in spring-cultivated wheat, as well as biosynthetic pathways involved under different nitrogen fertilization regimes, are largely unknown. Therefore, the present study employed a widely untargeted metabolomic profiling strategy to identify metabolites and biosynthetic pathways that could be used in a wheat improvement program aimed at manipulating the rate and onset of senescence by handling spring wheat (Dingxi 38) flag leaves sampled from no-, low-, and high-nitrogen (N) conditions (designated Groups 1, 2, and 3, respectively) across three sampling times: anthesis, grain filling, and end grain filling stages. Through ultrahigh-performance liquid chromatography-tandem mass spectrometry, a total of 826 metabolites comprising 107 flavonoids, 51 phenol lipids, 37 fatty acyls, 37 organooxygen compounds, 31 steroids and steroid derivatives, 18 phenols, and several unknown compounds were detected. Upon the application of the stringent screening criteria for differentially accumulated metabolites (DAMs), 28 and 23 metabolites were differentially accumulated in Group 1_vs_Group 2 and Group 1_vs_Group 3, respectively. From these, 1-O-Caffeoylglucose, Rhoifolin, Eurycomalactone;Ingenol, 4-Methoxyphenyl beta-D-glucopyranoside, and Baldrinal were detected as core conserved DAMs among the three groups with all accumulated higher in Group 1 than in the other two groups. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that tropane, piperidine, and pyridine alkaloid biosynthesis; acarbose and validamycin biosynthesis; lysine degradation; and biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid pathways were the most significantly (p < 0.05) enriched in Group 1_vs_Group 2, while flavone and flavonol as well as anthocyanins biosynthetic pathways were the most significantly (p < 0.05) enriched in Group 1_vs_Group 3. The results from this study provide a foundation for the manipulation of the onset and rate of leaf senescence and N remobilization in wheat.
Collapse
Affiliation(s)
- Zechariah Effah
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Department of Plant Genetic Diversity, Council for Scientific and Industrial Research (CSIR)-Plant Genetic Resources Research Institute, Bunso, Ghana
| | - Lingling Li
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Junhong Xie
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Aixia Xu
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Linlin Wang
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Changliang Du
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Emmanuel Duku Boamah
- Department of Plant Genetic Diversity, Council for Scientific and Industrial Research (CSIR)-Plant Genetic Resources Research Institute, Bunso, Ghana
| | - Samuel Adingo
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Min Zeng
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
26
|
Costa ÁVL, Oliveira TFDC, Posso DA, Reissig GN, Parise AG, Barros WS, Souza GM. Systemic Signals Induced by Single and Combined Abiotic Stimuli in Common Bean Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:924. [PMID: 36840271 PMCID: PMC9964927 DOI: 10.3390/plants12040924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
To survive in a dynamic environment growing fixed to the ground, plants have developed mechanisms for monitoring and perceiving the environment. When a stimulus is perceived, a series of signals are induced and can propagate away from the stimulated site. Three distinct types of systemic signaling exist, i.e., (i) electrical, (ii) hydraulic, and (iii) chemical, which differ not only in their nature but also in their propagation speed. Naturally, plants suffer influences from two or more stimuli (biotic and/or abiotic). Stimuli combination can promote the activation of new signaling mechanisms that are explicitly activated, as well as the emergence of a new response. This study evaluated the behavior of electrical (electrome) and hydraulic signals after applying simple and combined stimuli in common bean plants. We used simple and mixed stimuli applications to identify biochemical responses and extract information from the electrical and hydraulic patterns. Time series analysis, comparing the conditions before and after the stimuli and the oxidative responses at local and systemic levels, detected changes in electrome and hydraulic signal profiles. Changes in electrome are different between types of stimulation, including their combination, and systemic changes in hydraulic and oxidative dynamics accompany these electrical signals.
Collapse
Affiliation(s)
- Ádrya Vanessa Lira Costa
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Thiago Francisco de Carvalho Oliveira
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Douglas Antônio Posso
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Gabriela Niemeyer Reissig
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | | | - Willian Silva Barros
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| |
Collapse
|
27
|
Ghitti E, Rolli E, Crotti E, Borin S. Flavonoids Are Intra- and Inter-Kingdom Modulator Signals. Microorganisms 2022; 10:microorganisms10122479. [PMID: 36557733 PMCID: PMC9781135 DOI: 10.3390/microorganisms10122479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.
Collapse
|
28
|
Integrated Transcriptome and Metabolome Analysis Reveals Phenylpropanoid Biosynthesis and Phytohormone Signaling Contribute to " Candidatus Liberibacter asiaticus" Accumulation in Citrus Fruit Piths (Fluffy Albedo). Int J Mol Sci 2022; 23:ijms232415648. [PMID: 36555287 PMCID: PMC9779719 DOI: 10.3390/ijms232415648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas) is a phloem-restricted α-proteobacterium that is associated with citrus huanglongbing (HLB), which is the most destructive disease that affects all varieties of citrus. Although midrib is usually used as a material for CLas detection, we recently found that the bacterium was enriched in fruits, especially in the fruit pith. However, no study has revealed the molecular basis of these two parts in responding to CLas infection. Therefore, we performed transcriptome and UHPLC-MS-based targeted and untargeted metabolomics analyses in order to organize the essential genes and metabolites that are involved. Transcriptome and metabolome characterized 4834 differentially expressed genes (DEGs) and 383 differentially accumulated metabolites (DAMs) between the two materials, wherein 179 DEGs and 44 DAMs were affected by HLB in both of the tissues, involving the pathways of phenylpropanoid biosynthesis, phytohormone signaling transduction, starch and sucrose metabolism, and photosynthesis. Notably, we discovered that the gene expression that is related to beta-glucosidase and endoglucanase was up-regulated in fruits. In addition, defense-related gene expression and metabolite accumulation were significantly down-regulated in infected fruits. Taken together, the decreased amount of jasmonic acid, coupled with the reduced accumulation of phenylpropanoid and the increased proliferation of indole-3-acetic acid, salicylic acid, and abscisic acid, compared to leaf midribs, may contribute largely to the enrichment of CLas in fruit piths, resulting in disorders of photosynthesis and starch and sucrose metabolism.
Collapse
|
29
|
Saldanha LL, Allard PM, Dilarri G, Codesido S, González-Ruiz V, Queiroz EF, Ferreira H, Wolfender JL. Metabolomic- and Molecular Networking-Based Exploration of the Chemical Responses Induced in Citrus sinensis Leaves Inoculated with Xanthomonas citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14693-14705. [PMID: 36350271 DOI: 10.1021/acs.jafc.2c05156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (X. citri), is a plant disease affecting Citrus crops worldwide. However, little is known about defense compounds in Citrus. Here, we conducted a mass spectrometry-based metabolomic approach to obtain an overview of the chemical responses of Citrus leaves to X. citri infection. To facilitate result interpretation, the multivariate analyses were combined with molecular networking to identify biomarkers. Metabolite variations among untreated and X. citri-inoculated Citrus samples under greenhouse conditions highlighted induced defense biomarkers. Notably, the plant tryptophan metabolism pathway was activated, leading to the accumulation of N-methylated tryptamine derivatives. This finding was subsequently confirmed in symptomatic leaves in the field. Several tryptamine derivatives showed inhibitory effects in vitro against X. citri. This approach has enabled the identification of new chemically related biomarker groups and their dynamics in the response of Citrus leaves to Xanthomonas infection.
Collapse
Affiliation(s)
- Luiz Leonardo Saldanha
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Pierre-Marie Allard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Departement of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Guilherme Dilarri
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
| | - Santiago Codesido
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Emerson Ferreira Queiroz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Henrique Ferreira
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
30
|
Singh PP, Behera MD, Rai R, Shankar U, Upadhaya K, Nonghuloo IM, Mir AH, Barua S, Naseem M, Srivastava PK, Tiwary R, Gupta A, Gupta V, Nand S, Adhikari D, Barik SK. Morpho-physiological and demographic responses of three threatened Ilex species to changing climate aligned with species distribution models in future climate scenarios. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:139. [PMID: 36416991 DOI: 10.1007/s10661-022-10594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The success of a species in future climate change scenarios depends on its morphological, physiological, and demographic adaptive responses to changing climate. The existence of threatened species against climate adversaries is constrained due to their small population size, narrow genetic base, and narrow niche breadth. We examined if ecological niche model (ENM)-based distribution predictions of species align with their morpho-physiological and demographic responses to future climate change scenarios. We studied three threatened Ilex species, viz., Ilex khasiana Purkay., I. venulosa Hook. f., and I. embelioides Hook. F, with restricted distribution in Indo-Burma biodiversity hotspot. Demographic analysis of the natural populations of each species in Meghalaya, India revealed an upright pyramid suggesting a stable population under the present climate scenario. I. khasiana was confined to higher elevations only while I. venulosa and I. embelioides had wider altitudinal distribution ranges. The bio-climatic niche of I. khasiana was narrow, while the other two species had relatively broader niches. The ENM-predicted potential distribution areas under the current (2022) and future (2050) climatic scenarios (General Circulation Models (GCMs): IPSL-CM5A-LR and NIMR-HADGEM2-AO) revealed that the distribution of highly suitable areas for the most climate-sensitive I. khasiana got drastically reduced. In I. venulosa and I. embelioides, there was an increase in highly suitable areas under the future scenarios. The eco-physiological studies showed marked variation among the species, sites, and treatments (p < 0.05), indicating the differential responses of the three species to varied climate scenarios, but followed a similar trend in species performance aligning with the model predictions.
Collapse
Affiliation(s)
- Prem Prakash Singh
- Department of Botany, North-Eastern Hill University, Shillong, 793022, India
| | - Mukunda Dev Behera
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Richa Rai
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Uma Shankar
- Department of Botany, North-Eastern Hill University, Shillong, 793022, India
| | - Krishna Upadhaya
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, 793022, India
| | | | - Aabid Hussain Mir
- Centre of Research for Development, University of Kashmir, Hazratbal Srinagar, Srinagar, 190006, India
| | - Sushmita Barua
- Department of Botany, North-Eastern Hill University, Shillong, 793022, India
| | - Mariya Naseem
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | | | - Raghuvar Tiwary
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Anita Gupta
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Vartika Gupta
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Sampurna Nand
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | | | - Saroj Kanta Barik
- Department of Botany, North-Eastern Hill University, Shillong, 793022, India.
- CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
31
|
Hannachi S, Signore A, Adnan M, Mechi L. Single and Associated Effects of Drought and Heat Stresses on Physiological, Biochemical and Antioxidant Machinery of Four Eggplant Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:2404. [PMID: 36145805 PMCID: PMC9502621 DOI: 10.3390/plants11182404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The impact of heat and drought stresses, either individually or combined, on physiological and biochemical parameters of four eggplant varieties (Solanum melongena L.) was investigated. The results showed that associated stress generated the highest increment in proline content, MDA concentration, and H2O2 accumulation and generated the lowest increment in RWC. In addition, ‘Bonica’ and ‘Galine’ exhibited higher starch accumulation and lower electrolyte leakage (EL) under combined stress. Moreover, drought and heat stresses applied individually contributed to a substantial decline in Chla, Chlb, total Chl, Chla/b, and carotenoids (p > 0.05) in ‘Adriatica’ and ‘Black Beauty’. The decreasing level of pigments was more substantial under associated drought and heat stresses. The simultaneous application of drought and heat stresses reduced PSII efficiency (Fv/Fm), quantum yield (ΦPSII), and photochemical efficiency (qp) and boosted non-photochemical quenching (NPQ) levels. However, the change recorded in the chlorophyll fluorescence parameters was less pronounced in ‘Bonica’ and ‘Galine’. In addition, the gas exchange parameters, transpiration rate (E), CO2 assimilation rate (A), and net photosynthesis (Pn) were decreased in all varieties under all stress conditions. However, the reduction was more pronounced in ‘Adriatica’ and ‘Black Beauty’. Under associated stress, antioxidant enzymes, SOD, APX, CAT, and GR exhibited a significant increment in all eggplant cultivars. However, the rising was more elevated in ‘Bonica’ and ‘Galine’ (higher than threefold increase) than in ‘Adriatica’ and ‘Black Beauty’ (less than twofold increase). Furthermore, ‘Bonica’ and ‘Galine’ displayed higher non-enzyme scavenging activity (AsA and GSH) compared to ‘Adriatica’ and ‘Black Beauty’ under associated stress. Under stressful conditions, nutrient uptake was affected in all eggplant cultivars; however, the root, stem, and leaf N, P, and K contents, in ‘Adriatica’ and ‘Black Beauty’ were lower than in ‘Bonica’ and ‘Galine’, thereby showing less capacity in accumulating nutrients. The coexistence of drought and heat stresses caused more damage on eggplant varieties than the single appearance of drought or heat stress separately. ‘Bonica’ and ‘Galine’ showed better distinguished performance compared to ‘Adriatica’ and ‘Black Beauty’. The superiority of ‘Bonica’ and ‘Galine’ in terms of tolerance to heat and drought stresses was induced by more effective antioxidant scavenging potential, enhanced osmolyte piling-up, and prominent ability in keeping higher photosynthetic efficiency and nutrient equilibrium compared with ‘Adriatica’ and ‘Black Beauty’.
Collapse
Affiliation(s)
- Sami Hannachi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium
| | - Angelo Signore
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Lassaad Mechi
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| |
Collapse
|
32
|
Alhajhoj MR, Munir M, Sudhakar B, Ali-Dinar HM, Iqbal Z. Common and novel metabolic pathways related ESTs were upregulated in three date palm cultivars to ameliorate drought stress. Sci Rep 2022; 12:15027. [PMID: 36056140 PMCID: PMC9440037 DOI: 10.1038/s41598-022-19399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Date palm is an important staple crop in Saudi Arabia, and about 400 different date palm cultivars grown here, only 50-60 of them are used commercially. The most popular and commercially consumed cultivars of these are Khalas, Reziz, and Sheshi, which are also widely cultivated across the country. Date palm is high water-demanding crop in oasis agriculture, with an inherent ability to tolerate drought stress. However, the mechanisms by which it tolerates drought stress, especially at the transcriptomic level, are still elusive. This study appraised the physiological and molecular response of three commercial date palm cultivars Khalas, Reziz, and Sheshi at two different field capacities (FC; 100% and 25%) levels. At 25% FC (drought stress), leaf relative water content, chlorophyll, photosynthesis, stomatal conductance, and transpiration were significantly reduced. However, leaf intercellular CO2 concentration and water use efficiency increased under drought stress. In comparison to cvs. Khalas and Reziz, date palm cv. Sheshi showed less tolerance to drought stress. A total of 1118 drought-responsive expressed sequence tags (ESTs) were sequenced, 345 from Khalas, 391 from Reziz, and 382 from Sheshi and subjected to functional characterization, gene ontology classification, KEGG pathways elucidation, and enzyme codes dissemination. Three date palm cultivars deployed a multivariate approach to ameliorate drought stress by leveraging common and indigenous molecular, cellular, biological, structural, transcriptional and reproductive mechanisms. Approximately 50% of the annotated ESTs were related to photosynthesis regulation, photosynthetic structure, signal transduction, auxin biosynthesis, osmoregulation, stomatal conductance, protein synthesis/turnover, active transport of solutes, and cell structure modulation. Along with the annotated ESTs, ca. 45% of ESTs were novel. Conclusively, the study provides novel clues and opens the myriads of genetic resources to understand the fine-tuned drought amelioration mechanisms in date palm.
Collapse
Affiliation(s)
- Mohammed Refdan Alhajhoj
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Balakrishnan Sudhakar
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Hassan Muzzamil Ali-Dinar
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Zafar Iqbal
- Central Laboratories, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia.
| |
Collapse
|
33
|
Sanches VL, Cunha TA, Viganó J, de Souza Mesquita LM, Faccioli LH, Breitkreitz MC, Rostagno MA. Comprehensive analysis of phenolics compounds in citrus fruits peels by UPLC-PDA and UPLC-Q/TOF MS using a fused-core column. Food Chem X 2022; 14:100262. [PMID: 35243328 PMCID: PMC8867044 DOI: 10.1016/j.fochx.2022.100262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022] Open
Abstract
In this work, a method based on ultra-high-performance liquid chromatography with a photodiode array detector (UPLC-PDA) was developed to comprehensively analyze phenolic compounds in peels of lime (Citrus × latifolia), lemon (Citrus limon), and rangpur lime (Citrus × limonia). The reverse-phase separation was achieved with a C18 fused-core column packed with the smallest particles commercially available (1.3 um). The method was successfully coupled with high-resolution mass spectrometry (HRMS), allowing the detection of 24 phenolic compounds and five limonoids in several other citrus peels species: key lime, orange and sweet orange, tangerine, and tangerine ponkan, proving the suitability for comprehensive analysis in citrus peel matrices. Additionally, the developed method was validated according to the Food and drug administration (FDA) and National Institute of Metrology Quality and Technology (INMETRO) criteria, demonstrating specificity, linearity, accuracy, and precision according to these guidelines. System suitability parameters such as resolution, tailoring, plate count were also verified.
Collapse
Affiliation(s)
- Vitor L. Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| | - Tanize A. Cunha
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| | - Leonardo M. de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Marcia Cristina Breitkreitz
- Laboratory of Pharmaceutial Research and Chemometrics (LabFarQui), Institute of Chemistry, University of Campinas (UNICAMP), Rua Josué de Castro s/n, 13083-970, Campinas, São Paulo, Brazil
| | - Maurício A. Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| |
Collapse
|
34
|
Naz R, Gul F, Zahoor S, Nosheen A, Yasmin H, Keyani R, Shahid M, Hassan MN, Siddiqui MH, Batool S, Anwar Z, Ali N, Roberts TH. Interactive effects of hydrogen sulphide and silicon enhance drought and heat tolerance by modulating hormones, antioxidant defence enzymes and redox status in barley (Hordeum vulgare L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:684-696. [PMID: 34879172 DOI: 10.1111/plb.13374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/08/2021] [Indexed: 05/28/2023]
Abstract
Recent changes in climate have reduced crop productivity throughout much of the world. Drought and heat stress, particularly in arid and semi-arid regions, have seriously affected barley production. This study explored the separate and interactive effects of silicon (Si) and hydrogen sulphide (H2 S) on plant growth and mitigation of the adverse effects of heat stress (DS) and drought stress (HS) in a barley pot experiment. The impacts of simultaneous DS + HS were more severe than individual stresses due to increased ROS production, malondialdehyde (MDA) content and higher electrolyte leakage (EL), thereby leading to reduced water, protein and photosynthetic pigment content. Exogenously applied Si and H2 S alleviated the DS-, HS- and DS + HS-induced effects on barley by reducing ROS production, MDA and EL. A single application of H2 S or Si + H2 S increased plant biomass under all stress conditions, which can be ascribed to higher Si accumulation in barley shoots. A single application of Si or H2 S significantly increased plant biomass. However, Si + H2 S was the most effective treatment for metabolite accumulation and elevating activity of antioxidant enzymes to prevent toxicity from oxidative stress. This treatment also modulated osmolyte content, enhanced antioxidant activity and regulated the stress signalling-related endogenous hormones, abscisic acid (ABA) and indole acetic acid (IAA). Exogenous treatments regulated endogenous H2 S and Si and resulted in higher tolerance to individual and combined drought and heat stress in barley.
Collapse
Affiliation(s)
- R Naz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - F Gul
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - S Zahoor
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - A Nosheen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - H Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - R Keyani
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - M Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - M N Hassan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - M H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - S Batool
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Z Anwar
- Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - N Ali
- Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - T H Roberts
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
35
|
Molecular and Physiological Responses of Citrus sinensis Leaves to Long-Term Low pH Revealed by RNA-Seq Integrated with Targeted Metabolomics. Int J Mol Sci 2022; 23:ijms23105844. [PMID: 35628662 PMCID: PMC9142915 DOI: 10.3390/ijms23105844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022] Open
Abstract
Low pH-induced alterations in gene expression profiles and organic acids (OA) and free amino acid (FAA) abundances were investigated in sweet orange [Citrus sinensis (L.) Osbeck cv. Xuegan] leaves. We identified 503 downregulated and 349 upregulated genes in low pH-treated leaves. Further analysis indicated that low pH impaired light reaction and carbon fixation in photosynthetic organisms, thereby lowering photosynthesis in leaves. Low pH reduced carbon and carbohydrate metabolisms, OA biosynthesis and ATP production in leaves. Low pH downregulated the biosynthesis of nitrogen compounds, proteins, and FAAs in leaves, which might be conducive to maintaining energy homeostasis during ATP deprivation. Low pH-treated leaves displayed some adaptive responses to phosphate starvation, including phosphate recycling, lipid remodeling, and phosphate transport, thus enhancing leaf acid-tolerance. Low pH upregulated the expression of some reactive oxygen species (ROS) and aldehyde detoxifying enzyme (peroxidase and superoxidase) genes and the concentrations of some antioxidants (L-tryptophan, L-proline, nicotinic acid, pantothenic acid, and pyroglutamic acid), but it impaired the pentose phosphate pathway and VE and secondary metabolite biosynthesis and downregulated the expression of some ROS and aldehyde detoxifying enzyme (ascorbate peroxidase, aldo-keto reductase, and 2-alkenal reductase) genes and the concentrations of some antioxidants (pyridoxine and γ-aminobutyric acid), thus disturbing the balance between production and detoxification of ROS and aldehydes and causing oxidative damage to leaves.
Collapse
|
36
|
Metabolomics Combined with Proteomics Provide a Novel Interpretation of the Changes in Flavonoid Glycosides during White Tea Processing. Foods 2022; 11:foods11091226. [PMID: 35563948 PMCID: PMC9103810 DOI: 10.3390/foods11091226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 01/20/2023] Open
Abstract
In this study, nonvolatile metabolomics and proteomics were applied to investigate the change mechanism of flavonoid glycoside compounds during withering processing of white tea. With the extension of withering time, the content of the main flavonoid glycoside compounds significantly decreased, and then the flavonoid aglycones and water-soluble saccharides contents increased. However, the change trends of these compounds were inconsistent with the expression pattern of related biosynthesis pathway proteins, indicating that the degradation of flavonoid glycosides might exist in the withering process of white tea. One co-expression network that was highly correlated with variations in the flavonoid glycosides’ component contents during the withering process was identified via WGCNA. Further analysis revealed that the degradation of flavonoid glycosides may be related to the antioxidant action of tea leaves undergoing the withering process. Our results provide a novel characterization of white tea taste formation during processing.
Collapse
|
37
|
Paes de Melo B, Carpinetti PDA, Fraga OT, Rodrigues-Silva PL, Fioresi VS, de Camargos LF, Ferreira MFDS. Abiotic Stresses in Plants and Their Markers: A Practice View of Plant Stress Responses and Programmed Cell Death Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:1100. [PMID: 35567101 PMCID: PMC9103730 DOI: 10.3390/plants11091100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 05/12/2023]
Abstract
Understanding how plants cope with stress and the intricate mechanisms thereby used to adapt and survive environmental imbalances comprise one of the most powerful tools for modern agriculture. Interdisciplinary studies suggest that knowledge in how plants perceive, transduce and respond to abiotic stresses are a meaningful way to design engineered crops since the manipulation of basic characteristics leads to physiological remodeling for plant adaption to different environments. Herein, we discussed the main pathways involved in stress-sensing, signal transduction and plant adaption, highlighting biochemical, physiological and genetic events involved in abiotic stress responses. Finally, we have proposed a list of practice markers for studying plant responses to multiple stresses, highlighting how plant molecular biology, phenotyping and genetic engineering interconnect for creating superior crops.
Collapse
Affiliation(s)
- Bruno Paes de Melo
- Trait Development Department, LongPing HighTech, Cravinhos 14140-000, SP, Brazil
| | - Paola de Avelar Carpinetti
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| | - Otto Teixeira Fraga
- Applied Biochemistry Program, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil;
| | | | - Vinícius Sartori Fioresi
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| | | | - Marcia Flores da Silva Ferreira
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| |
Collapse
|
38
|
Predicting the impact of environmental factors on citrus canker through multiple regression. PLoS One 2022; 17:e0260746. [PMID: 35381013 PMCID: PMC8982892 DOI: 10.1371/journal.pone.0260746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Climatic conditions play a significant role in the development of citrus canker caused by Xanthomonas citri pv. citri (Xcc). Citrus canker is regarded as one of the major threats being faced by citrus industry in citrus growing countries of the world. Climatic factors exert significant impacts on growth stage, host susceptibility, succulence, vigor, survival, multiplication rate, pathogen dispersion, spore penetration rate, and spore germination. Predicting the impacts of climatic factors on these traits could aid in the development of effective management strategies against the disease. This study predicted the impacts of environmental variables, i.e., temperature, relative humidity, rainfall, and wind speed the development of citrus canker through multiple regression. These environmental variables were correlated with the development of canker on thirty (30) citrus varieties during 2017 to 2020. Significant positive correlations were noted among environment variables and disease development modeled through multiple regression model (Y = +24.02 + 0.5585 X1 + 0.2997 X2 + 0.3534 X3 + 3.590 X4 + 1.639 X5). Goodness of fit of the model was signified by coefficient determination value (97.5%). Results revealed the optimum values of environmental variables, i.e., maximum temperature (37°C), minimum temperature (27°C), relative humidity (55%), rainfall (4.7-7.1 mm) and wind speed (8 Km/h), which were conducive for the development of citrus canker. Current study would help researchers in designing better management strategies against citrus canker disease under changing climatic conditions in the future.
Collapse
|
39
|
Influence of arsenate imposition on modulation of antioxidative defense network and its implication on thiol metabolism in some contrasting rice (Oryza sativa L.) cultivars. Biometals 2022; 35:451-478. [PMID: 35344114 DOI: 10.1007/s10534-022-00381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
Globally, many people have been suffering from arsenic poisoning. Arsenate (AsV) exposure to twelve rice cultivars caused growth retardation, triggered production of As-chelatin biopeptides and altered activities of antioxidants along with increase in ascorbate (AsA)-glutathione (GSH) contents as a protective measure. The effects were more conspicuous in cvs. Swarnadhan, Tulaipanji, Pusa basmati, Badshabhog, Tulsibhog and IR-20 to attenuate oxidative-overload mediated adversities. Contrastingly, in cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64, effects were less conspicuous in terms of alterations in the said variables due to reduced generation of oxidative stress. Under As(V) imposition, the protective role of phytochelatins (PCs) were recorded where peaks height and levels of PCs (PC2, PC3 and PC4) were elevated significantly in the test seedlings with an endeavour to detoxify cells by sequestering arsenic-phytochelatin (As-PC) complex into vacuole that resulted in reprogramming of antioxidants network. Additionally, scatter plot correlation matrices, color-coded heat map analysis and regression slopes demonstrated varied adaptive responses of test cultivars, where cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64 found tolerant against As(V) toxicity. Results were further justified by hierarchical clustering. These findings could help to grow identified tolerant rice cultivars in As-prone soil with sustainable growth and productivity after proper agricultural execution.
Collapse
|
40
|
Balfagón D, Gómez-Cadenas A, Rambla JL, Granell A, de Ollas C, Bassham DC, Mittler R, Zandalinas SI. γ-Aminobutyric acid plays a key role in plant acclimation to a combination of high light and heat stress. PLANT PHYSIOLOGY 2022; 188:2026-2038. [PMID: 35078231 PMCID: PMC8968390 DOI: 10.1093/plphys/kiac010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/30/2021] [Indexed: 05/29/2023]
Abstract
Plants are frequently subjected to different combinations of abiotic stresses, such as high light (HL) intensity, and elevated temperatures. These environmental conditions pose a threat to agriculture production, affecting photosynthesis, and decreasing yield. Metabolic responses of plants, such as alterations in carbohydrates and amino acid fluxes, play a key role in the successful acclimation of plants to different abiotic stresses, directing resources toward stress responses, and suppressing growth. Here we show that the primary metabolic response of Arabidopsis (Arabidopsis thaliana) plants to HL or heat stress (HS) is different from that of plants subjected to a combination of HL and HS (HL+HS). We further demonstrate that the combined stress results in a unique metabolic response that includes increased accumulation of sugars and amino acids coupled with decreased levels of metabolites participating in the tricarboxylic acid cycle. Among the amino acids exclusively accumulated during HL+HS, we identified the nonproteinogenic amino acid γ-aminobutyric acid (GABA). Analysis of different mutants deficient in GABA biosynthesis (GLUTAMATE DESCARBOXYLASE 3 [gad3]) as well as mutants impaired in autophagy (autophagy-related proteins 5 and 9 [atg5 and atg9]), revealed that GABA plays a key role in the acclimation of plants to HL+HS, potentially by promoting autophagy. Taken together, our findings identify a role for GABA in regulating plant responses to combined stress.
Collapse
Affiliation(s)
- Damián Balfagón
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - José L Rambla
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Carlos de Ollas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
41
|
Yang S, Bai M, Hao G, Guo H, Fu B. Transcriptomics analysis of field-droughted pear ( Pyrus spp.) reveals potential drought stress genes and metabolic pathways. PeerJ 2022; 10:e12921. [PMID: 35321406 PMCID: PMC8935990 DOI: 10.7717/peerj.12921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
Drought acts as a major abiotic stress that hinders plant growth and crop productivity. It is critical, as such, to discern the molecular response of plants to drought in order to enhance agricultural yields under droughts as they occur with increasing frequency. Pear trees are among the most crucial deciduous fruit trees worldwide, and yet the molecular mechanisms of drought tolerance in field-grown pear remain unclear. In this study, we analyzed the differences in transcriptome profiles of pear leaves, branches, and young fruits in irrigation vs field-drought conditions over the growing seasons. In total, 819 differentially expressed genes (DEGs) controlling drought response were identified, among which 427 DEGs were upregulated and 392 DEGs were downregulated. Drought responsive genes were enriched significantly in monoterpenoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis. Fourteen phenylpropanoid, five flavonoid, and four monoterpenoid structural genes were modulated by field drought stress, thereby indicating the transcriptional regulation of these metabolic pathways in fruit exposed to drought. A total of 4,438 transcription factors (TFs) belonging to 30 TF families were differentially expressed between drought and irrigation, and such findings signal valuable information on transcriptome changes in response to drought. Our study revealed that pear trees react to drought by modulating several secondary metabolic pathways, particularly by stimulating the production of phenylpropanoids as well as volatile organic compounds like monoterpenes. Our findings are of practical importance for agricultural breeding programs, while the resulting data is a resource for improving drought tolerance through genetic engineering of non-model, but economically important, perennial plants.
Collapse
Affiliation(s)
- Sheng Yang
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China,Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, Shanxi, China
| | - Mudan Bai
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China,Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, Shanxi, China
| | - Guowei Hao
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Huangping Guo
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Baochun Fu
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China,Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, Shanxi, China
| |
Collapse
|
42
|
Pradhan A, Aher L, Hegde V, Jangid KK, Rane J. Cooler canopy leverages sorghum adaptation to drought and heat stress. Sci Rep 2022; 12:4603. [PMID: 35301396 PMCID: PMC8931000 DOI: 10.1038/s41598-022-08590-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
In the present study, individual and combined effects of drought and heat stress were investigated on key physiological parameters (canopy temperature, membrane stability index, chlorophyll content, relative water content, and chlorophyll fluorescence) in two popular sorghum cultivars (Sorghum bicolor cvs. Phule Revati and Phule Vasudha) during the seedling stage. Estimating canopy temperature through pixel-wise analysis of thermal images of plants differentiated the stress responses of sorghum cultivars more effectively than the conventional way of recording canopy temperature. Cultivar difference in maintaining the canopy temperature was also responsible for much of the variation found in critical plant physiological parameters such as cell membrane stability, chlorophyll content, and chlorophyll fluorescence in plants exposed to stress. Hence, the combined stress of drought and heat was more adverse than their individual impacts. The continued loss of water coupled with high-temperature exposure exacerbated the adverse effect of stresses with a remarkable increase in canopy temperature. However, Phule Vasudha, being a drought-tolerant variety, was relatively less affected by the imposed stress conditions than Phule Revati. Besides, the methodology of measuring and reporting plant canopy temperature, which emerged from this study, can effectively differentiate the sorghum genotypes under the combined stress of drought and heat. It can help select promising genotypes among the breeding lines and integrating the concept in the protocol for precision water management in crops like sorghum.
Collapse
Affiliation(s)
- Aliza Pradhan
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India
| | - Lalitkumar Aher
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India
| | - Vinay Hegde
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MH, 444104, India
| | - Krishna Kumar Jangid
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India
| | - Jagadish Rane
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India.
| |
Collapse
|
43
|
Molecular and Metabolic Changes under Environmental Stresses: The Biosynthesis of Quality Components in Preharvest Tea Shoots. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Severe environments impose various abiotic stresses on tea plants. Although much is known about the physiological and biochemical responses of tea (Camellia sinensis L.) shoots under environmental stresses, little is known about how these stresses impact the biosynthesis of quality components. This review summarizes and analyzes the changes in molecular and quality components in tea shoots subjected to major environmental stresses during the past 20 years, including light (shade, blue light, green light, and UV-B), drought, high/low temperature, CO2, and salinity. These studies reveal that carbon and nitrogen metabolism is critical to the downstream biosynthesis of quality components. Based on the molecular responses of tea plants to stresses, a series of artificial methods have been suggested to treat the pre-harvest tea plants that are exposed to inhospitable environments to improve the quality components in shoots. Furthermore, many pleiotropic genes that are up- or down-regulated under both single and concurrent stresses were analyzed as the most effective genes for regulating multi-resistance and quality components. These findings deepen our understanding of how environmental stresses affect the quality components of tea, providing novel insights into strategies for balancing plant resistance, growth, and quality components in field-based cultivation and for breeding plants using pleiotropic genes.
Collapse
|
44
|
Laoué J, Fernandez C, Ormeño E. Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020172. [PMID: 35050060 PMCID: PMC8781291 DOI: 10.3390/plants11020172] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Flavonoids are specialized metabolites largely widespread in plants where they play numerous roles including defense and signaling under stress conditions. These compounds encompass several chemical subgroups such as flavonols which are one the most represented classes. The most studied flavonols are kaempferol, quercetin and myricetin to which research attributes antioxidative properties and a potential role in UV-defense through UV-screening mechanisms making them critical for plant adaptation to climate change. Despite the great interest in flavonol functions in the last decades, some functional aspects remain under debate. This review summarizes the importance of flavonoids in plant defense against climate stressors and as signal molecules with a focus on flavonols in Mediterranean plant species. The review emphasizes the relationship between flavonol location (at the organ, tissue and cellular scales) and their function as defense metabolites against climate-related stresses. It also provides evidence that biosynthesis of flavonols, or flavonoids as a whole, could be a crucial process allowing plants to adapt to climate change, especially in the Mediterranean area which is considered as one of the most sensitive regions to climate change over the globe.
Collapse
|
45
|
Jha Y, Dehury B, Kumar SPJ, Chaurasia A, Singh UB, Yadav MK, Angadi UB, Ranjan R, Tripathy M, Subramanian RB, Kumar S, Simal-Gandara J. Delineation of molecular interactions of plant growth promoting bacteria induced β-1,3-glucanases and guanosine triphosphate ligand for antifungal response in rice: a molecular dynamics approach. Mol Biol Rep 2021; 49:2579-2589. [PMID: 34914086 PMCID: PMC8924079 DOI: 10.1007/s11033-021-07059-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The plant growth is influenced by multiple interactions with biotic (microbial) and abiotic components in their surroundings. These microbial interactions have both positive and negative effects on plant. Plant growth promoting bacterial (PGPR) interaction could result in positive growth under normal as well as in stress conditions. METHODS Here, we have screened two PGPR's and determined their potential in induction of specific gene in host plant to overcome the adverse effect of biotic stress caused by Magnaporthe grisea, a fungal pathogen that cause blast in rice. We demonstrated the glucanase protein mode of action by performing comparative modeling and molecular docking of guanosine triphosphate (GTP) ligand with the protein. Besides, molecular dynamic simulations have been performed to understand the behavior of the glucanase-GTP complex. RESULTS The results clearly showed that selected PGPR was better able to induce modification in host plant at morphological, biochemical, physiological and molecular level by activating the expression of β-1,3-glucanases gene in infected host plant. The docking results indicated that Tyr75, Arg256, Gly258, and Ser223 of glucanase formed four crucial hydrogen bonds with the GTP, while, only Val220 found to form hydrophobic contact with ligand. CONCLUSIONS The PGPR able to induce β-1,3-glucanases gene in host plant upon pathogenic interaction and β-1,3-glucanases form complex with GTP by hydrophilic interaction for induction of defense cascade for acquiring resistance against Magnaporthe grisea.
Collapse
Affiliation(s)
- Yachana Jha
- N. V. Patel College of Pure and Applied Sciences, S.P. University, Anand, 388315, India.,BRD School of Bioscience, Sardar Patel University, Anand, 388120, Gujarat, India
| | - Budheswar Dehury
- ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, India
| | - S P Jeevan Kumar
- ICAR-Directorate of Floricultural Research, Pune, 411036, Maharashtra, India
| | - Anurag Chaurasia
- ICAR- Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Udai B Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, 275103, Uttar Pradesh, India
| | | | - U B Angadi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rajiv Ranjan
- Dayalbagh Educational Institute, Agra, 282005, Uttar Pradesh, India
| | | | - R B Subramanian
- BRD School of Bioscience, Sardar Patel University, Anand, 388120, Gujarat, India
| | - Sunil Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, 275103, Uttar Pradesh, India. .,ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, Universidade de Vigo, E32004, Ourense, Spain.
| |
Collapse
|
46
|
Andrade A, Boero A, Escalante M, Llanes A, Arbona V, Gómez-Cádenas A, Alemano S. Comparative hormonal and metabolic profile analysis based on mass spectrometry provides information on the regulation of water-deficit stress response of sunflower (Helianthus annuus L.) inbred lines with different water-deficit stress sensitivity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:432-446. [PMID: 34715568 DOI: 10.1016/j.plaphy.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/13/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Water-deficit stress is the most important abiotic stress restricting plant growth, development and yield. The effects of this stress, however, depend on genotypes, among other factors. This study assembles morpho-physiological and metabolic approaches to assess hormonal and metabolic profile changes, upon water-deficit stress, in the shoot and roots of two contrasting sunflower inbred lines, B59 (water-deficit stress sensitive) and B71 (water-deficit stress tolerant). The analyses were carried out using mass spectrometry and performing a multivariate statistical analysis to identify relationships between the analyzed variables. Water-deficit stress reduced all morpho-physiological parameters, except for root length in the tolerant inbred line. The hormonal pathways were active in mediating the seedling performance to imposed water-deficit stress in both lines, although with some differences between lines at the organ level. B59 displayed a diverse metabolite battery, including organic acids, organic compounds as well as sugars, mainly in the shoot, whereas B71 showed primary amino acids, organic acids and organic compounds predominantly in its roots. The discrimination between control and water-deficit stress conditions was possible thanks to potential biomarkers of stress treatment, e.g., proline, maleic acid and malonic acid. This study indicated that the studied organs of sunflower seedlings have different mechanisms of regulation under water-deficit stress. These findings could help to better understand the physio-biochemical pathways underlying stress tolerance in sunflower at early-growth stage.
Collapse
Affiliation(s)
- Andrea Andrade
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina
| | - Aldana Boero
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina
| | - Maximiliano Escalante
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina
| | - Analía Llanes
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Aurelio Gómez-Cádenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
47
|
Morales Alfaro J, Bermejo A, Navarro P, Quiñones A, Salvador A. Effect of Rootstock on Citrus Fruit Quality: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1978093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Julia Morales Alfaro
- Center of Sustainable Agricultural Development, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
| | - Almudena Bermejo
- Citriculture Center, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
| | - Pilar Navarro
- Center of Sustainable Agricultural Development, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
- Postharvest Center, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
| | - Ana Quiñones
- Center of Sustainable Agricultural Development, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
| | - Alejandra Salvador
- Center of Sustainable Agricultural Development, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
| |
Collapse
|
48
|
Antioxidant Metabolites in Primitive, Wild, and Cultivated Citrus and Their Role in Stress Tolerance. Molecules 2021; 26:molecules26195801. [PMID: 34641344 PMCID: PMC8510114 DOI: 10.3390/molecules26195801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 01/07/2023] Open
Abstract
The genus Citrus contains a vast range of antioxidant metabolites, dietary metabolites, and antioxidant polyphenols that protect plants from unfavorable environmental conditions, enhance their tolerance to abiotic and biotic stresses, and possess multiple health-promoting effects in humans. This review summarizes various antioxidant metabolites such as organic acids, amino acids, alkaloids, fatty acids, carotenoids, ascorbic acid, tocopherols, terpenoids, hydroxycinnamic acids, flavonoids, and anthocyanins that are distributed in different citrus species. Among these antioxidant metabolites, flavonoids are abundantly present in primitive, wild, and cultivated citrus species and possess the highest antioxidant activity. We demonstrate that the primitive and wild citrus species (e.g., Atalantia buxifolia and C. latipes) have a high level of antioxidant metabolites and are tolerant to various abiotic and biotic stresses compared with cultivated citrus species (e.g., C. sinensis and C. reticulata). Additionally, we highlight the potential usage of citrus wastes (rag, seeds, fruit peels, etc.) and the health-promoting properties of citrus metabolites. Furthermore, we summarize the genes that are involved in the biosynthesis of antioxidant metabolites in different citrus species. We speculate that the genome-engineering technologies should be used to confirm the functions of candidate genes that are responsible for the accumulation of antioxidant metabolites, which will serve as an alternative tool to breed citrus cultivars with increased antioxidant metabolites.
Collapse
|
49
|
Du B, Kruse J, Winkler JB, Alfarraj S, Albasher G, Schnitzler JP, Ache P, Hedrich R, Rennenberg H. Metabolic responses of date palm (Phoenix dactylifera L.) leaves to drought differ in summer and winter climate. TREE PHYSIOLOGY 2021; 41:1685-1700. [PMID: 33607652 DOI: 10.1093/treephys/tpab027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/11/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Drought negatively impacts growth and productivity of plants, particularly in arid and semi-arid regions. Although drought events can take place in summer and winter, differences in the impact of drought on physiological processes between seasons are largely unknown. The aim of this study was to elucidate metabolic strategies of date palms in response to drought in summer and winter season. To identify such differences, we exposed date palm seedlings to a drought-recovery regime, both in simulated summer and winter climate. Leaf hydration, carbon discrimination (${\Delta}$13C), and primary and secondary metabolite composition and contents were analyzed. Depending on season, drought differently affected physiological and biochemical traits of the leaves. In summer, drought induced significantly decreased leaf hydration, concentrations of ascorbate, most sugars, primary and secondary organic acids, as well as phenolic compounds, while thiol, amino acid, raffinose and individual fatty acid contents were increased compared with well-watered plants. In winter, drought had no effect on leaf hydration, ascorbate and fatty acids contents, but resulted in increased foliar thiol and amino acid levels as observed in summer. Compared with winter, foliar traits of plants exposed to drought in summer only partly recovered after re-watering. Memory effects on water relations, and primary and secondary metabolites seem to prepare foliar traits of date palms for repeated drought events in summer. Apparently, a well-orchestrated metabolic network, including the anti-oxidative system, compatible solutes accumulation and osmotic adjustment, and maintenance of cell-membrane stability strongly reduces the susceptibility of date palms to drought. These mechanisms of drought compensation may be more frequently required in summer.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, 621000 Mianyang, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
| | - Joerg Kruse
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
| | - Jana Barbro Winkler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Ingolstädter, Landstraße 1, 85764 Neuherberg, Germany
| | - Saleh Alfarraj
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gadah Albasher
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Joerg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Ingolstädter, Landstraße 1, 85764 Neuherberg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing,China
| |
Collapse
|
50
|
Gomez Mansur NM, Pena LB, Bossio AE, Lewi DM, Beznec AY, Blumwald E, Arbona V, Gómez-Cadenas A, Benavides MP, Gallego SM. An isopentenyl transferase transgenic wheat isoline exhibits less seminal root growth impairment and a differential metabolite profile under Cd stress. PHYSIOLOGIA PLANTARUM 2021; 173:223-234. [PMID: 33629739 DOI: 10.1111/ppl.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Cadmium is one of the most important contaminants and it induces severe plant growth restriction. In this study, we analyzed the metabolic changes associated with root growth restriction caused by cadmium in the early seminal root apex of wheat. Our study included two genotypes: the commercial variety ProINTA Federal (WT) and the PSARK ::IPT (IPT) line which exhibit high-grade yield performance under water deficit. Root tips of seedlings grown for 72 h without or with 10 μM CdCl2 (Cd-WT and Cd-IPT) were compared. Root length reduction was more severe in Cd-WT than Cd-IPT. Cd decreased superoxide dismutase activity in both lines and increased catalase activity only in the WT. In Cd-IPT, ascorbate and guaiacol peroxidase activities raised compared to Cd-WT. The hormonal homeostasis was altered by the metal, with significant decreases in abscisic acid, jasmonic acid, 12-oxophytodienoic acid, gibberellins GA20, and GA7 levels. Increases in flavonoids and phenylamides were also found. Root growth impairment was not associated with a decrease in expansin (EXP) transcripts. On the contrary, TaEXPB8 expression increased in the WT treated by Cd. Our findings suggest that the line expressing the PSARK ::IPT construction increased the homeostatic range to cope with Cd stress, which is visible by a lesser reduction of the root elongation compared to WT plants. The decline of root growth produced by Cd was associated with hormonal imbalance at the root apex level. We hypothesize that activation of phenolic secondary metabolism could enhance antioxidant defenses and contribute to cell wall reinforcement to deal with Cd toxicity.
Collapse
Affiliation(s)
- Nabila M Gomez Mansur
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Liliana B Pena
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Adrián E Bossio
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Dalia M Lewi
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Ailin Y Beznec
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, California, USA
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - María P Benavides
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Susana M Gallego
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| |
Collapse
|