1
|
Li SX, Liu Y, Zhang YM, Chen JQ, Shao ZQ. Convergent reduction of immune receptor repertoires during plant adaptation to diverse special lifestyles and habitats. NATURE PLANTS 2025; 11:248-262. [PMID: 39821112 DOI: 10.1038/s41477-024-01901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Plants deploy cell-surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding site-leucine-rich repeat receptors (NLRs) to recognize pathogens. However, how plant immune receptor repertoires evolve in responding to changed pathogen burdens remains elusive. Here we reveal the convergent reduction of NLR repertoires in plants with diverse special lifestyles/habitats (SLHs) encountering low pathogen burdens. Furthermore, a parallel but milder reduction of PRR genes in SLH species was observed. The reduction of PRR and NLR genes was attributed to both increased gene loss and decreased gene duplication. Notably, pronounced loss of immune receptors was associated with the complete absence of signalling components from the enhanced disease susceptibility 1 (EDS1) and the resistance to powdery mildew 8 (RPW8)-NLR (RNL) families. In addition, evolutionary pattern analysis suggested that the conserved toll/interleukin-1 receptor (TIR)-only proteins might function tightly with EDS1/RNL. Taken together, these results reveal the hierarchically adaptive evolution of the two-tiered immune receptor repertoires during plant adaptation to diverse SLHs.
Collapse
Affiliation(s)
- Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Mérida-García R, Gálvez S, Solís I, Martínez-Moreno F, Camino C, Soriano JM, Sansaloni C, Ammar K, Bentley AR, Gonzalez-Dugo V, Zarco-Tejada PJ, Hernandez P. High-throughput phenotyping using hyperspectral indicators supports the genetic dissection of yield in durum wheat grown under heat and drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1470520. [PMID: 39649812 PMCID: PMC11620856 DOI: 10.3389/fpls.2024.1470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 12/11/2024]
Abstract
High-throughput phenotyping (HTP) provides new opportunities for efficiently dissecting the genetic basis of drought-adaptive traits, which is essential in current wheat breeding programs. The combined use of HTP and genome-wide association (GWAS) approaches has been useful in the assessment of complex traits such as yield, under field stress conditions including heat and drought. The aim of this study was to identify molecular markers associated with yield (YLD) in elite durum wheat that could be explained using hyperspectral indices (HSIs) under drought field conditions in Mediterranean environments in Southern Spain. The HSIs were obtained from hyperspectral imagery collected during the pre-anthesis and anthesis crop stages using an airborne platform. A panel of 536 durum wheat lines were genotyped by sequencing (GBS, DArTseq) to determine population structure, revealing a lack of genetic structure in the breeding germplasm. The material was phenotyped for YLD and 19 HSIs for six growing seasons under drought field conditions at two locations in Andalusia, in southern Spain. GWAS analysis identified 740 significant marker-trait associations (MTAs) across all the durum wheat chromosomes, several of which were common for YLD and the HSIs, and can potentially be integrated into breeding programs. Candidate gene (CG) analysis uncovered genes related to important plant processes such as photosynthesis, regulatory biological processes, and plant abiotic stress tolerance. These results are novel in that they combine high-resolution hyperspectral imaging at the field scale with GWAS analysis in wheat. They also support the use of HSIs as useful tools for identifying chromosomal regions related to the heat and drought stress response in wheat, and pave the way for the integration of field HTP in wheat breeding programs.
Collapse
Affiliation(s)
- Rosa Mérida-García
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Ignacio Solís
- Department of Agronomy, ETSIA (University of Seville), Seville, Spain
| | | | - Carlos Camino
- European Commission (EC), Joint Research Centre (JRC), Ispra, Italy
| | - Jose Miguel Soriano
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida - AGROTECNIO, Lleida, Spain
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México, Mexico
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México, Mexico
| | - Alison R. Bentley
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Victoria Gonzalez-Dugo
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pablo J. Zarco-Tejada
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science (FoS), and Faculty of Engineering, and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
3
|
Yong CSY, Atheeqah-Hamzah N. Transcriptome-wide Identification of Nine Tandem Repeat Protein Families in Roselle ( Hibiscus sabdariffa L.). Trop Life Sci Res 2024; 35:121-148. [PMID: 39464663 PMCID: PMC11507979 DOI: 10.21315/tlsr2024.35.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/20/2024] [Indexed: 10/29/2024] Open
Abstract
Plants are rich in tandem repeats-containing proteins. It is postulated that the occurrence of tandem repeat gene families facilitates the adaptation and survival of plants in adverse environmental conditions. This study intended to identify the tandem repeats in the transcriptome of a high potential tropical horticultural plant, roselle (Hibiscus sabdariffa L.). A total of 92,974 annotated de novo assembled transcripts were analysed using in silico approach, and 6,541 transcripts that encoded proteins containing tandem repeats with length of 20-60 amino acid residues were identified. Domain analysis revealed a total of nine tandem repeat protein families in the transcriptome of roselle, which are the Ankyrin repeats (ANK), Armadillo repeats (ARM), elongation factor-hand domain repeats (EF-hand), Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats (HEAT), Kelch repeats (Kelch), leucine rich repeats (LRR), pentatricopeptide repeats (PPR), tetratricopeptide repeats (TPR) and WD40 repeats (WD40). Functional annotation analysis further matched 6,236 transcripts to 1,045 known proteins that contained tandem repeats including proteins implicated in plant development, protein-protein interaction, immunity and abiotic stress responses. The findings provide new insights into the occurrence of tandem repeats in the transcriptome and lay the foundation to elucidate the functional associations between tandem peptide repeats (TRs) and proteins in roselle and facilitate the identification of novel biotic and abiotic response related tandem repeats genes that may be useful in breeding improved varieties.
Collapse
Affiliation(s)
- Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| | - Nur Atheeqah-Hamzah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Mühlenbeck H, Tsutsui Y, Lemmon MA, Bender KW, Zipfel C. Allosteric activation of the co-receptor BAK1 by the EFR receptor kinase initiates immune signaling. eLife 2024; 12:RP92110. [PMID: 39028038 PMCID: PMC11259431 DOI: 10.7554/elife.92110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.
Collapse
Affiliation(s)
- Henning Mühlenbeck
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Yuko Tsutsui
- Department of Pharmacology, Yale University School of MedicineNew HavenUnited States
- Yale Cancer Biology Institute, Yale University West CampusWest HavenUnited States
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of MedicineNew HavenUnited States
- Yale Cancer Biology Institute, Yale University West CampusWest HavenUnited States
| | - Kyle W Bender
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
5
|
Patel J, Allen TW, Buckley B, Chen P, Clubb M, Mozzoni LA, Orazaly M, Florez L, Moseley D, Rupe JC, Shrestha BK, Price PP, Ward BM, Koebernick J. Deciphering genetic factors contributing to enhanced resistance against Cercospora leaf blight in soybean ( Glycine max L.) using GWAS analysis. Front Genet 2024; 15:1377223. [PMID: 38798696 PMCID: PMC11116733 DOI: 10.3389/fgene.2024.1377223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Cercospora leaf blight (CLB), caused by Cercospora cf. flagellaris, C. kikuchii, and C. cf. sigesbeckiae, is a significant soybean [Glycine max (L.) Merr.] disease in regions with hot and humid conditions causing yield loss in the United States and Canada. There is limited information regarding resistant soybean cultivars, and there have been marginal efforts to identify the genomic regions underlying resistance to CLB. A Genome-Wide Association Study was conducted using a diverse panel of 460 soybean accessions from maturity groups III to VII to identify the genomic regions associated to the CLB disease. These accessions were evaluated for CLB in different regions of the southeastern United States over 3 years. In total, the study identified 99 Single Nucleotide Polymorphism (SNPs) associated with the disease severity and 85 SNPs associated with disease incidence. Across multiple environments, 47 disease severity SNPs and 23 incidence SNPs were common. Candidate genes within 10 kb of these SNPs were involved in biotic and abiotic stress pathways. This information will contribute to the development of resistant soybean germplasm. Further research is warranted to study the effect of pyramiding desirable genomic regions and investigate the role of identified genes in soybean CLB resistance.
Collapse
Affiliation(s)
- Jinesh Patel
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Tom W. Allen
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS, United States
| | - Blair Buckley
- LSU AgCenter, Red River Research Station, Bossier City, LA, United States
| | - Pengyin Chen
- Fisher Delta Research Center, MO University of Missouri, Portageville, MO, United States
| | - Michael Clubb
- Fisher Delta Research Center, MO University of Missouri, Portageville, MO, United States
| | - Leandro A. Mozzoni
- Department of Crop, Soil, and Environmental Science, University of Arkansas, Fayetteville, AR, United States
| | - Moldir Orazaly
- Department of Crop, Soil, and Environmental Science, University of Arkansas, Fayetteville, AR, United States
| | - Liliana Florez
- Department of Crop, Soil, and Environmental Science, University of Arkansas, Fayetteville, AR, United States
| | - David Moseley
- Department of Crop, Soil, and Environmental Science, University of Arkansas, Fayetteville, AR, United States
| | - John C. Rupe
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| | - Bishnu K. Shrestha
- LSU AgCenter, Macon Ridge Research Station, Winnsboro, LA, United States
| | - Paul P. Price
- LSU AgCenter, Macon Ridge Research Station, Winnsboro, LA, United States
| | - Brian M. Ward
- Department of Plant Pathology and Crop Physiology, LSU AgCenter, Baton Rouge, LA, United States
| | - Jenny Koebernick
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
6
|
Liu J, Li W, Wu G, Ali K. An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1305599. [PMID: 38362444 PMCID: PMC10868138 DOI: 10.3389/fpls.2024.1305599] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
All living organisms must develop mechanisms to cope with and adapt to new environments. The transition of plants from aquatic to terrestrial environment provided new opportunities for them to exploit additional resources but made them vulnerable to harsh and ever-changing conditions. As such, the transmembrane receptor-like kinases (RLKs) have been extensively duplicated and expanded in land plants, increasing the number of RLKs in the advanced angiosperms, thus becoming one of the largest protein families in eukaryotes. The basic structure of the RLKs consists of a variable extracellular domain (ECD), a transmembrane domain (TM), and a conserved kinase domain (KD). Their variable ECDs can perceive various kinds of ligands that activate the conserved KD through a series of auto- and trans-phosphorylation events, allowing the KDs to keep the conserved kinase activities as a molecular switch that stabilizes their intracellular signaling cascades, possibly maintaining cellular homeostasis as their advantages in different environmental conditions. The RLK signaling mechanisms may require a coreceptor and other interactors, which ultimately leads to the control of various functions of growth and development, fertilization, and immunity. Therefore, the identification of new signaling mechanisms might offer a unique insight into the regulatory mechanism of RLKs in plant development and adaptations. Here, we give an overview update of recent advances in RLKs and their signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
7
|
Afzal M, Alghamdi SS, Khan MA, Al-Faifi SA, Rahman MHU. Transcriptomic analysis reveals candidate genes associated with salinity stress tolerance during the early vegetative stage in fababean genotype, Hassawi-2. Sci Rep 2023; 13:21223. [PMID: 38040745 PMCID: PMC10692206 DOI: 10.1038/s41598-023-48118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Abiotic stresses are a significant constraint to plant production globally. Identifying stress-related genes can aid in the development of stress-tolerant elite genotypes and facilitate trait and crop manipulation. The primary aim of this study was to conduct whole transcriptome analyses of the salt-tolerant faba bean genotype, Hassawi-2, under different durations of salt stress (6 h, 12 h, 24 h, 48 h, and 72 h) at the early vegetative stage, to better understand the molecular basis of salt tolerance. After de novo assembly, a total of 140,308 unigenes were obtained. The up-regulated differentially expressed genes (DEGs) were 2380, 2863, 3057, 3484, and 4820 at 6 h, 12 h, 24 h, 48 h, and 72 h of salt stress, respectively. Meanwhile, 1974, 3436, 2371, 3502, and 5958 genes were downregulated at 6 h, 12 h, 24 h, 48 h, and 72 h of salt stress, respectively. These DEGs encoded various regulatory and functional proteins, including kinases, plant hormone proteins, transcriptional factors (TFs) basic helix-loop-helix (bHLH), Myeloblastosis (MYB), and (WRKY), heat shock proteins (HSPs), late embryogenesis abundant (LEA) proteins, dehydrin, antioxidant enzymes, and aquaporin proteins. This suggests that the faba bean genome possesses an abundance of salinity resistance genes, which trigger different adaptive mechanisms under salt stress. Some selected DEGs validated the RNA sequencing results, thus confirming similar gene expression levels. This study represents the first transcriptome analysis of faba bean leaves subjected to salinity stress offering valuable insights into the mechanisms governing salt tolerance in faba bean during the vegetative stage. This comprehensive investigation enhances our understanding of precise gene regulatory mechanisms and holds promise for the development of novel salt-tolerant faba bean salt-tolerant cultivars.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Salem S Alghamdi
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Altaf Khan
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Sulieman A Al-Faifi
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Habib Ur Rahman
- INRES Institute of Crop Science and Resources Conservation INRES University of Bonn, Bonn, Germany.
- Seed Science and Technology, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan.
| |
Collapse
|
8
|
Bender KW, Zipfel C. Paradigms of receptor kinase signaling in plants. Biochem J 2023; 480:835-854. [PMID: 37326386 PMCID: PMC10317173 DOI: 10.1042/bcj20220372] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Plant receptor kinases (RKs) function as key plasma-membrane localized receptors in the perception of molecular ligands regulating development and environmental response. Through the perception of diverse ligands, RKs regulate various aspects throughout the plant life cycle from fertilization to seed set. Thirty years of research on plant RKs has generated a wealth of knowledge on how RKs perceive ligands and activate downstream signaling. In the present review, we synthesize this body of knowledge into five central paradigms of plant RK signaling: (1) RKs are encoded by expanded gene families, largely conserved throughout land plant evolution; (2) RKs perceive many different kinds of ligands through a range of ectodomain architectures; (3) RK complexes are typically activated by co-receptor recruitment; (4) post-translational modifications fulfill central roles in both the activation and attenuation of RK-mediated signaling; and, (5) RKs activate a common set of downstream signaling processes through receptor-like cytoplasmic kinases (RLCKs). For each of these paradigms, we discuss key illustrative examples and also highlight known exceptions. We conclude by presenting five critical gaps in our understanding of RK function.
Collapse
Affiliation(s)
- Kyle W. Bender
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
9
|
Wang Z, Yu D, Morota G, Dhakal K, Singer W, Lord N, Huang H, Chen P, Mozzoni L, Li S, Zhang B. Genome-wide association analysis of sucrose and alanine contents in edamame beans. FRONTIERS IN PLANT SCIENCE 2023; 13:1086007. [PMID: 36816489 PMCID: PMC9935843 DOI: 10.3389/fpls.2022.1086007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The sucrose and Alanine (Ala) content in edamame beans significantly impacts the sweetness flavor of edamame-derived products as an important attribute to consumers' acceptance. Unlike grain-type soybeans, edamame beans are harvested as fresh beans at the R6 to R7 growth stages when beans are filled 80-90% of the pod capacity. The genetic basis of sucrose and Ala contents in fresh edamame beans may differ from those in dry seeds. To date, there is no report on the genetic basis of sucrose and Ala contents in the edamame beans. In this study, a genome-wide association study was conducted to identify single nucleotide polymorphisms (SNPs) related to sucrose and Ala levels in edamame beans using an association mapping panel of 189 edamame accessions genotyped with a SoySNP50K BeadChip. A total of 43 and 25 SNPs was associated with sucrose content and Ala content in the edamame beans, respectively. Four genes (Glyma.10g270800, Glyma.08g137500, Glyma.10g268500, and Glyma.18g193600) with known effects on the process of sucrose biosynthesis and 37 novel sucrose-related genes were characterized. Three genes (Gm17g070500, Glyma.14g201100 and Glyma.18g269600) with likely relevant effects in regulating Ala content and 22 novel Ala-related genes were identified. In addition, by summarizing the phenotypic data of edamame beans from three locations in two years, three PI accessions (PI 532469, PI 243551, and PI 407748) were selected as the high sucrose and high Ala parental lines for the perspective breeding of sweet edamame varieties. Thus, the beneficial alleles, candidate genes, and selected PI accessions identified in this study will be fundamental to develop edamame varieties with improved consumers' acceptance, and eventually promote edamame production as a specialty crop in the United States.
Collapse
Affiliation(s)
- Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Dajun Yu
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Gota Morota
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Kshitiz Dhakal
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - William Singer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Nilanka Lord
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Pengyin Chen
- Fisher Delta Research Center, University of Missouri, Portageville, MO, United States
| | - Leandro Mozzoni
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Bajsa-Hirschel J, Pan Z, Pandey P, Asolkar RN, Chittiboyina AG, Boddy L, Machingura MC, Duke SO. Spliceostatin C, a component of a microbial bioherbicide, is a potent phytotoxin that inhibits the spliceosome. FRONTIERS IN PLANT SCIENCE 2023; 13:1019938. [PMID: 36714729 PMCID: PMC9878571 DOI: 10.3389/fpls.2022.1019938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Spliceostatin C (SPC) is a component of a bioherbicide isolated from the soil bacterium Burkholderia rinojensis. The chemical structure of SPC closely resembles spliceostatin A (SPA) which was characterized as an anticancer agent and splicing inhibitor. SPC inhibited the growth of Arabidopsis thaliana seedlings with an IC50 value of 2.2 µM. The seedlings exposed to SPC displayed a significant response with decreased root length and number and inhibition of gravitropism. Reverse transcriptase semi-quantitative PCR (RT-sqPCR) analyses of 19 selected genes demonstrated the active impact of SPC on the quality and quantity of transcripts that underwent intron rearrangements as well as up or down expression upon exposure to SPC. Qualitative and quantitative proteomic profiles identified 66 proteins that were significantly affected by SPC treatment. Further proteomics data analysis revealed that spliceostatin C induces hormone-related responses in Arabidopsis seedlings. In silico binding studies showed that SPC binds to a pocket between the SF3B3 and PF5A of the spliceosome.
Collapse
Affiliation(s)
- Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS, United States
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, United States
| | | | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, United States
| | - Louis Boddy
- Bioceres Crop Solutions, Davis, CA, United States
| | | | - Stephen O. Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, United States
| |
Collapse
|
11
|
Soltabayeva A, Dauletova N, Serik S, Sandybek M, Omondi JO, Kurmanbayeva A, Srivastava S. Receptor-like Kinases (LRR-RLKs) in Response of Plants to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192660. [PMID: 36235526 PMCID: PMC9572924 DOI: 10.3390/plants11192660] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/14/2023]
Abstract
Plants live under different biotic and abiotic stress conditions, and, to cope with the adversity and severity, plants have well-developed resistance mechanisms. The mechanism starts with perception of the stimuli followed by molecular, biochemical, and physiological adaptive measures. The family of LRR-RLKs (leucine-rich repeat receptor-like kinases) is one such group that perceives biotic and abiotic stimuli and also plays important roles in different biological processes of development. This has been mostly studied in the model plant, Arabidopsis thaliana, and to some extent in other plants, such as Solanum lycopersicum, Nicotiana benthamiana, Brassica napus, Oryza sativa, Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Medicago truncatula, Gossypium barbadense, Phaseolus vulgaris, Solanum tuberosum, and Malus robusta. Most LRR-RLKs tend to form different combinations of LRR-RLKs-complexes (dimer, trimer, and tetramers), and some of them were observed as important receptors in immune responses, cell death, and plant development processes. However, less is known about the function(s) of LRR-RLKs in response to abiotic and biotic stresses. Here, we give recent updates about LRR-RLK receptors, specifically focusing on their involvement in biotic and abiotic stresses in the model plant, A. thaliana. Furthermore, the recent studies on LRR-RLKs that are homologous in other plants is also reviewed in relation to their role in triggering stress response processes against biotic and abiotic stimuli and/or in exploring their additional function(s). Furthermore, we present the interactions and combinations among LRR-RLK receptors that have been confirmed through experiments. Moreover, based on GENEINVESTIGATOR microarray database analysis, we predict some potential LRR-RLK genes involved in certain biotic and abiotic stresses whose function and mechanism may be explored.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- Correspondence:
| | - Nurbanu Dauletova
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Symbat Serik
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Margulan Sandybek
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - John Okoth Omondi
- International Institute of Tropical Agriculture, Lilongwe P.O. Box 30258, Malawi
| | - Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Sudhakar Srivastava
- NCS-TCP, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
12
|
Ngou BPM, Heal R, Wyler M, Schmid MW, Jones JDG. Concerted expansion and contraction of immune receptor gene repertoires in plant genomes. NATURE PLANTS 2022; 8:1146-1152. [PMID: 36241733 PMCID: PMC9579050 DOI: 10.1038/s41477-022-01260-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/09/2022] [Indexed: 05/10/2023]
Abstract
Recent reports suggest that cell-surface and intracellular immune receptors function synergistically to activate robust defence against pathogens, but whether they co-evolve is unclear. Here we determined the numbers of cell-surface and intracellular immune receptors in 350 species. Surprisingly, the number of receptor genes that are predicted to encode cell-surface and intracellular immune receptors is strongly correlated. We suggest this is consistent with mutual potentiation of immunity initiated by cell-surface and intracellular receptors being reflected in the concerted co-evolution of the size of their repertoires across plant species.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Robert Heal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | | | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
13
|
Rahim AA, Uzair M, Rehman N, Rehman OU, Zahra N, Khan MR. Genome-Wide Identification and Characterization of Receptor-Like Protein Kinase 1 (RPK1) Gene Family in Triticum aestivum Under Drought Stress. Front Genet 2022; 13:912251. [PMID: 35860467 PMCID: PMC9289140 DOI: 10.3389/fgene.2022.912251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/24/2022] [Indexed: 01/08/2023] Open
Abstract
Receptor-like protein kinase1 (RPK1) genes play crucial roles in plant growth and development processes, root architecture, and abiotic stress regulation. A comprehensive study of the RPK1 gene family has not been reported in bread wheat (Triticum aestivum). Here, we reported the genome-wide identification, characterization, and expression patterns of the RPK1 gene family in wheat. Results confirmed 15 TaRPK1 genes, classified mainly into three sub-clades based on a phylogenetic tree. The TaRPK1 genes were mapped on chromosomes 1–3 in the respective A, B, and D genomes. Gene structure, motif conservation, collinearity prediction, and synteny analysis were carried out systematically. A Gene ontology study revealed that TaRPK1 genes play a vital role during molecular and biological processes. We also identified 18 putative miRNAs targeting TaRPK1 genes, suggesting their roles in growth, development, and stress responses. Cis-Regulatory elements interpreted the presence of light-related elements, hormone responsiveness, and abiotic stress-related motifs in the promoter regions. The SWISS_MODEL predicted the successful models of TaRPK1 proteins with at least 30% identity to the template, a widely accepted threshold for successful modeling. In silico expression analysis in different tissues and stages suggested that TaRPK1 genes exhibited the highest expression in root tissues. Moreover, qRT-PCR further validated the higher expression of TaRPK1 genes in roots of drought-tolerant varieties compared to the drought-susceptible variety. Collectively, the present study renders valuable information on the functioning of TaRPK1 genes in wheat that will be useful in further functional validation of these genes in future studies.
Collapse
Affiliation(s)
- Amna Abdul Rahim
- National Centre for Bioinformatics (NCB), Quaid-e-Azam University, Islamabad, Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Obaid Ur Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Nageen Zahra
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Centre for Bioinformatics (NCB), Quaid-e-Azam University, Islamabad, Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
- *Correspondence: Muhammad Ramzan Khan,
| |
Collapse
|
14
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 393] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
15
|
Furumizu C, Sawa S. Insight into early diversification of leucine-rich repeat receptor-like kinases provided by the sequenced moss and hornwort genomes. PLANT MOLECULAR BIOLOGY 2021; 107:337-353. [PMID: 33389562 DOI: 10.1007/s11103-020-01100-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 05/05/2023]
Abstract
Identification of the subfamily X leucine-rich repeat receptor-like kinases in the recently sequenced moss and hornwort genomes points to their diversification into distinct groups during early evolution of land plants. Signal transduction mediated through receptor-ligand interactions plays key roles in controlling developmental and physiological processes of multicellular organisms, and plants employ diverse receptors in signaling. Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent one of the largest receptor classes in plants and are structurally classified into subfamilies. LRR-RLKs of the subfamily X are unique in the variety of their signaling roles; they include receptors for steroid or peptide hormones as well as negative regulators of signaling through binding to other LRR-RLKs, raising a question as to how they diversified. However, our understanding of diversification processes of LRR-RLKs has been hindered by the paucity of genomic data in non-seed plants and limited taxa sampling in previous phylogenetic analyses. Here we analyzed the phylogeny of LRR-RLK X sequences collected from all major land plant lineages and show that this subfamily diversified into six major clades before the divergence between bryophytes and vascular plants. Notably, we have identified homologues of the brassinosteroid receptor, BRASSINOSTEROID INSENSITIVE 1 (BRI1), in the genomes of Sphagnum mosses, hornworts, and ferns, contrary to earlier reports that postulate the origin of BRI1-like LRR-RLKs in the seed plant lineage. The phylogenetic distribution of major clades illustrates that the current receptor repertoire was shaped through lineage-specific gene family expansion and independent gene losses, highlighting dynamic changes in the evolution of LRR-RLKs.
Collapse
Affiliation(s)
- Chihiro Furumizu
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
16
|
Gottin C, Dievart A, Summo M, Droc G, Périn C, Ranwez V, Chantret N. A new comprehensive annotation of leucine-rich repeat-containing receptors in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:492-508. [PMID: 34382706 PMCID: PMC9292849 DOI: 10.1111/tpj.15456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Oryza sativa (rice) plays an essential food security role for more than half of the world's population. Obtaining crops with high levels of disease resistance is a major challenge for breeders, especially today, given the urgent need for agriculture to be more sustainable. Plant resistance genes are mainly encoded by three large leucine-rich repeat (LRR)-containing receptor (LRR-CR) families: the LRR-receptor-like kinase (LRR-RLK), LRR-receptor-like protein (LRR-RLP) and nucleotide-binding LRR receptor (NLR). Using lrrprofiler, a pipeline that we developed to annotate and classify these proteins, we compared three publicly available annotations of the rice Nipponbare reference genome. The extended discrepancies that we observed for LRR-CR gene models led us to perform an in-depth manual curation of their annotations while paying special attention to nonsense mutations. We then transferred this manually curated annotation to Kitaake, a cultivar that is closely related to Nipponbare, using an optimized strategy. Here, we discuss the breakthrough achieved by manual curation when comparing genomes and, in addition to 'functional' and 'structural' annotations, we propose that the community adopts this approach, which we call 'comprehensive' annotation. The resulting data are crucial for further studies on the natural variability and evolution of LRR-CR genes in order to promote their use in breeding future resilient varieties.
Collapse
Affiliation(s)
- Céline Gottin
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Anne Dievart
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Marilyne Summo
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Gaëtan Droc
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Christophe Périn
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Vincent Ranwez
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
| | - Nathalie Chantret
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
| |
Collapse
|
17
|
Activation loop phosphorylaton of a non-RD receptor kinase initiates plant innate immune signaling. Proc Natl Acad Sci U S A 2021; 118:2108242118. [PMID: 34531323 PMCID: PMC8463890 DOI: 10.1073/pnas.2108242118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/01/2023] Open
Abstract
Receptor kinases (RKs) are fundamental for extracellular sensing and regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) are primarily peptide receptors that regulate responses to myriad internal and external stimuli. Phosphorylation of LRR-RK cytoplasmic domains is among the earliest responses following ligand perception, and reciprocal transphosphorylation between a receptor and its coreceptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in antibacterial immunity. These results reveal a noncatalytic role for EFR in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RKs with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor, which could initiate signaling either allosterically or through driving the dissociation of negative regulators of the complex.
Collapse
|
18
|
Soriano JM, Sansaloni C, Ammar K, Royo C. Labelling Selective Sweeps Used in Durum Wheat Breeding from a Diverse and Structured Panel of Landraces and Cultivars. BIOLOGY 2021; 10:biology10040258. [PMID: 33805192 PMCID: PMC8064341 DOI: 10.3390/biology10040258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Evaluation of the genetic diversity of a crop species is a critical step for breeding. Landraces are essential to avoid genetic erosion, and Mediterranean landraces are an important group of genetic resources due to their high genetic variability, adaptation to local conditions in rainfed environments, and their resilience to pests and pathogens. This study uses a genome-wide association approach employing eigenvectors to identify selective sweeps among Mediterranean durum wheat landraces and a world panel of modern cultivars. Abstract A panel of 387 durum wheat genotypes including Mediterranean landraces and modern cultivars was characterized with 46,161 diversity arrays technology (DArTseq) markers. Analysis of population structure uncovered the existence of five subpopulations (SP) related to the pattern of migration of durum wheat from the domestication area to the west of the Mediterranean basin (SPs 1, 2, and 3) and further improved germplasm (SPs 4 and 5). The total genetic diversity (HT) was 0.40 with a genetic differentiation (GST) of 0.08 and a mean gene flow among SPs of 6.02. The lowest gene flow was detected between SP 1 (presumably the ancient genetic pool of the panel) and SPs 4 and 5. However, gene flow from SP 2 to modern cultivars was much higher. The highest gene flow was detected between SP 3 (western Mediterranean germplasm) and SP 5 (North American and European cultivars). A genome wide association study (GWAS) approach using the top ten eigenvectors as phenotypic data revealed the presence of 89 selective sweeps, represented as quantitative trait loci (QTL) hotspots, widely distributed across the durum wheat genome. A principal component analysis (PCoA) using 147 markers with −log10p > 5 identified three regions located on chromosomes 2A, 2B and 3A as the main drivers for differentiation of Mediterranean landraces. Gene flow between SPs offers clues regarding the putative use of Mediterranean old durum germplasm by the breeding programs represented in the structure analysis. EigenGWAS identified selective sweeps among landraces and modern cultivars. The analysis of the corresponding genomic regions in the ‘Zavitan’, ‘Svevo’ and ‘Chinese Spring’ genomes discovered the presence of important functional genes including Ppd, Vrn, Rht, and gene models involved in important biological processes including LRR-RLK, MADS-box, NAC, and F-box.
Collapse
Affiliation(s)
- Jose Miguel Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), 25198 Lleida, Spain;
- Correspondence:
| | - Carolina Sansaloni
- Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), El Batán, Texcoco 56237, Mexico; (C.S.); (K.A.)
| | - Karim Ammar
- Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), El Batán, Texcoco 56237, Mexico; (C.S.); (K.A.)
| | - Conxita Royo
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), 25198 Lleida, Spain;
| |
Collapse
|
19
|
Gowda M, Makumbi D, Das B, Nyaga C, Kosgei T, Crossa J, Beyene Y, Montesinos-López OA, Olsen MS, Prasanna BM. Genetic dissection of Striga hermonthica (Del.) Benth. resistance via genome-wide association and genomic prediction in tropical maize germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:941-958. [PMID: 33388884 PMCID: PMC7925482 DOI: 10.1007/s00122-020-03744-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/02/2020] [Indexed: 06/01/2023]
Abstract
KEY MESSAGE Genome-wide association revealed that resistance to Striga hermonthica is influenced by multiple genomic regions with moderate effects. It is possible to increase genetic gains from selection for Striga resistance using genomic prediction. Striga hermonthica (Del.) Benth., commonly known as the purple witchweed or giant witchweed, is a serious problem for maize-dependent smallholder farmers in sub-Saharan Africa. Breeding for Striga resistance in maize is complicated due to limited genetic variation, complexity of resistance and challenges with phenotyping. This study was conducted to (i) evaluate a set of diverse tropical maize lines for their responses to Striga under artificial infestation in three environments in Kenya; (ii) detect quantitative trait loci associated with Striga resistance through genome-wide association study (GWAS); and (iii) evaluate the effectiveness of genomic prediction (GP) of Striga-related traits. An association mapping panel of 380 inbred lines was evaluated in three environments under artificial Striga infestation in replicated trials and genotyped with 278,810 single-nucleotide polymorphism (SNP) markers. Genotypic and genotype x environment variations were significant for measured traits associated with Striga resistance. Heritability estimates were moderate (0.42) to high (0.92) for measured traits. GWAS revealed 57 SNPs significantly associated with Striga resistance indicator traits and grain yield (GY) under artificial Striga infestation with low to moderate effect. A set of 32 candidate genes physically near the significant SNPs with roles in plant defense against biotic stresses were identified. GP with different cross-validations revealed that prediction of performance of lines in new environments is better than prediction of performance of new lines for all traits. Predictions across environments revealed high accuracy for all the traits, while inclusion of GWAS-detected SNPs led to slight increase in the accuracy. The item-based collaborative filtering approach that incorporates related traits evaluated in different environments to predict GY and Striga-related traits outperformed GP for Striga resistance indicator traits. The results demonstrated the polygenic nature of resistance to S. hermonthica, and that implementation of GP in Striga resistance breeding could potentially aid in increasing genetic gain for this important trait.
Collapse
Affiliation(s)
- Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, 00621, Nairobi, Kenya.
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, 00621, Nairobi, Kenya
| | - Biswanath Das
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, 00621, Nairobi, Kenya
| | - Christine Nyaga
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, 00621, Nairobi, Kenya
| | - Titus Kosgei
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, 00621, Nairobi, Kenya
- Moi University, P. O. Box 3900-30100, Eldoret, Kenya
| | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico, D.F, Mexico
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, 00621, Nairobi, Kenya
| | | | - Michael S Olsen
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, 00621, Nairobi, Kenya
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, 00621, Nairobi, Kenya
| |
Collapse
|
20
|
Turek I, Irving H. Moonlighting Proteins Shine New Light on Molecular Signaling Niches. Int J Mol Sci 2021; 22:1367. [PMID: 33573037 PMCID: PMC7866414 DOI: 10.3390/ijms22031367] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Collapse
Affiliation(s)
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|
21
|
Chen T. Identification and characterization of the LRR repeats in plant LRR-RLKs. BMC Mol Cell Biol 2021; 22:9. [PMID: 33509084 PMCID: PMC7841916 DOI: 10.1186/s12860-021-00344-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/12/2021] [Indexed: 01/11/2023] Open
Abstract
Background Leucine-rich-repeat receptor-like kinases (LRR-RLKs) play central roles in sensing various signals to regulate plant development and environmental responses. The extracellular domains (ECDs) of plant LRR-RLKs contain LRR motifs, consisting of highly conserved residues and variable residues, and are responsible for ligand perception as a receptor or co-receptor. However, there are few comprehensive studies on the ECDs of LRR-RLKs due to the difficulty in effectively identifying the divergent LRR repeats. Results In the current study, an efficient LRR motif prediction program, the “Phyto-LRR prediction” program, was developed based on the position-specific scoring matrix algorithm (PSSM) with some optimizations. This program was trained by 16-residue plant-specific LRR-highly conserved segments (HCS) from LRR-RLKs of 17 represented land plant species and a database containing more than 55,000 predicted LRRs based on this program was constructed. Both the prediction tool and database are freely available at http://phytolrr.com/ for website usage and at http://github.com/phytolrr for local usage. The LRR-RLKs were classified into 18 subgroups (SGs) according to the maximum-likelihood phylogenetic analysis of kinase domains (KDs) of the sequences. Based on the database and the SGs, the characteristics of the LRR motifs in the ECDs of the LRR-RLKs were examined, such as the arrangement of the LRRs, the solvent accessibility, the variable residues, and the N-glycosylation sites, revealing a comprehensive profile of the plant LRR-RLK ectodomains. Conclusion The “Phyto-LRR prediction” program is effective in predicting the LRR segments in plant LRR-RLKs, which, together with the database, will facilitate the exploration of plant LRR-RLKs functions. Based on the database, comprehensive sequential characteristics of the plant LRR-RLK ectodomains were profiled and analyzed. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00344-y.
Collapse
Affiliation(s)
- Tianshu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Ave, Nanjing, 210046, China.
| |
Collapse
|
22
|
Restrepo-Montoya D, Brueggeman R, McClean PE, Osorno JM. Computational identification of receptor-like kinases "RLK" and receptor-like proteins "RLP" in legumes. BMC Genomics 2020; 21:459. [PMID: 32620079 PMCID: PMC7333395 DOI: 10.1186/s12864-020-06844-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background In plants, the plasma membrane is enclosed by the cell wall and anchors RLK and RLP proteins, which play a fundamental role in perception of developmental and environmental cues and are crucial in plant development and immunity. These plasma membrane receptors belong to large gene/protein families that are not easily classified computationally. This detailed analysis of these plasma membrane proteins brings a new source of information to the legume genetic, physiology and breeding research communities. Results A computational approach to identify and classify RLK and RLP proteins is presented. The strategy was evaluated using experimentally-validated RLK and RLP proteins and was determined to have a sensitivity of over 0.85, a specificity of 1.00, and a Matthews correlation coefficient of 0.91. The computational approach can be used to develop a detailed catalog of plasma membrane receptors (by type and domains) in several legume/crop species. The exclusive domains identified in legumes for RLKs are WaaY, APH Pkinase_C, LRR_2, and EGF, and for RLP are L-lectin LPRY and PAN_4. The RLK-nonRD and RLCK subclasses are also discovered by the methodology. In both classes, less than 20% of the total RLK predicted for each species belong to this class. Among the 10-species evaluated ~ 40% of the proteins in the kinome are RLKs. The exclusive legume domain combinations identified are B-Lectin/PR5K domains in G. max, M. truncatula, V. angularis, and V. unguiculata and a three-domain combination B-lectin/S-locus/WAK in C. cajan, M. truncatula, P. vulgaris, V. angularis. and V. unguiculata. Conclusions The analysis suggests that about 2% of the proteins of each genome belong to the RLK family and less than 1% belong to RLP family. Domain diversity combinations are greater for RLKs compared with the RLP proteins and LRR domains, and the dual domain combination LRR/Malectin were the most frequent domain for both groups of plasma membrane receptors among legume and non-legume species. Legumes exclusively show Pkinase extracellular domains, and atypical domain combinations in RLK and RLP compared with the non-legumes evaluated. The computational logic approach is statistically well supported and can be used with the proteomes of other plant species.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58105-6050, USA. .,Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, PO Box 6050, Dept. 7660, Fargo, ND, 58108, USA
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58105-6050, USA. .,Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
23
|
Man J, Gallagher JP, Bartlett M. Structural evolution drives diversification of the large LRR-RLK gene family. THE NEW PHYTOLOGIST 2020; 226:1492-1505. [PMID: 31990988 PMCID: PMC7318236 DOI: 10.1111/nph.16455] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/19/2020] [Indexed: 05/11/2023]
Abstract
●Cells are continuously exposed to chemical signals that they must discriminate between and respond to appropriately. In embryophytes, the leucine-rich repeat receptor-like kinases (LRR-RLKs) are signal receptors critical in development and defense. LRR-RLKs have diversified to hundreds of genes in many plant genomes. Although intensively studied, a well-resolved LRR-RLK gene tree has remained elusive. ●To resolve the LRR-RLK gene tree, we developed an improved gene discovery method based on iterative hidden Markov model searching and phylogenetic inference. We used this method to infer complete gene trees for each of the LRR-RLK subclades and reconstructed the deepest nodes of the full gene family. ●We discovered that the LRR-RLK gene family is even larger than previously thought, and that protein domain gains and losses are prevalent. These structural modifications, some of which likely predate embryophyte diversification, led to misclassification of some LRR-RLK variants as members of other gene families. Our work corrects this misclassification. ●Our results reveal ongoing structural evolution generating novel LRR-RLK genes. These new genes are raw material for the diversification of signaling in development and defense. Our methods also enable phylogenetic reconstruction in any large gene family.
Collapse
Affiliation(s)
- Jarrett Man
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| | - Joseph P. Gallagher
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| | - Madelaine Bartlett
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| |
Collapse
|
24
|
Wu CH, Adachi H, De la Concepcion JC, Castells-Graells R, Nekrasov V, Kamoun S. NRC4 Gene Cluster Is Not Essential for Bacterial Flagellin-Triggered Immunity. PLANT PHYSIOLOGY 2020; 182:455-459. [PMID: 31712307 PMCID: PMC6945836 DOI: 10.1104/pp.19.00859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/29/2019] [Indexed: 05/03/2023]
Abstract
CRISPR/Cas9-mediated mutation of NRC2, NRC3, and NRC4 genes did not affect bacterial flagellin-triggered immunity.
Collapse
Affiliation(s)
- Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Roger Castells-Graells
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Vladimir Nekrasov
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
25
|
Landi S, Berni R, Capasso G, Hausman JF, Guerriero G, Esposito S. Impact of Nitrogen Nutrition on Cannabis sativa: An Update on the Current Knowledge and Future Prospects. Int J Mol Sci 2019; 20:E5803. [PMID: 31752217 PMCID: PMC6888403 DOI: 10.3390/ijms20225803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022] Open
Abstract
Nitrogen (N) availability represents one of the most critical factors affecting cultivated crops. N is indeed a crucial macronutrient influencing major aspects, from plant development to productivity and final yield of lignocellulosic biomass, as well as content of bioactive molecules. N metabolism is fundamental as it is at the crossroad between primary and secondary metabolic pathways: Besides affecting the synthesis of fundamental macromolecules, such as nucleic acids and proteins, N is needed for other types of molecules intervening in the response to exogenous stresses, e.g. alkaloids and glucosinolates. By partaking in the synthesis of phenylalanine, N also directly impacts a central plant metabolic 'hub'-the phenylpropanoid pathway-from which important classes of molecules are formed, notably monolignols, flavonoids and other types of polyphenols. In this review, an updated analysis is provided on the impact that N has on the multipurpose crop hemp (Cannabis sativa L.) due to its renewed interest as a multipurpose crop able to satisfy the needs of a bioeconomy. The hemp stalk provides both woody and cellulosic fibers used in construction and for biocomposites; different organs (leaves/flowers/roots) are sources of added-value secondary metabolites, namely cannabinoids, terpenes, flavonoids, and lignanamides. We survey the available literature data on the impact of N in hemp and highlight the importance of studying those genes responding to both N nutrition and abiotic stresses. Available hemp transcriptomic datasets obtained on plants subjected to salt and drought are here analyzed using Gene Ontology (GO) categories related to N metabolism. The ultimate goal is to shed light on interesting candidate genes that can be further studied in hemp varieties growing under different N feeding conditions and showing high biomass yield and secondary metabolite production, even under salinity and drought.
Collapse
Affiliation(s)
- Simone Landi
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100 Siena, Italy;
- Trees and Timber Institute-National Research Council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy
| | - Giorgia Capasso
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
| | - Sergio Esposito
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| |
Collapse
|
26
|
Nascimento LC, Yanagui K, Jose J, Camargo ELO, Grassi MCB, Cunha CP, Bressiani JA, Carvalho GMA, Carvalho CR, Prado PF, Mieczkowski P, Pereira GAG, Carazzolle MF. Unraveling the complex genome of Saccharum spontaneum using Polyploid Gene Assembler. DNA Res 2019; 26:205-216. [PMID: 30768175 PMCID: PMC6589550 DOI: 10.1093/dnares/dsz001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/21/2019] [Indexed: 12/01/2022] Open
Abstract
The Polyploid Gene Assembler (PGA), developed and tested in this study, represents a new strategy to perform gene-space assembly from complex genomes using low coverage DNA sequencing. The pipeline integrates reference-assisted loci and de novo assembly strategies to construct high-quality sequences focused on gene content. Pipeline validation was conducted with wheat (Triticum aestivum), a hexaploid species, using barley (Hordeum vulgare) as reference, that resulted in the identification of more than 90% of genes and several new genes. Moreover, PGA was used to assemble gene content in Saccharum spontaneum species, a parental lineage for hybrid sugarcane cultivars. Saccharum spontaneum gene sequence obtained was used to reference-guided transcriptome analysis of six different tissues. A total of 39,234 genes were identified, 60.4% clustered into known grass gene families. Thirty-seven gene families were expanded when compared with other grasses, three of them highlighted by the number of gene copies potentially involved in initial development and stress response. In addition, 3,108 promoters (many showing tissue specificity) were identified in this work. In summary, PGA can reconstruct high-quality gene sequences from polyploid genomes, as shown for wheat and S. spontaneum species, and it is more efficient than conventional genome assemblers using low coverage DNA sequencing.
Collapse
Affiliation(s)
- Leandro Costa Nascimento
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.,Laboratório Central de Tecnologias de Alto Desempenho (LaCTAD), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Karina Yanagui
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana Jose
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Eduardo L O Camargo
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.,Biocelere Agroindustrial Ltda, GranBio Investimentos S.A., Campinas, SP, Brazil
| | - Maria Carolina B Grassi
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Camila P Cunha
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisas em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | | | - Guilherme M A Carvalho
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Carlos Roberto Carvalho
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Paula F Prado
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Piotr Mieczkowski
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gonçalo A G Pereira
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
27
|
Hohmann U, Hothorn M. Crystal structure of the leucine-rich repeat ectodomain of the plant immune receptor kinase SOBIR1. Acta Crystallogr D Struct Biol 2019; 75:488-497. [PMID: 31063151 PMCID: PMC6503760 DOI: 10.1107/s2059798319005291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 01/17/2023] Open
Abstract
Plant-unique membrane receptor kinases with leucine-rich repeat (LRR) extracellular domains are key regulators of development and immune responses. Here, the 1.55 Å resolution crystal structure of the immune receptor kinase SOBIR1 from Arabidopsis is presented. The ectodomain structure reveals the presence of five LRRs sandwiched between noncanonical capping domains. The disulfide-bond-stabilized N-terminal cap harbours an unusual β-hairpin structure. The C-terminal cap features a highly positively charged linear motif which was found to be largely disordered in this structure. Size-exclusion chromatography and right-angle light-scattering experiments suggest that SOBIR1 is a monomer in solution. The protruding β-hairpin, a set of highly conserved basic residues at the inner surface of the SOBIR LRR domain and the presence of a genetic missense allele in LRR2 together suggest that the SOBIR1 ectodomain may mediate protein-protein interaction in plant immune signalling.
Collapse
Affiliation(s)
- Ulrich Hohmann
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
28
|
van der Burgh AM, Postma J, Robatzek S, Joosten MHAJ. Kinase activity of SOBIR1 and BAK1 is required for immune signalling. MOLECULAR PLANT PATHOLOGY 2019; 20:410-422. [PMID: 30407725 PMCID: PMC6637861 DOI: 10.1111/mpp.12767] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Leucine-rich repeat-receptor-like proteins (LRR-RLPs) and LRR-receptor-like kinases (LRR-RLKs) trigger immune signalling to promote plant resistance against pathogens. LRR-RLPs lack an intracellular kinase domain, and several of these receptors have been shown to constitutively interact with the LRR-RLK Suppressor of BIR1-1/EVERSHED (SOBIR1/EVR) to form signalling-competent receptor complexes. Ligand perception by LRR-RLPs initiates recruitment of the co-receptor BRI1-Associated Kinase 1/Somatic Embryogenesis Receptor Kinase 3 (BAK1/SERK3) to the LRR-RLP/SOBIR1 complex, thereby activating LRR-RLP-mediated immunity. We employed phosphorylation analysis of in planta-produced proteins, live cell imaging, gene silencing and co-immunoprecipitation to investigate the roles of SOBIR1 and BAK1 in immune signalling. We show that Arabidopsis thaliana (At) SOBIR1, which constitutively activates immune responses when overexpressed in planta, is highly phosphorylated. Moreover, in addition to the kinase activity of SOBIR1 itself, kinase-active BAK1 is essential for AtSOBIR1-induced constitutive immunity and for the phosphorylation of AtSOBIR1. Furthermore, the defence response triggered by the tomato LRR-RLP Cf-4 on perception of Avr4 from the extracellular pathogenic fungus Cladosporium fulvum is dependent on kinase-active BAK1. We argue that, in addition to the trans-autophosphorylation of SOBIR1, it is likely that SOBIR1 and BAK1 transphosphorylate, and thereby activate the receptor complex. The signalling-competent cell surface receptor complex subsequently activates downstream cytoplasmic signalling partners to initiate RLP-mediated immunity.
Collapse
Affiliation(s)
- Aranka M. van der Burgh
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Jelle Postma
- The Sainsbury LaboratoryNorwich Research Park, NorwichNR4 7UHUK
| | - Silke Robatzek
- The Sainsbury LaboratoryNorwich Research Park, NorwichNR4 7UHUK
- Ludwig‐Maximilians‐Universität MünchenGeneticsGroßhaderner Str. 2–482152MartinsriedGermany
| | - Matthieu H. A. J. Joosten
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| |
Collapse
|
29
|
Hoseinzadeh P, Zhou R, Mascher M, Himmelbach A, Niks RE, Schweizer P, Stein N. High Resolution Genetic and Physical Mapping of a Major Powdery Mildew Resistance Locus in Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:146. [PMID: 30838011 PMCID: PMC6382739 DOI: 10.3389/fpls.2019.00146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/28/2019] [Indexed: 05/02/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. hordei is a foliar disease with highly negative impact on yield and grain quality in barley. Thus, breeding for powdery mildew resistance is an important goal and requires constantly the discovery of new sources of natural resistance. Here, we report the high resolution genetic and physical mapping of a dominant race-specific powdery mildew resistance locus, originating from an Ethiopian spring barley accession 'HOR2573,' conferring resistance to several modern mildew isolates. High-resolution genetic mapping narrowed down the interval containing the resistance locus to a physical span of 850 kb. Four candidate genes with homology to known disease resistance gene families were identified. The mapped resistance locus coincides with a previously reported resistance locus from Hordeum laevigatum, suggesting allelism at the same locus in two different barley lines. Therefore, we named the newly mapped resistance locus from HOR2573 as MlLa-H. The reported co-segregating and flanking markers may provide new tools for marker-assisted selection of this resistance locus in barley breeding.
Collapse
Affiliation(s)
- Parastoo Hoseinzadeh
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Ruonan Zhou
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Martin Mascher
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Axel Himmelbach
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Rients E. Niks
- Department of Plant Science, Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Patrick Schweizer
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nils Stein
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Xi L, Wu XN, Gilbert M, Schulze WX. Classification and Interactions of LRR Receptors and Co-receptors Within the Arabidopsis Plasma Membrane - An Overview. FRONTIERS IN PLANT SCIENCE 2019; 10:472. [PMID: 31057579 PMCID: PMC6477698 DOI: 10.3389/fpls.2019.00472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/28/2019] [Indexed: 05/18/2023]
Abstract
Receptor kinases (RK) constitute the largest protein kinase family in plants. In particular, members of the leucine-rich repeat-receptor kinases (LRR-RKs) are involved in the perception of various signals at the plasma membrane. Experimental evidence over the past years revealed a conserved activation mechanism through ligand-inducible heterodimer formation: a ligand is recognized by a receptor kinase with a large extracellular domain (ECD). This ligand binding receptor directly interacts with a so-called co-receptor with a small ECD for ligand fixation and kinase activation. A large proportion of LRR-RKs is functionally still uncharacterized and the dynamic complexity of the plasma membrane makes it difficult to precisely define receptor kinase heterodimer pairs and their functions. In this review, we give an overview of the current knowledge of LRR receptor and co-receptor functions. We use ECD lengths to classify the LRR receptor kinase family and describe different interaction properties of ligand-binding receptors and their respective co-receptor from a network perspective.
Collapse
|
31
|
Genome-Wide Analysis of LRR-RLK Gene Family in Four Gossypium Species and Expression Analysis during Cotton Development and Stress Responses. Genes (Basel) 2018; 9:genes9120592. [PMID: 30501109 PMCID: PMC6316826 DOI: 10.3390/genes9120592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 11/26/2022] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have been reported to play important roles in plant growth, development, and stress responses. However, no comprehensive analysis of this family has been performed in cotton (Gossypium spp.), which is an important economic crop that suffers various stresses in growth and development. Here we conducted a comprehensive analysis of LRR-RLK family in four Gossypium species (Gossypium arboreum, Gossypium barbadense, Gossypium hirsutum, and Gossypium raimondii). A total of 1641 LRR-RLK genes were identified in the four Gossypium species involved in our study. The maximum-likelihood phylogenetic tree revealed that all the LRR-RLK genes were divided into 21 subgroups. Exon-intron organization structure of LRR-RLK genes kept relatively conserved within subfamilies and between Arabidopsis and Gossypium genomes. Notably, subfamilies XI and XII were found dramatically expanded in Gossypium species. Tandem duplication acted as an important mechanism in expansion of the Gossypium LRR-RLK gene family. Functional analysis suggested that GossypiumLRR-RLK genes were enriched for plant hormone signaling and plant-pathogen interaction pathways. Promoter analysis revealed that GossypiumLRR-RLK genes were extensively regulated by transcription factors (TFs), phytohormonal, and various environmental stimuli. Expression profiling showed that GossypiumLRR-RLK genes were widely involved in stress defense and diverse developmental processes including cotton fiber development and provides insight into potential functional divergence within and among subfamilies. Our study provided valuable information for further functional study of GossypiumLRR-RLK genes.
Collapse
|
32
|
Wu G, Zheng G, Hu Q, Ma M, Li M, Sun X, Yan F, Qing L. NS3 Protein from Rice stripe virus affects the expression of endogenous genes in Nicotiana benthamiana. Virol J 2018; 15:105. [PMID: 29940994 PMCID: PMC6019303 DOI: 10.1186/s12985-018-1014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Rice stripe virus (RSV) belongs to the genus Tenuivirus. It is transmitted by small brown planthoppers in a persistent and circulative-propagative manner and causes rice stripe disease (RSD). The NS3 protein of RSV, encoded by the viral strand of RNA3, is a viral suppressor of RNA silencing (VSR). NS3 plays a significant role in viral infection, and NS3-transgenic plants manifest resistance to the virus. METHODS The stability and availability of NS3 produced by transgenic Nicotiana benthamiana was investigated by northern blot analysis. The accumulation of virus was detected by western blot analysis. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) in NS3-transgenic N. benthamiana. RESULTS When the host plants were inoculated with RSV, symptoms and viral accumulation in NS3-transgenic N. benthamiana were reduced compared with the wild type. Transcriptome analysis identified 2533 differentially expressed genes (DEGs) in the NS3-transgenic N. benthamiana, including 597 upregulated genes and 1936 downregulated genes. These DEGs were classified into three Gene Ontology (GO) categories and were associated with 43 GO terms. KEGG pathway analysis revealed that these DEGs were involved in pathways associated with ribosomes (ko03010), photosynthesis (ko00195), photosynthesis-antenna proteins (ko00196), and carbon metabolism (ko01200). More than 70 DEGs were in these four pathways. Twelve DEGs were selected for RT-qPCR verification and subsequent analysis. The results showed that NS3 induced host resistance by affecting host gene expression. CONCLUSION NS3, which plays dual roles in the process of infection, may act as a VSR during RSV infection, and enable viral resistance in transgenic host plants. NS3 from RSV affects the expression of genes associated with ribosomes, photosynthesis, and carbon metabolism in N. benthamiana. This study enhances our understanding of the interactions between VSRs and host plants.
Collapse
Affiliation(s)
- Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Guixian Zheng
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Qiao Hu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Mingge Ma
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Xianchao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Fei Yan
- The State Key Laboratory Breading Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| |
Collapse
|
33
|
Chakraborty S, Pan H, Tang Q, Woolard C, Xu G. The Extracellular Domain of Pollen Receptor Kinase 3 is structurally similar to the SERK family of co-receptors. Sci Rep 2018; 8:2796. [PMID: 29434276 PMCID: PMC5809528 DOI: 10.1038/s41598-018-21218-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/01/2018] [Indexed: 01/11/2023] Open
Abstract
During reproduction in flowering plants, the male gametophyte delivers an immotile male gamete to the female gametophyte in the pistil by formation of pollen tubes. In Arabidopsis thaliana, two synergid cells situated on either side of the egg cell produce cysteine-rich chemoattractant peptide LURE that guides the pollen tube to the female gametophyte for sexual reproduction. Recently, in Arabidopsis thaliana, Pollen Receptor Kinase 3 (PRK3), along with PRK1, PRK6, and PRK8, have been predicted to be the receptors responsible for sensing LURE. These receptors belong to the Leucine Rich Repeat Receptor Like Kinases (LRR-RLKs), the largest family of receptor kinases found in Arabidopsis thaliana. How PRKs regulate the growth and development of the pollen tube remains elusive. In order to better understand the PRK-mediated signaling mechanism in pollen tube growth and guidance, we have determined the crystal structure of the extracellular domain (ecd) of PRK3 at 2.5 Å, which resembles the SERK family of plant co-receptors. The structure of ecdPRK3 is composed of a conserved surface that coincides with the conserved receptor-binding surface of the SERK family of co-receptors. Our structural analyses of PRK3 have provided a template for future functional studies of the PRK family of LRR-RLK receptors in the regulation of pollen tube development.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Raleigh, 27695, USA
| | - Haiyun Pan
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Raleigh, 27695, USA
| | - Qingyu Tang
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Raleigh, 27695, USA
| | - Colin Woolard
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Raleigh, 27695, USA
| | - Guozhou Xu
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Raleigh, 27695, USA.
| |
Collapse
|
34
|
Wang Y, Xu Y, Sun Y, Wang H, Qi J, Wan B, Ye W, Lin Y, Shao Y, Dong S, Tyler BM, Wang Y. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat Commun 2018; 9:594. [PMID: 29426870 PMCID: PMC5807360 DOI: 10.1038/s41467-018-03010-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022] Open
Abstract
Activation of innate immunity by membrane-localized receptors is conserved across eukaryotes. Plant genomes contain hundreds of such receptor-like genes and those encoding proteins with an extracellular leucine-rich repeat (LRR) domain represent the largest family. Here, we develop a high-throughput approach to study LRR receptor-like genes on a genome-wide scale. In total, 257 tobacco rattle virus-based constructs are generated to target 386 of the 403 identified LRR receptor-like genes in Nicotiana benthamiana for silencing. Using this toolkit, we identify the LRR receptor-like protein Response to XEG1 (RXEG1) that specifically recognizes the glycoside hydrolase 12 protein XEG1. RXEG1 associates with XEG1 via the LRR domain in the apoplast and forms a complex with the LRR receptor-like kinases BAK1 and SOBIR1 to transduce the XEG1-induced defense signal. Thus, this genome-wide silencing assay is demonstrated to be an efficient toolkit to pinpoint new immune receptors, which will contribute to developing durable disease resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yujing Sun
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Huibin Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Jiaming Qi
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Bowen Wan
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yachun Lin
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yuanyuan Shao
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China.
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China.
| |
Collapse
|
35
|
Bettembourg M, Dal-Soglio M, Bureau C, Vernet A, Dardoux A, Portefaix M, Bes M, Meynard D, Mieulet D, Cayrol B, Perin C, Courtois B, Ma JF, Dievart A. Root cone angle is enlarged in docs1 LRR-RLK mutants in rice. RICE (NEW YORK, N.Y.) 2017; 10:50. [PMID: 29247303 PMCID: PMC5732118 DOI: 10.1186/s12284-017-0190-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/30/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND The DEFECTIVE IN OUTER CELL LAYER SPECIFICATION 1 (DOCS1) gene belongs to the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) subfamily. It has been discovered few years ago in Oryza sativa (rice) in a screen to isolate mutants with defects in sensitivity to aluminum. The c68 (docs1-1) mutant possessed a nonsense mutation in the C-terminal part of the DOCS1 kinase domain. FINDINGS We have generated a new loss-of-function mutation in the DOCS1 gene (docs1-2) using the CRISPR-Cas9 technology. This new loss-of-function mutant and docs1-1 present similar phenotypes suggesting the original docs1-1 was a null allele. Besides the aluminum sensitivity phenotype, both docs1 mutants shared also several root phenotypes described previously: less root hairs and mixed identities of the outer cell layers. Moreover, our new results suggest that DOCS1 could also play a role in root cap development. We hypothesized these docs1 root phenotypes may affect gravity responses. As expected, in seedlings, the early gravitropic response was delayed. Furthermore, at adult stage, the root gravitropic set angle of docs1 mutants was also affected since docs1 mutant plants displayed larger root cone angles. CONCLUSIONS All these observations add new insights into the DOCS1 gene function in gravitropic responses at several stages of plant development.
Collapse
Affiliation(s)
- M. Bettembourg
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - M. Dal-Soglio
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - C. Bureau
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - A. Vernet
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - A. Dardoux
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - M. Portefaix
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - M. Bes
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - D. Meynard
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - D. Mieulet
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - B. Cayrol
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - C. Perin
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - B. Courtois
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - J. F. Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - A. Dievart
- CIRAD, UMR AGAP, F34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- Present address: Shanghai Jiao Tong University (SJTU), School of Life Sciences and Biotechnology, Shanghai, 200240 China
| |
Collapse
|
36
|
Dezhsetan S. Genome scanning for identification and mapping of receptor-like kinase (RLK) gene superfamily in Solanum tuberosum. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:755-765. [PMID: 29158626 PMCID: PMC5671453 DOI: 10.1007/s12298-017-0471-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 05/19/2023]
Abstract
Receptor-like kinases (RLKs) are a key class of genes that contribute to diverse phenomena from plant development to defense responses. The availability of completed potato genome sequences provide an excellent opportunity to identify and characterize RLK gene superfamily in this lineage. We identified 747 non-redundant RLK genes in the potato genome that were classified into 52 subfamilies, of which 58% members organized into tandem repeats. Nine of potato RLK subfamilies organized into tandem repeats. Also, six subfamilies exhibited lineage-specific expansion compared to Arabidopsis. The majority of RLK genes were physically organized within heterogeneous and homogeneous clusters on chromosomes and were unevenly distributed on the genome. Chromosome 2, 3 and 7 contained the highest number of RLK genes and the most underrepresented chromosomes were chromosome 8, 10 and 11. Taken together, our results provide a framework for future efforts on comparative, evolutionary and functional studies of the members of RLK superfamily.
Collapse
|