1
|
Debnath P, Mahawar S, Singh G. A review on accessible techniques for the management of rice false smut: recent research and future outlook. PLANTA 2025; 261:137. [PMID: 40353957 DOI: 10.1007/s00425-025-04706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
MAIN CONCLUSION Rice false smut is an emerging threat to rice cultivation. Raising awareness about disease management strategies among scientists and rice growers is crucial to mitigating its impact. Modern advancements, including omics-based approaches such as genome assisted breeding, genetic engineering, genome editing, and nanotechnology, play a crucial role in developing effective management strategies to combat false smut. The world's rice supply is at risk from the fungal disease Ustilaginoidea virens, which causes rice false smut (RFS), can lead to significant production losses and quality degradation. In the past few decades, numerous strategies have been developed to combat this pervasive sickness, ranging from advanced biotechnology interventions to traditional farming practices. The development of nanotechnology has opened up new avenues for combating RFS by offering innovative ways to increase the precision and effectiveness of disease control tactics. This paper provides a comprehensive review of the long term strategies for managing rice fake smut, focusing on using multi-omics approaches combined with nanotechnology. Over the years, various strategies, from advanced biotechnology to traditional farming, have been developed to combat this disease. Nanotechnology offers innovative and efficient solutions for RFS management. We examined the past background of RFS management while assessing the merits and drawbacks of traditional techniques. Then, we explored the most recent developments in nano-technological applications like nano-pesticides, nanosensors, and nanoformulations, diagnostics developments, genome editing, molecular breeding along with metabolic engineering emphasizing how they could transform RFS control in different rice-growing areas globally. The current review is scrutinizes the foremost obstacles and applying sophisticated techniques for the management of RFS. The goal of this review is to close the gap between conventional wisdom and contemporary advancements by providing a comprehensive analysis of the diverse strategies needed to lessen the negative effects of RFS on the world's food security.
Collapse
Affiliation(s)
| | - Sonam Mahawar
- Maharanapratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Garima Singh
- Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Ma B, Li Y, Wang T, Li D, Jia S. Advances in CRISPR/Cas9-Based Gene Editing in Filamentous Fungi. J Fungi (Basel) 2025; 11:350. [PMID: 40422684 DOI: 10.3390/jof11050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
As an important class of microorganisms, filamentous fungi have crucial roles in protein secretion, secondary metabolite production and environmental pollution control. However, characteristics such as apical growth, heterokaryon, low homologous recombination (HR) efficiency and the scarcity of genetic markers mean that the application of traditional gene editing technology in filamentous fungi faces great challenges. The introduction of the RNA-mediated CRISPR/Cas (clustered regularly interspaced short palindromic repeat/CRlSPR-associated protein) system in filamentous fungi in recent years has revolutionized gene editing in filamentous fungi. In addition, the continuously expressed CRISPR system has significantly improved the editing efficiency, while the optimized sgRNA design and reduced cas9 concentration have effectively reduced the off-target effect, further enhancing the safety and reliability of the technology. In this review, we systematically analyze the molecular mechanism and regulatory factors of CRISPR/Cas9, focus on the optimization of its expression system and the improvement of the transformation efficiency in filamentous fungi, and reveal the core regulatory roles of HR and non-homologous end-joining (NHEJ) pathways in gene editing. Based on the analysis of various filamentous fungi applications, this review reveals the outstanding advantages of CRISPR/Cas9 in the enhancement of protein secretion, addresses the reconstruction of secondary metabolic pathways and pollutant degradation in the past decade, and provides a theoretical basis and practical guidance for the optimization of the technology and engineering applications.
Collapse
Affiliation(s)
- Bin Ma
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yimiao Li
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Tinghui Wang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Dongming Li
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuang Jia
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
3
|
Dort EN, Feau N, Hamelin RC. Novel application of ribonucleoprotein-mediated CRISPR-Cas9 gene editing in plant pathogenic oomycete species. Microbiol Spectr 2025; 13:e0301224. [PMID: 40014012 PMCID: PMC11960053 DOI: 10.1128/spectrum.03012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
CRISPR-Cas9 gene editing has become an important tool for the study of plant pathogens, allowing researchers to functionally characterize specific genes involved in phytopathogenicity, virulence, and fungicide resistance. Protocols for CRISPR-Cas9 gene editing have already been developed for Phytophthoras, an important group of oomycete plant pathogens; however, these efforts have exclusively focused on agricultural pathosystems, with research lacking for forest pathosystems. We sought to develop CRISPR-Cas9 gene editing in two forest pathogenic Phytophthoras, Phytophthora cactorum and P. ramorum, using a plasmid-ribonucleoprotein (RNP) co-transformation approach. Our gene target in both species was the ortholog of PcORP1, which encodes an oxysterol-binding protein that is the target of the fungicide oxathiapiprolin in the agricultural pathogen P. capsici. We delivered liposome complexes, each containing plasmid DNA and CRISPR-Cas9 RNPs, to Phytophthora protoplasts using a polyethylene glycol-mediated transformation protocol. We obtained two ORP1 mutants in P. cactorum but were unable to obtain any mutants in P. ramorum. The two P. cactorum mutants exhibited decreased resistance to oxathiapiprolin, as measured by their radial growth relative to wild-type cultures on oxathiapiprolin-supplemented medium. Our results demonstrate the potential for RNP-mediated CRISPR-Cas9 gene editing in P. cactorum and provide a foundation for future optimization of our protocol in other forest pathogenic Phytophthora species.IMPORTANCECRISPR-Cas9 gene editing has become a valuable tool for characterizing the genetics driving virulence and pathogenicity in plant pathogens. CRISPR-Cas9 protocols are now well-established in several Phytophthora species, an oomycete genus with significant economic and ecological impact globally. These protocols, however, have been developed for agricultural Phytophthora pathogens only; CRISPR-Cas9 systems have not yet been developed for any forest pathogenic Phytophthoras. In this study, we sought to establish CRISPR-Cas9 gene editing in two forest Phytophthora pathogens that cause widespread tree mortality: P. cactorum and P. ramorum. We successfully obtained gene mutations in P. cactorum and demonstrated a decrease in fungicide resistance, a trait that could impact the pathogen's ability to cause disease. However, the same protocol did not yield any mutants in P. ramorum. The results of our study will serve as a baseline for the development of CRISPR-Cas9 gene editing in forest Phytophthoras and other oomycetes.
Collapse
Affiliation(s)
- Erika N. Dort
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Feau
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, Canada
| | - Richard C. Hamelin
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
4
|
Zhai Z, Zhang M, Yin R, Zhao S, Shen Z, Yang Y, Zhang X, Wang J, Qin Y, Xu D, Zhou L, Lai D. CRISPR/Cas9-assisted gene editing reveals that EgPKS, a polyketide synthase, is required for the biosynthesis of preussomerins in Edenia gomezpompae SV2. World J Microbiol Biotechnol 2025; 41:103. [PMID: 40069470 DOI: 10.1007/s11274-025-04313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Edenia gomezpompae, an endophytic fungus derived from plants, produced a diverse array of preussomerins, a type of spirobisnaphthalenes featuring two spiroketal groups, which exhibited significant antibacterial, antifungal, and cytotoxic activities. Structurally, the biosynthesis of preussomerins might be related to the biosynthesis of 1,8-dihydroxynaphthalene (DHN), a precursor of DHN-melanin. However, the absence of efficient gene-editing tools for E. gomezpompae has hindered the biosynthetic study of preussomerins. In this study, we developed a CRISPR/Cas9-based gene editing system for E. gomezpompae SV2 that was isolated from the stem of Setaria viridis, by utilizing the endogenous U6 snRNA promoter to drive sgRNA expression. Using this system, we successfully disrupted the polyketide synthase (PKS)-encoding gene, Egpks, a putative 1,3,6,8-tetrahydroxynaphthalene synthase gene involved in the biosynthesis of DHN-melanin, with an editing efficiency up to 92% and a knockout efficiency of 71% when employing the U6 snRNA-3 promoter. Furthermore, the disrupted mutant (∆Egpks) displayed white hyphae and lost the ability to produce preussomerins. These results provided a foundational tool for genetic manipulation in E. gomezpompae and revealed the role of EgPKS in the biosynthesis of preussomerin-type spirobisnaphthalenes.
Collapse
Affiliation(s)
- Ziqi Zhai
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Mengwei Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ruya Yin
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Siji Zhao
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhen Shen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yonglin Yang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jianing Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yifei Qin
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Xu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ligang Zhou
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daowan Lai
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Yu M, Song T, Yu J, Cao H, Pan X, Qi Z, Du Y, Liu W, Liu Y. UvVelC is important for conidiation and pathogenicity in the rice false smut pathogen Ustilaginoidea virens. Virulence 2024; 15:2301243. [PMID: 38240294 PMCID: PMC10802205 DOI: 10.1080/21505594.2023.2301243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Rice false smut disease is one of the most significant rice diseases worldwide. Ustilaginoidea virens is the causative agent of this disease. Although several developmental and pathogenic genes have been identified and functionally analyzed, the pathogenic molecular mechanisms of U. virens remain elusive. The velvet family regulatory proteins are involved in fungal development, conidiation, and pathogenicity. In this study, we demonstrated the function of the VelC homolog UvVELC in U. virens. We identified the velvet family protein UvVELC and characterized its functions using a target gene deletion-strategy. Deletion of UvVELC resulted in conidiation failure and pathogenicity. The UvVELC expression levels during infection suggested that this gene might be involved in the early infection process. UvVELC is also important in resistance to abiotic stresses, the utilization efficiency of glucose, stachyose, raffinose, and other sugars, and the expression of transport-related genes. Moreover, UvVELC could physically interact with UvVEA in yeast, and UvVELC/UvVEA double-knockout mutants also failed in conidiation and pathogenicity. These results indicate that UvVELC play a critical role in the conidiation and pathogenicity in U. virens. Functional analysis indicated that UvVELC-mediated conidiation and nutrient acquisition from rice regulates the pathogenicity of U. virens. Understanding the function of the UvVELC homolog could provide a potential molecular target for controlling rice false smut disease.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Insistant of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
6
|
Sunani SK, Koti PS, Sunitha NC, Choudhary M, Jeevan B, Anilkumar C, Raghu S, Gadratagi BG, Bag MK, Acharya LK, Ram D, Bashyal BM, Das Mohapatra S. Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense. PLANTA 2024; 260:92. [PMID: 39261328 DOI: 10.1007/s00425-024-04523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION The Ustilaginoidea virens -rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding. The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens-rice pathosystem research while identifying opportunities for future investigations.
Collapse
Affiliation(s)
- Sunil Kumar Sunani
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
- ICAR-Indian Institute of Pulse Research (RS), Bhubaneswar, Odisha, India
| | - Prasanna S Koti
- University of Agricultural Sciences, GKVK, Bangalore, Karnataka, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
- ICAR-National Centre for Integrated Pest Management, New Delhi, India
| | - B Jeevan
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA.
| | - S Raghu
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Manas Kumar Bag
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Dama Ram
- Department of Plant Pathology, Agriculture University, Jodhpur, Rajasthan, India
| | | | | |
Collapse
|
7
|
Zhu H, Wang H, Wang L, Zheng Z. CRISPR/Cas9-based genome engineering in the filamentous fungus Rhizopus oryzae and its application to L-lactic acid production. Biotechnol J 2024; 19:e2400309. [PMID: 39295562 DOI: 10.1002/biot.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
The filamentous fungus Rhizopus oryzae is one of the main industrial strains for the production of a series of important chemicals such as ethanol, lactic acid, and fumaric acid. However, the lack of efficient gene editing tools suitable for R. oryzae makes it difficult to apply technical methods such as metabolic engineering regulation and synthetic biology modification. A CRISPR-Cas9 system suitable for efficient genome editing in R. oryzae was developed. Firstly, four endogenous U6 promoters of R. oryzae were identified and screened with the highest transcriptional activity for application to sgRNA transcription. It was then determined that the U6 promoter mediated CRISPR/Cas9 system has the ability to efficiently edit the genome of R. oryzae through NHEJ and HDR-mediated events. Furthermore, the newly constructed CRISPR-Cas9 dual sgRNAs system can simultaneously disrupt or insert different fragments of the R. oryzae genome. Finally, this CRISPR-Cas9 system was applied to the genome editing of R. oryzae by knocking out pyruvate carboxylase gene (PYC) and pyruvate decarboxylase gene (pdcA) and knocking in phosphofructokinase (pfkB) from Escherichia coli and L-lactate dehydrogenase (L-LDH) from Heyndrickxia coagulans, which resulted in a substantial increase in L-LA production. In summary, this study showed that the CRISPR/Cas9-based genome editing tool is efficient for manipulating genes in R. oryzae.
Collapse
Affiliation(s)
- Haodong Zhu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- Science Island Branch of Graduate, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Han Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Li Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- Science Island Branch of Graduate, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
8
|
Inam S, Muhammad A, Irum S, Rehman N, Riaz A, Uzair M, Khan MR. Genome editing for improvement of biotic and abiotic stress tolerance in cereals. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24092. [PMID: 39222468 DOI: 10.1071/fp24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Global agricultural production must quadruple by 2050 to fulfil the needs of a growing global population, but climate change exacerbates the difficulty. Cereals are a very important source of food for the world population. Improved cultivars are needed, with better resistance to abiotic stresses like drought, salt, and increasing temperatures, and resilience to biotic stressors like bacterial and fungal infections, and pest infestation. A popular, versatile, and helpful method for functional genomics and crop improvement is genome editing. Rapidly developing genome editing techniques including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) are very important. This review focuses on how CRISPR/Cas9 genome editing might enhance cereals' agronomic qualities in the face of climate change, providing important insights for future applications. Genome editing efforts should focus on improving characteristics that confer tolerance to conditions exacerbated by climate change (e.g. drought, salt, rising temperatures). Improved water usage efficiency, salt tolerance, and heat stress resilience are all desirable characteristics. Cultivars that are more resilient to insect infestations and a wide range of biotic stressors, such as bacterial and fungal diseases, should be created. Genome editing can precisely target genes linked to disease resistance pathways to strengthen cereals' natural defensive systems.
Collapse
Affiliation(s)
- Safeena Inam
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Amna Muhammad
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Samra Irum
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Nazia Rehman
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Aamir Riaz
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Muhammad Uzair
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Muhammad Ramzan Khan
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| |
Collapse
|
9
|
Zhou J, Chen X, Li SM. Construction of an expression platform for fungal secondary metabolite biosynthesis in Penicillium crustosum. Appl Microbiol Biotechnol 2024; 108:427. [PMID: 39046587 PMCID: PMC11269504 DOI: 10.1007/s00253-024-13259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Filamentous fungi are prolific producers of bioactive natural products and play a vital role in drug discovery. Yet, their potential cannot be fully exploited since many biosynthetic genes are silent or cryptic under laboratory culture conditions. Several strategies have been applied to activate these genes, with heterologous expression as one of the most promising approaches. However, successful expression and identification of new products are often hindered by host-dependent factors, such as low gene targeting efficiencies, a high metabolite background, or a lack of selection markers. To overcome these challenges, we have constructed a Penicillium crustosum expression host in a pyrG deficient strain by combining the split-marker strategy and CRISPR-Cas9 technology. Deletion of ligD and pcribo improved gene targeting efficiencies and enabled the use of an additional selection marker in P. crustosum. Furthermore, we reduced the secondary metabolite background by inactivation of two highly expressed gene clusters and abolished the formation of the reactive ortho-quinone methide. Finally, we replaced the P. crustosum pigment gene pcr4401 with the commonly used Aspergillus nidulans wA expression site for convenient use of constructs originally designed for A. nidulans in our P. crustosum host strain. As proof of concept, we successfully expressed a single polyketide synthase gene and an entire gene cluster at the P. crustosum wA locus. Resulting transformants were easily detected by their albino phenotype. With this study, we provide a highly efficient platform for heterologous expression of fungal genes. KEY POINTS: Construction of a highly efficient Penicillium crustosum heterologous expression host Reduction of secondary metabolite background by genetic dereplication strategy Integration of wA site to provide an alternative host besides Aspergillus nidulans.
Collapse
Affiliation(s)
- Jenny Zhou
- Institut Für Pharmazeutische Biologie Und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Xiaoling Chen
- Institut Für Pharmazeutische Biologie Und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Shu-Ming Li
- Institut Für Pharmazeutische Biologie Und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany.
| |
Collapse
|
10
|
Yan J, Wang R, Wu M, Cai M, Qu J, Liu L, Xie J, Yin W, Luo C. Transcriptional Activator UvXlnR Is Required for Conidiation and Pathogenicity of Rice False Smut Fungus Ustilaginoidea virens. PHYTOPATHOLOGY 2024; 114:1603-1611. [PMID: 38506745 DOI: 10.1094/phyto-01-24-0038-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Transcription factors play critical roles in diverse biological processes in fungi. XlnR, identified as a transcriptional activator that regulates the expression of the extracellular xylanase genes in fungi, has not been extensively studied for its function in fungal development and pathogenicity in rice false smut fungus Ustilaginoidea virens. In this study, we characterized UvXlnR in U. virens and established that the full-length, N-terminal, and C-terminal forms have the ability to activate transcription. The study further demonstrated that UvXlnR plays crucial roles in various aspects of U. virens biology. Deletion of UvXlnR affected growth, conidiation, and stress response. UvXlnR mutants also exhibited reduced pathogenicity, which could be partially attributed to the reduced expression of xylanolytic genes and extracellular xylanase activity of U. virens during the infection process. Our results indicate that UvXlnR is involved in regulating growth, conidiation, stress response, and pathogenicity.
Collapse
Affiliation(s)
- Jiali Yan
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Wang
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyao Wu
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Minzheng Cai
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Qu
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianmeng Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiatao Xie
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixiao Yin
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Singh PK, Devanna BN, Dubey H, Singh P, Joshi G, Kumar R. The potential of genome editing to create novel alleles of resistance genes in rice. Front Genome Ed 2024; 6:1415244. [PMID: 38933684 PMCID: PMC11201548 DOI: 10.3389/fgeed.2024.1415244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rice, a staple food for a significant portion of the global population, faces persistent threats from various pathogens and pests, necessitating the development of resilient crop varieties. Deployment of resistance genes in rice is the best practice to manage diseases and reduce environmental damage by reducing the application of agro-chemicals. Genome editing technologies, such as CRISPR-Cas, have revolutionized the field of molecular biology, offering precise and efficient tools for targeted modifications within the rice genome. This study delves into the application of these tools to engineer novel alleles of resistance genes in rice, aiming to enhance the plant's innate ability to combat evolving threats. By harnessing the power of genome editing, researchers can introduce tailored genetic modifications that bolster the plant's defense mechanisms without compromising its essential characteristics. In this study, we synthesize recent advancements in genome editing methodologies applicable to rice and discuss the ethical considerations and regulatory frameworks surrounding the creation of genetically modified crops. Additionally, it explores potential challenges and future prospects for deploying edited rice varieties in agricultural landscapes. In summary, this study highlights the promise of genome editing in reshaping the genetic landscape of rice to confront emerging challenges, contributing to global food security and sustainable agriculture practices.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
| | | | - Himanshu Dubey
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - Prabhakar Singh
- Botany Department, Banaras Hindu University, Varanasi, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal (A Central University), Tehri Garhwal, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
12
|
Li GB, Liu J, He JX, Li GM, Zhao YD, Liu XL, Hu XH, Zhang X, Wu JL, Shen S, Liu XX, Zhu Y, He F, Gao H, Wang H, Zhao JH, Li Y, Huang F, Huang YY, Zhao ZX, Zhang JW, Zhou SX, Ji YP, Pu M, He M, Chen X, Wang J, Li W, Wu XJ, Ning Y, Sun W, Xu ZJ, Wang WM, Fan J. Rice false smut virulence protein subverts host chitin perception and signaling at lemma and palea for floral infection. THE PLANT CELL 2024; 36:2000-2020. [PMID: 38299379 PMCID: PMC11062437 DOI: 10.1093/plcell/koae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.
Collapse
Affiliation(s)
- Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Xue He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Gao-Meng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya-Dan Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Ling Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621023, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Long Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuai Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Han Gao
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Weitao Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xian-Jun Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenxian Sun
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Zheng-Jun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Yazhouwan National Laboratory, Sanya 572024, China
| |
Collapse
|
13
|
Zhao S, Yin R, Zhang M, Zhai Z, Shen Z, Mou Y, Xu D, Zhou L, Lai D. Efficient gene editing in the slow-growing, non-sporulating, melanized, endophytic fungus Berkleasmium sp. Dzf12 using a CRISPR/Cas9 system. World J Microbiol Biotechnol 2024; 40:176. [PMID: 38652405 DOI: 10.1007/s11274-024-03988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The endophytic fungus Berkleasmium sp. Dzf12 that was isolated from Dioscorea zingiberensis, is a proficient producer of palmarumycins, which are intriguing polyketides of the spirobisnaphthalene class. These compounds displayed a wide range of bioactivities, including antibacterial, antifungal, and cytotoxic activities. However, conventional genetic manipulation of Berkleasmium sp. Dzf12 is difficult and inefficient, partially due to the slow-growing, non-sporulating, and highly pigmented behavior of this fungus. Herein, we developed a CRISPR/Cas9 system suitable for gene editing in Berkleasmium sp. Dzf12. The protoplast preparation was optimized, and the expression of Cas9 in Berkleasmium sp. Dzf12 was validated. To assess the gene disruption efficiency, a putative 1, 3, 6, 8-tetrahydroxynaphthalene synthase encoding gene, bdpks, involved in 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis, was selected as the target for gene disruption. Various endogenous sgRNA promoters were tested, and different strategies to express sgRNA were compared, resulting in the construction of an optimal system using the U6 snRNA-1 promoter as the sgRNA promoter. Successful disruption of bdpks led to a complete abolishment of the production of spirobisnaphthalenes and melanin. This work establishes a useful gene targeting disruption system for exploration of gene functions in Berkleasmium sp. Dzf12, and also provides an example for developing an efficient CRISPR/Cas9 system to the fungi that are difficult to manipulate using conventional genetic tools.
Collapse
Affiliation(s)
- Siji Zhao
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Ruya Yin
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Mengwei Zhang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Ziqi Zhai
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Zhen Shen
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Yan Mou
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Dan Xu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Ligang Zhou
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Daowan Lai
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China.
| |
Collapse
|
14
|
Shen Q, Ruan H, Zhang H, Wu T, Zhu K, Han W, Dong R, Ming T, Qi H, Zhang Y. Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality. Front Microbiol 2024; 15:1375120. [PMID: 38605715 PMCID: PMC11007153 DOI: 10.3389/fmicb.2024.1375120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Filamentous fungi play a crucial role in environmental pollution control, protein secretion, and the production of active secondary metabolites. The evolution of gene editing technology has significantly improved the study of filamentous fungi, which in the past was laborious and time-consuming. But recently, CRISPR-Cas systems, which utilize small guide RNA (sgRNA) to mediate clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas), have demonstrated considerable promise in research and application for filamentous fungi. The principle, function, and classification of CRISPR-Cas, along with its application strategies and research progress in filamentous fungi, will all be covered in the review. Additionally, we will go over general matters to take into account when editing a genome with the CRISPR-Cas system, including the creation of vectors, different transformation methodologies, multiple editing approaches, CRISPR-mediated transcriptional activation (CRISPRa) or interference (CRISPRi), base editors (BEs), and Prime editors (PEs).
Collapse
Affiliation(s)
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cao H, Gong H, Yu M, Pan X, Song T, Yu J, Qi Z, Du Y, Zhang R, Liu Y. The Ras GTPase-activating protein UvGap1 orchestrates conidiogenesis and pathogenesis in the rice false smut fungus Ustilaginoidea virens. MOLECULAR PLANT PATHOLOGY 2024; 25:e13448. [PMID: 38502297 PMCID: PMC10950028 DOI: 10.1111/mpp.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
Ras GTPase-activating proteins (Ras GAPs) act as negative regulators for Ras proteins and are involved in various signalling processes that influence cellular functions. Here, the function of four Ras GAPs, UvGap1 to UvGap4, was identified and analysed in Ustilaginoidea virens, the causal agent of rice false smut disease. Disruption of UvGAP1 or UvGAP2 resulted in reduced mycelial growth and an increased percentage of larger or dumbbell-shaped conidia. Notably, the mutant ΔUvgap1 completely lost its pathogenicity. Compared to the wild-type strain, the mutants ΔUvgap1, ΔUvgap2 and ΔUvgap3 exhibited reduced tolerance to H2 O2 oxidative stress. In particular, the ΔUvgap1 mutant was barely able to grow on the H2 O2 plate, and UvGAP1 was found to influence the expression level of genes involved in reactive oxygen species synthesis and scavenging. The intracellular cAMP level in the ΔUvgap1 mutant was elevated, as UvGap1 plays an important role in maintaining the intracellular cAMP level by affecting the expression of phosphodiesterases, which are linked to cAMP degradation in U. virens. In a yeast two-hybrid assay, UvRas1 and UvRasGef (Ras guanyl nucleotide exchange factor) physically interacted with UvGap1. UvRas2 was identified as an interacting partner of UvGap1 through a bimolecular fluorescence complementation assay and affinity capture-mass spectrometry analysis. Taken together, these findings suggest that the UvGAP1-mediated Ras pathway is essential for the development and pathogenicity of U. virens.
Collapse
Affiliation(s)
- Huijuan Cao
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Hao Gong
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Mina Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xiayan Pan
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Tianqiao Song
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Junjie Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Zhongqiang Qi
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yan Du
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Rongsheng Zhang
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yongfeng Liu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
16
|
Wang B, Duan G, Liu L, Long Z, Bai X, Ou M, Wang P, Jiang D, Li D, Sun W. UvHOS3-mediated histone deacetylation is essential for virulence and negatively regulates ustilaginoidin biosynthesis in Ustilaginoidea virens. MOLECULAR PLANT PATHOLOGY 2024; 25:e13429. [PMID: 38353606 PMCID: PMC10866089 DOI: 10.1111/mpp.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Ustilaginoidea virens is the causal agent of rice false smut, which has recently become one of the most important rice diseases worldwide. Ustilaginoidins, a major type of mycotoxins produced in false smut balls, greatly deteriorates grain quality. Histone acetylation and deacetylation are involved in regulating secondary metabolism in fungi. However, little is yet known on the functions of histone deacetylases (HDACs) in virulence and mycotoxin biosynthesis in U. virens. Here, we characterized the functions of the HDAC UvHOS3 in U. virens. The ΔUvhos3 deletion mutant exhibited the phenotypes of retarded growth, increased mycelial branches and reduced conidiation and virulence. The ΔUvhos3 mutants were more sensitive to sorbitol, sodium dodecyl sulphate and oxidative stress/H2 O2 . ΔUvhos3 generated significantly more ustilaginoidins. RNA-Seq and metabolomics analyses also revealed that UvHOS3 is a key negative player in regulating secondary metabolism, especially mycotoxin biosynthesis. Notably, UvHOS3 mediates deacetylation of H3 and H4 at H3K9, H3K18, H3K27 and H4K8 residues. Chromatin immunoprecipitation assays indicated that UvHOS3 regulates mycotoxin biosynthesis, particularly for ustilaginoidin and sorbicillinoid production, by modulating the acetylation level of H3K18. Collectively, this study deepens the understanding of molecular mechanisms of the HDAC UvHOS3 in regulating virulence and mycotoxin biosynthesis in phytopathogenic fungi.
Collapse
Affiliation(s)
- Bo Wang
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
- College of Plant ProtectionSanya Institute of China Agricultural UniversitySanyaChina
| | - Guohua Duan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Ling Liu
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Zhaoyi Long
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Xiaolong Bai
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Mingming Ou
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Peiying Wang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Du Jiang
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionSanya Institute of China Agricultural UniversitySanyaChina
| | - Dayong Li
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Wenxian Sun
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| |
Collapse
|
17
|
Bhadauria V, Han T, Li G, Ma W, Zhang M, Yang J, Zhao W, Peng YL. A gln-tRNA-based CRISPR/Cas9 knockout system enables the functional characterization of genes in the genetically recalcitrant brassica anthracnose fungus Colletotrichum higginsianum. Int J Biol Macromol 2024; 254:127953. [PMID: 37951433 DOI: 10.1016/j.ijbiomac.2023.127953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Colletotrichum higginsianum causes anthracnose disease in brassicas. The availability of the C. higginsianum genome has paved the way for the genome-wide exploration of genes associated with virulence/pathogenicity. However, delimiting the biological functions of these genes remains an arduous task due to the recalcitrance of C. higginsianum to genetic manipulations. Here, we report a CRISPR/Cas9-based system that can knock out the genes in C. higginsianum with a staggering 100% homologous recombination frequency (HRF). The system comprises two vectors: pCas9-Ch_tRp-sgRNA, in which a C. higginsianum glutaminyl-tRNA drives the expression of sgRNA, and pCE-Zero-HPT carrying a donor DNA cassette containing the marker gene HPT flanked by homology arms. Upon co-transformation of the C. higginsianum protoplasts, pCas9-Ch_tRp-sgRNA causes a DNA double-strand break in the targeted gene, followed by homology-directed replacement of the gene with HPT by pCE-Zero-HPT, thereby generating loss-of-function mutants. Using the system, we generated the knockout mutants of two effector candidates (ChBas3 and OBR06881) with a 100% HRF. Interestingly, the ΔChBas3 and ΔOBR06881 mutants did not seem to affect the C. higginsianum infection of Arabidopsis thaliana. Altogether, the CRISPR/Cas9 system developed in the study enables the targeted deletion of genes, including effectors, in C. higginsianum, thus determining their biological functions.
Collapse
Affiliation(s)
- Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Tongling Han
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guangjun Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wendi Ma
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Manyu Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Liu L, Wang B, Duan G, Wang J, Pan Z, Ou M, Bai X, Wang P, Zhao D, Nan N, Li D, Sun W. Histone Deacetylase UvHST2 Is a Global Regulator of Secondary Metabolism in Ustilaginoidea virens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13124-13136. [PMID: 37615365 DOI: 10.1021/acs.jafc.3c01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ustilaginoidea virens, the causal agent of rice false smut, produces a large amount of mycotoxins, including ustilaginoidins and sorbicillinoids. However, little is known about the regulatory mechanism of mycotoxin biosynthesis inU. virens. Here, we demonstrate that the NAD+-dependent histone deacetylase UvHST2 negatively regulates ustilaginoidin biosynthesis. UvHst2 knockout caused retarded hypha growth and reduced conidiation and pathogenicity inU. virens. Transcriptome analysis revealed that the transcription factor genes, transporter genes, and other tailoring genes in eight biosynthetic gene clusters (BGCs) including ustilaginoidin and sorbicillinoid BGCs were upregulated in ΔUvhst2. Interestingly, the UvHst2 deletion affects alternative splicing. Metabolomics revealed that UvHST2 negatively regulates the biosynthesis of various mycotoxins including ustilaginoidins, sorbicillin, ochratoxin B, zearalenone, and O-M-sterigmatocystin. Combined transcriptome and metabolome analyses uncover that UvHST2 positively regulates pathogenicity but negatively modulates the expression of BGCs involved in secondary metabolism. Collectively, UvHST2 functions as a global regulator of secondary metabolism inU. virens.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Bo Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Guohua Duan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Jing Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Zequn Pan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Mingming Ou
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Xiaolong Bai
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Peiying Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Dan Zhao
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Nan Nan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Dayong Li
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Hemalatha P, Abda EM, Shah S, Venkatesa Prabhu S, Jayakumar M, Karmegam N, Kim W, Govarthanan M. Multi-faceted CRISPR-Cas9 strategy to reduce plant based food loss and waste for sustainable bio-economy - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117382. [PMID: 36753844 DOI: 10.1016/j.jenvman.2023.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Currently, international development requires innovative solutions to address imminent challenges like climate change, unsustainable food system, food waste, energy crisis, and environmental degradation. All the same, addressing these concerns with conventional technologies is time-consuming, causes harmful environmental impacts, and is not cost-effective. Thus, biotechnological tools become imperative for enhancing food and energy resilience through eco-friendly bio-based products by valorisation of plant and food waste to meet the goals of circular bioeconomy in conjunction with Sustainable Developmental Goals (SDGs). Genome editing can be accomplished using a revolutionary DNA modification tool, CRISPR-Cas9, through its uncomplicated guided mechanism, with great efficiency in various organisms targeting different traits. This review's main objective is to examine how the CRISPR-Cas system, which has positive features, could improve the bioeconomy by reducing food loss and waste with all-inclusive food supply chain both at on-farm and off-farm level; utilising food loss and waste by genome edited microorganisms through food valorisation; efficient microbial conversion of low-cost substrates as biofuel; valorisation of agro-industrial wastes; mitigating greenhouse gas emissions through forestry plantation crops; and protecting the ecosystem and environment. Finally, the ethical implications and regulatory issues that are related to CRISPR-Cas edited products in the international markets have also been taken into consideration.
Collapse
Affiliation(s)
- Palanivel Hemalatha
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Ebrahim M Abda
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Shipra Shah
- Department of Forestry, College of Agriculture, Fisheries and Forestry, Fiji National University, Kings Road, Koronivia, P. O. Box 1544, Nausori, Republic of Fiji
| | - S Venkatesa Prabhu
- Department of Chemical Engineering, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - M Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia.
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
20
|
Zhang X, Hou X, Xu D, Xue M, Zhang J, Wang J, Yang Y, Lai D, Zhou L. Effects of Carbon, Nitrogen, Ambient pH and Light on Mycelial Growth, Sporulation, Sorbicillinoid Biosynthesis and Related Gene Expression in Ustilaginoidea virens. J Fungi (Basel) 2023; 9:jof9040390. [PMID: 37108845 PMCID: PMC10142091 DOI: 10.3390/jof9040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Sorbicillinoids are a class of hexaketide metabolites produced by Ustilaginoidea virens (teleomorph: Villosiclava virens), an important fungal pathogen that causes a devastating rice disease. In this study, we investigated the effects of environmental factors, including carbon and nitrogen sources, ambient pH and light exposure, on mycelial growth, sporulation, as well as the accumulation of sorbicillinoids, and the expression of related genes involved in sorbicillinoid biosynthesis. It was found that the environmental factors had great influences on mycelial growth and sporulation of U. virens. Fructose and glucose, complex nitrogen sources, acidic conditions and light exposure were favorable for sorbicillinoid production. The relative transcript levels of sorbicillinoid biosynthesis genes were up-regulated when U. virens was separately treated with those environmental factors that favored sorbicillinoid production, indicating that sorbicillinoid biosynthesis was mainly regulated at the transcriptional level by different environmental factors. Two pathway-specific transcription factor genes, UvSorR1 and UvSorR2, were found to participate in the regulation of sorbicillinoid biosynthesis. These results will provide useful information to better understand the regulation mechanisms of sorbicillinoid biosynthesis, and be conducive to develop effective means for controlling sorbicillinoid production in U. virens.
Collapse
Affiliation(s)
- Xuping Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuwen Hou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mengyao Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiayin Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiacheng Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yonglin Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Abstract
Magnaporthe oryzae and Ustilaginoidea virens are two filamentous fungal pathogens that threaten rice production worldwide. Genetic tools that permit fast gene deletion and silencing are of great interest for functional genomics of fungal pathogens. As a revolutionary genome editing tool, clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) enable many innovative applications. Here, we developed a CRISPR interference (CRISPRi) toolkit using nuclease activity dead Cas9 (dCas9) to silence genes of interest in M. oryzae and U. virens. We optimized the components of CRISPRi vectors, including transcriptional repression domains, dCas9 promoters, and guide RNA (gRNA) promoters. The CRISPRi tool was tested using nine gRNAs to target the promoters of MoATG3, MoATG7, and UvPal1. The results indicated that a single gRNA could direct the dCas9-fused transcriptional repression domain to efficiently silence the target gene in M. oryzae and U. virens. In both fungi, the target genes were repressed >100-fold, and desired phenotypes were observed in CRISPRi strains. Importantly, we showed that multiple genes could be easily silenced using polycistronic tRNA-gRNA in CRISPRi. Furthermore, gRNAs that bind different promoter regions displayed variable repression levels of target genes, highlighting the importance of gRNA design for CRISPRi efficiency. Together, this study provides an efficient and robust CRISPRi tool for targeted gene silencing in M. oryzae and U. virens. Owing to its simplicity and multiplexity, CRISPRi will be a useful tool for gene function discovery in fungal pathogens. IMPORTANCE Many devastating plant diseases are caused by fungal pathogens that evolve rapidly to adapt to host resistance and environmental changes. Therefore, genetic tools that enable fast gene function discovery are needed to study the pathogenicity and stress adaptation of fungal pathogens. In this study, we adopted the CRISPR/Cas9 system to silence genes in Magnaporthe oryzae and Ustilaginoidea virens, which are two dominant fungal pathogens that threaten rice production worldwide. We present a versatile and robust CRISPRi toolkit that represses target gene expression >100-fold using a single gRNA. We also demonstrated that CRISPRi could simultaneously silence multiple genes using the tRNA-gRNA strategy. The CRISPRi technologies described in this study would accelerate the functional genomics of fungal pathogens.
Collapse
|
22
|
Zhang X, Xu D, Hou X, Wei P, Fu J, Zhao Z, Jing M, Lai D, Yin W, Zhou L. UvSorA and UvSorB Involved in Sorbicillinoid Biosynthesis Contribute to Fungal Development, Stress Response and Phytotoxicity in Ustilaginoidea virens. Int J Mol Sci 2022; 23:ijms231911056. [PMID: 36232357 PMCID: PMC9570055 DOI: 10.3390/ijms231911056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Ustilaginoidea virens (teleomorph: Villosiclava virens) is an important fungal pathogen that causes a devastating rice disease. It can produce mycotoxins including sorbicillinoids. The biosynthesis and biological functions of sorbicillinoids have not been reported in U. virens. In this study, we identified a sorbicillinoid biosynthetic gene cluster in which two polyketide synthase genes UvSorA and UvSorB were responsible for sorbicillinoid biosynthesis in U. virens. In ∆UvSorA and ∆UvSorB mutants, the mycelial growth, sporulation and hyphal hydrophobicity were increased dramatically, while the resistances to osmotic pressure, metal cations, and fungicides were reduced. Both phytotoxic activity of rice germinated seeds and cell wall integrity were also reduced. Furthermore, mycelia and cell walls of ∆UvSorA and ∆UvSorB mutants showed alterations of microscopic and submicroscopic structures. In addition, feeding experiment showed that sorbicillinoids could restore mycelial growth, sporulation, and cell wall integrity in ∆UvSorA and ∆UvSorB mutants. The results demonstrated that both UvSorA and UvSorB were responsible for sorbicillinoid biosynthesis in U. virens, and contributed to development (mycelial growth, sporulation, and cell wall integrity), stress responses, and phytotoxicity through sorbicillinoid mediation. It provides an insight into further investigation of biological functions and biosynthesis of sorbicillinoids.
Collapse
Affiliation(s)
- Xuping Zhang
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Xu
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuwen Hou
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Penglin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajin Fu
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhitong Zhao
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingpeng Jing
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenbing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (W.Y.); (L.Z.)
| | - Ligang Zhou
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (W.Y.); (L.Z.)
| |
Collapse
|
23
|
Cao H, Gong H, Song T, Yu M, Pan X, Yu J, Qi Z, Du Y, Liu Y. The Adaptor Protein UvSte50 Governs Fungal Pathogenicity of Ustilaginoidea virens via the MAPK Signaling Pathway. J Fungi (Basel) 2022; 8:954. [PMID: 36135679 PMCID: PMC9503583 DOI: 10.3390/jof8090954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathways regulate diverse cellular processes and have been partially characterized in the rice false smut fungus Ustilaginoidea virens. UvSte50 has been identified as a homolog to Saccharomyces cerevisiae Ste50, which is known to be an adaptor protein for MAPK cascades. ΔUvste50 was found to be defective in conidiation, sensitive to hyperosmotic and oxidative stresses, and non-pathogenic. The mycelial expansion of ΔUvste50 inside spikelets of rice terminated at stamen filaments, eventually resulting in a lack of formation of false smut balls on spikelets. We determined that UvSte50 directly interacts with both UvSte7 (MAPK kinase; MEK) and UvSte11 (MAPK kinase kinase; MEKK), where the Ras-association (RA) domain of UvSte50 is indispensable for its interaction with UvSte7. UvSte50 also interacts with UvHog1, a MAP kinase of the Hog1-MAPK pathway, which is known to have important roles in hyphal growth and stress responses in U. virens. In addition, affinity capture-mass spectrometry analysis and yeast two-hybrid assay were conducted, through which we identified the interactions of UvSte50 with UvRas2, UvAc1 (adenylate cyclase), and UvCap1 (cyclase-associated protein), key components of the Ras/cAMP signaling pathway in U. virens. Together, UvSte50 functions as an adaptor protein interacting with multiple components of the MAPK and Ras/cAMP signaling pathways, thus playing critical role in plant infection by U. virens.
Collapse
Affiliation(s)
- Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hao Gong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Yu M, Yu J, Cao H, Pan X, Song T, Qi Z, Du Y, Huang S, Liu Y. The Velvet Protein UvVEA Regulates Conidiation and Chlamydospore Formation in Ustilaginoidea virens. J Fungi (Basel) 2022; 8:jof8050479. [PMID: 35628735 PMCID: PMC9148152 DOI: 10.3390/jof8050479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
Rice false smut, caused by Ustilaginoidea virens, is a serious disease of rice worldwide, severely reducing the quantity and quality of rice production. The conserved fungal velvet proteins are global regulators of diverse cellular processes. We identified and functionally characterized two velvet genes, UvVEA and UvVELB, in U. virens. The deletion of these genes affected the conidiation of U. virens but had no effect on the virulence of this pathogen. Interestingly, the ΔUvVEA mutants appeared in the form of smaller false smut balls with a reduced number of chlamydospores compared with the wide-type strains. In addition, the deletion of UvVEA affected the expression of some transmembrane transport genes during chlamydospore formation and rice false smut balls development. Furthermore, the ΔUvVEA mutants were shown to be defective in the utilization of glucose. These findings proved the regulatory mechanism underlying the formation of rice false smut balls and chlamydospores and provided a basis for the further exploration of the mechanism of these processes.
Collapse
Affiliation(s)
- Mina Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.Y.); (S.H.)
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Shiwen Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.Y.); (S.H.)
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
- Correspondence: ; Tel.: +86-25-8439-1002
| |
Collapse
|
25
|
Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review. Int J Biol Macromol 2022; 206:188-202. [PMID: 35227707 DOI: 10.1016/j.ijbiomac.2022.02.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
Plant pathogenic fungi encode and secrete effector proteins to promote pathogenesis. In recent years, the important role of effector proteins in fungi and plant host interactions has become increasingly prominent. In this review, the functional characterization and molecular mechanisms by which fungal effector proteins modulate biological processes and suppress the defense of plant hosts are discussed, with an emphasis on cell localization during fungal infection. This paper also provides a comprehensive review of bioinformatic and experimental methods that are currently available for the identification of fungal effector proteins. We additionally summarize the secretion pathways and the methods for verifying the presence effector proteins in plant host cells. For future research, comparative genomic studies of different pathogens with varying life cycles will allow comprehensive and systematic identification of effector proteins. Additionally, functional analysis of effector protein interactions with a wider range of hosts (especially non-model crops) will provide more detailed repertoires of fungal effectors. Identifying effector proteins and verifying their functions will improve our understanding of their role in causing disease and in turn guide future strategies for combatting fungal infections.
Collapse
|
26
|
Yu J, He X, Xu C, Yu M, Song T, Cao H, Pan X, Qi Z, Du Y, Zhang R, Liang D, Liu Y. Autophagy-related protein UvAtg7 contributes to mycelial growth, virulence, asexual reproduction and cell stress response in rice false smut fungus Ustilaginoidea virens. Fungal Genet Biol 2022; 159:103668. [PMID: 35041987 DOI: 10.1016/j.fgb.2022.103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/21/2021] [Accepted: 01/11/2022] [Indexed: 11/04/2022]
Abstract
Autophagy is a conserved mechanism for nutrient and cytoplasmic components recycling in eukaryotic cell, in which E1-like enzyme Atg7 activates ubiquitin-like conjugation in the autophagy pathway. In plant pathogenic fungi Ustilaginoidea virens, UvAtg7, an ortholog of ATG7 in baker's yeast was identified and functionally investigated. UvAtg7 was confirmed to be essential for autophagy, because the disruption of UvATG7 gene in U. virens completely blocked the fusion of autophagosome-like into vacuoles and catalytic degradation of GFP-UvAtg8 under N-starving condition. The fluorescent signal indicated UvAtg7 protein was dispersed in cytoplasma, but spatially coordinated with core autophagy protein UvAtg8 on occasion. Interestingly, disruption of UvATG7 in U. virens caused slightly reduction in mycelial growth, but resulted in a considerable decrease in virulence, conidia production in YT broth and chlamydospore formation on rice false smut balls. Moreover, the UvATG7 deletion mutants exhibited increased sensitivity to cell wall integrity stress caused by congo red and calcofluor white , meanwhile the UvATG7 deletion mutants showed decreased sensitivity to osmotic stress, cell membrane stress and reactiveoxygen stress caused by sorbitol, sodium dodecyl sulfate and H2O2, respectively. All of these defects in UvATG7 deletion mutants could be partially or completely restored by gene complementation. In general, our study indicates that UvAtg7 is essential in autophagy pathway and contributes to mycelial growth, virulence, asexual reproduction and cell stress response in U. virens.
Collapse
Affiliation(s)
- Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiang He
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Cunfa Xu
- Central Labotory, Jiangu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Dong Liang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
27
|
Singh S, Ramakrishna W. Application of CRISPR-Cas9 in plant-plant growth-promoting rhizobacteria interactions for next Green Revolution. 3 Biotech 2021; 11:492. [PMID: 34840925 PMCID: PMC8590643 DOI: 10.1007/s13205-021-03041-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Agriculture's beginnings resulted in the domestication of numerous plant species as well as the use of natural resources. Food grain production took about 10,000 years to reach a billion tonnes in 1960, however, it took only 40 years to achieve 2 billion tonnes in year 2000. The creation of genetically modified crops, together with the use of enhanced agronomic practices, resulted in this remarkable increase, dubbed the "Green Revolution". Plants and bacteria that interact with each other in nature are co-evolving, according to Red Queen dynamics. Plant microorganisms, also known as plant microbiota, are an essential component of plant life. Plant-microbe (PM) interactions can be beneficial or harmful to hosts, depending on the health impact. The significance of microbiota in plant growth promotion (PGP) and stress resistance is well known. Our understanding of the community composition of the plant microbiome and important driving forces has advanced significantly. As a result, utilising the plant microbiota is a viable strategy for the next Green Revolution for meeting food demand. The utilisation of newer methods to understand essential genetic and molecular components of the multiple PM interactions is required for their application. The use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing (GE) techniques to investigate PM interactions is of tremendous interest. The implementation of GE techniques to boost the ability of microorganisms or plants for agronomic trait development will be enabled by a comprehensive understanding of PM interactions. This review focuses on using GE approaches to investigate the principles of PM interactions, disease resistance, PGP activity, and future implications in agriculture in plants or associated microbiota.
Collapse
Affiliation(s)
- Sudiksha Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401 India
| | - Wusirika Ramakrishna
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401 India
| |
Collapse
|
28
|
Genome-Wide Identification and Functional Characterization of CCHC-Type Zinc Finger Genes in Ustilaginoidea virens. J Fungi (Basel) 2021; 7:jof7110947. [PMID: 34829234 PMCID: PMC8619310 DOI: 10.3390/jof7110947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is a serious disease of rice (Oryza sativa), severely reducing plant mass and yields worldwide. We performed genome-wide analysis of the CCHC-type zinc-finger transcription factor family in this pathogen. We identified and functionally characterized seven UvCCHC genes in U. virens. The deletion of various UvCCHC genes affected the stress responses, vegetative growth, conidiation, and virulence of U. virens. ∆UvCCHC5 mutants infected rice spikelets normally but could not form smut balls. Sugar utilization experiments showed that the ∆UvCCHC5 mutants were defective in the utilization of glucose, sucrose, lactose, stachyose, and trehalose. Deletion of UvCCHC5 did not affect the expression of rice genes associated with grain filling, as revealed by RT-qPCR. We propose that the ∆UvCCHC5 mutants are impaired in transmembrane transport, and the resulting nutrient deficiencies prevent them from using nutrients from rice to form smut balls. RNA-seq data analysis indicated that UvCCHC4 affects the expression of genes involved in mitochondrial biogenesis, ribosomes, transporters, and ribosome biogenesis. These findings improve our understanding of the molecular mechanism underlying smut ball formation in rice by U. virens.
Collapse
|
29
|
Fan C, Zhang W, Su X, Ji W, Luo H, Zhang Y, Liu B, Yao B, Huang H, Xu X. CRISPR/Cas9-mediated genome editing directed by a 5S rRNA-tRNA Gly hybrid promoter in the thermophilic filamentous fungus Humicola insolens. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:206. [PMID: 34688310 PMCID: PMC8542335 DOI: 10.1186/s13068-021-02057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Humicola insolens is a filamentous fungus with high potential of producing neutral and heat- and alkali-resistant cellulase. However, the genetic engineering tools, particularly the genome-editing tool, are scarce, hindering the study of cellulase expression regulation in this organism. RESULTS Herein, a CRISPR/Cas9 genome-editing system was established in H. insolens based on a hybrid 5S rRNA-tRNAGly promoter. This system is superior to the HDV (hepatitis delta virus) system in genome editing, allowing highly efficient single gene destruction in H. insolens with rates of deletion up to 84.1% (37/44). With this system, a putative pigment synthesis gene pks and the transcription factor xyr1 gene were disrupted with high efficiency. Moreover, the extracellular protein concentration and cellulase activity largely decreased when xyr1 was deleted, demonstrating for the first time that Xyr1 plays an important role in cellulase expression regulation. CONCLUSIONS The established CRISPR/Cas9 system is a powerful genetic operation tool for H. insolens, which will accelerate studies on the regulation mechanism of cellulase expression and engineering of H. insolens for higher cellulase production.
Collapse
Affiliation(s)
- Chao Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Xiaoyun Su
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Huiying Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Huoqing Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China.
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China.
| |
Collapse
|
30
|
Yu M, Yu J, Cao H, Song T, Pan X, Qi Z, Du Y, Zhang R, Huang S, Liu W, Liu Y. SUN-Family Protein UvSUN1 Regulates the Development and Virulence of Ustilaginoidea virens. Front Microbiol 2021; 12:739453. [PMID: 34589077 PMCID: PMC8473917 DOI: 10.3389/fmicb.2021.739453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Ustilaginoidea virens, the causal agent of rice false smut disease, is an important plant pathogen that causes severe quantitative and qualitative losses in rice worldwide. UvSUN1 is the only member of Group-I SUN family proteins in U. virens. In this work, the role of UvSUN1 in different aspects of the U. virens biology was studied by phenotypic analysis of Uvsun1 knockout strains. We identified that UvSUN1 was expressed during both conidial germination and the infection of rice. Disruption of the Uvsun1 gene affected the hyphal growth, conidiation, morphology of hyphae and conidia, adhesion and virulence. We also found that UvSUN1 is involved in the production of toxic compounds, which are able to inhibit elongation of the germinated seeds. Moreover, RNA-seq data showed that knockout of Uvsun1 resulted in misregulation of a subset of genes involved in signal recognition and transduction system, glycometabolism, cell wall integrity, and secondary metabolism. Collectively, this study reveals that Uvsun1 is required for growth, cell wall integrity and pathogenicity of U. virens, thereby providing new insights into the function of SUN family proteins in the growth and pathogenesis of this pathogen.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China.,State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Shiwen Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
31
|
Ahmad S, Tang L, Shahzad R, Mawia AM, Rao GS, Jamil S, Wei C, Sheng Z, Shao G, Wei X, Hu P, Mahfouz MM, Hu S, Tang S. CRISPR-Based Crop Improvements: A Way Forward to Achieve Zero Hunger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8307-8323. [PMID: 34288688 DOI: 10.1021/acs.jafc.1c02653] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Zero hunger is one of the sustainable development goals set by the United Nations in 2015 to achieve global food security by 2030. The current harvest of crops is insufficient; feeding the world's population and meeting the goal of zero hunger by 2030 will require larger and more consistent crop production. Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR-Cas) technology is widely used for the plant genome editing. In this review, we consider this technology as a potential tool for achieving zero hunger. We provide a comprehensive overview of CRISPR-Cas technology and its most important applications for food crops' improvement. We also conferred current and potential technological breakthroughs that will help in breeding future crops to end global hunger. The regulatory aspects of deploying this technology in commercial sectors, bioethics, and the production of transgene-free plants are also discussed. We hope that the CRISPR-Cas system will accelerate the breeding of improved crop cultivars compared with conventional breeding and pave the way toward the zero hunger goal.
Collapse
Affiliation(s)
- Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
- Maize Research Station, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gundra Sivakrishna Rao
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Chen Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
32
|
Rozhkova AM, Kislitsin VY. CRISPR/Cas Genome Editing in Filamentous Fungi. BIOCHEMISTRY (MOSCOW) 2021; 86:S120-S139. [PMID: 33827404 DOI: 10.1134/s0006297921140091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The review describes the CRISPR/CAS system and its adaptation for the genome editing in filamentous fungi commonly used for production of enzyme complexes, enzymes, secondary metabolites, and other compounds used in industrial biotechnology and agriculture. In the second part of this review, examples of the CRISPR/CAS technology application for improving properties of the industrial strains of fungi from the Trichoderma, Aspergillus, Penicillium, and other genera are presented. Particular attention is given to the efficiency of genome editing, as well as system optimization for specific industrial producers.
Collapse
Affiliation(s)
- Aleksandra M Rozhkova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Valeriy Yu Kislitsin
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
33
|
Jiang C, Lv G, Tu Y, Cheng X, Duan Y, Zeng B, He B. Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi. Front Microbiol 2021; 12:638096. [PMID: 33643273 PMCID: PMC7905030 DOI: 10.3389/fmicb.2021.638096] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungi possess the capacity to produce a wide array of secondary metabolites with diverse biological activities and structures, such as lovastatin and swainsonine. With the advent of the post-genomic era, increasing amounts of cryptic or uncharacterized secondary metabolite biosynthetic gene clusters are continually being discovered. However, owing to the longstanding lack of versatile, comparatively simple, and highly efficient genetic manipulation techniques, the broader exploration of industrially important secondary metabolites has been hampered thus far. With the emergence of CRISPR/Cas9-based genome editing technology, this dilemma may be alleviated, as this advanced technique has revolutionized genetic research and enabled the exploitation and discovery of new bioactive compounds from filamentous fungi. In this review, we introduce the CRISPR/Cas9 system in detail and summarize the latest applications of CRISPR/Cas9-mediated genome editing in filamentous fungi. We also briefly introduce the specific applications of the CRISPR/Cas9 system and CRISPRa in the improvement of secondary metabolite contents and discovery of novel biologically active compounds in filamentous fungi, with specific examples noted. Additionally, we highlight and discuss some of the challenges and deficiencies of using the CRISPR/Cas9-based genome editing technology in research on the biosynthesis of secondary metabolites as well as future application of CRISPR/Cas9 strategy in filamentous fungi are highlighted and discussed.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Gongbo Lv
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojie Cheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yitian Duan
- School of Information, Renmin University of China, Beijing, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
34
|
Arazoe T. CRISPR-based pathogenic fungal genome editing for control of infection and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 179:161-196. [PMID: 33785176 DOI: 10.1016/bs.pmbts.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fungi play important roles in many aspects of human life, such as in various food, beverage, agricultural, chemical, and pharmaceutical industries. Meanwhile, some fungal species cause several severe diseases in plants, humans and animals. Fungal and fungal-like diseases pose a severe threat to human health, food security, and ecosystem health worldwide. This chapter introduces CRISPR-based genome editing technologies for pathogenic fungi and their application in controlling fungal diseases.
Collapse
Affiliation(s)
- Takayuki Arazoe
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda-shi, Chiba, Japan.
| |
Collapse
|
35
|
Chen X, Li X, Li P, Chen X, Liu H, Huang J, Luo C, Hsiang T, Zheng L. Comprehensive identification of lysine 2-hydroxyisobutyrylated proteins in Ustilaginoidea virens reveals the involvement of lysine 2-hydroxyisobutyrylation in fungal virulence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:409-425. [PMID: 33427395 DOI: 10.1111/jipb.13066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib ) is a newly identified post-translational modification (PTM) that plays important roles in transcription and cell proliferation in eukaryotes. However, its function remains unknown in phytopathogenic fungi. Here, we performed a comprehensive assessment of Khib in the rice false smut fungus Ustilaginoidea virens, using Tandem Mass Tag (TMT)-based quantitative proteomics approach. A total of 3 426 Khib sites were identified in 977 proteins, suggesting that Khib is a common and complex PTM in U. virens. Our data demonstrated that the 2-hydroxyisobutyrylated proteins are involved in diverse biological processes. Network analysis of the modified proteins revealed a highly interconnected protein network that included many well-studied virulence factors. We confirmed that the Zn-binding reduced potassium dependency3-type histone deacetylase (UvRpd3) is a major enzyme that removes 2-hydroxyisobutyrylation and acetylation in U. virens. Notably, mutations of Khib sites in the mitogen-activated protein kinase (MAPK) UvSlt2 significantly reduced fungal virulence and decreased the enzymatic activity of UvSlt2. Molecular dynamics simulations demonstrated that 2-hydroxyisobutyrylation in UvSlt2 increased the hydrophobic solvent-accessible surface area and thereby affected binding between the UvSlt2 enzyme and its substrates. Our findings thus establish Khib as a major post-translational modification in U. virens and point to an important role for Khib in the virulence of this phytopathogenic fungus.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiabing Li
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingping Li
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolin Chen
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junbin Huang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Lu Zheng
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
36
|
Tyagi S, Kumar R, Kumar V, Won SY, Shukla P. Engineering disease resistant plants through CRISPR-Cas9 technology. GM CROPS & FOOD 2021; 12:125-144. [PMID: 33079628 PMCID: PMC7583490 DOI: 10.1080/21645698.2020.1831729] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/13/2020] [Accepted: 09/27/2020] [Indexed: 01/08/2023]
Abstract
Plants are susceptible to phytopathogens, including bacteria, fungi, and viruses, which cause colossal financial shortfalls (pre- and post-harvest) and threaten global food safety. To combat with these phytopathogens, plant possesses two-layer of defense in the form of PAMP-triggered immunity (PTI), or Effectors-triggered immunity (ETI). The understanding of plant-molecular interactions and revolution of high-throughput molecular techniques have opened the door for innovations in developing pathogen-resistant plants. In this context, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) has transformed genome editing (GE) technology and being harnessed for altering the traits. Here we have summarized the complexities of plant immune system and the use of CRISPR-Cas9 to edit the various components of plant immune system to acquire long-lasting resistance in plants against phytopathogens. This review also sheds the light on the limitations of CRISPR-Cas9 system, regulation of CRISPR-Cas9 edited crops and future prospective of this technology.
Collapse
Affiliation(s)
- Swati Tyagi
- Genomic Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Robin Kumar
- Department of Soil Science and Agricultural Chemistry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, India
- Department of Agriculture Engineering, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Vivak Kumar
- Department of Agriculture Engineering, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - So Youn Won
- Genomic Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
37
|
Ullah M, Xia L, Xie S, Sun S. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Biotechnol Appl Biochem 2020; 67:835-851. [PMID: 33179815 DOI: 10.1002/bab.2077] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Filamentous fungi have several industrial, environmental, and medical applications. However, they are rarely utilized owing to the limited availability of full-genome sequences and genetic manipulation tools. Since the recent discovery of the full-genome sequences for certain industrially important filamentous fungi, CRISPR/Cas9 technology has drawn attention for the efficient development of engineered strains of filamentous fungi. CRISPR/Cas9 genome editing has been successfully applied to diverse filamentous fungi. In this review, we briefly discuss the use of common genetic transformation techniques as well as CRISPR/Cas9-based systems in filamentous fungi. Furthermore, we describe potential limitations and challenges in the practical application of genome engineering of filamentous fungi. Finally, we provide suggestions and highlight future research prospects in the area.
Collapse
Affiliation(s)
- Mati Ullah
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Xia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Sun
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
38
|
Sun W, Fan J, Fang A, Li Y, Tariqjaveed M, Li D, Hu D, Wang WM. Ustilaginoidea virens: Insights into an Emerging Rice Pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:363-385. [PMID: 32364825 DOI: 10.1146/annurev-phyto-010820-012908] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
False smut of rice, caused by Ustilaginoidea virens, has become one of the most important diseases in rice-growing regions worldwide. The disease causes a significant yield loss and imposes health threats to humans and animals by producing mycotoxins. In this review, we update our understanding of the pathogen, including the disease cycle and infection strategies, the decoding of the U. virens genome, comparative/functional genomics, and effector biology. Whereas the decoding of the U. virens genome unveils specific adaptations of the pathogen in successfully occupying rice flowers, progresses in comparative/functional genomics and effector biology have begun to uncover the molecular mechanisms underlying U. virens virulence and pathogenicity. We highlight the identification and characterization of the produced mycotoxins and their biosynthetic pathways in U. virens.The management strategies for this disease are also discussed. The flower-specific infection strategy makes the pathogen a unique tool to unveil novel mechanisms for the interactions between nonobligate biotrophic pathogens and their hosts.
Collapse
Affiliation(s)
- Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuejiao Li
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Muhammad Tariqjaveed
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Dayong Li
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Dongwei Hu
- State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
39
|
Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, Deshmukh R, Sonah H, Gupta N, Sharma TR. Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiol Res 2020; 241:126567. [PMID: 33080488 DOI: 10.1016/j.micres.2020.126567] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
The interaction of fungal pathogens with their host requires a novel invading mechanism and the presence of various virulence-associated components responsible for promoting the infection. The small secretory proteins, explicitly known as effector proteins, are one of the prime mechanisms of host manipulation utilized by the pathogen to disarm the host. Several effector proteins are known to translocate from fungus to the plant cell for host manipulation. Many fungal effectors have been identified using genomic, transcriptomic, and bioinformatics approaches. Most of the effector proteins are devoid of any conserved signatures, and their prediction based on sequence homology is very challenging, therefore by combining the sequence consensus based upon machine learning features, multiple tools have also been developed for predicting apoplastic and cytoplasmic effectors. Various post-genomics approaches like transcriptomics of virulent isolates have also been utilized for identifying active consortia of effectors. Significant progress has been made in understanding biotrophic effectors; however, most of it is underway due to their complex interaction with host and complicated recognition and signaling networks. This review discusses advances, and challenges in effector identification and highlighted various features of the potential effector proteins and approaches for understanding their genetics and strategies for regulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India; Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | | | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | - Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India.
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
| |
Collapse
|
40
|
Meng S, Xiong M, Jagernath JS, Wang C, Qiu J, Shi H, Kou Y. UvAtg8-Mediated Autophagy Regulates Fungal Growth, Stress Responses, Conidiation, and Pathogenesis in Ustilaginoidea virens. RICE (NEW YORK, N.Y.) 2020; 13:56. [PMID: 32785866 PMCID: PMC7423828 DOI: 10.1186/s12284-020-00418-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 08/06/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ustilaginoidea virens has become one of the most devastating rice pathogens in China, as well as other rice-growing areas. Autophagy is an important process in normal cell differentiation and development among various organisms. To date, there has been no optimized experimental system introduced for the study of autophagy in U. virens. In addition, the function of autophagy in pathogenesis remains unknown in U. virens. Therefore, the functional analyses of UvAtg8 may potentially shed some light on the regulatory mechanism and function of autophagy in U. virens. RESULTS In this study, we characterized the functions of UvAtg8, which is a homolog of Saccharomyces cerevisiae ScAtg8, in the rice false smut fungus U. virens. The results showed that UvATG8 is essential for autophagy in U. virens. Also, the GFP-UvATG8 strain, which could serve as an appropriate marker for monitoring autophagy in U. virens, was generated. Furthermore, this study found that the ΔUvatg8 mutant was defective in the vegetative growth, conidiation, adaption to oxidative, hyperosmotic, cell wall stresses, and production of toxic compounds. Pathogenicity assays indicated that deletion of UvATG8 resulted in significant reduction in virulence of U. virens. Further microscopic examinations of the infection processes revealed that the severe virulence defects in the ∆Uvatg8 were mainly caused by the highly reduced conidiation and secondary spore formation. CONCLUSIONS Our results indicated that the UvAtg8 is necessary for the fungal growth, stresses responses, conidiation, secondary spore formation, and pathogenicity of U. virens. Moreover, our research finding will potentially assist in further clarifying the molecular mechanism of U. virens infection, as well as provide a good marker for autophagy in U. virens and a good reference value for the further development of effective fungicides based on gene targeting.
Collapse
Affiliation(s)
- Shuai Meng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Meng Xiong
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, 443000, China
| | - Jane Sadhna Jagernath
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Congcong Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
41
|
Yong M, Yu J, Pan X, Yu M, Cao H, Qi Z, Du Y, Zhang R, Song T, Yin X, Chen Z, Liu W, Liu Y. MAT1-1-3, a Mating Type Gene in the Villosiclava virens, Is Required for Fruiting Bodies and Sclerotia Formation, Asexual Development and Pathogenicity. Front Microbiol 2020; 11:1337. [PMID: 32714294 PMCID: PMC7344243 DOI: 10.3389/fmicb.2020.01337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022] Open
Abstract
Villosiclava virens is the prevalent causative pathogen of rice false smut, a destructive rice disease. Mating-type genes play a vital role in the evolution of mating systems in fungi. Some fungi have lost MAT1-1-3, one of the mating-type genes, during evolution, whereas others still retain MAT1-1-3. However, how MAT1-1-3 regulates the sexual development of heterothallic V. virens remains unknown. Here, we generated the MAT1-1-3 mutants, which exhibited defects in vegetative growth, stress response, pathogenicity, sclerotia formation and fruiting body maturation. An artificial outcrossing inoculation assay showed that the Δmat1-1-3 mutant was unable to produce sclerotia. Unexpectedly, the Δmat1-1-3 mutant could form immature fruiting bodies without mating on potato sucrose agar medium (PSA) compared with the wild-type strain, most likely by activating the truncated MAT1-2-1 transcription to regulate the sexual development. Moreover, RNA-seq data showed that knockout of MAT1-1-3 results in misregulation of a subset of genes involved in sexual development, MAPK signaling, cell wall integrity, autophagy, epigenetic modification, and transcriptional regulation. Collectively, this study reveals that MAT1-1-3 is required for asexual and sexual development, and pathogenicity of V. virens, thereby provides new insights into the function of mating-type genes in the fungi life cycle and infection process.
Collapse
Affiliation(s)
- Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiyi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
42
|
Yong M, Yu J, Pan X, Yu M, Cao H, Song T, Qi Z, Du Y, Zhang R, Yin X, Liu W, Liu Y. Two mating-type genes MAT1-1-1 and MAT1-1-2 with significant functions in conidiation, stress response, sexual development, and pathogenicity of rice false smut fungus Villosiclava virens. Curr Genet 2020; 66:989-1002. [PMID: 32572596 DOI: 10.1007/s00294-020-01085-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Rice false smut caused by Villosiclava virens is one of the destructive diseases on panicles of rice. Sexual development of V. virens, controlled by mating-type locus, plays an important role in the prevalence of rice false smut and genetic diversity of the pathogen. However, how the mating-type genes mediate sexual development of the V. virens remains largely unknown. In this study, we characterized the two mating-type genes, MAT1-1-1 and MAT1-1-2, in V. virens. MAT1-1-1 knockout mutant showed defects in hyphal growth, conidia morphogenesis, sexual development, and increase in the tolerance to salt and osmotic stress. Targeted deletion of MAT1-1-2 not only impaired the sclerotia formation and pathogenicity of V. virens, but also reduced the production of conidia. The MAT1-1-2 mutant showed increases in tolerance to salt and hydrogen peroxide stress, but decreases in tolerance to osmotic stress. Yeast two-hybrid assay showed that MAT1-1-1 interacted with MAT1-1-2, indicating that those proteins might form a complex to regulate sexual development. In addition, MAT1-1-1 localized in the nucleus, and MAT1-1-2 localized in the cytoplasm. Collectively, our results demonstrate that MAT1-1-1 and MAT1-1-2 play important roles in the conidiation, stress response, sexual development, and pathogenicity of V. virens, thus providing new insights into the function of mating-type gene.
Collapse
Affiliation(s)
- Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
43
|
Zhang MM, Wang ZQ, Xu X, Huang S, Yin WX, Luo C. MfOfd1 is crucial for stress responses and virulence in the peach brown rot fungus Monilinia fructicola. MOLECULAR PLANT PATHOLOGY 2020; 21:820-833. [PMID: 32319202 PMCID: PMC7214477 DOI: 10.1111/mpp.12933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/01/2023]
Abstract
Monilinia fructicola is the most widely distributed species among the Monilinia genus in the world, and causes blossom blight, twig canker, and fruit rot on Rosaceae fruits. To date, studies on genomics and pathogenicity are limited in M. fructicola. In this study, we identified a redox-related gene, MfOfd1, which was significantly up-regulated at 1 hr after inoculation of M. fructicola on peach fruits. We used the clustered regulatory inter-spaced short palindromic repeats (CRISPR)/Cas9 system combined with homologous recombination to determine the function of the MfOfd1 gene. The results showed that the sporulation of knockdown transformants was reduced by 53% to 83%. The knockdown transformants showed increased sensitivity to H2 O2 and decreased virulence on peach fruits compared to the wild-type isolate Bmpc7. It was found that H2 O2 could stimulate the expression of MfOfd1 in the wild-type isolate. The transformants were also more sensitive to exogenous osmotic stress, such as glycerol, d-sorbitol, and NaCl, and to dicarboximide fungicides (iprodione and dimethachlon). These results indicate that the MfOfd1 gene plays an important role in M. fructicola in sporulation, oxidative response, osmotic stress tolerance, and virulence.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Zuo-Qian Wang
- Institute of Plant Protection and Soil FertilizerHubei Academy of Agricultural ScienceWuhanChina
| | - Xiao Xu
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Song Huang
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Wei-Xiao Yin
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao‐Xi Luo
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
44
|
Tang J, Bai J, Chen X, Zheng L, Liu H, Huang J. Two protein kinases UvPmk1 and UvCDC2 with significant functions in conidiation, stress response and pathogenicity of rice false smut fungus Ustilaginoidea virens. Curr Genet 2019; 66:409-420. [PMID: 31489464 DOI: 10.1007/s00294-019-01029-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/26/2022]
Abstract
Ustilaginoidea virens is an important fungus causing rice false smut, a devastating disease on spikelets of rice. In this study, we identified and characterized two CMGC (CDK/MAPK/GSK3/CLK) kinase genes, UvPmk1 and UvCDC2, in U. virens. Although UvPmk1 and UvCDC2 are, respectively, homologous to Fus3/Kss1 mitogen-activated protein kinases (MAPKs) and cyclin-dependent kinases (CDKs), they all have a conserved serine/threonine protein kinase domain. The qRT-PCR analysis of the relative expression of UvPmk1 and UvCDC2 during the infection of U. virens showed that these two genes were highly expressed during infection. UvPmk1 and UvCDC2 knockout mutants exhibited no significant changes in mycelial vegetative growth but decreases in conidiation. In addition, both UvPmk1 and UvCDC2 knockout mutants showed increases in tolerance to hyperosmotic and cell wall stresses, but they, respectively, exhibited decreases and increases in tolerance to oxidative stress compared with the wild-type strain HWD-2. Pathogenicity and infection assays demonstrated the defective growth of infection hyphae and significant loss of virulence in UvPmk1 and UvCDC2 knockout mutants. Taken together, our results demonstrate that UvPmk1 and UvCDC2 play important roles in the conidiation, stress response, and pathogenicity of U. virens.
Collapse
Affiliation(s)
- Jintian Tang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Jing Bai
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiaoyang Chen
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Hao Liu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
45
|
Song R, Zhai Q, Sun L, Huang E, Zhang Y, Zhu Y, Guo Q, Tian Y, Zhao B, Lu H. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Appl Microbiol Biotechnol 2019; 103:6919-6932. [PMID: 31332488 PMCID: PMC6690858 DOI: 10.1007/s00253-019-10007-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Filamentous fungi play an important role in human health and industrial/agricultural production. With the increasing number of full genomes available for fungal species, the study of filamentous fungi has brought about a wider range of genetic manipulation opportunities. However, the utilization of traditional methods to study fungi is time consuming and laborious. Recent rapid progress and wide application of a versatile genome editing technology, i.e., the CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-related nuclease 9) system, has revolutionized biological research and has many innovative applications in a wide range of fields showing great promise in research and application of filamentous fungi. In this review, we introduce the CRISPR/Cas9 genome editing technology focusing on its application in research of filamentous fungi and we discuss the general considerations of genome editing using CRISPR/Cas9 system illustrating vector construction, multiple editing strategies, technical consideration of different sizes of homology arms on genome editing efficiency, off-target effects, and different transformation methodologies. In addition, we discuss the challenges encountered using CRISPR/Cas9 technology and give the perspectives of future applications of CRISPR/Cas9 technology for basic research and practical application of filamentous fungi.
Collapse
Affiliation(s)
- Runjie Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qing Zhai
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, Tibet, China
| | - Lu Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Enxia Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanli Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingyun Guo
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University/Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province/State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China.
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
46
|
Yu M, Yu J, Cao H, Yong M, Liu Y. Genome-wide identification and analysis of the GATA transcription factor gene family in Ustilaginoidea virens. Genome 2019; 62:807-816. [PMID: 31437416 DOI: 10.1139/gen-2018-0190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In filamentous fungi, the conserved transcription factors play important roles in multiple cellular and developmental processes. The GATA proteins, a family of GATA-binding zinc finger transcription factors, play diverse functions in fungi. Ustilaginoidea virens is an economically important pathogen-causing rice false smut worldwide. To gain additional insight into the cellular and molecular mechanisms of this pathogen, in this study, we identified and functionally characterized seven GATA proteins from the U. virens genome (UvGATA). Sequences analysis indicated that these GATA proteins are divided into seven clades. The proteins in each clade contained conserved clade-specific sequences and structures, thus leading to the same motif serving different purposes in various contexts. The expression profiles of UvGATA genes at different infection stages and under H2O2 stress were detected. Results showed that the majority of UvGATA genes performed functions at both processes, thereby confirming the roles of these genes in pathogenicity and reactive oxygen species stress tolerance. This study provided an important starting point to further explore the biological functions of UvGATA genes and increased our understanding of their potential transcriptional regulatory mechanisms in U. virens.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| |
Collapse
|
47
|
Shelake RM, Pramanik D, Kim JY. Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms 2019; 7:E269. [PMID: 31426522 PMCID: PMC6723455 DOI: 10.3390/microorganisms7080269] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Plants and microbes are co-evolved and interact with each other in nature. Plant-associated microbes, often referred to as plant microbiota, are an integral part of plant life. Depending on the health effects on hosts, plant-microbe (PM) interactions are either beneficial or harmful. The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known. Recently, our knowledge of community composition of plant microbiome and significant driving factors have significantly improved. So, the use of plant microbiome is a reliable approach for a next green revolution and to meet the global food demand in sustainable and eco-friendly agriculture. An application of the multifaceted PM interactions needs the use of novel tools to know critical genetic and molecular aspects. Recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing (GE) tools are of great interest to explore PM interactions. A systematic understanding of the PM interactions will enable the application of GE tools to enhance the capacity of microbes or plants for agronomic trait improvement. This review focuses on applying GE techniques in plants or associated microbiota for discovering the fundamentals of the PM interactions, disease resistance, PGP activity, and future implications in agriculture.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
- Division of Life Science (CK1 Program), Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
48
|
Yu J, Yu M, Song T, Cao H, Pan X, Yong M, Qi Z, Du Y, Zhang R, Yin X, Liu Y. A Homeobox Transcription Factor UvHOX2 Regulates Chlamydospore Formation, Conidiogenesis, and Pathogenicity in Ustilaginoidea virens. Front Microbiol 2019; 10:1071. [PMID: 31281290 PMCID: PMC6596325 DOI: 10.3389/fmicb.2019.01071] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Rice false smut fungus (teleomorph: Villosiclava virens; anamorph: Ustilaginoidea virens) can generate chlamydospores and survive winter under field conditions. The chlamydospore is considered as an important infection source of the disease. However, little is known about the regulatory mechanism of the chlamydospore production. In this study, we identified a defective homeobox transcription factor (designated as UvHOX2) gene in a U. virens random insertional mutant B-766 that could not form chlamydospores. To confirm the regulatory function of UvHOX2, an Agrobacterium tumefaciens mediated transformation- and CRISPR/Cas9- based targeted gene replacement method was developed. The UvHox2 deletion mutants completely failed to produce chlamydospores, showed reduced conidia production and decreased virulence, and was hyper-sensitive to oxidative, osmotic, and cell wall stresses. We confirmed that UvHOX2 is located in the nuclei of U. virens, and the expression of UvHox2 was the strongest during the early stage of chlamydospore and conidium formation. Global transcription pattern of UvHOX2 was also determined by RNA-seq in this study, and several genes that might be down-stream of UvHOX2 regulation were identified. The results will better our understanding of the molecular mechanism of chlamydospore formation in U. virens as a model fungus.
Collapse
Affiliation(s)
- Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhengjiang, China
| |
Collapse
|
49
|
Progress and Challenges: Development and Implementation of CRISPR/Cas9 Technology in Filamentous Fungi. Comput Struct Biotechnol J 2019; 17:761-769. [PMID: 31312414 PMCID: PMC6607083 DOI: 10.1016/j.csbj.2019.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Widely distributed in various environmental niches, filamentous fungi play an important role in industry, drug development, and plant/animal health. Manipulation of the genome and the coding sequences are essential for a better understanding of the function of genes and their regulation, but traditional genetic approaches in some filamentous fungi are either inefficient or nonfunctional. The rapid development and wide implementation of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats /(CRISPR)-associated protein-9 nuclease) technology for various model and non-model organisms has provided the initial framework to adapt this gene editing technology for filamentous fungi. In this review, an overview of the CRISPR/Cas9 tools and strategies that have been developed for different filamentous fungi is presented, including integration of the CAS9 gene into the genome, transient expression of Cas9/sgRNA, the AMA1-based plasmid approach, and the Cas9 RNP method. The various applications of CRISPR/Cas9 technology in filamentous fungi that have been implemented are explored, with particular emphasis on gene disruption/deletion and precise genome modification through gene tagging and alteration in gene regulation. Potential challenges that are confronted when developing a CRISPR/Cas9 system for filamentous fungi are also discussed such as the nuclear localization sequence for the CAS9 gene, potential off-target effects, and highly efficient transformation methods. Overcoming these obstacles may further facilitate wide application of this technology. As a simple, economical, and powerful tool, CRISPR/Cas9 systems have the potential for future implementation into many molecular aspects of filamentous fungi.
Collapse
|
50
|
Guo W, Gao Y, Yu Z, Xiao Y, Zhang Z, Zhang H. The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virens. Fungal Genet Biol 2019; 129:65-73. [PMID: 31063805 DOI: 10.1016/j.fgb.2019.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
The cyclic adenosine monophosphate (cAMP) signaling pathway plays pleiotropic roles in regulating development and pathogenicity in eukaryotes. cAMP is a second messenger that is important for the activation of downstream pathways. The intracellular cAMP level is modulated mainly by its biosynthesis, which is catalyzed by adenylate cyclases (ACs), and hydrolysis by phosphodiesterases (PDEs). Here, we identified the AC UvAc1 and the cAMP high-affinity PDE UvPdeH in the rice false smut fungus Ustilaginoidea virens; these enzymes are homologs of MoMac1 and MoPdeH in Magnaporthe oryzae (rice blast fungus). A heterogenous complementation assay revealed that UvAc1 and UvPdeH partially or completely rescued the defects in ΔMomac1 and ΔMopdeH mutant M. oryzae. UvAc1 and UvPdeH play important roles in the development and virulence of U. virens. ΔUvac1 and ΔUvpdeH mutant fungi showed defects in conidial production, morphology, and germination; reduced toxicity against germinating rice seeds; and reduced virulence on rice panicles. ΔUvac1 exhibited increased sensitivity to Calcofluor White (CFW) and sodium chloride (NaCl), and decreased sensitivity to Congo Red (CR), while ΔUvpdeH showed increased sensitivity to sodium dodecyl sulfate, CR, sorbitol, and hydrogen peroxide, and decreased sensitivity to CFW and NaCl. High-performance liquid chromatography revealed that the intracellular cAMP level was significantly increased in ΔUvpdeH and decreased in ΔUvac1. Taken together, our results demonstrate that UvAc1 and UvPdeH are conservative components of the cAMP pathway that are important for conidiogenesis, stress responses, virulence, and regulation of the intracellular cAMP level in U. virens.
Collapse
Affiliation(s)
- Weiwen Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yixin Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhaomeng Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yuhan Xiao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China.
| |
Collapse
|