1
|
Gracia-Rodriguez C, Martínez-Medina AE, Torres-Cosio L, Lopez-Ortiz C, Nimmakayala P, Luévanos-Escareño MP, Hernández-Almanza AY, Castro-Alonso MJ, Sosa-Martínez JD, Reddy UK, Balagurusamy N. Can the molecular and transgenic breeding of crops be an alternative and sustainable technology to meet food demand? Funct Integr Genomics 2025; 25:83. [PMID: 40205022 DOI: 10.1007/s10142-025-01594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The gradual increase in the worldwide population represents various challenges, and one of the most alarming being the food demand. Historically technological advances led to the development of crops that meets the requirements and demands. Currently, molecular breeding unlocks the genetic potential of crops for their improvement, positioning it as a key technology for the development of new crops. The implementation of OMICs sciences, such spatial and single cell transcriptomics is providing a large and precise information, which can be exploited for crop improvement related to increasing yield, improving the nutritional value; designing new strategies for diseases resistance and management and for conserving biodiversity. Furthermore, the use of new technologies such CRISPR/CAS9 brought us the ability to modify the selected regions of the genome to select the superior's genotypes at a short time and the use of artificial intelligence aid in the analysis of big data generated by OMICS sciences. On the other hand, the application of molecular improvement technologies open up discussion on global regulatory measures, the socio-economic and socio-ethics, as the frameworks on its global regulation and its impact on the society create the public perception on its acceptance. In this review, the use and impact of OMICs sciences and genetic engineering in crops development, the regulatory measures, the socio-economic impact and as well as the mediatic information on genetically modified crops worldwide is discussed along with comprehensive insights on the potential of molecular plant breeding as an alternative and sustainable technology to meet global food demand.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Angela Elena Martínez-Medina
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Liliana Torres-Cosio
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Miriam Paulina Luévanos-Escareño
- Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Ayerim Yedid Hernández-Almanza
- Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - María José Castro-Alonso
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Jazel Doménica Sosa-Martínez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico.
| |
Collapse
|
2
|
Arif M, Haroon M, Nawaz AF, Abbas H, Xu R, Li L. Enhancing wheat resilience: biotechnological advances in combating heat stress and environmental challenges. PLANT MOLECULAR BIOLOGY 2025; 115:41. [PMID: 40057930 DOI: 10.1007/s11103-025-01569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/17/2025] [Indexed: 04/23/2025]
Abstract
Climate change, with its increasing temperatures, is significantly disrupting global agricultural systems, and wheat, a key cereal crop faces severe challenges. Heat stress has emerged as a critical threat, accelerating wheat growth, leading to premature maturation, reduced grain filling, and ultimately lower yields. The situation is exacerbated by more frequent and intense heat waves, particularly in regions already struggling with water scarcity. Maintaining the delicate balance of temperature and water necessary for optimal wheat production is becoming challenging, posing a serious risk to global food security. Therefore, there is an urgent need to develop adaptive strategies with innovations in breeding and transgenic technologies crucial to improving wheat resilience to environmental stresses, especially to combat the growing impacts of heat stress. Modern tools like CRISPR/Cas9, Transcription Activator-Like Effector Nucleases, and Zinc Finger Nucleases have been instrumental in developing wheat varieties with improved traits. However, the future of wheat cultivation requires more than just resistance to a single stressor. As climate change intensifies, there is an urgent need for wheat varieties that can withstand multiple stresses, including heat, drought, and pests. Developing these multi-stress-tolerant cultivars is crucial for ensuring food security in a rapidly changing climate.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Guizhou Sub-center of National Wheat Improvement Center, Guiyang, 550025, China
| | - Muhammad Haroon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, 47906, USA
| | - Ayesha Fazal Nawaz
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Hina Abbas
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Ruhong Xu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
- Guizhou Sub-center of National Wheat Improvement Center, Guiyang, 550025, China.
| | - Luhua Li
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
- Guizhou Sub-center of National Wheat Improvement Center, Guiyang, 550025, China.
| |
Collapse
|
3
|
Kannababu N, Nanjundappa S, Narayanan N, Vetriventhan M, Venkateswarlu R, Das IK, Srikanth A, Viswanath A, Singh S, Malipatil R, Satyavathi TC, Thirunavukkarasu N. Role of functional genes for seed vigor related traits through genome-wide association mapping in finger millet (Eleusine coracana L. Gaertn.). Sci Rep 2025; 15:5569. [PMID: 39955329 PMCID: PMC11830018 DOI: 10.1038/s41598-025-89315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Finger millet (Eleusine coracana (L.) Gaertn.) is a calcium-rich, nutritious and resilient crop that thrives even in harsh environmental conditions. In such ecologies, seed longevity and seedling vigor are crucial for sustainable crop production amid climate change. The current study explores the genetics of accelerated aging on seed longevity traits across 221 diverse accessions of finger millet through genome-wide association approach (GWAS). A significant variation was identified in germination percentage, germination rate indices, mean germination time, seedling vigor indices and dry weight upon aging treatment. GWAS model from 11,832 high-quality SNPs identified through Genotyping-by-Sequencing (GBS) approach produced 491 marker-trait associations (MTAs) for 27 traits, of which 54 were FDR-corrected. A pleiotropic SNP, FM_SNP_9478 identified on chromosome 7B was associated with the traits viz., germination after aging, germination index after aging and their relative measures. Functional annotation revealed DET1 and expansin-A2 influenced seed coat integrity, critical for germination and aging resilience. Probable protein phosphatase 2C3 and piezo-type ion channels contributed to mechanical sensing and stress adaptation in seeds. Beta-amylase and acetyl-CoA carboxylase 2 were identified for seed metabolism and stress response. These insights lay the framework for targeted breeding efforts to improve seed quality and resilience under diverse production conditions.
Collapse
Affiliation(s)
- Netyam Kannababu
- Seed Science and Technology Lab, ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, India
| | - Sandeep Nanjundappa
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, India
| | - Neha Narayanan
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, India
| | - Mani Vetriventhan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Ronda Venkateswarlu
- Biochemistry Lab, ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, India
| | - Indra Kanta Das
- Plant Pathology Lab, ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, India
| | - Arutla Srikanth
- Seed Science and Technology Lab, ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, India
| | - Aswini Viswanath
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, India
| | - Swati Singh
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, India
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, India
| | - Tara C Satyavathi
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, India.
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, India.
| |
Collapse
|
4
|
Xie X, Ren Z, Su H, Abou-Elwafa SF, Shao J, Ku L, Jia L, Tian Z, Wei L. Functional study of ZmHDZ4 in maize (Zea mays) seedlings under drought stress. BMC PLANT BIOLOGY 2024; 24:1209. [PMID: 39701983 DOI: 10.1186/s12870-024-05951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Maize is a major feed and industrial crop and pivotal for ensuring global food security. In light of global warming and climate change, improving maize tolerance to water deficit is crucial. Identification and functional analysis of drought tolerance genes have potential practical importance in understanding the molecular mechanisms of drought stress. RESULTS Here, we identified a maize Homeodomain-Leucine Zipper I, ZmHDZ4, in maize seedlings that is associated with drought tolerance. We demonstrated that ZmHDZ4 has transcriptional activation activity, exclusively localized in the nucleus. Several Cis-acting elements associated with abiotic stress have been identified in the core promoter region of ZmHDZ4. Under drought-stressed conditions, transgenic maize plants overexpressing ZmHDZ4 exhibited significantly higher relative water content and peroxidase (POD) and superoxidase dismutase (SOD) activities compared to wide-type plants, while displaying lower malondialdehyde (MAD) content. The expressions of ZmMFS1-88, ZmGPM573, and ZmPHD9 were significantly repressed in the ZmHDZ4-OE plants under drought-stressed conditions, indicating that ZmMFS1-88, ZmGPM573, and ZmPHD9 were the candidate target genes of ZmHDZ4. CONCLUSIONS ZmHDZ4 is involved in the regulation of drought stress tolerance in maize by participating in osmotic regulation, sugar metabolism pathways, and hormone regulation.
Collapse
Affiliation(s)
- Xiaowen Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhenzhen Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Huihui Su
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | | | - Jing Shao
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lixia Ku
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lin Jia
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Zhiqiang Tian
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Li Wei
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
5
|
Singh S, Prakash G, Nanjundappa S, Malipatil R, Kalita P, Satyavathi TC, Thirunavukkarasu N. Novel SNPs Linked to Blast Resistance Genes Identified in Pearl Millet Through Genome-Wide Association Models. Int J Mol Sci 2024; 25:12048. [PMID: 39596115 PMCID: PMC11593765 DOI: 10.3390/ijms252212048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Foliar blast, caused by Pyricularia grisea, poses a major challenge to pearl millet (Pennisetum glaucum (L.) R. Br) production, leading to severe yield losses, particularly in rainfed ecologies. This study aimed to elucidate the genetic basis of blast resistance through a genome-wide association study (GWAS) involving 281 diverse pearl millet inbreds. GWAS panel was phenotyped for blast resistance against three distinct isolates of P. grisea collected from Delhi, Gujarat, and Rajasthan locations, revealing a significant variability with 16.7% of the inbreds showing high resistance. Bayesian information and linkage disequilibrium iteratively nested keyway (BLINK) and Multi-Locus Mixed Model (MLMM) models using transformed means identified 68 significant SNPs linked to resistance, with hotspots for resistance-related genes on chromosomes 1, 2, and 6. These regions harbor genes involved in defense mechanisms, including immune response, stress tolerance, signal transduction, transcription regulation, and pathogen defense. Genes, namely 14-3-3-like proteins RGA2, RGA4, hypersensitive-induced response proteins, NHL3, NBS-LRR, LRR-RLK, LRRNT_2, and various transcription factors such as AP2/ERF and WRKY, played a crucial role in the stress-responsive pathways. Analyses of transporter proteins, redox processes, and structural proteins revealed additional mechanisms contributing to blast resistance. This study offers valuable insights into the complex genetic architecture of blast resistance in pearl millet, offering a solid foundation for marker-assisted breeding programs and gene-editing experiments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Sandeep Nanjundappa
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Prerana Kalita
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Tara C. Satyavathi
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| |
Collapse
|
6
|
Ren Z, Zhang P, Su H, Xie X, Shao J, Ku L, Tian Z, Deng D, Wei L. Regulatory mechanisms used by ZmMYB39 to enhance drought tolerance in maize (Zea mays) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108696. [PMID: 38705046 DOI: 10.1016/j.plaphy.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Drought is a significant abiotic stressor that limits maize (Zea mays L.) growth and development. Thus, enhancing drought tolerance is critical for promoting maize production. Our findings demonstrated that ZmMYB39 is an MYB transcription factor with transcriptional activation activity. Drought stress experiments involving ZmMYB39 overexpression and knockout lines indicated that ZmMYB39 positively regulated drought stress tolerance in maize. DAP-Seq, EMSA, dual-LUC, and RT-qPCR provided initial insights into the molecular regulatory mechanisms by which ZmMYB39 enhances drought tolerance in maize. ZmMYB39 directly promoted the expression of ZmP5CS1, ZmPOX1, ZmSOD2, ZmRD22, ZmNAC49, and ZmDREB2A, which are involved in stress resistance. ZmMYB39 enhanced drought tolerance by interacting with and promoting the expression of ZmFNR1, ZmHSP20, and ZmDOF6. Our study offers a theoretical basis for understanding the molecular regulatory networks involved in maize drought stress response. Furthermore, ZmMYB39 serves as a valuable genetic resource for breeding drought-resistant maize.
Collapse
Affiliation(s)
- Zhenzhen Ren
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Pengyu Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, China
| | - Huihui Su
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xiaowen Xie
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jing Shao
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lixia Ku
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhiqiang Tian
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
| | | | - Li Wei
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Sallam M, Ghazy A, Al-Doss A, Al-Ashkar I. Combining Genetic and Phenotypic Analyses for Detecting Bread Wheat Genotypes of Drought Tolerance through Multivariate Analysis Techniques. Life (Basel) 2024; 14:183. [PMID: 38398692 PMCID: PMC10890630 DOI: 10.3390/life14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Successfully promoting drought tolerance in wheat genotypes will require several procedures, such as field experimentations, measuring relevant traits, using analysis tools of high precision and efficiency, and taking a complementary approach that combines analyses of phenotyping and genotyping at once. The aim of this study is to assess the genetic diversity of 60 genotypes using SSR (simple sequence repeat) markers collected from several regions of the world and select 13 of them as more genetically diverse to be re-evaluated under field conditions to study drought stress by estimating 30 agro-physio-biochemical traits. Genetic parameters and multivariate analysis were used to compare genotype traits and identify which traits are increasingly efficient at detecting wheat genotypes of drought tolerance. Hierarchical cluster (HC) analysis of SSR markers divided the genotypes into five main categories of drought tolerance: four high tolerant (HT), eight tolerant (T), nine moderate tolerant (MT), six sensitive (S), and 33 high sensitive (HS). Six traits exhibit a combination of high heritability (>60%) and genetic gain (>20%). Analyses of principal components and stepwise multiple linear regression together identified nine traits (grain yield, flag leaf area, stomatal conductance, plant height, relative turgidity, glycine betaine, polyphenol oxidase, chlorophyll content, and grain-filling duration) as a screening tool that effectively detects the variation among the 13 genotypes used. HC analysis of the nine traits divided genotypes into three main categories: T, MT, and S, representing three, five, and five genotypes, respectively, and were completely identical in linear discriminant analysis. But in the case of SSR markers, they were classified into three main categories: T, MT, and S, representing five, three, and five genotypes, respectively, which are both significantly correlated as per the Mantel test. The SSR markers were associated with nine traits, which are considered an assistance tool in the selection process for drought tolerance. So, this study is useful and has successfully detected several agro-physio-biochemical traits, associated SSR markers, and some drought-tolerant genotypes, coupled with our knowledge of the phenotypic and genotypic basis of wheat genotypes.
Collapse
Affiliation(s)
| | | | | | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (A.G.); (A.A.-D.)
| |
Collapse
|
8
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
9
|
He K, Zhao Z, Ren W, Chen Z, Chen L, Chen F, Mi G, Pan Q, Yuan L. Mining genes regulating root system architecture in maize based on data integration analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:127. [PMID: 37188973 DOI: 10.1007/s00122-023-04376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE A new strategy that integrated multiple public data resources was established to construct root gene co-expression network and mine genes regulating root system architecture in maize. A root gene co-expression network, containing 13,874 genes, was constructed. A total of 53 root hub genes and 16 priority root candidate genes were identified. One priority root candidate was further functionally verified using overexpression transgenic maize lines. Root system architecture (RSA) is crucial for crops productivity and stress tolerance. In maize, few RSA genes are functionally cloned, and effective discovery of RSA genes remains a great of challenge. In this work, we established a strategy to mine maize RSA genes by integrating functionally characterized root genes, root transcriptome, weighted gene co-expression network analysis (WGCNA) and genome-wide association analysis (GWAS) of RSA traits based on public data resources. A total of 589 maize root genes were collected by searching well-characterized root genes in maize or homologous genes of other species. We performed WGCNA to construct a maize root gene co-expression network containing 13874 genes based on public available root transcriptome data, and further discovered the 53 hub genes related to root traits. In addition, by the prediction function of obtained root gene co-expression network, a total of 1082 new root candidate genes were explored. By further overlapping the obtained new root candidate gene with the root-related GWAS of RSA candidate genes, 16 priority root candidate genes were identified. Finally, a priority root candidate gene, Zm00001d023379 (encodes pyruvate kinase 2), was validated to modulate root open angle and shoot-borne roots number using its overexpression transgenic lines. Our results develop an integration analysis method for effectively exploring regulatory genes of RSA in maize and open a new avenue to mine the candidate genes underlying complex traits.
Collapse
Affiliation(s)
- Kunhui He
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zheng Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Wei Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zhe Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Bocianowski J, Tomkowiak A, Bocianowska M, Sobiech A. The Use of DArTseq Technology to Identify Markers Related to the Heterosis Effects in Selected Traits in Maize. Curr Issues Mol Biol 2023; 45:2644-2660. [PMID: 37185697 PMCID: PMC10136425 DOI: 10.3390/cimb45040173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Spectacular scientific advances in the area of molecular biology and the development of modern biotechnological tools have had a significant impact on the development of maize heterosis breeding. One technology based on next-generation sequencing is DArTseq. The plant material used for the research consisted of 13 hybrids resulting from the crossing of inbred maize lines. A two-year field experiment was established at two Polish breeding stations: Smolice and Łagiewniki. Nine quantitative traits were observed: cob length, cob diameter, core length, core diameter, number of rows of grain, number of grains in a row, mass of grain from the cob, weight of one thousand grains, and yield. The isolated DNA was subjected to DArTseq genotyping. Association mapping was performed using a method based on the mixed linear model. A total of 81602 molecular markers (28571 SNPs and 53031 SilicoDArTs) were obtained as a result of next-generation sequencing. Out of 81602, 15409 (13850 SNPs and 1559 SilicoDArTs) were selected for association analysis. The 105 molecular markers (8 SNPs and 97 SilicoDArTs) were associated with the heterosis effect of at least one trait in at least one environment. A total of 186 effects were observed. The number of statistically significant relationships between the molecular marker and heterosis effect varied from 8 (for cob length) and 9 (for yield) to 42 (for the number of rows of grain). Of particular note were three markers (2490222, 2548691 and 7058267), which were significant in 17, 8 and 6 cases, respectively. Two of them (2490222 and 7058267) were associated with the heterosis effects of yield in three of the four environments.
Collapse
Affiliation(s)
- Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Marianna Bocianowska
- Faculty of Chemical Technology, Poznań University of Technology, Piotrowo 3A, 60-965 Poznan, Poland
| | - Aleksandra Sobiech
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| |
Collapse
|
11
|
Praveen A, Dubey S, Singh S, Sharma VK. Abiotic stress tolerance in plants: a fascinating action of defense mechanisms. 3 Biotech 2023; 13:102. [PMID: 36866326 PMCID: PMC9971429 DOI: 10.1007/s13205-023-03519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Climate fluctuation mediated abiotic stress consequences loss in crop yields. These stresses have a negative impact on plant growth and development by causing physiological and molecular changes. In this review, we have attempted to outline recent studies (5 years) associated with abiotic stress resistance in plants. We investigated the various factors that contribute to coping with abiotic challenges, such as transcription factors (TFs), microRNAs (miRNAs), epigenetic changes, chemical priming, transgenic breeding, autophagy, and non-coding RNAs. Stress responsive genes are regulated mostly by TFs, and these can be used to enhance stress resistance in plants. Plants express some miRNA during stress imposition that act on stress-related target genes to help them survive. Epigenetic alterations govern gene expression and facilitate stress tolerance. Chemical priming enhances growth in plants by modulating physiological parameters. Transgenic breeding enables identification of genes involved in precise plant responses during stressful situations. In addition to protein coding genes, non-coding RNAs also influence the growth of the plant by causing alterations at gene expression levels. For achieving sustainable agriculture for a rising world population, it is crucial to develop abiotic-resistant crops with anticipated agronomical traits. To achieve this objective, understanding the diverse mechanisms by which plants protect themselves against abiotic stresses is imperative. This review emphasizes on recent progress and future prospects for abiotic stress tolerance and productivity in plants.
Collapse
Affiliation(s)
- Afsana Praveen
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| | - Sonali Dubey
- National Botanical Research Institute, Uttar Pradesh, Lukhnow, 226001 India
| | - Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| | - Varun Kumar Sharma
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| |
Collapse
|
12
|
Choudhary P, Pramitha L, Aggarwal PR, Rana S, Vetriventhan M, Muthamilarasan M. Biotechnological interventions for improving the seed longevity in cereal crops: progress and prospects. Crit Rev Biotechnol 2023; 43:309-325. [PMID: 35443842 DOI: 10.1080/07388551.2022.2027863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Seed longevity is a measure of the viability of seeds during long-term storage and is crucial for germplasm conservation and crop improvement programs. Also, longevity is an important trait for ensuring food and nutritional security. Thus, a better understanding of various factors regulating seed longevity is requisite to improve this trait and to minimize the genetic drift during the regeneration of germplasm. In particular, seed deterioration of cereal crops during storage adversely affects agricultural productivity and food security. The irreversible process of seed deterioration involves a complex interplay between different genes and regulatory pathways leading to: loss of DNA integrity, membrane damage, inactivation of storage enzymes and mitochondrial dysfunction. Identifying the genetic determinants of seed longevity and manipulating them using biotechnological tools hold the key to ensuring prolonged seed storage. Genetics and genomics approaches had identified several genomic regions regulating the longevity trait in major cereals such as: rice, wheat, maize and barley. However, very few studies are available in other Poaceae members, including millets. Deploying omics tools, including genomics, proteomics, metabolomics, and phenomics, and integrating the datasets will pinpoint the precise molecular determinants affecting the survivability of seeds. Given this, the present review enumerates the genetic factors regulating longevity and demonstrates the importance of integrated omics strategies to dissect the molecular machinery underlying seed deterioration. Further, the review provides a roadmap for deploying biotechnological approaches to manipulate the genes and genomic regions to develop improved cultivars with prolonged storage potential.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mani Vetriventhan
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | | |
Collapse
|
13
|
Salvi P, Varshney V, Majee M. Raffinose family oligosaccharides (RFOs): role in seed vigor and longevity. Biosci Rep 2022; 42:BSR20220198. [PMID: 36149314 PMCID: PMC9547172 DOI: 10.1042/bsr20220198] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Seed vigor and longevity are important agronomic attributes, as they are essentially associated with crop yield and thus the global economy. Seed longevity is a measure of seed viability and the most essential property in gene bank management since it affects regeneration of seed recycling. Reduced seed life or storability is a serious issue in seed storage since germplasm conservation and agricultural enhancement initiatives rely on it. The irreversible and ongoing process of seed deterioration comprises a complex gene regulatory network and altered metabolism that results in membrane damage, DNA integrity loss, mitochondrial dysregulation, protein damage, and disrupted antioxidative machinery. Carbohydrates and/or sugars, primarily raffinose family oligosaccharides (RFOs), have emerged as feasible components for boosting or increasing seed vigor and longevity in recent years. RFOs are known to perform diverse functions in plants, including abiotic and biotic stress tolerance, besides being involved in regulating seed germination, desiccation tolerance, vigor, and longevity. We emphasized and analyzed the potential impact of RFOs on seed vigor and longevity in this review. Here, we comprehensively reviewed the molecular mechanisms involved in seed longevity, RFO metabolism, and how RFO content is critical and linked with seed vigor and longevity. Further molecular basis, biotechnological approaches, and CRISPR/Cas applications have been discussed briefly for the improvement of seed attributes and ultimately crop production. Likewise, we suggest advancements, challenges, and future possibilities in this area.
Collapse
Affiliation(s)
- Prafull Salvi
- National Agri-Food Biotechnology Institute, Punjab 140308, India
| | - Vishal Varshney
- Govt. Shaheed Gend Singh College, Charama, Chhattisgarh 494337, India
| | - Manoj Majee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
14
|
Singh L, Pierce C, Santantonio N, Steiner R, Miller D, Reich J, Ray I. Validation of DNA marker-assisted selection for forage biomass productivity under deficit irrigation in alfalfa. THE PLANT GENOME 2022; 15:e20195. [PMID: 35178866 DOI: 10.1002/tpg2.20195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Drought and limited irrigation resources threaten agricultural sustainability in many regions of the world. Application of genomic-based breeding strategies may benefit crop variety development for these environments. Here, we provide a first report on the effect of deploying DNA marker-assisted selection (MAS) for the drought resilience quantitative trait in alfalfa (Medicago sativa L.). The goals of this study were to validate the effect of several quantitative trait loci (QTL) associated with alfalfa forage and crown-root (CR) biomass during drought and to determine their potential to improve forage yield of elite germplasm under water-limited conditions. Marker assisted selection was employed to introgress favorable or unfavorable DNA marker alleles affiliated with 10 biomass QTL into three elite backgrounds. Thirty-two populations were developed and evaluated for forage productivity over 3 yr under continuous deficit irrigation management in New Mexico, USA. Significant yield differences (ranging from -13 to 26%) were detected among some MAS-derived populations in all three elite backgrounds. Application of QTL MAS generally resulted in expected phenotypic responses within an elite genetic background that was similar to that in which the QTL were originally identified. However, relative performance of the populations varied substantially across the three genetic backgrounds. These outcomes indicate that QTL MAS can significantly affect forage productivity of elite alfalfa germplasm in drought-stressed environments. However, if biomass QTL are detected in donor germplasm that is genetically dissimilar to targeted elite populations, characterization of donor alleles may be warranted within elite backgrounds of interest to confirm their phenotypic effects prior to implementing MAS-based breeding.
Collapse
Affiliation(s)
- Lovepreet Singh
- Dep. of Plant and Environmental Sciences, New Mexico State Univ., Las Cruces, NM, 88003, USA
- Dep. of Plant Science and Landscape Architecture, Univ. of Maryland, College Park, MD, 20742, USA
| | - Chris Pierce
- Dep. of Plant and Environmental Sciences, New Mexico State Univ., Las Cruces, NM, 88003, USA
| | - Nicholas Santantonio
- Dep. of Plant and Environmental Sciences, New Mexico State Univ., Las Cruces, NM, 88003, USA
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robert Steiner
- Dep. of Economics, Applied Statistics and International Business, New Mexico State Univ., Las Cruces, NM, 88003, USA
| | - Don Miller
- Cal/West Seeds, Woodland, CA, 95695, USA
- Alforex Seeds, Woodland, CA, 95695, USA
| | - Jon Reich
- Cal/West Seeds, Woodland, CA, 95695, USA
- Canaan Agricultural Consulting LLC, Woodland, CA, 95695, USA
| | - Ian Ray
- Dep. of Plant and Environmental Sciences, New Mexico State Univ., Las Cruces, NM, 88003, USA
| |
Collapse
|
15
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Zenda T, Liu S, Dong A, Duan H. Advances in Cereal Crop Genomics for Resilience under Climate Change. Life (Basel) 2021; 11:502. [PMID: 34072447 PMCID: PMC8228855 DOI: 10.3390/life11060502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Adapting to climate change, providing sufficient human food and nutritional needs, and securing sufficient energy supplies will call for a radical transformation from the current conventional adaptation approaches to more broad-based and transformative alternatives. This entails diversifying the agricultural system and boosting productivity of major cereal crops through development of climate-resilient cultivars that can sustainably maintain higher yields under climate change conditions, expanding our focus to crop wild relatives, and better exploitation of underutilized crop species. This is facilitated by the recent developments in plant genomics, such as advances in genome sequencing, assembly, and annotation, as well as gene editing technologies, which have increased the availability of high-quality reference genomes for various model and non-model plant species. This has necessitated genomics-assisted breeding of crops, including underutilized species, consequently broadening genetic variation of the available germplasm; improving the discovery of novel alleles controlling important agronomic traits; and enhancing creation of new crop cultivars with improved tolerance to biotic and abiotic stresses and superior nutritive quality. Here, therefore, we summarize these recent developments in plant genomics and their application, with particular reference to cereal crops (including underutilized species). Particularly, we discuss genome sequencing approaches, quantitative trait loci (QTL) mapping and genome-wide association (GWAS) studies, directed mutagenesis, plant non-coding RNAs, precise gene editing technologies such as CRISPR-Cas9, and complementation of crop genotyping by crop phenotyping. We then conclude by providing an outlook that, as we step into the future, high-throughput phenotyping, pan-genomics, transposable elements analysis, and machine learning hold much promise for crop improvements related to climate resilience and nutritional superiority.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura P. Bag 1020, Zimbabwe
| | - Songtao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
17
|
Mohd Saad NS, Severn-Ellis AA, Pradhan A, Edwards D, Batley J. Genomics Armed With Diversity Leads the Way in Brassica Improvement in a Changing Global Environment. Front Genet 2021; 12:600789. [PMID: 33679880 PMCID: PMC7930750 DOI: 10.3389/fgene.2021.600789] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Meeting the needs of a growing world population in the face of imminent climate change is a challenge; breeding of vegetable and oilseed Brassica crops is part of the race in meeting these demands. Available genetic diversity constituting the foundation of breeding is essential in plant improvement. Elite varieties, land races, and crop wild species are important resources of useful variation and are available from existing genepools or genebanks. Conservation of diversity in genepools, genebanks, and even the wild is crucial in preventing the loss of variation for future breeding efforts. In addition, the identification of suitable parental lines and alleles is critical in ensuring the development of resilient Brassica crops. During the past two decades, an increasing number of high-quality nuclear and organellar Brassica genomes have been assembled. Whole-genome re-sequencing and the development of pan-genomes are overcoming the limitations of the single reference genome and provide the basis for further exploration. Genomic and complementary omic tools such as microarrays, transcriptomics, epigenetics, and reverse genetics facilitate the study of crop evolution, breeding histories, and the discovery of loci associated with highly sought-after agronomic traits. Furthermore, in genomic selection, predicted breeding values based on phenotype and genome-wide marker scores allow the preselection of promising genotypes, enhancing genetic gains and substantially quickening the breeding cycle. It is clear that genomics, armed with diversity, is set to lead the way in Brassica improvement; however, a multidisciplinary plant breeding approach that includes phenotype = genotype × environment × management interaction will ultimately ensure the selection of resilient Brassica varieties ready for climate change.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Batley
- School of Biological Sciences Western Australia and UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
18
|
Nuccio ML, Claeys H, Heyndrickx KS. CRISPR-Cas technology in corn: a new key to unlock genetic knowledge and create novel products. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:11. [PMID: 37309473 PMCID: PMC10236071 DOI: 10.1007/s11032-021-01200-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 06/14/2023]
Abstract
Since its inception in 2012, CRISPR-Cas technologies have taken the life science community by storm. Maize genetics research is no exception. Investigators around the world have adapted CRISPR tools to advance maize genetics research in many ways. The principle application has been targeted mutagenesis to confirm candidate genes identified using map-based methods. Researchers are also developing tools to more effectively apply CRISPR-Cas technologies to maize because successful application of CRISPR-Cas relies on target gene identification, guide RNA development, vector design and construction, CRISPR-Cas reagent delivery to maize tissues, and plant characterization, each contributing unique challenges to CRISPR-Cas efficacy. Recent advances continue to chip away at major barriers that prevent more widespread use of CRISPR-Cas technologies in maize, including germplasm-independent delivery of CRISPR-Cas reagents and production of high-resolution genomic data in relevant germplasm to facilitate CRISPR-Cas experimental design. This has led to the development of novel breeding tools to advance maize genetics and demonstrations of how CRISPR-Cas technologies might be used to enhance maize germplasm. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01200-9.
Collapse
|
19
|
Al-Ashkar I, Alotaibi M, Refay Y, Ghazy A, Zakri A, Al-Doss A. Selection criteria for high-yielding and early-flowering bread wheat hybrids under heat stress. PLoS One 2020; 15:e0236351. [PMID: 32785293 PMCID: PMC7423122 DOI: 10.1371/journal.pone.0236351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/04/2020] [Indexed: 01/09/2023] Open
Abstract
Hybrid performance during wheat breeding can be improved by analyzing genetic distance (GD) among wheat genotypes and determining its correlation with heterosis. This study evaluated the GD between 16 wheat genotypes by using 60 simple sequence repeat (SSR) markers to classify them according to their relationships and select those with greater genetic diversity, evaluate the correlation of the SSR marker distance with heterotic performance and specific combining ability (SCA) for heat stress tolerance, and identify traits that most influence grain yield (GY). Eight parental genotypes with greater genetic diversity and their 28 F1 hybrids generated using diallel crossing were evaluated for 12 measured traits in two seasons. The GD varied from 0.235 to 0.911 across the 16 genotypes. Cluster analysis based on the GD estimated using SSRs classified the genotypes into three major groups and six sub-groups, almost consistent with the results of principal coordinate analysis. The combined data indicated that five hybrids showed 20% greater yield than mid-parent or better-parent. Two hybrids (P2 × P4) and (P2 × P5), which showed the highest performance of days to heading (DH), grain filling duration (GFD), and GY, and had large genetic diversity among themselves (0.883 and 0.911, respectively), were deemed as promising heat-tolerant hybrids. They showed the best mid-parent heterosis and better-parent heterosis (BPH) for DH (-11.57 and -7.65%; -13.39 and -8.36%, respectively), GFD (12.74 and 12.17%; 12.09 and 10.59%, respectively), and GY (36.04 and 20.04%; 44.06 and 37.73%, respectively). Correlation between GD and each of BPH and SCA effects based on SSR markers was significantly positive for GFD, hundred kernel weight, number of kernels per spike, harvest index, GY, and grain filling rate and was significantly negative for DH. These correlations indicate that the performance of wheat hybrids with high GY and earliness could be predicted by determining the GD of the parents by using SSR markers. Multivariate analysis (stepwise regression and path coefficient) suggested that GFD, hundred kernel weight, days to maturity, and number of kernels per spike had the highest influence on GY.
Collapse
Affiliation(s)
- Ibrahim Al-Ashkar
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- * E-mail:
| | - Majed Alotaibi
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Yahya Refay
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdelhalim Ghazy
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Adel Zakri
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Al-Doss
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Anwar A, Kim JK. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. Int J Mol Sci 2020; 21:E2695. [PMID: 32295026 PMCID: PMC7216248 DOI: 10.3390/ijms21082695] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The recent rapid climate changes and increasing global population have led to an increased incidence of abiotic stress and decreased crop productivity. Environmental stresses, such as temperature, drought, nutrient deficiency, salinity, and heavy metal stresses, are major challenges for agriculture, and they lead to a significant reduction in crop growth and productivity. Abiotic stress is a very complex phenomenon, involving a variety of physiological and biochemical changes in plant cells. Plants exposed to abiotic stress exhibit enhanced levels of ROS (reactive oxygen species), which are highly reactive and toxic and affect the biosynthesis of chlorophyll, photosynthetic capacity, and carbohydrate, protein, lipid, and antioxidant enzyme activities. Transgenic breeding offers a suitable alternative to conventional breeding to achieve plant genetic improvements. Over the last two decades, genetic engineering/transgenic breeding techniques demonstrated remarkable developments in manipulations of the genes for the induction of desired characteristics into transgenic plants. Transgenic approaches provide us with access to identify the candidate genes, miRNAs, and transcription factors (TFs) that are involved in specific plant processes, thus enabling an integrated knowledge of the molecular and physiological mechanisms influencing the plant tolerance and productivity. The accuracy and precision of this phenomenon assures great success in the future of plant improvements. Hence, transgenic breeding has proven to be a promising tool for abiotic stress improvement in crops. This review focuses on the potential and successful applications, recent progress, and future perspectives of transgenic breeding for improving abiotic stress tolerance and productivity in plants.
Collapse
Affiliation(s)
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea;
| |
Collapse
|
21
|
Liu S, Zenda T, Dong A, Yang Y, Liu X, Wang Y, Li J, Tao Y, Duan H. Comparative Proteomic and Morpho-Physiological Analyses of Maize Wild-Type Vp16 and Mutant vp16 Germinating Seed Responses to PEG-Induced Drought Stress. Int J Mol Sci 2019; 20:E5586. [PMID: 31717328 PMCID: PMC6888951 DOI: 10.3390/ijms20225586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 01/21/2023] Open
Abstract
Drought stress is a major abiotic factor compromising plant cell physiological and molecular events, consequently limiting crop growth and productivity. Maize (Zea mays L.) is among the most drought-susceptible food crops. Therefore, understanding the mechanisms underlying drought-stress responses remains critical for crop improvement. To decipher the molecular mechanisms underpinning maize drought tolerance, here, we used a comparative morpho-physiological and proteomics analysis approach to monitor the changes in germinating seeds of two incongruent (drought-sensitive wild-type Vp16 and drought-tolerant mutant vp16) lines exposed to polyethylene-glycol-induced drought stress for seven days. Our physiological analysis showed that the tolerant line mutant vp16 exhibited better osmotic stress endurance owing to its improved reactive oxygen species scavenging competency and robust osmotic adjustment as a result of greater cell water retention and enhanced cell membrane stability. Proteomics analysis identified a total of 1200 proteins to be differentially accumulated under drought stress. These identified proteins were mainly involved in carbohydrate and energy metabolism, histone H2A-mediated epigenetic regulation, protein synthesis, signal transduction, redox homeostasis and stress-response processes; with carbon metabolism, pentose phosphate and glutathione metabolism pathways being prominent under stress conditions. Interestingly, significant congruence (R2 = 81.5%) between protein and transcript levels was observed by qRT-PCR validation experiments. Finally, we propose a hypothetical model for maize germinating-seed drought tolerance based on our key findings identified herein. Overall, our study offers insights into the overall mechanisms underpinning drought-stress tolerance and provides essential leads into further functional validation of the identified drought-responsive proteins in maize.
Collapse
Affiliation(s)
- Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China; (S.L.); (T.Z.); (A.D.); (Y.Y.); (X.L.); (Y.W.); (J.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China; (S.L.); (T.Z.); (A.D.); (Y.Y.); (X.L.); (Y.W.); (J.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China; (S.L.); (T.Z.); (A.D.); (Y.Y.); (X.L.); (Y.W.); (J.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yatong Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China; (S.L.); (T.Z.); (A.D.); (Y.Y.); (X.L.); (Y.W.); (J.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Xinyue Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China; (S.L.); (T.Z.); (A.D.); (Y.Y.); (X.L.); (Y.W.); (J.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yafei Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China; (S.L.); (T.Z.); (A.D.); (Y.Y.); (X.L.); (Y.W.); (J.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Jiao Li
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China; (S.L.); (T.Z.); (A.D.); (Y.Y.); (X.L.); (Y.W.); (J.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yongsheng Tao
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China; (S.L.); (T.Z.); (A.D.); (Y.Y.); (X.L.); (Y.W.); (J.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China; (S.L.); (T.Z.); (A.D.); (Y.Y.); (X.L.); (Y.W.); (J.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
22
|
Gedil M, Menkir A. An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa. FRONTIERS IN PLANT SCIENCE 2019; 10:1430. [PMID: 31781144 PMCID: PMC6851238 DOI: 10.3389/fpls.2019.01430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 05/22/2023]
Abstract
Maize production in West and Central Africa (WCA) is constrained by a wide range of interacting stresses that keep productivity below potential yields. Among the many problems afflicting maize production in WCA, drought, foliar diseases, and parasitic weeds are the most critical. Several decades of efforts devoted to the genetic improvement of maize have resulted in remarkable genetic gain, leading to increased yields of maize on farmers' fields. The revolution unfolding in the areas of genomics, bioinformatics, and phenomics is generating innovative tools, resources, and technologies for transforming crop breeding programs. It is envisaged that such tools will be integrated within maize breeding programs, thereby advancing these programs and addressing current and future challenges. Accordingly, the maize improvement program within International Institute of Tropical Agriculture (IITA) is undergoing a process of modernization through the introduction of innovative tools and new schemes that are expected to enhance genetic gains and impact on smallholder farmers in the region. Genomic tools enable genetic dissections of complex traits and promote an understanding of the physiological basis of key agronomic and nutritional quality traits. Marker-aided selection and genome-wide selection schemes are being implemented to accelerate genetic gain relating to yield, resilience, and nutritional quality. Therefore, strategies that effectively combine genotypic information with data from field phenotyping and laboratory-based analysis are currently being optimized. Molecular breeding, guided by methodically defined product profiles tailored to different agroecological zones and conditions of climate change, supported by state-of-the-art decision-making tools, is pivotal for the advancement of modern, genomics-aided maize improvement programs. Accelerated genetic gain, in turn, catalyzes a faster variety replacement rate. It is critical to forge and strengthen partnerships for enhancing the impacts of breeding products on farmers' livelihood. IITA has well-established channels for delivering its research products/technologies to partner organizations for further testing, multiplication, and dissemination across various countries within the subregion. Capacity building of national agricultural research system (NARS) will facilitate the smooth transfer of technologies and best practices from IITA and its partners.
Collapse
Affiliation(s)
- Melaku Gedil
- Bioscience Center and Maize Improvement Program, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Abebe Menkir
- Maize Improvement Program, International Institute of Tropical Agriculture, Ibadan, Nigeria
| |
Collapse
|
23
|
Expression induction of a class of RD26 genes by drought and salinity stresses in maize. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00286-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Characterization of natural genetic variation identifies multiple genes involved in salt tolerance in maize. Funct Integr Genomics 2019; 20:261-275. [PMID: 31522293 DOI: 10.1007/s10142-019-00707-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023]
Abstract
Progressive decline in irrigation water is forcing farmers to use brackish water which increases soil salinity and exposes the crop plants to salinity. Maize, one of the most important crops, is sensitive to salinity. Salt tolerance is a complex trait controlled by a number of physiological and biochemical processes. Scant information is available on the genetic architecture of salt tolerance in maize. We evaluated 399 inbred lines for six early vigor shoot and root traits upon exposure of 18-day seedlings to salinity (ECiw = 16 dS m-1) stress. Contrasting response of shoot and root growth to salinity indicated a meticulous reprogramming of resource partitioning by the plants to cope with the stress. The genomic analysis identified 57 single nucleotide polymorphisms (SNP) associated with early vigor traits. Candidate genes systematically associated with each SNP include both previously known and novel genes. Important candidates include a late embryogenesis protein, a divalent ion symporter, a proton extrusion protein, an RNA-binding protein, a casein kinase 1, and an AP2/EREBP transcription factor. The late embryogenesis protein is associated with both shoot and root length, indicating a coordinated change in resource allocation upon salt stress. Identification of a casein kinase 1 indicates an important role for Ser/Thr kinases in salt tolerance. Validation of eight candidates based on expression in a salt-tolerant and a salt-sensitive inbred line supported their role in salt tolerance. The candidate genes identified in this investigation provide a foundation for dissecting genetic and molecular regulation of salt tolerance in maize and related grasses.
Collapse
|
25
|
Schröder P, Sauvêtre A, Gnädinger F, Pesaresi P, Chmeliková L, Doğan N, Gerl G, Gökçe A, Hamel C, Millan R, Persson T, Ravnskov S, Rutkowska B, Schmid T, Szulc W, Teodosiu C, Terzi V. Discussion paper: Sustainable increase of crop production through improved technical strategies, breeding and adapted management - A European perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:146-161. [PMID: 31075581 DOI: 10.1016/j.scitotenv.2019.04.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/29/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
During the next decade it will be necessary to develop novel combinations of management strategies to sustainably increase crop production and soil resilience. Improving agricultural productivity, while conserving and enhancing biotic and abiotic resources, is an essential requirement to increase global food production on a sustainable basis. The role of farmers in increasing agricultural productivity growth sustainably will be crucial. Farmers are at the center of any process of change involving natural resources and for this reason they need to be encouraged and guided, through appropriate incentives and governance practices, to conserve natural ecosystems and their biodiversity, and minimize the negative impact agriculture can have on the environment. Farmers and stakeholders need to revise traditional approaches not as productive as the modern approaches but more friendly with natural and environmental ecosystems values as well as emerging novel tools and approaches addressing precise farming, organic amendments, lowered water consumption, integrated pest control and beneficial plant-microbe interactions. While practical solutions are developing, science based recommendations for crop rotations, breeding and harvest/postharvest strategies leading to environmentally sound and pollinator friendly production and better life in rural areas have to be provided.
Collapse
Affiliation(s)
- Peter Schröder
- Helmholtz Zentrum München, Comparative Microbiome Analysis, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| | - Andrés Sauvêtre
- Helmholtz Zentrum München, Comparative Microbiome Analysis, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Friederike Gnädinger
- Helmholtz Zentrum München, Comparative Microbiome Analysis, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Paolo Pesaresi
- University of Milan, Department of Biosciences, Via Celoria, 26, I-20133 Milano, Italy
| | - Lucie Chmeliková
- Technical University of Munich, Chair Organic Agriculture and Agronomy, Liesel Beckmann Str. 2, D-85354 Freising, Germany
| | - Nedim Doğan
- Adnan Menderes University, Department of Plant Protection, Bitki Koruma Bolumu, Aydin, Turkey
| | - Georg Gerl
- Helmholtz Zentrum München, Research Unit Environmental Simulation, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Ayhan Gökçe
- Niğde Ömer Halisdemir University, Faculty of Agricultural Sciences and Technologies, Niğde, Turkey
| | - Chantal Hamel
- Quebec Research and Development Centre, Agriculture and Agri-Food, 2560 Blvd. Hochelaga, Québec, QC G1V 2J3, Canada
| | - Rocio Millan
- CIEMAT, Environment Department/Soil Conservation and Recuperation Unit, Avenida Complutense 40, E-28040 Madrid, Spain
| | - Tomas Persson
- NIBIO-Norwegian Institute of Bioeconomy Research, Særheim, Postvegen 213, N-4353 Klepp Stasjon, Norway
| | - Sabine Ravnskov
- Dept. of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Beata Rutkowska
- Warsaw University of Life Sciences - SGGW, Noworsynowska 166 St., P-02-787 Warsaw, Poland
| | - Thomas Schmid
- CIEMAT, Environment Department/Soil Conservation and Recuperation Unit, Avenida Complutense 40, E-28040 Madrid, Spain
| | - Wiesław Szulc
- Warsaw University of Life Sciences - SGGW, Noworsynowska 166 St., P-02-787 Warsaw, Poland
| | - Carmen Teodosiu
- Dept. Environmental Engineering & Management, "Gheorghe Asachi" Technical University of Iasi, 73 Prof.Dr. D. Mangeron Street, 700050 Iasi, Romania
| | - Valeria Terzi
- Genomics Research Centre, Via S. Protaso, 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| |
Collapse
|
26
|
Kimotho RN, Baillo EH, Zhang Z. Transcription factors involved in abiotic stress responses in Maize ( Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ 2019; 7:e7211. [PMID: 31328030 PMCID: PMC6622165 DOI: 10.7717/peerj.7211] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in various regions around the world, and recently, this has become a constant threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activities of transcription factors (TFs), which are families of genes coding for specific TF proteins. TF target genes form a regulon that is involved in the repression/activation of genes associated with abiotic stress responses. Therefore, it is of utmost importance to have a systematic study on each TF family, the downstream target genes they regulate, and the specific TF genes involved in multiple abiotic stress responses in maize and other staple crops. METHOD In this review, the main TF families, the specific TF genes and their regulons that are involved in abiotic stress regulation will be briefly discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from different plants like rice, Arabidopsis, wheat, and barley will be used. RESULTS We have described in detail the main TF families in maize that take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning, and RNA-Seq. CONCLUSION In conclusion, it is expected that all the information provided in this review will in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|