1
|
Sung YY, Kim M, Kim DS, Son E. Glycine soja Leaf and Stem Extract Ameliorates Atopic Dermatitis-like Skin Inflammation by Inhibiting JAK/STAT Signaling. Int J Mol Sci 2025; 26:4560. [PMID: 40429704 PMCID: PMC12110808 DOI: 10.3390/ijms26104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Wild soybean (Glycine soja, GS) is a traditional medicine used to treat inflammation. In this study, the anti-atopic properties of GS leaf and stem extract on skin inflammation were evaluated in the Dermatophagoides farinae-extract-induced mouse model and keratinocytes. Oral administration of the GS extract reduced scratching, dermatitis score, transepidermal water loss, thickness of epidermis, inflammatory cell accumulation, and serum concentrations of thymic stromal lymphopoietin and immunoglobulin E. GS downregulated the expression of inflammatory gene markers of atopic dermatitis (AD), including interleukin (IL)-6; regulated on activation, normal T cell expressed and secreted (RANTES); thymus- and activation-regulated chemokine (TARC); and macrophage-derived chemokine (MDC) and upregulated the expression of filaggrin, a keratinocyte differentiation marker, in skin tissue. GS downregulated Janus kinase 1, signal transducer and activation of transcription (STAT) 1, and STAT3 pathways. Using ultra-performance liquid chromatography, we identified seven flavonoids in GS extract, including apigenin, epicatechin, genistein, genistin, daidzin, daidzein, and soyasaponin Bb. GS, apigenin, and genistein reduced the expression of IL-6, MDC, TARC, and RANTES and increased filaggrin via the downregulation of STAT3 phosphorylation in interferon-γ/tumor necrosis factor-α-stimulated keratinocytes. Our results suggest that GS leaf and stem extract ameliorates AD-like skin inflammation by regulating the immune response and restoring skin barrier function.
Collapse
Affiliation(s)
- Yoon-Young Sung
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (M.K.); (D.-S.K.); (E.S.)
| | | | | | | |
Collapse
|
2
|
Oli P, Punetha S, Punetha A, Pant K, Bhatt ID. Mainstreaming Glycine soja (Himalayan soybean) a potential underutilized climate resilient crop for nutritional security in the Himalayan region. 3 Biotech 2025; 15:131. [PMID: 40255447 PMCID: PMC12006611 DOI: 10.1007/s13205-025-04299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
Growing challenges of climate change, agricultural sustainability and malnutrition demand climate-resilient nutrient dense crops to mitigate the consequences of climate change while sustaining agricultural productivity and ensuring nutritional security in the Himalayan regions. Glycine soja also known as Himalayan soybean or wild soybean is a wild relative of cultivated soybean (Glycine max) is a valuable underutilized, less explored, and nutritionally rich climate resilient crop offers promising solution to address these challenges. The present systematic review was conducted using bibliometric analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and total 3359 published scientific documents were analyzed. G. soja is a rich source of various nutrients such as protein, carbohydrate, vitamins, micronutrients and several bioactive compounds having potential role in disease prevention. The genetic diversity within G. soja presents considerable opportunities for crop improvement through gene flow with G. max utilizing biotechnological methods or breeding programs. The aim of the present study is to not only highlight the existing knowledge on its nutraceutical, stress resilience and crop improvement potential but it also emphasizes the research gaps including its de novo domestication, in-depth understanding of nutritional and stress resilience properties and the limitations of current biotechnological techniques in addressing agronomic challenges in G. soja cultivation and consumption. Mainstreaming and harnessing the potential of G. soja might help to achieve sustainable food systems, enhancing nutritional security and supporting climate-resilient agriculture in the Himalayan regions.
Collapse
Affiliation(s)
- Pooja Oli
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Uttarakhand India
| | - Shailaja Punetha
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Uttarakhand India
| | - Arjita Punetha
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Uttarakhand India
| | - Kanchan Pant
- H.N.B. Garhwal Central University, Swami Ram Teerth Campus, Tehri, Badshahi Thaul, Uttarakhand India
| | - Indra D. Bhatt
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Uttarakhand India
| |
Collapse
|
3
|
Nawaz MA, Khalil HK, Azeem F, Ali MA, Pamirsky IE, Golokhvast KS, Yang SH, Atif RM, Chung G. In Silico Comparison of WRKY Transcription Factors in Wild and Cultivated Soybean and Their Co-expression Network Arbitrating Disease Resistance. Biochem Genet 2025; 63:144-166. [PMID: 38411942 DOI: 10.1007/s10528-024-10701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
WRKY Transcription factors (TFs) play critical roles in plant defence mechanisms that are activated in response to biotic and abiotic stresses. However, information on the Glycine soja WRKYs (GsoWRKYs) is scarce. Owing to its importance in soybean breeding, here we identified putative WRKY TFs in wild soybean, and compared the results with Glycine max WRKYs (GmaWRKYs) by phylogenetic, conserved motif, and duplication analyses. Moreover, we explored the expression trends of WRKYs in G. max (oomycete, fungi, virus, bacteria, and soybean cyst nematode) and G. soja (soybean cyst nematode), and identified commonly expressed WRKYs and their co-expressed genes. We identified, 181 and 180 putative WRKYs in G. max and G. soja, respectively. Though the number of WRKYs in both studied species is almost the same, they differ in many ways, i.e., the number of WRKYs on corresponding chromosomes, conserved domain structures, WRKYGQK motif variants, and zinc-finger motifs. WRKYs in both species grouped in three major clads, i.e., I-III, where group-II had sub-clads IIa-IIe. We found that GsoWRKYs expanded mostly through segmental duplication. A large number of WRKYs were expressed in response to biotic stresses, i.e., Phakospora pachyrhizi, Phytoplasma, Heterodera glycines, Macrophomina phaseolina, and Soybean mosaic virus; 56 GmaWRKYs were commonly expressed in soybean plants infected with these diseases. Finally, 30 and 63 GmaWRKYs and GsoWRKYs co-expressed with 205 and 123 non-WRKY genes, respectively, indicating that WRKYs play essential roles in biotic stress tolerance in Glycine species.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Russia, 634050.
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Tomsk, Russia.
| | - Hafiz Kashif Khalil
- Department of Plant Breeding and Genetics / CAS-AFS, University of Agriculture, Faisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Igor Eduardovich Pamirsky
- Siberian Federal Scientific Centre of AgrobiotechnologyCentralnaya, Presidium, Krasnoobsk, Russia, 633501
| | - Kirill S Golokhvast
- Advanced Engineering School (Agrobiotek), Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Russia, 634050
- Siberian Federal Scientific Centre of AgrobiotechnologyCentralnaya, Presidium, Krasnoobsk, Russia, 633501
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, Tomsk State University, Lenin Str. 36, Tomsk, Russia, 634050
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu Campus, Yeosu-si, 59626, South Korea
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics / CAS-AFS, University of Agriculture, Faisalabad, Pakistan.
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan.
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu Campus, Yeosu-si, 59626, South Korea.
| |
Collapse
|
4
|
Fan Y, Hussain S, Wang X, Yang M, Zhong X, Tao L, Li J, Zhou Y, Xiang C. Metabolomic and Transcriptomic Analyses of Flavonoid Biosynthesis in Different Colors of Soybean Seed Coats. Int J Mol Sci 2024; 26:294. [PMID: 39796145 PMCID: PMC11720147 DOI: 10.3390/ijms26010294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Soybean has outstanding nutritional and medicinal value because of its abundant protein, oil, and flavonoid contents. This crop has rich seed coat colors, such as yellow, green, black, brown, and red, as well as bicolor variants. However, there are limited reports on the synthesis of flavonoids in the soybean seed coats of different colors. Thus, the seed coat metabolomes and transcriptomes of five soybean germplasms with yellow (S141), red (S26), brown (S62), green (S100), and black (S124) seed coats were measured. In this study, 1645 metabolites were detected in the soybean seed coat, including 426 flavonoid compounds. The flavonoids differed among the different-colored seed coats of soybean germplasms, and flavonoids were distributed in all varieties. Procyanidins A1, B1, B6, C1, and B2, cyanidin 3-O-(6″-malonyl-arabinoside), petunidin 3-(6″-p-coumaryl-glucoside) 5-glucoside, and malvidin 3-laminaribioside were significantly upregulated in S26_vs._S141, S62_vs._S141, S100_vs._S141, and S124_vs._S141 groups, with a variation of 1.43-2.97 × 1013 in terms of fold. The differences in the contents of cyanidin 3-O-(6″-malonyl-arabinoside) and proanthocyanidin A1 relate to the seed coat color differences of red soybean. Malvidin 3-laminaribioside, petunidin 3-(6″-p-coumaryl-glucoside) 5-glucoside, cyanidin 3-O-(6″-malonyl-arabinoside), and proanthocyanidin A1 affect the color of black soybean. The difference in the contents of procyanidin B1 and malvidin 3-glucoside-4-vinylphenol might be related to the seed coat color differences of brown soybeans. Cyanidin 3-gentiobioside affects the color of green soybean. The metabolomic-transcriptomic combined analysis showed that flavonoid biosynthesis is the key synthesis pathway for soybean seed color formation. Transcriptome analysis revealed that the upregulation of most flavonoid biosynthesis genes was observed in all groups, except for S62_vs._S141, and promoted flavonoid accumulation. Furthermore, CHS, CHI, DFR, FG3, ANR, FLS, LAR, and UGT88F4 exhibited differential expression in all groups. This study broadens our understanding of the metabolic and transcriptomic changes in soybean seed coats of different colors and provides new insights into developing bioactive substances from soybean seed coats.
Collapse
Affiliation(s)
- Yuanfang Fan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Sajad Hussain
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China;
| | - Xianshu Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Mei Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Xiaojuan Zhong
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Lei Tao
- Sichuan Seed Station, Chengdu 610041, China; (L.T.); (J.L.)
| | - Jing Li
- Sichuan Seed Station, Chengdu 610041, China; (L.T.); (J.L.)
| | - Yonghang Zhou
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chao Xiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.F.); (X.W.); (M.Y.); (X.Z.); (Y.Z.)
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
5
|
Mohamedikbal S, Al‐Mamun HA, Marsh JI, Upadhyaya S, Danilevicz MF, Nguyen HT, Valliyodan B, Mahan A, Batley J, Edwards D. Local haplotyping reveals insights into the genetic control of flowering time variation in wild and domesticated soybean. THE PLANT GENOME 2024; 17:e20528. [PMID: 39510980 PMCID: PMC11628924 DOI: 10.1002/tpg2.20528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024]
Abstract
The timing of flowering in soybean [Glycine max (L.) Merr.], a key legume crop, is influenced by many factors, including daylight length or photoperiodic sensitivity, that affect crop yield, productivity, and geographical adaptation. Despite its importance, a comprehensive understanding of the local linkage landscape and allelic diversity within regions of the genome influencing flowering and contributing to phenotypic variation in subpopulations has been limited. This study addresses these gaps by conducting an in-depth trait association and linkage analysis coupled with local haplotyping using advanced bioinformatics tools, including crosshap, to characterize genomic variation using a pangenome dataset representing 915 domesticated and wild-type individuals. The association analysis identified eight significant loci on seven chromosomes. Moving beyond traditional association analysis, local haplotyping of targeted regions on chromosomes 6 and 20 identified distinct haplotype structures, variation patterns, and genomic candidates influencing flowering in subpopulations. These results suggest the action of a network of genomic candidates influencing flowering time and an untapped reservoir of genomic variation for this trait in wild germplasm. Notably, GlymaLee.20G147200 on chromosome 20 was identified as a candidate gene that may cause delayed flowering in soybean, potentially through histone modifications of floral repressor loci as seen in Arabidopsis thaliana (L.) Heynh. These findings support future functional validation of haplotype-based alleles for marker-assisted breeding and genomic selection to enhance latitude adaptability of soybean without compromising yield.
Collapse
Affiliation(s)
- Shameela Mohamedikbal
- Centre for Applied BioinformaticsUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Hawlader A. Al‐Mamun
- Centre for Applied BioinformaticsUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jacob I. Marsh
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Shriprabha Upadhyaya
- Centre for Applied BioinformaticsUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Monica F. Danilevicz
- Centre for Applied BioinformaticsUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Henry T. Nguyen
- Division of Plant Science & TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Babu Valliyodan
- Department of Agriculture and Environmental SciencesLincoln UniversityJefferson CityMissouriUSA
| | - Adam Mahan
- USDA‐ARSUrbanaIllinoisUSA
- Department of Crop SciencesUniversity of IllinoisUrbanaIllinoisUSA
| | - Jacqueline Batley
- Centre for Applied BioinformaticsUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - David Edwards
- Centre for Applied BioinformaticsUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
6
|
Di D, He S, Zhang R, Gao K, Qiu M, Li X, Sun H, Xue S, Shi J. Exploring the dual role of anti-nutritional factors in soybeans: a comprehensive analysis of health risks and benefits. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39561089 DOI: 10.1080/10408398.2024.2430757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Soybeans (Glycine max [L.] Merr.) are a globally significant crop, valued for their high protein content and nutritional versatility. However, they contain anti-nutritional factors (ANFs) that can interfere with nutrient absorption and pose health risks. This comprehensive review examines the presence and impact of key ANFs in soybeans, such as trypsin inhibitors, lectins, oxalates, phytates, tannins, and soybean polysaccharides, based on recent literature. The physiological roles, potential health hazards of the ANFs, and the detailed balance between their harmful and beneficial effects on human health, as well as the efficacy of deactivation or removal techniques in food processing, were discussed. The findings highlight the dual nature of ANFs in soybeans. Some ANFs have been found to offer health benefits include acting as antioxidants, potentially reducing the risk of cancer, and exhibiting anti-inflammatory effects. However, it is important to note that the same ANFs can also have negative impacts. For instance, trypsin inhibitors, lectins, and tannins may lead to gastrointestinal discomfort and contribute to mineral deficiencies when consumed in excess or without proper processing. This review will provide a clear understanding of the role of ANFs in soybean-based diets and to inform future research and food processing strategies.
Collapse
Affiliation(s)
- Dakai Di
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Rong Zhang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Kuan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Min Qiu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Xingjiang Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Sophia Xue
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | - John Shi
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| |
Collapse
|
7
|
Fortune K, Torabi S, Eskandari M. Genome-wide association mapping in exotic × Canadian elite crosses: mining beneficial alleles for agronomic and seed composition traits in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1490767. [PMID: 39610886 PMCID: PMC11602288 DOI: 10.3389/fpls.2024.1490767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024]
Abstract
Given the narrow genetic base of North American soybean germplasm, which originates from approximately 35 ancestral lines, discovering and introducing useful diversity for key traits in exotic germplasm could potentially enhance diversity in the current elite gene pool. This study explores the potential of exotic germplasm to enhance yield and agronomic traits in the University of Guelph soybean germplasm. We utilized a nested association mapping (NAM) design to develop a population (n = 294) composed of crosses of high-yielding Canadian elite cultivar, OAC Bruton, with four high-yielding exotic lines developed at USDA (Urbana, IL), and we mapped the genetic architecture of agronomic and seed composition traits using association mapping methods. The analysis across three Southwestern Ontario environments revealed seven unique genomic regions underlying agronomic traits and four for seed composition traits, with both desirable and undesirable alleles from the exotic parents. Notably, a region on chromosome 10, co-locating to the E2 maturity locus, was found to be associated with seed yield and maturity. The allele that increased yield by 166 kg/ha was contributed by all exotic parents and was absent in the Canadian-adapted parent. The study underscores the potential of using exotic germplasm to introduce novel genetic diversity into the Canadian elite soybean breeding pool. By identifying exotic-derived beneficial alleles, our findings offer a pathway for enhancing agronomic traits in Canadian soybeans with novel exotic diversity.
Collapse
Affiliation(s)
| | | | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Plant Agriculture,
Guelph, ON, Canada
| |
Collapse
|
8
|
Yin X, Ren Z, Jia R, Wang X, Yu Q, Zhang L, Liu L, Shen W, Fang Z, Liang J, Liu B. Metabolic profiling and spatial metabolite distribution in wild soybean ( G. soja) and cultivated soybean ( G. max) seeds. Food Chem X 2024; 23:101717. [PMID: 39229612 PMCID: PMC11369396 DOI: 10.1016/j.fochx.2024.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
Wild soybeans retain many substances significantly reduced or lost in cultivars during domestication. This study utilized LC-MS to analyze metabolites in the seed coats and embryos of wild and cultivated soybeans. 866 and 815 metabolites were identified in the seed extracts of both soybean types, with 35 and 10 significantly differing metabolites in the seed coat and embryos, respectively. The upregulated metabolites in wild soybeans are linked to plant defense, stress responses, and nitrogen cycling. MALDI-MSI results further elucidated the distribution of these differential metabolites in the cotyledons, hypocotyls, and radicles. In addition to their role in physiological processes like growth and response to environmental stimuli, the prevalent terpenoids, lipids, and flavonoids present in wild soybeans exhibit beneficial bioactivities, including anti-inflammatory, antibacterial, anticancer, and cardiovascular disease prevention properties. These findings underscore the potential of wild soybeans as a valuable resource for enhancing the nutritional and ecological adaptability of cultivated soybeans.
Collapse
Affiliation(s)
- Xin Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhentao Ren
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ruizong Jia
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Qi Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Laipan Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wenjing Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhixiang Fang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
9
|
Gao B, Yang K, Tian Y, Bai B, Tian Z, Liu J. Adaptability of the Soybean Aphid Aphis glycines (Hemiptera: Aphididae) to Temperature and Photoperiod in a Laboratory Experiment. INSECTS 2024; 15:816. [PMID: 39452392 PMCID: PMC11508913 DOI: 10.3390/insects15100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
The soybean aphid, Aphis glycines Matsumura, 1917, is a crucial soybean pest. Cultivated soybean, Glycine max (Carl von Linné) Elmer Drew Merrill, 1917, and wild soybean, Glycine soja Philipp Franz von Siebold & Joseph Gerhard Zuccarini, 1843, are summer hosts of A. glycines. In this study, the development, reproduction, and morphogenesis of A. glycines fed wild soybean (AgFW) were studied at different temperatures and photoperiods. The data were compared with that of A. glycines fed soybean (AgFS). At 20-29 °C, the adult lifespan of the first-third-generation AgFW was shorter than or equal to that of AgFS. Significant differences existed in the adult fecundity and intrinsic rate of increase between AgFW and AgFS. At a 10L:14D h photoperiod, males of AgFW were deposited earlier than, or as early as, males of AgFS. At 17 °C, the gynoparae of AgFW were deposited in proportions greater than or equal to those of AgFS. Based on these results, we concluded that the adaptability of AgFW and AgFS to temperature and photoperiod significantly differs. It is important to understand the life cycle of A. glycines in Harbin, northeast China, and formulate an integrated pest management strategy for A. glycines in the region.
Collapse
Affiliation(s)
- Bo Gao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (B.G.); (K.Y.); (Y.T.); (B.B.); (Z.T.)
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaice Yang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (B.G.); (K.Y.); (Y.T.); (B.B.); (Z.T.)
| | - Yifan Tian
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (B.G.); (K.Y.); (Y.T.); (B.B.); (Z.T.)
| | - Bing Bai
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (B.G.); (K.Y.); (Y.T.); (B.B.); (Z.T.)
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhenqi Tian
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (B.G.); (K.Y.); (Y.T.); (B.B.); (Z.T.)
| | - Jian Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (B.G.); (K.Y.); (Y.T.); (B.B.); (Z.T.)
| |
Collapse
|
10
|
Lavrent'yeva SI, Ivachenko LE, Blinova AA, Bondarenko ON, Kuznetsova VA. Chemical Composition of Seeds in Soybean Glycine soja (Fabaceae) of Amur Oblast. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:194-204. [PMID: 39128955 DOI: 10.1134/s0012496624701114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 08/13/2024]
Abstract
The wild soybean Glycine soja Sieb. et Zucc. is an ancestor of the cultivated soybean Glycine max (L.) Merr. and a source of many valuable genes missing in the G. max genome, including genes that determine stress resistance to adverse environmental factors. Biochemical parameters (protein, oil, ascorbic acid, carotene, higher fatty acids, and specific activities and multiple forms of enzymes of the oxidoreductase and hydrolase classes) were studied in five G. soja accessions from the collection of the All-Russian Institute of Soybean (КА-1413, КА-342, КBl-29, КBl-24, and Kеl-72). The accessions provide unique natural gene banks. Wild seeds were collected in three districts (Arkharinskii, Blagoveshchensk, and Belogorskii) of Amur Oblast. Based on superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO), ribonuclease (RNase), acid phosphatase, esterase, and amylase (AML) activities and biochemical parameters of seeds, the G. soja accession KA-1413 was found to have higher contents of protein, oleic acid, and linolenic acid; a lower polyphenol oxidase specific activity; and higher activities of SODs, esterases, and RNases. The accession KA-1413 was therefore recommended to use as a source of dominant genes in breeding to increase the adaptive potential of new soybean varieties. A higher heterogeneity of multiple forms was observed for SOD, AML, RNase, and esterase, which can provide markers of adaptation to environmental conditions.
Collapse
Affiliation(s)
- S I Lavrent'yeva
- All-Russian Institute of Soybean, Blagoveshchensk, Russia.
- Blagoveshchensk State Pedagogical University, Blagoveshchensk, Russia.
| | - L E Ivachenko
- All-Russian Institute of Soybean, Blagoveshchensk, Russia
- Blagoveshchensk State Pedagogical University, Blagoveshchensk, Russia
| | - A A Blinova
- All-Russian Institute of Soybean, Blagoveshchensk, Russia
| | - O N Bondarenko
- All-Russian Institute of Soybean, Blagoveshchensk, Russia
| | - V A Kuznetsova
- Vavilov All-Russian Institute of Plant Genetic Resources, Vladivostok, Russia
| |
Collapse
|
11
|
Wang L, Zhang T, Li C, Zhou C, Liu B, Wu Y, He F, Xu Y, Li F, Feng X. Overexpression of Wild Soybean Expansin Gene GsEXLB14 Enhanced the Tolerance of Transgenic Soybean Hairy Roots to Salt and Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1656. [PMID: 38931088 PMCID: PMC11207530 DOI: 10.3390/plants13121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
As a type of cell-wall-relaxing protein that is widely present in plants, expansins have been shown to actively participate in the regulation of plant growth and responses to environmental stress. Wild soybeans have long existed in the wild environment and possess abundant resistance gene resources, which hold significant value for the improvement of cultivated soybean germplasm. In our previous study, we found that the wild soybean expansin gene GsEXLB14 is specifically transcribed in roots, and its transcription level significantly increases under salt and drought stress. To further identify the function of GsEXLB14, in this study, we cloned the CDS sequence of this gene. The transcription pattern of GsEXLB14 in the roots of wild soybean under salt and drought stress was analyzed by qRT-PCR. Using an Agrobacterium rhizogenes-mediated genetic transformation, we obtained soybean hairy roots overexpressing GsEXLB14. Under 150 mM NaCl- and 100 mM mannitol-simulated drought stress, the relative growth values of the number, length, and weight of transgenic soybean hairy roots were significantly higher than those of the control group. We obtained the transcriptomes of transgenic and wild-type soybean hairy roots under normal growth conditions and under salt and drought stress through RNA sequencing. A transcriptomic analysis showed that the transcription of genes encoding expansins (EXPB family), peroxidase, H+-transporting ATPase, and other genes was significantly upregulated in transgenic hairy roots under salt stress. Under drought stress, the transcription of expansin (EXPB/LB family) genes increased in transgenic hairy roots. In addition, the transcription of genes encoding peroxidases, calcium/calmodulin-dependent protein kinases, and dehydration-responsive proteins increased significantly. The results of qRT-PCR also confirmed that the transcription pattern of the above genes was consistent with the transcriptome. The differences in the transcript levels of the above genes may be the potential reason for the strong tolerance of soybean hairy roots overexpressing the GsEXLB14 gene under salt and drought stress. In conclusion, the expansin GsEXLB14 can be used as a valuable candidate gene for the molecular breeding of soybeans.
Collapse
Affiliation(s)
- Linlin Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Tong Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Cuiting Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Changjun Zhou
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163316, China; (C.Z.); (B.L.); (Y.W.)
| | - Bing Liu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163316, China; (C.Z.); (B.L.); (Y.W.)
| | - Yaokun Wu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163316, China; (C.Z.); (B.L.); (Y.W.)
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Yongqing Xu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
| | - Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (L.W.); (T.Z.); (C.L.); (F.H.); (Y.X.)
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Fu S, Chen X, Wang K, Chen J, Zhou J, Yi W, Lyu M, Ye Z, Bu W. Shared phylogeographic patterns and environmental responses of co-distributed soybean pests: Insights from comparative phylogeographic studies of Riptortus pedestris and Riptortus linearis in the subtropics of East Asia. Mol Phylogenet Evol 2024; 195:108055. [PMID: 38485106 DOI: 10.1016/j.ympev.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Comparative phylogeographic studies of closely related species sharing co-distribution areas can elucidate the role of shared historical factors and environmental changes in shaping their phylogeographic pattern. The bean bugs, Riptortus pedestris and Riptortus linearis, which both inhabit subtropical regions in East Asia, are recognized as highly destructive soybean pests. Many previous studies have investigated the biological characteristics, pheromones, chemicals and control mechanisms of these two pests, but few studies have explored their phylogeographic patterns and underlying factors. In this study, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) dataset to investigate phylogeographic patterns and construct ecological niche models (ENM) for both Riptortus species. Our findings revealed similar niche occupancies and population genetic structures between the two species, with each comprising two phylogeographic lineages (i.e., the mainland China and the Indochina Peninsula clades) that diverged approximately 0.1 and 0.3 million years ago, respectively. This divergence likely resulted from the combined effects of temperatures variation and geographical barriers in the mountainous regions of Southwest China. Further demographic history and ENM analyses suggested that both pests underwent rapid expansion prior to the Last Glacial Maximum (LGM). Furthermore, ENM predicts a northward shift of both pests into new soybean-producing regions due to global warming. Our study indicated that co-distribution soybean pests with overlapping ecological niches and similar life histories in subtropical regions of East Asia exhibit congruent phylogeographic and demographic patterns in response to shared historical biogeographic drivers.
Collapse
Affiliation(s)
- Siying Fu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Chen
- College of Life Sciences, Cangzhou Normal University, Cangzhou, China(2)
| | - Kaibin Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Juhong Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiayue Zhou
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenbo Yi
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, China(2)
| | - Minhua Lyu
- Nanchang University, Affiliated Hospital 1, Jiangxi, China(2)
| | - Zhen Ye
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Wenjun Bu
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
13
|
Wu J, Fang Y, Xu L, Jin X, Iqbal A, Nisa ZU, Ali N, Chen C, Shah AA, Gatasheh MK. The Glycine soja cytochrome P450 gene GsCYP82C4 confers alkaline tolerance by promoting reactive oxygen species scavenging. PHYSIOLOGIA PLANTARUM 2024; 176:e14252. [PMID: 38509813 DOI: 10.1111/ppl.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Recent studies have demonstrated the crucial role of Cytochrome P450 enzymes (CYPs) in the production of secondary metabolites, phytohormones and antioxidants in plants. However, their functional characterization specifically under alkaline stress remains elusive. CYP82C4 was the key gene screened from a family of wild soybean CYPs in our previous studies. The aim of this present study was to clone the Glycine soja GsCYP82C4 gene and characterize its functions in Arabidopsis and Glycine max. The results showed that the GsCYP82C4 gene displayed a high expression in different plant tissues at mature stages compared to young stages. Further, higher temporal expression of the GsCYP82C4 gene was noted at 6, 12 and 24 h time points after alkali treatment in leaves compared to roots. In addition, overexpression of GsCYP82C4 improved alkaline stress tolerance in Arabidopsis via increased root lengths and fresh biomass and strengthened the antioxidant defense system via a reduction in superoxide radicals in transgenic lines compared to wild type (WT) and atcyp82c4 mutants. Further, the expression levels of stress-related marker genes were up-regulated in GsCYP82C4 OX lines under alkali stress. The functional analysis of GsCYP82C4 overexpression in soybean displayed better hairy root growth, increased fresh weight, higher antioxidant enzyme activities and reduced lipid peroxidation rates in OX lines compared to the soybean WT (K599) line. In total, our study displayed positive roles of GsCYP82C4 overexpression in both Arabidopsis and Glycine max to alleviate alkaline stress via altering expression abundance of stress responsive genes, stronger roots, higher antioxidant enzyme activities as well as reduced rates of lipid peroxidation and superoxide radicals.
Collapse
Affiliation(s)
- Jinyu Wu
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Yangyang Fang
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Liankun Xu
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Xiaoxia Jin
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Anam Iqbal
- Institute of Molecular Biology and Biotechnology IMBB, The University of Lahore, Lahore, Pakistan
| | - Zaib Un Nisa
- Institute of Molecular Biology and Biotechnology IMBB, The University of Lahore, Lahore, Pakistan
| | - Naila Ali
- Institute of Molecular Biology and Biotechnology IMBB, The University of Lahore, Lahore, Pakistan
| | - Chao Chen
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Vicente MH, MacLeod K, Zhu F, Rafael DD, Figueira A, Fernie AR, Mohareb F, Kevei Z, Thompson AJ, Zsögön A, Peres LEP. The ORGAN SIZE (ORG) locus modulates both vegetative and reproductive gigantism in domesticated tomato. ANNALS OF BOTANY 2023; 132:1233-1248. [PMID: 37818893 PMCID: PMC10902882 DOI: 10.1093/aob/mcad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND AIMS Gigantism is a key component of the domestication syndrome, a suite of traits that differentiates crops from their wild relatives. Allometric gigantism is strongly marked in horticultural crops, causing disproportionate increases in the size of edible parts such as stems, leaves or fruits. Tomato (Solanum lycopersicum) has attracted attention as a model for fruit gigantism, and many genes have been described controlling this trait. However, the genetic basis of a corresponding increase in size of vegetative organs contributing to isometric gigantism has remained relatively unexplored. METHODS Here, we identified a 0.4-Mb region on chromosome 7 in introgression lines (ILs) from the wild species Solanum pennellii in two different tomato genetic backgrounds (cv. 'M82' and cv. 'Micro-Tom') that controls vegetative and reproductive organ size in tomato. The locus, named ORGAN SIZE (ORG), was fine-mapped using genotype-by-sequencing. A survey of the literature revealed that ORG overlaps with previously mapped quantitative trait loci controlling tomato fruit weight during domestication. KEY RESULTS Alleles from the wild species led to lower cell number in different organs, which was partially compensated by greater cell expansion in leaves, but not in fruits. The result was a proportional reduction in leaf, flower and fruit size in the ILs harbouring the alleles from the wild species. CONCLUSIONS Our findings suggest that selection for large fruit during domestication also tends to select for increases in leaf size by influencing cell division. Since leaf size is relevant for both source-sink balance and crop adaptation to different environments, the discovery of ORG could allow fine-tuning of these parameters.
Collapse
Affiliation(s)
- Mateus Henrique Vicente
- Laboratory of Plant Developmental Genetics, Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Kyle MacLeod
- Cranfield Soil and AgriFood Institute, Cranfield University, Cranfield, MK43 0AL, UK
| | - Feng Zhu
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | - Diego D Rafael
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Antonio Figueira
- Laboratory of Plant Breeding, Centro de Energia Nuclear na Agricultura (CENA), USP, Av. Centenário, 303, 13400-970, Piracicaba, SP, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Fady Mohareb
- Cranfield Soil and AgriFood Institute, Cranfield University, Cranfield, MK43 0AL, UK
| | - Zoltan Kevei
- Cranfield Soil and AgriFood Institute, Cranfield University, Cranfield, MK43 0AL, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, Cranfield University, Cranfield, MK43 0AL, UK
| | - Agustin Zsögön
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Laboratory of Plant Developmental Genetics, Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| |
Collapse
|
15
|
Jacquet S, Li S, Mian R, Kassem MA, Rashad L, Viera S, Reta F, Reta J, Yuan J. Evaluating the Response of Glycine soja Accessions to Fungal Pathogen Macrophomina phaseolina during Seedling Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:3807. [PMID: 38005704 PMCID: PMC10675638 DOI: 10.3390/plants12223807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023]
Abstract
Charcoal rot caused by the fungal pathogen Macrophomina phaseolina (Tassi) Goid is one of various devastating soybean (Glycine max (L.) Merr.) diseases, which can severely reduce crop yield. The investigation into the genetic potential for charcoal rot resistance of wild soybean (Glycine soja) accessions will enrich our understanding of the impact of soybean domestication on disease resistance; moreover, the identified charcoal rot-resistant lines can be used to improve soybean resistance to charcoal rot. The objective of this study was to evaluate the resistance of wild soybean accessions to M. phaseolina at the seedling stage and thereby select the disease-resistant lines. The results show that the fungal pathogen infection reduced the growth of the root and hypocotyl in most G. soja accessions. The accession PI 507794 displayed the highest level of resistance response to M. phaseolina infection among the tested wild soybean accessions, while PI 487431 and PI 483660B were susceptible to charcoal rot in terms of the reduction in root and hypocotyl growth. The mean values of the root and hypocotyl parameters in PI 507794 were significantly higher (p < 0.05) than those of PI 487431 and PI 483460B. A analysis of the resistance of wild soybean accessions to M. phaseolina using the root and hypocotyl as the assessment parameters at the early seedling stage provides an alternative way to rapidly identify potential resistant genotypes and facilitate breeding for soybean resistance to charcoal rot.
Collapse
Affiliation(s)
- Shirley Jacquet
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (S.J.); (M.A.K.); (L.R.); (S.V.); (F.R.); (J.R.)
| | - Shuxian Li
- Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA, ARS), 141 Experiment Station Road, P.O. Box 345, Stoneville, MS 38776, USA;
| | - Rouf Mian
- Soybean and Nitrogen Fixation Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA, ARS), 3127 Ligon St., Raleigh, NC 27607, USA;
| | - My Abdelmajid Kassem
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (S.J.); (M.A.K.); (L.R.); (S.V.); (F.R.); (J.R.)
| | - Layla Rashad
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (S.J.); (M.A.K.); (L.R.); (S.V.); (F.R.); (J.R.)
| | - Sonia Viera
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (S.J.); (M.A.K.); (L.R.); (S.V.); (F.R.); (J.R.)
| | - Francisco Reta
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (S.J.); (M.A.K.); (L.R.); (S.V.); (F.R.); (J.R.)
| | - Juan Reta
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (S.J.); (M.A.K.); (L.R.); (S.V.); (F.R.); (J.R.)
| | - Jiazheng Yuan
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (S.J.); (M.A.K.); (L.R.); (S.V.); (F.R.); (J.R.)
| |
Collapse
|
16
|
Zhou Y, Xu K, Gao H, Yao W, Zhang Y, Zhang Y, Azhar Hussain M, Wang F, Yang X, Li H. Comparative Proteomic Analysis of Two Wild Soybean ( Glycine soja) Genotypes Reveals Positive Regulation of Saline-Alkaline Stress Tolerance by Tonoplast Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14109-14124. [PMID: 37749803 DOI: 10.1021/acs.jafc.3c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Soil saline-alkalization is a significant constraint for soybean production. Owing to higher genetic diversity of wild soybean, we compared the proteomic landscape of saline-alkaline stress-tolerant (SWBY032) and stress-sensitive (SWLJ092) wild soybean (Glycine soja) strains under saline and saline-alkaline stress. Out of 346 differentially expressed proteins (DEPs) specifically involved in saline-alkaline stress, 159 and 133 DEPs were identified in only SWLJ092 and SWBY032, respectively. Functional annotations revealed that more ribosome proteins were downregulated in SWLJ092, whereas more membrane transporters were upregulated in SWBY032. Moreover, protein-protein interaction analysis of 133 DEPs revealed that 14 protein-synthesis- and 2 TCA-cycle-related DEPs might alter saline-alkaline tolerance by affecting protein synthesis and amino acid metabolism. Furthermore, we confirmed G. soja tonoplast intrinsic protein (GsTIP2-1 and GsTIP2-2), inositol transporter (GsINT1), sucrose transport protein (GsSUC4), and autoinhibited Ca2+-ATPase (GsACA11) as tonoplast transporters can synergistically improve saline-alkaline tolerance in soybean, possibly by relieving the inhibition of protein synthesis and amino acid metabolism. Overall, our findings provided a foundation for molecular breeding of a saline-alkaline stress-tolerant soybean.
Collapse
Affiliation(s)
- Yonggang Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Keheng Xu
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Hongtao Gao
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Wenbo Yao
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Yinhe Zhang
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Yuntong Zhang
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Muhammad Azhar Hussain
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Fawei Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xinquan Yang
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| |
Collapse
|
17
|
Yao D, Zhou J, Zhang A, Wang J, Liu Y, Wang L, Pi W, Li Z, Yue W, Cai J, Liu H, Hao W, Qu X. Advances in CRISPR/Cas9-based research related to soybean [ Glycine max (Linn.) Merr] molecular breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1247707. [PMID: 37711287 PMCID: PMC10499359 DOI: 10.3389/fpls.2023.1247707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Soybean [Glycine max (Linn.) Merr] is a source of plant-based proteins and an essential oilseed crop and industrial raw material. The increase in the demand for soybeans due to societal changes has coincided with the increase in the breeding of soybean varieties with enhanced traits. Earlier gene editing technologies involved zinc finger nucleases and transcription activator-like effector nucleases, but the third-generation gene editing technology uses clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The rapid development of CRISPR/Cas9 technology has made it one of the most effective, straightforward, affordable, and user-friendly technologies for targeted gene editing. This review summarizes the application of CRISPR/Cas9 technology in soybean molecular breeding. More specifically, it provides an overview of the genes that have been targeted, the type of editing that occurs, the mechanism of action, and the efficiency of gene editing. Furthermore, suggestions for enhancing and accelerating the molecular breeding of novel soybean varieties with ideal traits (e.g., high yield, high quality, and durable disease resistance) are included.
Collapse
Affiliation(s)
- Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Junming Zhou
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Aijing Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yixuan Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Lixue Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Zihao Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenjun Yue
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jinliang Cai
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyuan Hao
- Jilin Provincial Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiangchun Qu
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| |
Collapse
|
18
|
Yin Y, Ren Z, Zhang L, Qin L, Chen L, Liu L, Jia R, Xue K, Liu B, Wang X. In Situ Proteomic Analysis of Herbicide-Resistant Soybean and Hybrid Seeds via Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7140-7151. [PMID: 37098110 DOI: 10.1021/acs.jafc.3c00301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transgenic soybean is the commercial crop with the largest cultivation area worldwide. During transgenic soybean cultivation, exogenous genes may be transferred to wild relatives through gene flow, posing unpredictable ecological risks. Accordingly, an environmental risk assessment should focus on fitness changes and underlying mechanisms in hybrids between transgenic and wild soybeans (Glycine soja). Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was used for in situ detection and imaging of protein changes in the seeds of transgenic herbicide-resistant soybean harboring epsps and pat genes, non-transgenic soybean, wild soybean, and their F2 hybrid. Protein data clearly distinguished wild soybeans, while the F2 seeds had protein characteristics of both parents and were distinguished from wild soybean seeds. Using UPLC-Q-TOF-MS, 22 differentially expressed proteins (DEPs) were identified, including 13 specific to wild soybean. Sucrose synthase and stress response-related DEPs were differentially expressed in parental and offspring. Differences in these may underpin the greater adaptability of the latter. MSI revealed DEP distribution in transgenic, wild, and F2 seeds. Identifying DEPs related to fitness may elucidate mechanisms underlying fitness differences among the studied varieties. Our study shows that MALDI-MSI has the potential to become a visual method for transgenic soybean analysis.
Collapse
Affiliation(s)
- Yue Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Nanjing Agro-Tech Extension and Service Center, Agricultural and Rural Bureau of Nanjing, Nanjing, Jiangsu 210029, China
| | - Zhentao Ren
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Li Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Laipan Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ruizong Jia
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya 572025, China
| | - Kun Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
19
|
Hou Z, Fang C, Liu B, Yang H, Kong F. Origin, variation, and selection of natural alleles controlling flowering and adaptation in wild and cultivated soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:36. [PMID: 37309391 PMCID: PMC10248697 DOI: 10.1007/s11032-023-01382-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 06/14/2023]
Abstract
Soybean (Glycine max) is an economically important crop worldwide, serving as a major source of oil and protein for human consumption and animal feed. Cultivated soybean was domesticated from wild soybean (Glycine soja) which both species are highly sensitive to photoperiod and can grow over a wide geographical range. The extensive ecological adaptation of wild and cultivated soybean has been facilitated by a series of genes represented as quantitative trait loci (QTLs) that control photoperiodic flowering and maturation. Here, we review the molecular and genetic basis underlying the regulation of photoperiodic flowering in soybean. Soybean has experienced both natural and artificial selection during adaptation to different latitudes, resulting in differential molecular and evolutionary mechanisms between wild and cultivated soybean. The in-depth study of natural and artificial selection for the photoperiodic adaptability of wild and cultivated soybean provides an important theoretical and practical basis for enhancing soybean adaptability and yield via molecular breeding. In addition, we discuss the possible origin of wild soybean, current challenges, and future research directions in this important topic.
Collapse
Affiliation(s)
- Zhihong Hou
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Hui Yang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
20
|
Kim WJ, Kang BH, Kang S, Shin S, Chowdhury S, Jeong SC, Choi MS, Park SK, Moon JK, Ryu J, Ha BK. A Genome-Wide Association Study of Protein, Oil, and Amino Acid Content in Wild Soybean ( Glycine soja). PLANTS (BASEL, SWITZERLAND) 2023; 12:1665. [PMID: 37111888 PMCID: PMC10143452 DOI: 10.3390/plants12081665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Soybean (Glycine max L.) is a globally important source of plant proteins, oils, and amino acids for both humans and livestock. Wild soybean (Glycine soja Sieb. and Zucc.), the ancestor of cultivated soybean, could be a useful genetic source for increasing these components in soybean crops. In this study, 96,432 single-nucleotide polymorphisms (SNPs) across 203 wild soybean accessions from the 180K Axiom® Soya SNP array were investigated using an association analysis. Protein and oil content exhibited a highly significant negative correlation, while the 17 amino acids exhibited a highly significant positive correlation with each other. A genome-wide association study (GWAS) was conducted on the protein, oil, and amino acid content using the 203 wild soybean accessions. A total of 44 significant SNPs were associated with protein, oil, and amino acid content. Glyma.11g015500 and Glyma.20g050300, which contained SNPs detected from the GWAS, were selected as novel candidate genes for the protein and oil content, respectively. In addition, Glyma.01g053200 and Glyma.03g239700 were selected as novel candidate genes for nine of the amino acids (Ala, Asp, Glu, Gly, Leu, Lys, Pro, Ser, and Thr). The identification of the SNP markers related to protein, oil, and amino acid content reported in the present study is expected to help improve the quality of selective breeding programs for soybeans.
Collapse
Affiliation(s)
- Woon Ji Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Republic of Korea; (W.J.K.); (J.R.)
| | - Byeong Hee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea; (B.H.K.); (S.K.); (S.S.); (S.C.)
- BK21 FOUR Center for IT-Bio Convergence System Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sehee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea; (B.H.K.); (S.K.); (S.S.); (S.C.)
- BK21 FOUR Center for IT-Bio Convergence System Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seoyoung Shin
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea; (B.H.K.); (S.K.); (S.S.); (S.C.)
| | - Sreeparna Chowdhury
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea; (B.H.K.); (S.K.); (S.S.); (S.C.)
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea;
| | - Man-Soo Choi
- National Institute of Crop Science, RDA, Wanju 55365, Republic of Korea; (M.-S.C.); (S.-K.P.); (J.-K.M.)
| | - Soo-Kwon Park
- National Institute of Crop Science, RDA, Wanju 55365, Republic of Korea; (M.-S.C.); (S.-K.P.); (J.-K.M.)
| | - Jung-Kyung Moon
- National Institute of Crop Science, RDA, Wanju 55365, Republic of Korea; (M.-S.C.); (S.-K.P.); (J.-K.M.)
| | - Jaihyunk Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Republic of Korea; (W.J.K.); (J.R.)
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea; (B.H.K.); (S.K.); (S.S.); (S.C.)
- BK21 FOUR Center for IT-Bio Convergence System Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
21
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
22
|
Kim WJ, Kang BH, Moon CY, Kang S, Shin S, Chowdhury S, Choi MS, Park SK, Moon JK, Ha BK. Quantitative Trait Loci (QTL) Analysis of Seed Protein and Oil Content in Wild Soybean ( Glycine soja). Int J Mol Sci 2023; 24:ijms24044077. [PMID: 36835486 PMCID: PMC9959443 DOI: 10.3390/ijms24044077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Soybean seeds consist of approximately 40% protein and 20% oil, making them one of the world's most important cultivated legumes. However, the levels of these compounds are negatively correlated with each other and regulated by quantitative trait loci (QTL) that are controlled by several genes. In this study, a total of 190 F2 and 90 BC1F2 plants derived from a cross of Daepung (Glycine max) with GWS-1887 (G. soja, a source of high protein), were used for the QTL analysis of protein and oil content. In the F2:3 populations, the average protein and oil content was 45.52% and 11.59%, respectively. A QTL associated with protein levels was detected at Gm20_29512680 on chr. 20 with a likelihood of odds (LOD) of 9.57 and an R2 of 17.2%. A QTL associated with oil levels was also detected at Gm15_3621773 on chr. 15 (LOD: 5.80; R2: 12.2%). In the BC1F2:3 populations, the average protein and oil content was 44.25% and 12.14%, respectively. A QTL associated with both protein and oil content was detected at Gm20_27578013 on chr. 20 (LOD: 3.77 and 3.06; R2 15.8% and 10.7%, respectively). The crossover to the protein content of BC1F3:4 population was identified by SNP marker Gm20_32603292. Based on these results, two genes, Glyma.20g088000 (S-adenosyl-l-methionine-dependent methyltransferases) and Glyma.20g088400 (oxidoreductase, 2-oxoglutarate-Fe(II) oxygenase family protein), in which the amino acid sequence had changed and a stop codon was generated due to an InDel in the exon region, were identified.
Collapse
Affiliation(s)
- Woon Ji Kim
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byeong Hee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
- BK21 FOUR Center for IT-Bio Convergence System Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chang Yeok Moon
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
- BK21 FOUR Center for IT-Bio Convergence System Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sehee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
- BK21 FOUR Center for IT-Bio Convergence System Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seoyoung Shin
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sreeparna Chowdhury
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Man-Soo Choi
- National Institute of Crop Science, Rural Development Administration (RDA), Wanju 55365, Republic of Korea
| | - Soo-Kwon Park
- National Institute of Crop Science, Rural Development Administration (RDA), Wanju 55365, Republic of Korea
| | - Jung-Kyung Moon
- National Institute of Crop Science, Rural Development Administration (RDA), Wanju 55365, Republic of Korea
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
- BK21 FOUR Center for IT-Bio Convergence System Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence: ; Tel.: +82-62-530-2055
| |
Collapse
|
23
|
Lee YH, Lee NR, Lee CH. Comprehensive Metabolite Profiling of Four Different Beans Fermented by Aspergillus oryzae. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227917. [PMID: 36432017 PMCID: PMC9695057 DOI: 10.3390/molecules27227917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Fermented bean products are used worldwide; most of the products are made using only a few kinds of beans. However, the metabolite changes and contents in the beans generally used during fermentation are unrevealed. Therefore, we selected four different beans (soybean, Glycine max, GM; wild soybean, Glycine soja, GS; common bean, Phaseolus vulgaris, PV; and hyacinth bean, Lablab purpureus, LP) that are the most widely consumed and fermented with Aspergillus oryzae. Then, metabolome and multivariate statistical analysis were performed to figure out metabolite changes during fermentation. In the four beans, carbohydrates were decreased, but amino acids and fatty acids were increased in the four beans as they fermented. The relative amounts of amino acids were relatively abundant in fermented PV and LP as compared to other beans. In contrast, isoflavone aglycones (e.g., daidzein, glycitein, and genistein) and DDMP-conjugated soyasaponins (e.g., soyasaponins βa and γg) were increased in GM and GS during fermentation. Notably, these metabolite changes were more significant in GS than GM. In addition, the increase of antioxidant activity in fermented GS was significant compared to other beans. We expect our research provides a basis to extend choice for bean fermentation for consumers and food producers.
Collapse
Affiliation(s)
- Yeon Hee Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Rae Lee
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: (N.-R.L.); (C.H.L.); Tel.: +82-2-2049-6177 (C.H.L.)
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: (N.-R.L.); (C.H.L.); Tel.: +82-2-2049-6177 (C.H.L.)
| |
Collapse
|
24
|
Wang J, Hu Z, Liao X, Wang Z, Li W, Zhang P, Cheng H, Wang Q, Bhat JA, Wang H, Liu B, Zhang H, Huang F, Yu D. Whole-genome resequencing reveals signature of local adaptation and divergence in wild soybean. Evol Appl 2022; 15:1820-1833. [PMID: 36426120 PMCID: PMC9679240 DOI: 10.1111/eva.13480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Global climate change has threatened world crop production and food security. Decoding the adaptive genetic basis of wild relatives provides an invaluable genomic resource for climate-smart crop breedinG. Here, we performed whole-genome sequencing of 185 diverse wild soybean (Glycine soja) accessions collected from three major agro-ecological zones in China to parse the genomic basis of local adaptation in wild soybean. The population genomic diversity pattern exhibited clear agro-ecological zone-based population structure, and multiple environmental factors were observed to contribute to the genetic divergence. Demographic analysis shows that wild soybeans from the three ecological zones diverged about 1 × 105 years ago, and then the effective population sizes have undergone different degrees of expansions. Genome-environment association identified multiple genes involved in the local adaptation, such as flowering time and temperature-related genes. A locus containing two adjacent MADS-box transcription factors on chromosome 19 was identified for multiple environmental factors, and it experienced positive selection that enables the adaptation to high-latitude environment. This study provides insights into the genetic mechanism of ecological adaptation in wild soybean that may facilitate climate-resilient soybean breeding.
Collapse
Affiliation(s)
- Jiao Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Zhenbin Hu
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
| | - Xiliang Liao
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Zhiyu Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Wei Li
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural ScienceHarbinChina
| | - Peipei Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Biao Liu
- Nanjing Institute of Environmental SciencesMinistry of Ecology and EnvironmentNanjingChina
| | - Hengyou Zhang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbinChina
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
25
|
Cai X, Jia B, Sun M, Sun X. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1002302. [PMID: 36340388 PMCID: PMC9627173 DOI: 10.3389/fpls.2022.1002302] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 05/24/2023]
Abstract
Soybean is an important grain and oil crop. In China, there is a great contradiction between soybean supply and demand. China has around 100 million ha of salt-alkaline soil, and at least 10 million could be potentially developed for cultivated land. Therefore, it is an effective way to improve soybean production by breeding salt-alkaline-tolerant soybean cultivars. Compared with wild soybean, cultivated soybean has lost a large number of important genes related to environmental adaptation during the long-term domestication and improvement process. Therefore, it is greatly important to identify the salt-alkaline tolerant genes in wild soybean, and investigate the molecular basis of wild soybean tolerance to salt-alkaline stress. In this review, we summarized the current research regarding the salt-alkaline stress response in wild soybean. The genes involved in the ion balance and ROS scavenging in wild soybean were summarized. Meanwhile, we also introduce key protein kinases and transcription factors that were reported to mediate the salt-alkaline stress response in wild soybean. The findings summarized here will facilitate the molecular breeding of salt-alkaline tolerant soybean cultivars.
Collapse
Affiliation(s)
| | | | | | - Xiaoli Sun
- *Correspondence: Mingzhe Sun, ; Xiaoli Sun,
| |
Collapse
|
26
|
Jiménez-Guerrero I, Medina C, Vinardell JM, Ollero FJ, López-Baena FJ. The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis. Int J Mol Sci 2022; 23:ijms231911089. [PMID: 36232385 PMCID: PMC9569860 DOI: 10.3390/ijms231911089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 01/14/2023] Open
Abstract
Rhizobia are soil bacteria that can establish a symbiotic association with legumes. As a result, plant nodules are formed on the roots of the host plants where rhizobia differentiate to bacteroids capable of fixing atmospheric nitrogen into ammonia. This ammonia is transferred to the plant in exchange of a carbon source and an appropriate environment for bacterial survival. This process is subjected to a tight regulation with several checkpoints to allow the progression of the infection or its restriction. The type 3 secretion system (T3SS) is a secretory system that injects proteins, called effectors (T3E), directly into the cytoplasm of the host cell, altering host pathways or suppressing host defense responses. This secretion system is not present in all rhizobia but its role in symbiosis is crucial for some symbiotic associations, showing two possible faces as Dr. Jekyll and Mr. Hyde: it can be completely necessary for the formation of nodules, or it can block nodulation in different legume species/cultivars. In this review, we compile all the information currently available about the effects of different rhizobial effectors on plant symbiotic phenotypes. These phenotypes are diverse and highlight the importance of the T3SS in certain rhizobium–legume symbioses.
Collapse
|
27
|
Zhuang Y, Li X, Hu J, Xu R, Zhang D. Expanding the gene pool for soybean improvement with its wild relatives. ABIOTECH 2022; 3:115-125. [PMID: 36304518 PMCID: PMC9590452 DOI: 10.1007/s42994-022-00072-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
Genetic diversity is a cornerstone of crop improvement, However, cultivated soybean (Glycine max) has undergone several genetic bottlenecks, including domestication in China, the introduction of landraces to other areas of the world and, latterly, selective breeding, leading to low genetic diversity the poses a major obstacle to soybean improvement. By contrast, there remains a relatively high level of genetic diversity in soybean's wild relatives, especially the perennial soybeans (Glycine subgenus Glycine), which could serve as potential gene pools for improving soybean cultivars. Wild soybeans are phylogenetically diversified and adapted to various habitats, harboring resistance to various biotic and abiotic stresses. Advances in genome and transcriptome sequencing enable alleles associated with desirable traits that were lost during domestication of soybean to be discovered in wild soybean. The collection and conservation of soybean wild relatives and the dissection of their genomic features will accelerate soybean breeding and facilitate sustainable agriculture and food production.
Collapse
Affiliation(s)
- Yongbin Zhuang
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, 271018 Shandong China
| | - Xiaoming Li
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, 271018 Shandong China
| | - Junmei Hu
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, 271018 Shandong China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 Shandong China
| | - Dajian Zhang
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, 271018 Shandong China
| |
Collapse
|
28
|
Feng X, Li C, He F, Xu Y, Li L, Wang X, Chen Q, Li F. Genome-Wide Identification of Expansin Genes in Wild Soybean ( Glycine soja) and Functional Characterization of Expansin B1 ( GsEXPB1) in Soybean Hair Root. Int J Mol Sci 2022; 23:5407. [PMID: 35628217 PMCID: PMC9140629 DOI: 10.3390/ijms23105407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Wild soybean, the progenitor and close relative of cultivated soybean, has an excellent environmental adaptation ability and abundant resistance genes. Expansins, as a class of cell wall relaxation proteins, have important functions in regulating plant growth and stress resistance. In the present study, we identified a total of 75 members of the expansin family on the basis of recent genomic data published for wild soybean. The predicted results of promoter elements structure showed that wild soybean expansin may be associated with plant hormones, stress responses, and growth. Basal transcriptome data of vegetative organs suggest that the transcription of expansin members has some organ specificity. Meanwhile, the transcripts of some members had strong responses to salt, low temperature and drought stress. We screened and obtained an expansin gene, GsEXPB1, which is transcribed specifically in roots and actively responds to salt stress. The results of A. tumefaciens transient transfection showed that this protein was localized in the cell wall of onion epidermal cells. We initially analyzed the function of GsEXPB1 by a soybean hairy root transformation assay and found that overexpression of GsEXPB1 significantly increased the number of hairy roots, root length, root weight, and the tolerance to salt stress. This research provides a foundation for subsequent studies of expansins in wild soybean.
Collapse
Affiliation(s)
- Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.F.); (C.L.); (F.H.); (Y.X.); (L.L.); (X.W.)
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Cuiting Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.F.); (C.L.); (F.H.); (Y.X.); (L.L.); (X.W.)
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.F.); (C.L.); (F.H.); (Y.X.); (L.L.); (X.W.)
| | - Yongqing Xu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.F.); (C.L.); (F.H.); (Y.X.); (L.L.); (X.W.)
| | - Li Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.F.); (C.L.); (F.H.); (Y.X.); (L.L.); (X.W.)
| | - Xue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.F.); (C.L.); (F.H.); (Y.X.); (L.L.); (X.W.)
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.F.); (C.L.); (F.H.); (Y.X.); (L.L.); (X.W.)
| |
Collapse
|
29
|
Li J, Sun M, Liu Y, Sun X, Yin K. Genome-Wide Identification of Wild Soybean Mitochondrial Calcium Uniporter Family Genes and Their Responses to Cold and Carbonate Alkaline Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:867503. [PMID: 35592573 PMCID: PMC9111538 DOI: 10.3389/fpls.2022.867503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
The mitochondrial calcium uniporter (MCU), as an important component of the Ca2+ channel uniporter complex, plays a regulatory role in intracellular Ca2+ signal transduction. However, only a few studies to date have investigated plant MCU genes. In this study, we identified the MCU family genes in wild soybean and investigated their expression under cold and carbonate alkaline stresses. Eleven Glycine soja MCU genes (GsMCUs) were identified and clustered into two subgroups (subgroups I and II), and subgroup II could be further divided into two branches (MCU5 and MCU6). A total of 21 pairs of GsMCUs were characterized as duplicated genes, and displayed a similar exon-intron architecture. All GsMCU proteins contained one conserved MCU domain, within which two transmembrane domains were found. An analysis of the conserved motifs further supported that the GsMCUs showed high conservation in protein sequence and structure. Moreover, we found that all GsMCUs were expressed ubiquitously in different tissues and organs, and GsMCUs from the same subgroup displayed varied tissue expression profiles. In addition, based on RNA-seq and qRT-PCR assays, six and nine GsMCUs were differentially expressed under cold and carbonate alkaline stress, respectively. Promoter analysis also uncovered the existence of two canonical cold-related cis-acting elements, LTR and DRE/CRT, as well as stress-related phytohormone-responsive elements. Our results provide valuable information about the MCU family in soybean responses to cold and carbonate alkaline stress, which will be helpful in further characterizing their biological roles in response to abiotic stress.
Collapse
Affiliation(s)
- Jianwei Li
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Yu Liu
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Kuide Yin
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
30
|
Marsh JI, Hu H, Petereit J, Bayer PE, Valliyodan B, Batley J, Nguyen HT, Edwards D. Haplotype mapping uncovers unexplored variation in wild and domesticated soybean at the major protein locus cqProt-003. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1443-1455. [PMID: 35141762 PMCID: PMC9033719 DOI: 10.1007/s00122-022-04045-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE The major soy protein QTL, cqProt-003, was analysed for haplotype diversity and global distribution, and results indicate 304 bp deletion and variable tandem repeats in protein coding regions are likely causal candidates. Here, we present association and linkage analysis of 985 wild, landrace and cultivar soybean accessions in a pan genomic dataset to characterize the major high-protein/low-oil associated locus cqProt-003 located on chromosome 20. A significant trait-associated region within a 173 kb linkage block was identified, and variants in the region were characterized, identifying 34 high confidence SNPs, 4 insertions, 1 deletion and a larger 304 bp structural variant in the high-protein haplotype. Trinucleotide tandem repeats of variable length present in the second exon of gene Glyma.20G085100 are strongly correlated with the high-protein phenotype and likely represent causal variation. Structural variation has previously been found in the same gene, for which we report the global distribution of the 304 bp deletion and have identified additional nested variation present in high-protein individuals. Mapping variation at the cqProt-003 locus across demographic groups suggests that the high-protein haplotype is common in wild accessions (94.7%), rare in landraces (10.6%) and near absent in cultivated breeding pools (4.1%), suggesting its decrease in frequency primarily correlates with domestication and continued during subsequent improvement. However, the variation that has persisted in under-utilized wild and landrace populations holds high breeding potential for breeders willing to forego seed oil to maximize protein content. The results of this study include the identification of distinct haplotype structures within the high-protein population, and a broad characterization of the genomic context and linkage patterns of cqProt-003 across global populations, supporting future functional characterization and modification.
Collapse
Affiliation(s)
- Jacob I Marsh
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Haifei Hu
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Jakob Petereit
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Babu Valliyodan
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, MO, 65101, USA
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
31
|
Zhang H, Jiang H, Hu Z, Song Q, An YQC. Development of a versatile resource for post-genomic research through consolidating and characterizing 1500 diverse wild and cultivated soybean genomes. BMC Genomics 2022; 23:250. [PMID: 35361112 PMCID: PMC8973893 DOI: 10.1186/s12864-022-08326-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 01/20/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND With advances in next-generation sequencing technologies, an unprecedented amount of soybean accessions has been sequenced by many individual studies and made available as raw sequencing reads for post-genomic research. RESULTS To develop a consolidated and user-friendly genomic resource for post-genomic research, we consolidated the raw resequencing data of 1465 soybean genomes available in the public and 91 highly diverse wild soybean genomes newly sequenced. These altogether provided a collection of 1556 sequenced genomes of 1501 diverse accessions (1.5 K). The collection comprises of wild, landraces and elite cultivars of soybean that were grown in East Asia or major soybean cultivating areas around the world. Our extensive sequence analysis discovered 32 million single nucleotide polymorphisms (32mSNPs) and revealed a SNP density of 30 SNPs/kb and 12 non-synonymous SNPs/gene reflecting a high structural and functional genomic diversity of the new collection. Each SNP was annotated with 30 categories of structural and/or functional information. We further identified paired accessions between the 1.5 K and 20,087 (20 K) accessions in US collection as genomic "equivalent" accessions sharing the highest genomic identity for minimizing the barriers in soybean germplasm exchange between countries. We also exemplified the utility of 32mSNPs in enhancing post-genomics research through in-silico genotyping, high-resolution GWAS, discovering and/or characterizing genes and alleles/mutations, identifying germplasms containing beneficial alleles that are potentially experiencing artificial selection. CONCLUSION The comprehensive analysis of publicly available large-scale genome sequencing data of diverse cultivated accessions and the newly in-house sequenced wild accessions greatly increased the soybean genome-wide variation resolution. This could facilitate a variety of genetic and molecular-level analyses in soybean. The 32mSNPs and 1.5 K accessions with their comprehensive annotation have been made available at the SoyBase and Ag Data Commons. The dataset could further serve as a versatile and expandable core resource for exploring the exponentially increasing genome sequencing data for a variety of post-genomic research.
Collapse
Affiliation(s)
- Hengyou Zhang
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - He Jiang
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Zhenbin Hu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Qijian Song
- US Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Yong-Qiang Charles An
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA.
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit, 975 N Warson Rd, St. Louis, MO 63132, USA.
| |
Collapse
|
32
|
Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. PLANT PHYSIOLOGY 2022; 188:1746-1756. [PMID: 34850221 PMCID: PMC8968405 DOI: 10.1093/plphys/kiab554] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
Growing knowledge about crop domestication, combined with increasingly powerful gene-editing toolkits, sets the stage for the continual domestication of crop wild relatives and other lesser-known plant species.
Collapse
Affiliation(s)
- Shaun Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, Minnesota 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
33
|
Basnet P, Um T, Roy NS, Cho WS, Park SC, Park KC, Choi IY. Identification and Characterization of Key Genes Responsible for Weedy and Cultivar Growth Types in Soybean. Front Genet 2022; 13:805347. [PMID: 35281824 PMCID: PMC8907156 DOI: 10.3389/fgene.2022.805347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
In cultivated plants, shoot morphology is an important factor that influences crop economic value. However, the effects of gene expression patterns on shoot morphology are not clearly understood. In this study, the molecular mechanism behind shoot morphology (including leaf, stem, and node) was analyzed using RNA sequencing to compare weedy (creeper) and cultivar (stand) growth types obtained in F7 derived from a cross of wild and cultivated soybeans. A total of 12,513 (in leaves), 14,255 (in stems), and 11,850 (in nodes) differentially expressed genes were identified among weedy and cultivar soybeans. Comparative transcriptome and expression analyses revealed 22 phytohormone-responsive genes. We found that GIBBERELLIN 2-OXIDASE 8 (GA2ox), SPINDLY (SPY), FERONIA (FER), AUXIN RESPONSE FACTOR 8 (ARF8), CYTOKININ DEHYDROGENASE-1 (CKX1), and ARABIDOPSIS HISTIDINE KINASE-3 (AHK3), which are crucial phytohormone response genes, were mainly regulated in the shoot of weedy and cultivar types. These results indicate that interactions between phytohormone signaling genes regulate shoot morphology in weedy and cultivar growth type plants. Our study provides insights that are useful for breeding and improving crops to generate high-yield soybean varieties.
Collapse
Affiliation(s)
- Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Woo Suk Cho
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Soo Chul Park
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Ik-Young Choi,
| |
Collapse
|
34
|
Li G, Wang Q, Lu L, Wang S, Chen X, Khan MHU, Zhang Y, Yang S. Identification of the soybean small auxin upregulated RNA (SAUR) gene family and specific haplotype for drought tolerance. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Climate change threatens native potential agroforestry plant species in Brazil. Sci Rep 2022; 12:2267. [PMID: 35145191 PMCID: PMC8831634 DOI: 10.1038/s41598-022-06234-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Climate change is one of the main drivers of species extinction in the twentyfirst-century. Here, we (1) quantify potential changes in species' bioclimatic area of habitat (BAH) of 135 native potential agroforestry species from the Brazilian flora, using two different climate change scenarios (SSP2-4.5 and SSP5-8.5) and dispersal scenarios, where species have no ability to disperse and reach new areas (non-dispersal) and where species can migrate within the estimated BAH (full dispersal) for 2041–2060 and 2061–2080. We then (2) assess the preliminary conservation status of each species based on IUCN criteria. Current and future potential habitats for species were predicted using MaxEnt, a machine-learning algorithm used to estimate species' probability distribution. Future climate is predicted to trigger a mean decline in BAH between 38.5–56.3% under the non-dispersal scenario and between 22.3–41.9% under the full dispersal scenario for 135 native potential agroforestry species. Additionally, we found that only 4.3% of the studied species could be threatened under the IUCN Red List criteria B1 and B2. However, when considering the predicted quantitative habitat loss due to climate change (A3c criterion) the percentages increased between 68.8–84.4% under the non-dispersal scenario and between 40.7–64.4% under the full dispersal scenario. To lessen such threats, we argue that encouraging the use of these species in rural and peri-urban agroecosystems are promising, complementary strategies for their long-term conservation.
Collapse
|
36
|
Nissan N, Mimee B, Cober ER, Golshani A, Smith M, Samanfar B. A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode. BIOLOGY 2022; 11:211. [PMID: 35205078 PMCID: PMC8869295 DOI: 10.3390/biology11020211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
Plant pathogens greatly impact food security of the ever-growing human population. Breeding resistant crops is one of the most sustainable strategies to overcome the negative effects of these biotic stressors. In order to efficiently breed for resistant plants, the specific plant-pathogen interactions should be understood. Soybean is a short-day legume that is a staple in human food and animal feed due to its high nutritional content. Soybean cyst nematode (SCN) is a major soybean stressor infecting soybean worldwide including in China, Brazil, Argentina, USA and Canada. There are many Quantitative Trait Loci (QTLs) conferring resistance to SCN that have been identified; however, only two are widely used: rhg1 and Rhg4. Overuse of cultivars containing these QTLs/genes can lead to SCN resistance breakdown, necessitating the use of additional strategies. In this manuscript, a literature review is conducted on research related to soybean resistance to SCN. The main goal is to provide a current understanding of the mechanisms of SCN resistance and list the areas of research that could be further explored.
Collapse
Affiliation(s)
- Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Centre, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Myron Smith
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| |
Collapse
|
37
|
Priyanatha C, Torkamaneh D, Rajcan I. Genome-Wide Association Study of Soybean Germplasm Derived From Canadian × Chinese Crosses to Mine for Novel Alleles to Improve Seed Yield and Seed Quality Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:866300. [PMID: 35419011 PMCID: PMC8996715 DOI: 10.3389/fpls.2022.866300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 05/16/2023]
Abstract
Genome-wide association study (GWAS) has emerged in the past decade as a viable tool for identifying beneficial alleles from a genomic diversity panel. In an ongoing effort to improve soybean [Glycine max (L.) Merr.], which is the third largest field crop in Canada, a GWAS was conducted to identify novel alleles underlying seed yield and seed quality and agronomic traits. The genomic panel consisted of 200 genotypes including lines derived from several generations of bi-parental crosses between modern Canadian × Chinese cultivars (CD-CH). The genomic diversity panel was field evaluated at two field locations in Ontario in 2019 and 2020. Genotyping-by-sequencing (GBS) was conducted and yielded almost 32 K high-quality SNPs. GWAS was conducted using Fixed and random model Circulating Probability Unification (FarmCPU) model on the following traits: seed yield, seed protein concentration, seed oil concentration, plant height, 100 seed weight, days to maturity, and lodging score that allowed to identify five QTL regions controlling seed yield and seed oil and protein content. A candidate gene search identified a putative gene for each of the three traits. The results of this GWAS study provide insight into potentially valuable genetic resources residing in Chinese modern cultivars that breeders may use to further improve soybean seed yield and seed quality traits.
Collapse
Affiliation(s)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- *Correspondence: Istvan Rajcan,
| |
Collapse
|
38
|
Shaibu AS, Ibrahim H, Miko ZL, Mohammed IB, Mohammed SG, Yusuf HL, Kamara AY, Omoigui LO, Karikari B. Assessment of the Genetic Structure and Diversity of Soybean ( Glycine max L.) Germplasm Using Diversity Array Technology and Single Nucleotide Polymorphism Markers. PLANTS (BASEL, SWITZERLAND) 2021; 11:68. [PMID: 35009071 PMCID: PMC8747349 DOI: 10.3390/plants11010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
Knowledge of the genetic structure and diversity of germplasm collections is crucial for sustainable genetic improvement through hybridization programs and rapid adaptation to changing breeding objectives. The objective of this study was to determine the genetic diversity and population structure of 281 International Institute of Tropical Agriculture (IITA) soybean accessions using diversity array technology (DArT) and single nucleotide polymorphism (SNP) markers for the efficient utilization of these accessions. From the results, the SNP and DArT markers were well distributed across the 20 soybean chromosomes. The cluster and principal component analyses revealed the genetic diversity among the 281 accessions by grouping them into two stratifications, a grouping that was also evident from the population structure analysis, which divided the 281 accessions into two distinct groups. The analysis of molecular variance revealed that 97% and 98% of the genetic variances using SNP and DArT markers, respectively, were within the population. Genetic diversity indices such as Shannon's diversity index, diversity and unbiased diversity revealed the diversity among the different populations of the soybean accessions. The SNP and DArT markers used provided similar information on the structure, diversity and polymorphism of the accessions, which indicates the applicability of the DArT marker in genetic diversity studies. Our study provides information about the genetic structure and diversity of the IITA soybean accessions that will allow for the efficient utilization of these accessions in soybean improvement programs, especially in Africa.
Collapse
Affiliation(s)
- Abdulwahab S. Shaibu
- Department of Agronomy, Bayero University Kano, Kano 700001, Nigeria; (H.I.); (Z.L.M.); (I.B.M.)
| | - Hassan Ibrahim
- Department of Agronomy, Bayero University Kano, Kano 700001, Nigeria; (H.I.); (Z.L.M.); (I.B.M.)
| | - Zainab L. Miko
- Department of Agronomy, Bayero University Kano, Kano 700001, Nigeria; (H.I.); (Z.L.M.); (I.B.M.)
| | - Ibrahim B. Mohammed
- Department of Agronomy, Bayero University Kano, Kano 700001, Nigeria; (H.I.); (Z.L.M.); (I.B.M.)
| | - Sanusi G. Mohammed
- Centre for Dryland Agriculture, Bayero University Kano, Kano 700001, Nigeria;
| | - Hauwa L. Yusuf
- Department of Food Science and Technology, Bayero University Kano, Kano 700001, Nigeria;
| | - Alpha Y. Kamara
- International Institute of Tropical Agriculture, Ibadan 200211, Nigeria; (A.Y.K.); (L.O.O.)
| | - Lucky O. Omoigui
- International Institute of Tropical Agriculture, Ibadan 200211, Nigeria; (A.Y.K.); (L.O.O.)
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, P.O. Box TL 1882, Tamale 00233, Ghana;
| |
Collapse
|
39
|
Zenda T, Liu S, Dong A, Duan H. Advances in Cereal Crop Genomics for Resilience under Climate Change. Life (Basel) 2021; 11:502. [PMID: 34072447 PMCID: PMC8228855 DOI: 10.3390/life11060502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Adapting to climate change, providing sufficient human food and nutritional needs, and securing sufficient energy supplies will call for a radical transformation from the current conventional adaptation approaches to more broad-based and transformative alternatives. This entails diversifying the agricultural system and boosting productivity of major cereal crops through development of climate-resilient cultivars that can sustainably maintain higher yields under climate change conditions, expanding our focus to crop wild relatives, and better exploitation of underutilized crop species. This is facilitated by the recent developments in plant genomics, such as advances in genome sequencing, assembly, and annotation, as well as gene editing technologies, which have increased the availability of high-quality reference genomes for various model and non-model plant species. This has necessitated genomics-assisted breeding of crops, including underutilized species, consequently broadening genetic variation of the available germplasm; improving the discovery of novel alleles controlling important agronomic traits; and enhancing creation of new crop cultivars with improved tolerance to biotic and abiotic stresses and superior nutritive quality. Here, therefore, we summarize these recent developments in plant genomics and their application, with particular reference to cereal crops (including underutilized species). Particularly, we discuss genome sequencing approaches, quantitative trait loci (QTL) mapping and genome-wide association (GWAS) studies, directed mutagenesis, plant non-coding RNAs, precise gene editing technologies such as CRISPR-Cas9, and complementation of crop genotyping by crop phenotyping. We then conclude by providing an outlook that, as we step into the future, high-throughput phenotyping, pan-genomics, transposable elements analysis, and machine learning hold much promise for crop improvements related to climate resilience and nutritional superiority.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura P. Bag 1020, Zimbabwe
| | - Songtao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
40
|
Kofsky J, Zhang H, Song BH. Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean. Sci Rep 2021; 11:7967. [PMID: 33846373 PMCID: PMC8041904 DOI: 10.1038/s41598-021-86793-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Soybean cyst nematode (SCN, Heterodera glycine Ichinohe) is the most damaging soybean pest worldwide and management of SCN remains challenging. The current SCN resistant soybean cultivars, mainly developed from the cultivated soybean gene pool, are losing resistance due to SCN race shifts. The domestication process and modern breeding practices of soybean cultivars often involve strong selection for desired agronomic traits, and thus, decreased genetic variation in modern cultivars, which consequently resulted in limited sources of SCN resistance. Wild soybean (Glycine soja) is the wild ancestor of cultivated soybean (Glycine max) and it's gene pool is indisputably more diverse than G. max. Our aim is to identify novel resistant genetic resources from wild soybean for the development of new SCN resistant cultivars. In this study, resistance response to HG type 2.5.7 (race 5) of SCN was investigated in a newly identified SCN resistant ecotype, NRS100. To understand the resistance mechanism in this ecotype, we compared RNA seq-based transcriptomes of NRS100 with two SCN-susceptible accessions of G. soja and G. max, as well as an extensively studied SCN resistant cultivar, Peking, under both control and nematode J2-treated conditions. The proposed mechanisms of resistance in NRS100 includes the suppression of the jasmonic acid (JA) signaling pathway in order to allow for salicylic acid (SA) signaling-activated resistance response and polyamine synthesis to promote structural integrity of root cell walls. Our study identifies a set of novel candidate genes and associated pathways involved in SCN resistance and the finding provides insight into the mechanism of SCN resistance in wild soybean, advancing the understanding of resistance and the use of wild soybean-sourced resistance for soybean improvement.
Collapse
Affiliation(s)
- Janice Kofsky
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
41
|
Kim JH, Hilleary R, Seroka A, He SY. Crops of the future: building a climate-resilient plant immune system. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:101997. [PMID: 33454653 PMCID: PMC8184583 DOI: 10.1016/j.pbi.2020.101997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 05/05/2023]
Abstract
A grand challenge facing plant scientists today is to find innovative solutions to increase global crop production in the context of an increasingly warming climate. A major roadblock to global food sufficiency is persistent loss of crops to plant diseases and insect infestations. The United Nations has declared 2020 as the International Year of Plant Health. For historical reasons, molecular studies of plant-biotic interactions in the past several decades have not paid enough attention to how variable climate conditions affect plant-biotic interactions. Here, we highlight a few recent studies that begin to reveal how major climatic drivers impact the plant immune system, particularly secondary messenger and defense hormone signaling, and discuss possible approaches toward engineering climate-resilient plant immunity as part of an ongoing global effort to design 'dream' crops of the future.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Richard Hilleary
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Adam Seroka
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
42
|
Jung YS, Rha CS, Baik MY, Baek NI, Kim DO. A brief history and spectroscopic analysis of soy isoflavones. Food Sci Biotechnol 2020; 29:1605-1617. [PMID: 33282429 PMCID: PMC7708537 DOI: 10.1007/s10068-020-00815-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
The production of soybean continues to increase worldwide. People are showing more interest in the beneficial health effects of soybeans than before. However, the origin and history of soybeans are still being discussed among many researchers. Chromatographic methods enable the desirable separation of a variety of isoflavones from soybeans. The structures of isolated soy isoflavones have been successfully identified in tandem with spectroscopic analytical instruments and technologies such as liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The theoretical background behind spectroscopy may help improve the understanding for the analysis of isoflavones in soybeans and soy-derived foods. This review covers the origin of the English name of soybean and its scientific name, Glycine max (L.) Merrill, based on the evidence reported to date. Moreover, the reports of soy isoflavones discovered over a period of about 100 years have been briefly reviewed.
Collapse
Affiliation(s)
- Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Chan-Su Rha
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Nam-In Baek
- Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
43
|
Zhang H, Goettel W, Song Q, Jiang H, Hu Z, Wang ML, An YQC. Selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genet 2020; 16:e1009114. [PMID: 33175845 PMCID: PMC7721174 DOI: 10.1371/journal.pgen.1009114] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/07/2020] [Accepted: 09/12/2020] [Indexed: 11/18/2022] Open
Abstract
Soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) and has been further improved as a dual-use seed crop to provide highly valuable oil and protein for food, feed, and industrial applications. However, the underlying genetic and molecular basis remains less understood. Having combined high-confidence bi-parental linkage mapping with high-resolution association analysis based on 631 whole sequenced genomes, we mapped major soybean protein and oil QTLs on chromosome15 to a sugar transporter gene (GmSWEET39). A two-nucleotide CC deletion truncating C-terminus of GmSWEET39 was strongly associated with high seed oil and low seed protein, suggesting its pleiotropic effect on protein and oil content. GmSWEET39 was predominantly expressed in parenchyma and integument of the seed coat, and likely regulates oil and protein accumulation by affecting sugar delivery from maternal seed coat to the filial embryo. We demonstrated that GmSWEET39 has a dual function for both oil and protein improvement and undergoes two different paths of artificial selection. A CC deletion (CC-) haplotype H1 has been intensively selected during domestication and extensively used in soybean improvement worldwide. H1 is fixed in North American soybean cultivars. The protein-favored (CC+) haplotype H3 still undergoes ongoing selection, reflecting its sustainable role for soybean protein improvement. The comprehensive knowledge on the molecular basis underlying the major QTL and GmSWEET39 haplotypes associated with soybean improvement would be valuable to design new strategies for soybean seed quality improvement using molecular breeding and biotechnological approaches.
Collapse
Affiliation(s)
- Hengyou Zhang
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Wolfgang Goettel
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Qijian Song
- US Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD, United States of America
| | - He Jiang
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Zhenbin Hu
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Ming Li Wang
- US Department of Agriculture, Agricultural Research Service, Plant Genetics Resource Conservation Unit, Griffin, GA, United States of America
| | - Yong-qiang Charles An
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
- US Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit at Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| |
Collapse
|
44
|
Mittell EA, Cobbold CA, Ijaz UZ, Kilbride EA, Moore KA, Mable BK. Feral populations of Brassica oleracea along Atlantic coasts in western Europe. Ecol Evol 2020; 10:11810-11825. [PMID: 33145003 PMCID: PMC7593181 DOI: 10.1002/ece3.6821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/16/2023] Open
Abstract
There has been growing emphasis on the role that crop wild relatives might play in supporting highly selected agriculturally valuable species in the face of climate change. In species that were domesticated many thousands of years ago, distinguishing wild populations from escaped feral forms can be challenging, but reintroducing variation from either source could supplement current cultivated forms. For economically important cabbages (Brassicaceae: Brassica oleracea), "wild" populations occur throughout Europe but little is known about their genetic variation or potential as resources for breeding more resilient crop varieties. The main aim of this study was to characterize the population structure of geographically isolated wild cabbage populations along the coasts of the UK and Spain, including the Atlantic range edges. Double-digest restriction-site-associated DNA sequencing was used to sample individual cabbage genomes, assess the similarity of plants from 20 populations, and explore environment-genotype associations across varying climatic conditions. Interestingly, there were no indications of isolation by distance; several geographically close populations were genetically more distinct from each other than to distant populations. Furthermore, several distant populations shared genetic ancestry, which could indicate that they were established by escapees of similar source cultivars. However, there were signals of local adaptation to different environments, including a possible relationship between genetic diversity and soil pH. Overall, these results highlight wild cabbages in the Atlantic region as an important genetic resource worthy of further research into their relationship with existing crop varieties.
Collapse
Affiliation(s)
- Elizabeth A. Mittell
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- School of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Christina A. Cobbold
- School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
- The Boyd Orr Centre for Population and Ecosystem HealthUniversity of GlasgowGlasgowUK
| | | | - Elizabeth A. Kilbride
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | | | - Barbara K. Mable
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- The Boyd Orr Centre for Population and Ecosystem HealthUniversity of GlasgowGlasgowUK
| |
Collapse
|
45
|
Natukunda MI, MacIntosh GC. The Resistant Soybean- Aphis glycines Interaction: Current Knowledge and Prospects. FRONTIERS IN PLANT SCIENCE 2020; 11:1223. [PMID: 32849757 PMCID: PMC7431774 DOI: 10.3389/fpls.2020.01223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Soybean aphids (Aphis glycines Matsumura) are invasive insect pests of soybean, and they cause significant yield losses. Resistance to soybean aphids is conferred by Resistance to Aphis glycines (Rag) genes. Since the first discovery of aphid-resistant soybean genotypes in 2004, several studies have attempted to characterize Rag genes from aphid-resistant soybean genotypes. To date, 12 Rag genes and four quantitative trait loci for aphid resistance have been reported on soybean chromosomes 07, 08, 13, 16, and 17. Although candidate genes have been proposed for several discovered Rag loci, additional studies are needed to pinpoint, validate, and further explain the potential mechanisms of Rag gene action. A major challenge to utilizing host plant resistance is the discovery of virulent aphid biotypes that can colonize aphid-resistant soybean. This occurrence suggests the need for additional studies to devise strategies to enhance the effectiveness of aphid-resistant soybean. In this mini review, we discuss current knowledge on the resistant soybean-Aphis glycines interaction, potential mechanisms of Rag gene action, opportunities to discover new Rag genes, and prospects for utilization of host plant resistance to manage soybean aphids. A clearer understanding of host plant resistance to soybean aphids will guide researchers on strategies for developing soybean varieties with more durable aphid resistance, reducing the present challenge of virulent aphid biotypes.
Collapse
Affiliation(s)
- Martha I. Natukunda
- MacIntosh Laboratory, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Gustavo C. MacIntosh
- MacIntosh Laboratory, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
46
|
Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB. Global Role of Crop Genomics in the Face of Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:922. [PMID: 32765541 PMCID: PMC7378793 DOI: 10.3389/fpls.2020.00922] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/05/2020] [Indexed: 05/05/2023]
Abstract
The development of climate change resilient crops is necessary if we are to meet the challenge of feeding the growing world's population. We must be able to increase food production despite the projected decrease in arable land and unpredictable environmental conditions. This review summarizes the technological and conceptual advances that have the potential to transform plant breeding, help overcome the challenges of climate change, and initiate the next plant breeding revolution. Recent developments in genomics in combination with high-throughput and precision phenotyping facilitate the identification of genes controlling critical agronomic traits. The discovery of these genes can now be paired with genome editing techniques to rapidly develop climate change resilient crops, including plants with better biotic and abiotic stress tolerance and enhanced nutritional value. Utilizing the genetic potential of crop wild relatives (CWRs) enables the domestication of new species and the generation of synthetic polyploids. The high-quality crop plant genome assemblies and annotations provide new, exciting research targets, including long non-coding RNAs (lncRNAs) and cis-regulatory regions. Metagenomic studies give insights into plant-microbiome interactions and guide selection of optimal soils for plant cultivation. Together, all these advances will allow breeders to produce improved, resilient crops in relatively short timeframes meeting the demands of the growing population and changing climate.
Collapse
Affiliation(s)
| | | | | | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
47
|
Karikari B, Bhat JA, Denwar NN, Zhao T. Exploring the genetic base of the soybean germplasm from Africa, America and Asia as well as mining of beneficial allele for flowering and seed weight. 3 Biotech 2020; 10:195. [PMID: 32296618 DOI: 10.1007/s13205-020-02186-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/30/2020] [Indexed: 11/26/2022] Open
Abstract
Genetic diversity is the foundation for any breeding program. The present study analyzed the genetic base of 163 soybean genotypes from three continents viz. Africa, America and Asia using 68 trait-linked simple sequence repeats (SSR) markers. The average number of alleles among the germplasm from the three continents followed the trend as Asia (9) > America (8) > Africa (7). Similar trends were observed for gene diversity (0.76 > 0.74 > 0.71) and polymorphism information content (PIC) (0.73 > 0.71 > 0.68). These findings revealed that soybean germplasm from Asia has wider genetic base followed by America, and least in Africa. The 163 genotypes were grouped into 4 clusters by phylogenetic analysis, whereas model-based population structure analysis also divided them into 4 subpopulations comprising 80.61% pure lines and 19.39% admixtures. The genotypes from Africa were easily distinguished from those of other two continents using phylogenetic analysis, indicating important role of geographyical differentiation for this genetic variability. Our results indicated that soybean germplasm has moved from Asia to America, and from America to Africa. Analysis of molecular variance (AMOVA) showed 8.41% variation among the four subpopulations, whereas 63.12% and 28.47% variation existed among and within individuals in the four subpopulations, respectively. Based on the association mapping, a total of 21 SSR markers showed significant association with days to flowering (DoF) and 100-seed weight (HSW). Two markers Satt365 and Satt581 on chromosome 6 and 10, respectively, showed pleiotropic effect or linkage on both traits. Genotype A50 (Gakuran Daizu/PI 506679) from Japan has 8 out of the 13 beneficial alleles for increased HSW. The diverse genotypes, polymorphic SSR markers and desirable alleles identified for DoF and HSW will be used in future breeding programs to improve reproductive, yield and quality traits.
Collapse
Affiliation(s)
- Benjamin Karikari
- 1MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Javaid A Bhat
- 1MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Nicholas N Denwar
- Council of Scientific and Industrial Research-Savanna Agricultural Research Institute, Tamale, Ghana
| | - Tuanjie Zhao
- 1MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
48
|
Kofsky J, Zhang H, Song BH. Genetic Architecture of Early Vigor Traits in Wild Soybean. Int J Mol Sci 2020; 21:E3105. [PMID: 32354037 PMCID: PMC7247153 DOI: 10.3390/ijms21093105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023] Open
Abstract
A worldwide food shortage has been projected as a result of the current increase in global population and climate change. In order to provide sufficient food to feed more people, we must develop crops that can produce higher yields. Plant early vigor traits, early growth rate (EGR), early plant height (EPH), inter-node length, and node count are important traits that are related to crop yield. Glycine soja, the wild counterpart to cultivated soybean, Glycine max, harbors much higher genetic diversity and can grow in diverse environments. It can also cross easily with cultivated soybean. Thus, it holds a great potential in developing soybean cultivars with beneficial agronomic traits. In this study, we used 225 wild soybean accessions originally from diverse environments across its geographic distribution in East Asia. We quantified the natural variation of several early vigor traits, investigated the relationships among them, and dissected the genetic basis of these traits by applying a Genome-Wide Association Study (GWAS) with genome-wide single nucleotide polymorphism (SNP) data. Our results showed positive correlation between all early vigor traits studied. A total of 12 SNPs significantly associated with EPH were identified with 4 shared with EGR. We also identified two candidate genes, Glyma.07G055800.1 and Glyma.07G055900.1, playing important roles in influencing trait variation in both EGR and EPH in G. soja.
Collapse
Affiliation(s)
| | | | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.K.); (H.Z.)
| |
Collapse
|
49
|
Sulieman S, Kusano M, Ha CV, Watanabe Y, Abdalla MA, Abdelrahman M, Kobayashi M, Saito K, Mühling KH, Tran LSP. Divergent metabolic adjustments in nodules are indispensable for efficient N 2 fixation of soybean under phosphate stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110249. [PMID: 31623782 DOI: 10.1016/j.plantsci.2019.110249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/18/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The main objective of the present study was to characterize the symbiotic N2 fixation (SNF) capacity and to elucidate the underlying mechanisms for low-Pi acclimation in soybean plants grown in association with two Bradyrhizobium diazoefficiens strains which differ in SNF capacity (USDA110 vs. CB1809). In comparison with the USDA110-soybean, the CB1809-soybean association revealed a greater SNF capacity in response to Pi starvation, as evidenced by relative higher plant growth and higher expression levels of the nifHDK genes. This enhanced Pi acclimation was partially related to the efficient utilization to the overall carbon (C) budget of symbiosis in the CB1809-induced nodules compared with that of the USDA110-induced nodules under low-Pi provision. In contrast, the USDA110-induced nodules favored other metabolic acclimation mechanisms that expend substantial C cost, and consequently cause negative implications on nodule C expenditure during low-Pi conditions. Fatty acids, phytosterols and secondary metabolites are characterized among the metabolic pathways involved in nodule acclimation under Pi starvation. While USDA110-soybean association performed better under Pi sufficiency, it is very likely that the CB1809-soybean association is better acclimatized to cope with Pi deficiency owing to the more effective functional plasticity and lower C cost associated with these nodular metabolic arrangements.
Collapse
Affiliation(s)
- Saad Sulieman
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany; Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Khartoum North, Sudan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Chien Van Ha
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Muna Ali Abdalla
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany; Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Khartoum North, Sudan
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
50
|
Karikari B, Chen S, Xiao Y, Chang F, Zhou Y, Kong J, Bhat JA, Zhao T. Utilization of Interspecific High-Density Genetic Map of RIL Population for the QTL Detection and Candidate Gene Mining for 100-Seed Weight in Soybean. FRONTIERS IN PLANT SCIENCE 2019; 10:1001. [PMID: 31552060 PMCID: PMC6737081 DOI: 10.3389/fpls.2019.01001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/17/2019] [Indexed: 05/26/2023]
Abstract
Seed-weight is one of the most important traits determining soybean yield. Hence, it is prerequisite to have detailed understanding of the genetic basis regulating seed-weight for the development of improved cultivars. In this regard, the present study used high-density interspecific linkage map of NJIR4P recombinant inbred population evaluated in four different environments to detect stable Quantitative trait loci (QTLs) as well as mine candidate genes for 100-seed weight. In total, 19 QTLs distributed on 12 chromosomes were identified in all individual environments plus combined environment, out of which seven were novel and eight are stable identified in more than one environment. However, all the novel QTLs were minor (R 2 < 10%). The remaining 12 QTLs detected in this study were co-localized with the earlier reported QTLs with narrow genomic regions, and out of these only 2 QTLs were major (R 2 > 10%) viz., qSW-17-1 and qSW-17-4. Beneficial alleles of all identified QTLs were derived from cultivated soybean parent (Nannong493-1). Based on Protein ANalysis THrough Evolutionary Relationships, gene annotation information, and literature search, 29 genes within 5 stable QTLs were predicted to be possible candidate genes that might regulate seed-weight/size in soybean. However, it needs further validation to confirm their role in seed development. In conclusion, the present study provides better understanding of trait genetics and candidate gene information through the use high-density inter-specific bin map, and also revealed considerable scope for genetic improvement of 100-seed weight in soybean using marker-assisted breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Javaid Akhter Bhat
- Soybean Research Institution, National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tuanjie Zhao
- Soybean Research Institution, National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|