1
|
Zhao Z, Wang S, Wang Y, Xu F. Imbalance between boron and phosphorus supply influences boron deficiency symptoms in Brassica napus L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40276952 DOI: 10.1002/jsfa.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/22/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND The occurrence of boron (B) deficiency in Brassicaceae crops has increased in recent years. Inappropriate application of B with other nutrients often exacerbates symptoms of B deficiency. The aim of this study was to explore the interactive effects of B and phosphorus (P) on the B deficiency symptoms of rapeseed (Brassica napus L.). Two rapeseed cultivars ('W10' and 'ZS11') were treated with two B application rates (low and high B) and three P application rates (low, medium, and high P), and the growth parameters (root morphology, B absorption and distribution, and the P/B ratio) were examined in pot and hydroponic experiments. RESULTS Under low B conditions, plants showed severely reduced root and shoot growth but it was greatly improved when supplemented with medium P supply. Further analysis revealed that high P combined with low B decreased the B concentration of newly initiated leaves and seeds, and increased the P/B ratio in plants compared with the medium P and low B combination, resulting in the aggravation of B deficiency of rapeseed. In comparison with the B-inefficient cultivar 'W10', the B-efficient cultivar 'ZS11' had superior growth and seed yield under low B conditions. Furthermore, 'W10' and 'ZS11' displayed significant differences in the response of the interaction between B and P to plant P/B ratio and root morphological parameters, which may reflect distinct genotype characteristics. CONCLUSION The findings emphasize the importance of interactions between B and P in the growth and yield formation of rapeseed in B-deficient soils, as imbalanced B and P supply can exacerbate B deficiency symptoms in rapeseed. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Youqiang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Riaz M, Rafiq M, Nawaz HH, Miao W. Bridging Molecular Insights and Agronomic Innovations: Cutting-Edge Strategies for Overcoming Boron Deficiency in Sustainable Rapeseed Cultivation. PLANTS (BASEL, SWITZERLAND) 2025; 14:995. [PMID: 40219062 PMCID: PMC11990839 DOI: 10.3390/plants14070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 04/14/2025]
Abstract
Boron (B) is an essential micronutrient for the growth, development, and maintenance of cellular integrity in vascular plants, and is especially important in cell wall synthesis and reproductive development. Rapeseed (Brassica napus L.), one of the dominant oil crops globally, has a high boron demand and its yield is dramatically decreased under B-deficiency conditions. Rapeseed, which is very sensitive to boron deficiency, suffers from reduced growth and reproductive development, ultimately causing severe yield losses. Here, we reviewed the present state of knowledge on the physiological function of boron in rapeseed, mechanisms of boron uptake and transport, specific effects of boron deficiency in rapeseed, and approaches to alleviate boron deficiency in rapeseed at the agronomical and molecular levels. A specific focus is given to recent molecular breakthroughs and agronomic approaches that may improve boron efficiency. The review focuses on practices that may alleviate the problems caused by boron-deficient soils by investigating the genetic and physiological mechanisms of boron tolerance. In summary, this review describes the integration of molecular information with practical agronomy as an important aspect of breeding future nutrient-efficient rapeseed cultivars that can sustain increasing yields while being cultivated in regions with boron-deficient soils.
Collapse
Affiliation(s)
- Muhammad Riaz
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Muhammad Rafiq
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China;
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Hafiz Husnain Nawaz
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen Bolzano, 39100 Bozen-Bolzano, Italy;
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Dazhou 571737, China
| |
Collapse
|
3
|
Jiang Z, Liu L, Wang S, Ye X, Liu Z, Xu F. Transcriptional Analysis Reveals the Differences in Response of Floral Buds to Boron Deficiency Between Two Contrasting Brassica napus Varieties. PLANTS (BASEL, SWITZERLAND) 2025; 14:859. [PMID: 40265801 PMCID: PMC11944869 DOI: 10.3390/plants14060859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
Boron (B) is an essential micronutrient for the development of crops, and its reproductive stage is particularly sensitive to B deficiency. Brassica napus L., as an important oil-crop species, is extremely vulnerable to B deficiency. The typical B-deficient symptom of "flowering without seed setting" usually results in severe yield loss. However, few studies have focused on the response of the reproductive organs to B deficiency. In this study, the B-efficient variety "Zhongshuang 11" (ZS11) and the B-inefficient variety "Westar 10" (W10) of Brassica napus were selected to be cultivated at the developmental stage (BBCH15) in a pot experiment, both with and without B supply. Clear phenotype differences in B deficiency between the two varieties' flowers appeared only at the reproductive stage, and only W10 showed symptoms of delayed flower opening, stigma exsertion, and resulted in abortion. Transcriptome analysis for the early buds of both varieties between B supply (+B) and free (-B) treatments revealed that W10 had more differentially expressed genes (DEGs) corresponding to its greater susceptibility to -B. As two potential mechanisms to improve B-efficient utilization, we focused on analyzing the expression profiles of B transporter-related genes and phytohormone metabolism-related genes. BnaC05.NIP7;1, BnaC08.NIP3;1, and BnaBOR2s were identified as the key genes which could enhance the capacity of B translocation to buds of ZS11. Additionally, combined with a phytohormone concentration measurement, we showed that a significant increase in IAA and a drastic decrease in JA could predominantly lead to the abnormal development of W10's buds. BnaC02.NIT2 (Nitrilase 2) and BnaKAT5s (3-Ketoacyl-CoA Thiolase 5), which are IAA and JA biosynthesis genes, respectively, could be the key genes responsible for the changes in IAA and JA concentrations in W10's buds under -B. These candidate genes may regulate the genotype differences in the response of the rapeseed reproductive stage to -B between different B-efficient varieties. It also has potential to breed rapeseed varieties with B-efficient utilization in the reproductive stage, which would improve the seed yield under -B condition.
Collapse
Affiliation(s)
- Zhexuan Jiang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Lan Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Xiangsheng Ye
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Zhaojun Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| |
Collapse
|
4
|
Aghdasi S, AghaAlikhani M, Mohammad Modarres-Sanavy SA, Kahrizi D. Phytochemical responses of camelina to brassinolide and boron foliar spray under irrigation regimes. Heliyon 2025; 11:e42630. [PMID: 40084035 PMCID: PMC11903797 DOI: 10.1016/j.heliyon.2025.e42630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
The high level of boron in dryland and semi-arid soils is an important issue that strongly affects growing and developing crops, especially under drought stress. Meanwhile, brassinosteroid (BR) as a noval stress hormone can improve resistance to abiotic stress in plants. To explore the appropriate foliar application of boron (0.5 and 1 %) and 24-Epi-brassinolide (0.5 and 1 μM) and their combinations on camelina (Camelina sativa L.) under irrigation regimes a field experiment was conducted during 2018-2020 years. Irrigation regime consisted of well irrigation from emergence until the end of the growing season (WI0), withholding irrigation from flowering to siligue formation (WI1), and withholding irrigation from siligue formation to harvest (WI2)]. Our finding revealed that boron had a destructive effect on phytochemical parameters of camelina while application of brassinolide mitigated the boron impacts and improved the parameters. Results showed the highest increase in chlorophyll a (26.8 and 23.8 %) at B0.5 + BR0.5 treatments under WI1 and WI2 conditions, respectively. Application of BR (0.5 and 1 μM) and low level of B (B0.5 %) combination alleviated drought stress by improving osmolyte accumulation (proline) (5-9% increase), antioxidant enzymes, superoxide dismutase (SOD) (5.35-5.72 % increase), catalase (CAT) capacity (4.10 % increase) and secondary metabolites (total phenol and flavonoid) (6.78-10.26 % and 4.60-5.27 % increase). Further, malondealdehide (MDA) decreased (8.73 %) at BR and B combination and increased with a high level of B (B1%) application under-withholding irrigation. All of these results confirmed that BR and B synergistically (mainly B0.5 + BR0.5 and B0.5 + BR1) regulate the phytochemical properties response in the camelina plant to drought stress.
Collapse
Affiliation(s)
- Sajjad Aghdasi
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| | - Majid AghaAlikhani
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| | | | - Danial Kahrizi
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Jiang Z, Yao J, Wang S, Liu L, Shi L, Xu F, Liu Z. Transcriptome and phytohormone profiling of stamen and pistil in Brassica napus under boron deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109393. [PMID: 39721193 DOI: 10.1016/j.plaphy.2024.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Plant reproduction is a fundamental requirement for plants to sustain genetic inheritance. In the perspective of plant nutrition, such process is strongly influenced by boron deficiency (-B) and as documented about a century ago. To date, little is known about the mechanism of boron deficiency-induced fertility reduction. In this study, we successfully established a cultivation system for Brassica napus to precisely manipulate boron supply when the generative stage initiates. We dissected the stamen and pistil of early-developing Brassica napus flower buds for transcriptome and phytohormone analysis, and demonstrated pistil and stamen showed distinct responding processes to -B. In addition, we revealed that auxin (IAA)-related compounds and several IAA-biosynthesis genes may play important roles in reproductive organ responding to -B, suggesting the IAA metabolism pathway seems to play a crucial role in -B induced reproductive organ abortion process. Taken together, we created a reliable system to study boron deficiency induced fertility reduction, by which generated the first transcriptome result for dissected stamen and pistil under different boron regimes, and suggested IAA metabolism pathway deserves as important target for further study in such regimes.
Collapse
Affiliation(s)
- Zhexuan Jiang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinliang Yao
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhaojun Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| |
Collapse
|
6
|
He Y, He K, Mai J, Ou M, Chen L, Li Y, Wan T, Gu L, Shabala S, Li X, Li Y, Yu M. Boron controls apical dominance in Pea (Pisum sativum) via promoting polar auxin transport. PHYSIOLOGIA PLANTARUM 2025; 177:e70056. [PMID: 39815973 DOI: 10.1111/ppl.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport. Adopting an all-buds phenotyping methodology and employing several complementary approaches, we found that boron deficiency inhibited plant growth and changed the shoot architecture, resulting in the outgrowth of axillary buds at nodes 1-3. This was related to the auxin accumulation in shoot apical parts buds under B deficiency. Applying N-1-naphthylphthalamic acid to inhibit auxin transport from the shoot apex promoted the outgrowth of axillary buds in boron-sufficient (+B) plants. In decapitated plants, the application of exogenous auxin to the shoot apex only inhibited the outgrowth of axillary buds in +B plants. At higher auxin doses, the toxic effect of IAA was observed in the lower part of the shoot, which was more severe in +B plants than in B-deprived (-B) plants. Furthermore, the expression of PsPIN3 was significantly downregulated under -B conditions. These results indicate that B deficiency inhibits PAT from the apical bud through the main stem to the lower parts, leading to an increase of auxin level in the apical bud, which inhibits the growth of apical buds while stimulating the outgrowth of axillary buds.
Collapse
Affiliation(s)
- Yutong He
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Keren He
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Jingwen Mai
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Meiyin Ou
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Laibin Chen
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Yuanyuan Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Tao Wan
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Luping Gu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
- School of Biology, the University of Western Australia, Perth, Australia
| | - Xuewen Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Yalin Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| |
Collapse
|
7
|
Chu L, Shrestha V, Schäfer CC, Niedens J, Meyer GW, Darnell Z, Kling T, Dürr-Mayer T, Abramov A, Frey M, Jessen H, Schaaf G, Hochholdinger F, Nowak-Król A, McSteen P, Angelovici R, Matthes MS. Association of the benzoxazinoid pathway with boron homeostasis in maize. PLANT PHYSIOLOGY 2024; 197:kiae611. [PMID: 39514757 DOI: 10.1093/plphys/kiae611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Both deficiency and toxicity of the micronutrient boron lead to severe reductions in crop yield. Despite this agricultural importance, the molecular basis underlying boron homeostasis in plants remains unclear. To identify molecular players involved in boron homeostasis in maize (Zea mays L.), we measured boron levels in the Goodman-Buckler association panel and performed genome-wide association studies. These analyses identified a benzoxazinless (bx) gene, bx3, involved in the biosynthesis of benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), which are major defense compounds in maize. Genes involved in DIMBOA biosynthesis are all located in close proximity in the genome, and benzoxazinoid biosynthesis mutants, including bx3, are all DIMBOA deficient. We determined that leaves of the bx3 mutant have a greater boron concentration than those of B73 control plants, which corresponded with enhanced leaf tip necrosis, a phenotype associated with boron toxicity. By contrast, other DIMBOA-deficient maize mutants did not show altered boron levels or the leaf tip necrosis phenotype, suggesting that boron is not associated with DIMBOA. Instead, our analyses suggest that the accumulation of boron is linked to the benzoxazinoid intermediates indolin-2-one (ION) and 3-hydroxy-ION. Therefore, our results connect boron homeostasis to the benzoxazinoid plant defense pathway through bx3 and specific intermediates, rendering the benzoxazinoid biosynthesis pathway a potential target for crop improvement under inadequate boron conditions.
Collapse
Affiliation(s)
- Liuyang Chu
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| | - Vivek Shrestha
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Cay Christin Schäfer
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| | - Jan Niedens
- Boron-Containing Functional Materials, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - George W Meyer
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Zoe Darnell
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Tyler Kling
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Tobias Dürr-Mayer
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, Freiburg im Breisgau 79104, Germany
| | - Aleksej Abramov
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, Freising 85354, Germany
| | - Monika Frey
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, Freising 85354, Germany
| | - Henning Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, Freiburg im Breisgau 79104, Germany
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Plant Nutrition, University of Bonn, Karl-Robert-Kreiten Straße 13, Bonn 53115, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| | - Agnieszka Nowak-Król
- Boron-Containing Functional Materials, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Michaela S Matthes
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| |
Collapse
|
8
|
Vishnu, Sharma P, Kaur J, Gosal SK, Walia SS. Characterization of Sulfur Oxidizing Bacteria and Their Effect on Growth Promotion of Brassica napus L. J Basic Microbiol 2024:e2400239. [PMID: 39466970 DOI: 10.1002/jobm.202400239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Oil seeds sector is one of the major dynamic components of the agriculture world. Oil seeds such as canola (Brassica napus) require a higher quantity of sulfur (S), which is supplied through inorganic fertilizers. However, the overapplication of agro-chemicals to get higher yields of crops is harming the soil health. Therefore, the application of bacterial cultures with plant growth-promoting activity as biofertilizers ensures soil health maintenance and enhances crop productivity. To achieve this aim, the present research was initiated by procuring three sulfur-oxidizing bacteria (SOBs), namely, SOB 5, SOB 10, and SOB 38, from the Microbiology Department, PAU. In the initial assessment, all three SOB cultures showed resilience to pesticide toxicity at the recommended dosage, with the exception of ridomil. These cultures were later characterized morphologically, biochemically, and at the molecular level using 16s rRNA resulting in their identification as Enterobacter ludwigii strain Remi_9 (SOB 5), Enterobacter hormaechei strain AUH-ENM30 (SOB 10), and Bacillus sp. 5BM21Y12 (SOB 38). Functional characterization of these SOB cultures revealed their ability to exhibit multifarious plant growth-promoting traits. Bacillus sp. 5BM21Y12 showed greater functional activity, including high P solubilization (14.903 µg/mL), IAA production (44.28 µg/mL), siderophore production (13.89 µg/mL), sulfate ion production (0.127 mM), ammonia excretion (2.369 µg/mL), and Zn solubilization (22.62 mm). Based on the results of functional and molecular characterization, Bacillus sp. 5BM21Y12 was selected for field trials by formulating different treatments. Composite treatment, T8 (100% S + Bacillus sp. + pesticides) significantly enhanced growth parameters (plant height, root, and shoot biomass), yield attributes (siliqua length, test weight, number of siliqua/plant), yield parameter (total biomass and seed yield), quality parameter (crude protein and oil) as compared to all other sole treatments employed in the field. A combined application of non-pathogenic Bacillus sp. 5BM21Y12, with good functional activity enhanced yield of crop due to synergistic and additive interaction with fertilizer/pesticides. As biofertilizer application reduces the input of pesticides/fertilizers new inoculant formulations with cell protectors and the development of compatible pesticides should be searched to assure the benefits of integrated treatment.
Collapse
Affiliation(s)
- Vishnu
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Poonam Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jupinder Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Satwant Kaur Gosal
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sohan Singh Walia
- School of Organic Farming, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
9
|
Tan Z, Han X, Dai C, Lu S, He H, Yao X, Chen P, Yang C, Zhao L, Yang QY, Zou J, Wen J, Hong D, Liu C, Ge X, Fan C, Yi B, Zhang C, Ma C, Liu K, Shen J, Tu J, Yang G, Fu T, Guo L, Zhao H. Functional genomics of Brassica napus: Progresses, challenges, and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:484-509. [PMID: 38456625 DOI: 10.1111/jipb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Verwaaijen B, Alcock TD, Spitzer C, Liu Z, Fiebig A, Bienert MD, Bräutigam A, Bienert GP. The Brassica napus boron deficient inflorescence transcriptome resembles a wounding and infection response. PHYSIOLOGIA PLANTARUM 2023; 175:e14088. [PMID: 38148205 DOI: 10.1111/ppl.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023]
Abstract
Oilseed rape and other crops of Brassica napus have a high demand for boron (B). Boron deficiencies result in the inhibition of root growth, and eventually premature flower abortion. Understanding the genetic mechanisms underlying flower abortion in B-limiting conditions could provide the basis to enhance B-efficiency and prevent B-deficiency-related yield losses. In this study, we assessed transcriptomic responses to B-deficiency in diverse inflorescence tissues at multiple time points of soil-grown plants that were phenotypically unaffected by B-deficiency until early flowering. Whilst transcript levels of known B transporters were higher in B-deficient samples, these remained remarkably stable as the duration of B-deficiency increased. Meanwhile, GO-term enrichment analysis indicated a growing response resembling that of a pathogen or pest attack, escalating to a huge transcriptome response in shoot heads at mid-flowering. Grouping differentially expressed genes within this tissue into MapMan functional bins indicated enrichment of genes related to wounding, jasmonic acid and WRKY transcription factors. Individual candidate genes for controlling the "flowering-without-seed-setting" phenotype from within MapMan biotic stress bins include those of the metacaspase family, which have been implicated in orchestrating programmed cell death. Overall temporal expression patterns observed here imply a dynamic response to B-deficiency, first increasing expression of B transporters before recruiting various biotic stress-related pathways to coordinate targeted cell death, likely in response to as yet unidentified B-deficiency induced damage-associated molecular patterns (DAMPs). This response indicates new pathways to target and dissect to control B-deficiency-induced flower abortion and to develop more B-efficient crops.
Collapse
Affiliation(s)
- Bart Verwaaijen
- Computational Biology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
- Center of Biotechnology, Bielefeld University, Bielefeld, Germany
- Department of Genetics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas David Alcock
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| | - Christoph Spitzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Zhaojun Liu
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Manuela Désirée Bienert
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Andrea Bräutigam
- Computational Biology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
- Center of Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Gerd Patrick Bienert
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Jia Z, Giehl RFH, Hartmann A, Estevez JM, Bennett MJ, von Wirén N. A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Curr Biol 2023; 33:3926-3941.e5. [PMID: 37699396 DOI: 10.1016/j.cub.2023.08.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
As a major determinant of the nutrient-acquiring root surface, root hairs (RHs) provide a low-input strategy to enhance nutrient uptake. Although primary and lateral roots exhibit elongation responses under mild nitrogen (N) deficiency, the foraging response of RHs and underlying regulatory mechanisms remain elusive. Employing transcriptomics and functional studies revealed a framework of molecular components composing a cascade of auxin synthesis, transport, and signaling that triggers RH elongation for N acquisition. Through upregulation of Tryptophan Aminotransferase of Arabidopsis 1 (TAA1) and YUCCA8, low N increases auxin accumulation in the root apex. Auxin is then directed to the RH differentiation zone via the auxin transport machinery, AUXIN TRANSPORTER PROTEIN 1 (AUX1) and PIN-FORMED 2 (PIN2). Upon arrival to the RH zone, auxin activates the transcription factors AUXIN RESPONSE FACTOR 6 and 8 (ARF6/8) to promote the epidermal and auxin-inducible transcriptional module ROOT HAIR DEFECTIVE 6 (RHD6)-LOTUS JAPONICA ROOT HAIRLESS-LIKE 3 (LRL3) to steer RH elongation in response to low N. Our study uncovers a spatially defined regulatory signaling cascade for N foraging by RHs, expanding the mechanistic framework of hormone-regulated nutrient sensing in plant roots.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany; State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Anja Hartmann
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Jose M Estevez
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile; Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Malcolm J Bennett
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| |
Collapse
|
12
|
Réthoré E, Ali N, Pluchon S, Hosseini SA. Silicon Enhances Brassica napus Tolerance to Boron Deficiency by the Remobilisation of Boron and by Changing the Expression of Boron Transporters. PLANTS (BASEL, SWITZERLAND) 2023; 12:2574. [PMID: 37447134 DOI: 10.3390/plants12132574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Boron (B) is an essential micronutrient for plants, and its deficiency is a widespread nutritional disorder, particularly in high-demanding crops like Brassica napus. Over the past few decades, silicon (Si) has been shown to mitigate plant nutrient deficiencies of different macro- and micro-nutrients. However, the work on B and Si cross-talk has mostly been focused on the alleviation of B toxicity by Si application. In the present study, we investigated the effect of Si application on rapeseed plants grown hydroponically under long-term B deficiency (20 days at 0.1 µM B). In addition, a B-uptake labelling experiment was conducted, and the expression of the genes involved in B uptake were monitored between 2 and 15 days of B shortage. The results showed that Si significantly improved rapeseed plant growth under B deficiency by 34% and 49% in shoots and roots, respectively. It also increased the expression level of BnaNIP5;1 and BOR1;2c in both young leaves and roots. The uptake labelling experiment showed the remobilization of previously fixed 11B from old leaves to new tissues. This study provides additional evidence of the beneficial effects of Si under conditions lacking B by changing the expression of the BnaNIP5;1 gene and by remobilizing 11B to young tissues.
Collapse
Affiliation(s)
- Elise Réthoré
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| | - Nusrat Ali
- Phys-Chem and Bio-Analytics R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint-Malo, France
| | - Sylvain Pluchon
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| | - Seyed Abdollah Hosseini
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| |
Collapse
|
13
|
Wang X, Song B, Wu Z, Zhao X, Song X, Adil MF, Riaz M, Lal MK, Huang W. Insights into physiological and molecular mechanisms underlying efficient utilization of boron in different boron efficient Beta vulgaris L. varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107619. [PMID: 36931121 DOI: 10.1016/j.plaphy.2023.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Boron (B) deficiency and consequent limitation of plant yield and quality, particularly of sugar beet (Beta vulgaris L.) has emerged as a maior problem,which is exacerbating due to cultivar dependent variability in B deficiency tolerance. Pertinently, the current study was designed to elucidate the physiological and molecular mechanisms of B deficiency tolerance of sugar beet varieties KWS1197 (B-efficient variety) and KWS0143 (B-inefficient variety). A hydroponic experiment was conducted employing two B levels B0.1 (0.1 μM L-1 H3BO3, deficiency) and B50 (50 μM L-1 H3BO3, adequacy). Boron deficiency greatly inhibited root elongation and dry matter accumulation; however, formation of lateral roots stimulated and average root diameter was increased. Results exhibited that by up-regulating the expression of NIP5-1, NIP6-1, and BOR2, and suppressing the expression of BOR4, cultivar KWS1197, in contrast to KWS0143, managed to transfer sufficient amount of B to the aboveground plant parts, facilitating its effective absorption and utilization. Accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) was also mellowed in KWS1197, as well as the oxidative damage to root cells via preservation of the antioxidant enzyme system. Additionally, the expression of essential enzymes for biosynthesis of phytohormone (PYR/PYL) and lignin (COMT, POX, and CCoAOMT) were found to be highly up-regulated in KWS1197. Deductively, through effective B absorption and transportation, balanced nutrient accumulation, and an activated antioxidant enzyme system, B-efficient cultivars may cope with B deficiency while retaining a superior cellular structure to enable root development.
Collapse
Affiliation(s)
- Xiangling Wang
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Baiquan Song
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Zhenzhen Wu
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Xiaoyu Zhao
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Xin Song
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resources, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Wengong Huang
- Heilongjiang Academy of Agricultural Sciences, Safety and Quality Institute of Agricultural Products, Harbin, 150086, China
| |
Collapse
|
14
|
Song X, Song B, Huo J, Liu H, Adil MF, Jia Q, Wu W, Kuerban A, Wang Y, Huang W. Effect of boron deficiency on the photosynthetic performance of sugar beet cultivars with contrasting boron efficiencies. FRONTIERS IN PLANT SCIENCE 2023; 13:1101171. [PMID: 36726677 PMCID: PMC9885099 DOI: 10.3389/fpls.2022.1101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Boron (B) deficiency severely affects the quality of sugar beet production, and the employment of nutrient-efficient varieties for cultivation is a crucial way to solve environmental and resource-based problems. However, the aspect of leaf photosynthetic performance among B-efficient sugar beet cultivars remains uncertain. The B deficient and B-sufficient treatments were conducted in the experiment using KWS1197 (B-efficient) and KWS0143 (B-inefficient) sugar beet cultivars as study materials. The objective of the present study was to determine the impacts of B deficiency on leaf phenotype, photosynthetic capacity, chloroplast structure, and photochemical efficiency of the contrasting B-efficiency sugar beet cultivars. The results indicated that the growth of sugar beet leaves were dramatically restricted, the net photosynthetic rate was significantly decreased, and the energy flux, quantum yield, and flux ratio of PSII reaction centers were adversely affected under B deficiency. Compared to the KWS0143 cultivar, the average leaf area ratio of the KWS1197 cultivar experienced less impact, and its leaf mass ratio (LMR) increased by 26.82% under B deficiency, whereas for the KWS0143 cultivar, the increase was only 2.50%. Meanwhile, the light energy capture and utilization capacity of PSII reaction centers and the proportion of absorbed light energy used for electron transfer were higher by 3.42% under B deficiency; KWS1197 cultivar managed to alleviate the photo-oxidative damage, which results from excessive absorbed energy (ABS/RC), by increasing the dissipated energy (DIo/RC). Therefore, in response to B deprivation, the KWS1197 cultivar demonstrated greater adaptability in terms of morphological indices and photosynthetic functions, which not only explains the improved performance but also renders the measured parameters as the key features for varietal selection, providing a theoretical basis for the utilization of efficient sugar beet cultivars in future.
Collapse
Affiliation(s)
- Xin Song
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Baiquan Song
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Jialu Huo
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Huajun Liu
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resources, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiue Jia
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wenyu Wu
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Abudukadier Kuerban
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Yan Wang
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wengong Huang
- Safety and Quality Institution of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
15
|
Pommerrenig B, Faber M, Hajirezaei MR, von Wirén N, Bienert GP. Cytokinins as boron deficiency signals to sustain shoot development in boron-efficient oilseed rape. PHYSIOLOGIA PLANTARUM 2022; 174:e13776. [PMID: 36066313 DOI: 10.1111/ppl.13776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Boron (B) deficiency is a highly prominent nutrient disorder. While B-efficient accessions have recently been identified in the highly B-demanding crop oilseed rape, it remained unclear which physiological processes underlie B efficiency and which signaling pathways trigger an efficient B-deficiency response. Here, we compared, under three different B supply conditions, two Brassica napus accessions with contrasting B efficiency. Shoot biomass formation, B distribution patterns and metabolic dynamics of different phytohormone species were studied using a combination of mass spectrometry-based analyses and physiological measurements. Our results show that the B-efficient accession CR2267 does not differ from the B-inefficient accession CR2262 in terms of B accumulation and subcellular B-partitioning, although it displays no morphological B-deficiency symptoms under severe B-deficient conditions. Investigating phytohormone metabolism revealed a strong accumulation of cytokinins in CR2267 at a developmental stage when striking B-dependent differences in biomass and organ formation emerge in the two B. napus accessions. In contrast, elevated levels of the stress hormone abscisic acid as well as bioactive auxins, representing functional antagonists of cytokinins in shoots, were detected only in CR2262. Our results indicate that superior B efficiency in CR2267 relies on a higher B utilization efficiency that builds on an earlier and higher cytokinin biosynthesis required for the maintenance of the shoot meristem activity and proper leaf development. We further conclude that an elevated abundance of cytokinins is not a consequence of better plant growth but rather a presumption for better plant growth under low-B conditions.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Plant Physiology, University Kaiserslautern, Kaiserslautern, Germany
| | - Maximilian Faber
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Gerd Patrick Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
16
|
Lu Z, Hu W, Ye X, Lu J, Gu H, Li X, Cong R, Ren T. Potassium regulates diel leaf growth of Brassica napus by coordinating the rhythmic carbon supply and water balance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3686-3698. [PMID: 35176159 DOI: 10.1093/jxb/erac060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Carbon and water are two main factors limiting leaf expansion. Restriction of leaf growth by low availability of carbon or water is among the earliest visible effects of potassium (K) deficiency. It is not known how K is involved in regulating the rhythmic supply of these two substrates, which differ remarkably across the day-night cycle, affecting leaf expansion. We investigated the effects of different K regimes on the time courses of leaf expansion, carbon assimilation, carbohydrates, and hydraulic properties of Brassica napus. Potassium supply increased leaf area, predominantly by promoting night-time leaf expansion (>60%), which was mainly associated with increased availability of carbohydrates from photosynthetic carbon fixation and import from old leaves rather than improvement of leaf hydraulics. However, sufficient K improved leaf hydraulic conductance to balance diurnal evaporative water loss and increase the osmotic contribution of water-soluble carbohydrates, thereby maintaining leaf turgor and increasing the daytime expansion rate. The results also indicated an ontogenetic role of K in modifying the amplitude of circadian expansion; almost 80% of the increase in leaf area occurred before the area reached 66.9% of the mature size. Our data provide mechanistic insight into K-mediated diel coordination of rhythmic carbon supply and water balance in leaf expansion.
Collapse
Affiliation(s)
- Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Wenshi Hu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaolei Ye
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Hehe Gu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaokun Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
17
|
Ebersbach J, Khan NA, McQuillan I, Higgins EE, Horner K, Bandi V, Gutwin C, Vail SL, Robinson SJ, Parkin IAP. Exploiting High-Throughput Indoor Phenotyping to Characterize the Founders of a Structured B. napus Breeding Population. FRONTIERS IN PLANT SCIENCE 2022; 12:780250. [PMID: 35069637 PMCID: PMC8767643 DOI: 10.3389/fpls.2021.780250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Phenotyping is considered a significant bottleneck impeding fast and efficient crop improvement. Similar to many crops, Brassica napus, an internationally important oilseed crop, suffers from low genetic diversity, and will require exploitation of diverse genetic resources to develop locally adapted, high yielding and stress resistant cultivars. A pilot study was completed to assess the feasibility of using indoor high-throughput phenotyping (HTP), semi-automated image processing, and machine learning to capture the phenotypic diversity of agronomically important traits in a diverse B. napus breeding population, SKBnNAM, introduced here for the first time. The experiment comprised 50 spring-type B. napus lines, grown and phenotyped in six replicates under two treatment conditions (control and drought) over 38 days in a LemnaTec Scanalyzer 3D facility. Growth traits including plant height, width, projected leaf area, and estimated biovolume were extracted and derived through processing of RGB and NIR images. Anthesis was automatically and accurately scored (97% accuracy) and the number of flowers per plant and day was approximated alongside relevant canopy traits (width, angle). Further, supervised machine learning was used to predict the total number of raceme branches from flower attributes with 91% accuracy (linear regression and Huber regression algorithms) and to identify mild drought stress, a complex trait which typically has to be empirically scored (0.85 area under the receiver operating characteristic curve, random forest classifier algorithm). The study demonstrates the potential of HTP, image processing and computer vision for effective characterization of agronomic trait diversity in B. napus, although limitations of the platform did create significant variation that limited the utility of the data. However, the results underscore the value of machine learning for phenotyping studies, particularly for complex traits such as drought stress resistance.
Collapse
Affiliation(s)
| | - Nazifa Azam Khan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ian McQuillan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Kyla Horner
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Venkat Bandi
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carl Gutwin
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
18
|
Réthoré E, Jing L, Ali N, Yvin JC, Pluchon S, Hosseini SA. K Deprivation Modulates the Primary Metabolites and Increases Putrescine Concentration in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:681895. [PMID: 34484256 PMCID: PMC8409508 DOI: 10.3389/fpls.2021.681895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
Potassium (K) plays a crucial role in plant growth and development and is involved in different physiological and biochemical functions in plants. Brassica napus needs higher amount of nutrients like nitrogen (N), K, phosphorus (P), sulfur (S), and boron (B) than cereal crops. Previous studies in B. napus are mainly focused on the role of N and S or combined deficiencies. Hence, little is known about the response of B. napus to K deficiency. Here, a physiological, biochemical, and molecular analysis led us to investigate the response of hydroponically grown B. napus plants to K deficiency. The results showed that B. napus was highly sensitive to the lack of K. The lower uptake and translocation of K induced BnaHAK5 expression and significantly declined the growth of B. napus after 14 days of K starvation. The lower availability of K was associated with a decrease in the concentration of both S and N and modulated the genes involved in their uptake and transport. In addition, the lack of K induced an increase in Ca2+ and Mg2+ concentration which led partially to the accumulation of positive charge. Moreover, a decrease in the level of arginine as a positively charged amino acid was observed which was correlated with a substantial increase in the polyamine, putrescine (Put). Furthermore, K deficiency induced the expression of BnaNCED3 as a key gene in abscisic acid (ABA) biosynthetic pathway which was associated with an increase in the levels of ABA. Our findings provided a better understanding of the response of B. napus to K starvation and will be useful for considering the importance of K nutrition in this crop.
Collapse
Affiliation(s)
- Elise Réthoré
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Lun Jing
- Plateformes Analytiques de Recherche, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Nusrat Ali
- Plateformes Analytiques de Recherche, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Jean-Claude Yvin
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Seyed Abdollah Hosseini
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| |
Collapse
|
19
|
Liu Z, Giehl RFH, Bienert MD, von Wirén N, Bienert GP. Light-triggered reactions do not bias boron deficiency-induced root inhibition of Arabidopsis seedlings grown in Petri dishes. MOLECULAR PLANT 2021; 14:1211-1214. [PMID: 33965634 DOI: 10.1016/j.molp.2021.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Zhaojun Liu
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; Crop Physiology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ricardo Fabiano Hettwer Giehl
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Manuela Désirée Bienert
- Soil Sciences, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Gerd Patrick Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; Crop Physiology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
20
|
Dinh AQ, Naeem A, Sagervanshi A, Wimmer MA, Mühling KH. Boron uptake and distribution by oilseed rape (Brassica napus L.) as affected by different nitrogen forms under low and high boron supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:156-165. [PMID: 33609922 DOI: 10.1016/j.plaphy.2021.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/08/2021] [Indexed: 05/28/2023]
Abstract
Ammonium (NH4+) and nitrate (NO3-) conversely alter pH of the rooting medium, and thus differentially affect the equilibrium between boric acid and borate in soil solution. This can alter boron (B) uptake by plants, which is passive under high, but facilitated (boric acid) or active (borate) under low B supply. Therefore, the effect of NH4+ and NO3- forms was investigated on the growth, 10B uptake rate and accumulation, and expression of B transporters in Brassica napus grown with low (1 μM) or high (100 μM) 10B for five days in the nutrient solution. At the low 10B level, NO3--fed plants had the same specific 10B uptake rate, 10B accumulation and xylem 10B concentration as NH4NO3-fed plants but these attributes were reduced at the high 10B level. BnaBOR1;2 and BnaNIP5;1 were upregulated in roots of NO3-fed plants at low 10B supply. NH4+-fed plants had substantially lower dry matters; due to nutrient solution acidification (2.0 units)-induced deficiency of nitrogen, potassium, magnesium, and iron in plant shoots. Reduced transpiration rates resulted in lower 10B uptake rate and accumulation in the roots and shoots of NH4+-fed plants. BnaNIP5;1 in roots, while both BnaBOR1;2 and BnaNIP5;1 in shoots were upregulated in NH4+-fed plants at low 10B level. Collectively, NH4+-induced acidity and consequent lowering of 10B uptake induced the upregulation of B transport mechanisms, even at marginal 10B concentrations, while NO3--induced alkalinization resulted in altered B distribution between roots and shoots due to restricted B transport, especially at higher 10B supply.
Collapse
Affiliation(s)
- Anh Quang Dinh
- Institute for Plant Nutrition and Soil Science, Kiel University, Hermann Rodewald Strasse 2, D-24118, Kiel, Germany; Faculty of Agriculture and Forestry, Dalat University, Da Lat, Lam Dong Province, Viet Nam
| | - Asif Naeem
- Institute for Plant Nutrition and Soil Science, Kiel University, Hermann Rodewald Strasse 2, D-24118, Kiel, Germany
| | - Amit Sagervanshi
- Institute for Plant Nutrition and Soil Science, Kiel University, Hermann Rodewald Strasse 2, D-24118, Kiel, Germany
| | - Monika A Wimmer
- Institute for Plant Nutrition and Soil Science, Kiel University, Hermann Rodewald Strasse 2, D-24118, Kiel, Germany
| | - Karl H Mühling
- Institute for Plant Nutrition and Soil Science, Kiel University, Hermann Rodewald Strasse 2, D-24118, Kiel, Germany.
| |
Collapse
|
21
|
Meyer RC, Weigelt-Fischer K, Knoch D, Heuermann M, Zhao Y, Altmann T. Temporal dynamics of QTL effects on vegetative growth in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:476-490. [PMID: 33080013 DOI: 10.1093/jxb/eraa490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
We assessed early vegetative growth in a population of 382 accessions of Arabidopsis thaliana using automated non-invasive high-throughput phenotyping. All accessions were imaged daily from 7 d to 18 d after sowing in three independent experiments and genotyped using the Affymetrix 250k SNP array. Projected leaf area (PLA) was derived from image analysis and used to calculate relative growth rates (RGRs). In addition, initial seed size was determined. The generated datasets were used jointly for a genome-wide association study that identified 238 marker-trait associations (MTAs) individually explaining up to 8% of the total phenotypic variation. Co-localization of MTAs occurred at 33 genomic positions. At 21 of these positions, sequential co-localization of MTAs for 2-9 consecutive days was observed. The detected MTAs for PLA and RGR could be grouped according to their temporal expression patterns, emphasizing that temporal variation of MTA action can be observed even during the vegetative growth phase, a period of continuous formation and enlargement of seemingly similar rosette leaves. This indicates that causal genes may be differentially expressed in successive periods. Analyses of the temporal dynamics of biological processes are needed to gain important insight into the molecular mechanisms of growth-controlling processes in plants.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Marc Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, Research Group Quantitative Genetics, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| |
Collapse
|
22
|
Ho LH, Rode R, Siegel M, Reinhardt F, Neuhaus HE, Yvin JC, Pluchon S, Hosseini SA, Pommerrenig B. Potassium Application Boosts Photosynthesis and Sorbitol Biosynthesis and Accelerates Cold Acclimation of Common Plantain ( Plantago major L.). PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9101259. [PMID: 32987723 PMCID: PMC7598673 DOI: 10.3390/plants9101259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 05/23/2023]
Abstract
Potassium (K) is essential for the processes critical for plant performance, including photosynthesis, carbon assimilation, and response to stress. K also influences translocation of sugars in the phloem and regulates sucrose metabolism. Several plant species synthesize polyols and transport these sugar alcohols from source to sink tissues. Limited knowledge exists about the involvement of K in the above processes in polyol-translocating plants. We, therefore, studied K effects in Plantago major, a species that accumulates the polyol sorbitol to high concentrations. We grew P. major plants on soil substrate adjusted to low-, medium-, or high-potassium conditions. We found that biomass, seed yield, and leaf tissue K contents increased in a soil K-dependent manner. K gradually increased the photosynthetic efficiency and decreased the non-photochemical quenching. Concomitantly, sorbitol levels and sorbitol to sucrose ratio in leaves and phloem sap increased in a K-dependent manner. K supply also fostered plant cold acclimation. High soil K levels mitigated loss of water from leaves in the cold and supported cold-dependent sugar and sorbitol accumulation. We hypothesize that with increased K nutrition, P. major preferentially channels photosynthesis-derived electrons into sorbitol biosynthesis and that this increased sorbitol is supportive for sink development and as a protective solute, during abiotic stress.
Collapse
Affiliation(s)
- Li-Hsuan Ho
- Plant Physiology, University Kaiserslautern, Paul-Ehrlich-Str., 67663 Kaiserlautern, Germany; (L.-H.H.); (R.R.); (M.S.); (F.R.); (H.E.N.)
| | - Regina Rode
- Plant Physiology, University Kaiserslautern, Paul-Ehrlich-Str., 67663 Kaiserlautern, Germany; (L.-H.H.); (R.R.); (M.S.); (F.R.); (H.E.N.)
| | - Maike Siegel
- Plant Physiology, University Kaiserslautern, Paul-Ehrlich-Str., 67663 Kaiserlautern, Germany; (L.-H.H.); (R.R.); (M.S.); (F.R.); (H.E.N.)
| | - Frank Reinhardt
- Plant Physiology, University Kaiserslautern, Paul-Ehrlich-Str., 67663 Kaiserlautern, Germany; (L.-H.H.); (R.R.); (M.S.); (F.R.); (H.E.N.)
| | - H. Ekkehard Neuhaus
- Plant Physiology, University Kaiserslautern, Paul-Ehrlich-Str., 67663 Kaiserlautern, Germany; (L.-H.H.); (R.R.); (M.S.); (F.R.); (H.E.N.)
| | - Jean-Claude Yvin
- Centre Mondial de l’Innovation Roullier—Laboratoire de Nutrition Végétale, 18 avenue Franklin Roosevelt 35400 Saint-Malo, France; (J.-C.Y.); (S.P.); (S.A.H.)
| | - Sylvain Pluchon
- Centre Mondial de l’Innovation Roullier—Laboratoire de Nutrition Végétale, 18 avenue Franklin Roosevelt 35400 Saint-Malo, France; (J.-C.Y.); (S.P.); (S.A.H.)
| | - Seyed Abdollah Hosseini
- Centre Mondial de l’Innovation Roullier—Laboratoire de Nutrition Végétale, 18 avenue Franklin Roosevelt 35400 Saint-Malo, France; (J.-C.Y.); (S.P.); (S.A.H.)
| | - Benjamin Pommerrenig
- Plant Physiology, University Kaiserslautern, Paul-Ehrlich-Str., 67663 Kaiserlautern, Germany; (L.-H.H.); (R.R.); (M.S.); (F.R.); (H.E.N.)
| |
Collapse
|
23
|
Wimmer MA, Abreu I, Bell RW, Bienert MD, Brown PH, Dell B, Fujiwara T, Goldbach HE, Lehto T, Mock HP, von Wirén N, Bassil E, Bienert GP. Boron: an essential element for vascular plants: A comment on Lewis (2019) 'Boron: the essential element for vascular plants that never was'. THE NEW PHYTOLOGIST 2020; 226:1232-1237. [PMID: 31674046 DOI: 10.1111/nph.16127] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Monika A Wimmer
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Richard W Bell
- Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Manuela D Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Patrick H Brown
- Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - Bernard Dell
- Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Heiner E Goldbach
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany
| | - Tarja Lehto
- School of Forest Sciences, University of Eastern Finland, 80110, Joensuu, Finland
| | - Hans-Peter Mock
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Elias Bassil
- Horticultural Sciences Department and Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA
| | - Gerd P Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| |
Collapse
|
24
|
Elucidating the Possible Involvement of Maize Aquaporins in the Plant Boron Transport and Homeostasis Mediated by Rhizophagus irregularis under Drought Stress Conditions. Int J Mol Sci 2020; 21:ijms21051748. [PMID: 32143345 PMCID: PMC7084526 DOI: 10.3390/ijms21051748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Boron (B) is an essential micronutrient for higher plants, having structural roles in primary cell walls, but also other functions in cell division, membrane integrity, pollen germination or metabolism. Both high and low B levels negatively impact crop performance. Thus, plants need to maintain B concentration in their tissues within a narrow range by regulating transport processes. Both active transport and protein-facilitated diffusion through aquaporins have been demonstrated. This study aimed at elucidating the possible involvement of some plant aquaporins, which can potentially transport B and are regulated by the arbuscular mycorrhizal (AM) symbiosis in the plant B homeostasis. Thus, AM and non-AM plants were cultivated under 0, 25 or 100 μM B in the growing medium and subjected or not subjected to drought stress. The accumulation of B in plant tissues and the regulation of plant aquaporins and other B transporters were analyzed. The benefits of AM inoculation on plant growth (especially under drought stress) were similar under the three B concentrations assayed. The tissue B accumulation increased with B availability in the growing medium, especially under drought stress conditions. Several maize aquaporins were regulated under low or high B concentrations, mainly in non-AM plants. However, the general down-regulation of aquaporins and B transporters in AM plants suggests that, when the mycorrhizal fungus is present, other mechanisms contribute to B homeostasis, probably related to the enhancement of water transport, which would concomitantly increase the passive transport of this micronutrient.
Collapse
|
25
|
Boron Toxicity and Deficiency in Agricultural Plants. Int J Mol Sci 2020; 21:ijms21041424. [PMID: 32093172 PMCID: PMC7073067 DOI: 10.3390/ijms21041424] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Boron is an essential plant micronutrient taken up via the roots mostly in the form of boric acid. Its important role in plant metabolism involves the stabilization of molecules with cis-diol groups. The element is involved in the cell wall and membrane structure and functioning; therefore, it participates in numerous ion, metabolite, and hormone transport reactions. Boron has an extremely narrow range between deficiency and toxicity, and inadequate boron supply exhibits a detrimental effect on the yield of agricultural plants. The deficiency problem can be solved by fertilization, whereas soil boron toxicity can be ameliorated using various procedures; however, these approaches are costly and time-consuming, and they often show temporary effects. Plant species, as well as the genotypes within the species, dramatically differ in terms of boron requirements; thus, the available soil boron which is deficient for one crop may exhibit toxic effects on another. The widely documented intraspecies genetic variability regarding boron utilization efficiency and toxicity tolerance, together with the knowledge of the physiology and genetics of boron, should result in the development of efficient and tolerant varieties that may represent a long-term sustainable solution for the problem of inadequate or excess boron supply.
Collapse
|
26
|
Knoch D, Abbadi A, Grandke F, Meyer RC, Samans B, Werner CR, Snowdon RJ, Altmann T. Strong temporal dynamics of QTL action on plant growth progression revealed through high-throughput phenotyping in canola. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:68-82. [PMID: 31125482 PMCID: PMC6920335 DOI: 10.1111/pbi.13171] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 05/08/2023]
Abstract
A major challenge of plant biology is to unravel the genetic basis of complex traits. We took advantage of recent technical advances in high-throughput phenotyping in conjunction with genome-wide association studies to elucidate genotype-phenotype relationships at high temporal resolution. A diverse Brassica napus population from a commercial breeding programme was analysed by automated non-invasive phenotyping. Time-resolved data for early growth-related traits, including estimated biovolume, projected leaf area, early plant height and colour uniformity, were established and complemented by fresh and dry weight biomass. Genome-wide SNP array data provided the framework for genome-wide association analyses. Using time point data and relative growth rates, multiple robust main effect marker-trait associations for biomass and related traits were detected. Candidate genes involved in meristem development, cell wall modification and transcriptional regulation were detected. Our results demonstrate that early plant growth is a highly complex trait governed by several medium and many small effect loci, most of which act only during short phases. These observations highlight the importance of taking the temporal patterns of QTL/allele actions into account and emphasize the need for detailed time-resolved analyses to effectively unravel the complex and stage-specific contributions of genes affecting growth processes that operate at different developmental phases.
Collapse
Affiliation(s)
- Dominic Knoch
- Molecular Genetics/HeterosisLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Amine Abbadi
- Norddeutsche Pflanzenzucht Innovation GmbH (NPZi)HoltseeGermany
| | - Fabian Grandke
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
| | - Rhonda C. Meyer
- Molecular Genetics/HeterosisLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Birgit Samans
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
- Present address:
Technische Hochschule Mittelhessen (THM), University of Applied SciencesFachbereich Gesundheit35390GiessenGermany
| | - Christian R. Werner
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
- Present address:
The Roslin InstituteUniversity of EdinburghEaster Bush CampusMidlothianEH25 9RGUK
| | - Rod J. Snowdon
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
| | - Thomas Altmann
- Molecular Genetics/HeterosisLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| |
Collapse
|
27
|
Diehn TA, Bienert MD, Pommerrenig B, Liu Z, Spitzer C, Bernhardt N, Fuge J, Bieber A, Richet N, Chaumont F, Bienert GP. Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26-like Intrinsic Proteins and BOR1 transporters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:68-82. [PMID: 31148338 PMCID: PMC6852077 DOI: 10.1111/tpj.14428] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 05/22/2023]
Abstract
The sophisticated uptake and translocation regulation of the essential element boron (B) in plants is ensured by two transmembrane transporter families: the Nodulin26-like Intrinsic Protein (NIP) and BOR transporter family. Though the agriculturally important crop Brassica napus is highly sensitive to B deficiency, and NIPs and BORs have been suggested to be responsible for B efficiency in this species, functional information of these transporter subfamilies is extremely rare. Here, we molecularly characterized the NIP and BOR1 transporter family in the European winter-type cv. Darmor-PBY018. Our transport assays in the heterologous oocyte and yeast expression systems as well as in growth complementation assays in planta demonstrated B transport activity of NIP5, NIP6, NIP7 and BOR1 isoforms. Moreover, we provided functional and quantitative evidence that also members of the NIP2, NIP3 and NIP4 groups facilitate the transport of B. A detailed B- and tissue-dependent B-transporter expression map was generated by quantitative polymerase chain reaction. We showed that NIP5 isoforms are highly upregulated under B-deficient conditions in roots, but also in shoot tissues. Moreover, we detected transcripts of several B-permeable NIPs from various groups in floral tissues that contribute to the B distribution within the highly B deficiency-sensitive flowers.
Collapse
Affiliation(s)
- Till Arvid Diehn
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Manuela Désirée Bienert
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Benjamin Pommerrenig
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
- Division of Plant PhysiologyUniversity KaiserslauternKaiserslautern67663Germany
| | - Zhaojun Liu
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Christoph Spitzer
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Nadine Bernhardt
- Experimental Taxonomy, Genebank DepartmentLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Jacqueline Fuge
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Annett Bieber
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Nicolas Richet
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Gerd Patrick Bienert
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| |
Collapse
|
28
|
Pommerrenig B, Eggert K, Bienert GP. Boron Deficiency Effects on Sugar, Ionome, and Phytohormone Profiles of Vascular and Non-Vascular Leaf Tissues of Common Plantain ( Plantago major L.). Int J Mol Sci 2019; 20:E3882. [PMID: 31395813 PMCID: PMC6719229 DOI: 10.3390/ijms20163882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular tissues essentially regulate water, nutrient, photo-assimilate, and phytohormone logistics throughout the plant body. Boron (B) is crucial for the development of the vascular tissue in many dicotyledonous plant taxa and B deficiency particularly affects the integrity of phloem and xylem vessels, and, therefore, functionality of long-distance transport. We hypothesize that changes in the plants' B nutritional status evoke differential responses of the vasculature and the mesophyll. However, direct analyses of the vasculature in response to B deficiency are lacking, due to the experimental inaccessibility of this tissue. Here, we generated biochemical and physiological understanding of B deficiency response reactions in common plantain (Plantago major L.), from which pure and intact vascular bundles can be extracted. Low soil B concentrations affected quantitative distribution patterns of various phytohormones, sugars and macro-, and micronutrients in a tissue-specific manner. Vascular sucrose levels dropped, and sucrose loading into the phloem was reduced under low B supply. Phytohormones responded selectively to B deprivation. While concentrations of abscisic acid and salicylic acid decreased at low B supply, cytokinins and brassinosteroids increased in the vasculature and the mesophyll, respectively. Our results highlight the biological necessity to analyze nutrient deficiency responses in a tissue- rather organ-specific manner.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany
- Plant Physiology, University of Kaiserslautern, Paul-Ehrlich-Str. 22, D-67653 Kaiserslautern, Germany
| | - Kai Eggert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany
| | - Gerd P Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany.
| |
Collapse
|
29
|
Bienert MD, Muries B, Crappe D, Chaumont F, Bienert GP. Overexpression of X Intrinsic Protein 1;1 in Nicotiana tabacum and Arabidopsis reduces boron allocation to shoot sink tissues. PLANT DIRECT 2019; 3:e00143. [PMID: 31245781 PMCID: PMC6549384 DOI: 10.1002/pld3.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 05/05/2023]
Abstract
Major Intrinsic Proteins (MIP) are a family of channels facilitating the diffusion of water and/or small solutes across cellular membranes. X Intrinsic Proteins (XIP) form the least characterized MIP subfamily in vascular plants. XIPs are mostly impermeable to water but facilitate the diffusion of hydrogen peroxide, urea and boric acid when expressed in heterologous expression systems. However, their transport capabilities in planta and their impact on plant physiology are still unknown. Here, we demonstrated that overexpression of NtXIP1;1 in Nicotiana tabacum by the En2pPMA4 or the 35S CaMV promoter and in Arabidopsis, which does not contain any XIP gene, by the 35S CaMV promoter, resulted in boron (B)-deficiency symptoms such as death of the shoot apical meristem, infertile flowers, and puckered leaves. Leaf B concentrations in symptomatic tissues and B xylem sap concentrations were lower in the overexpressors than in control plants. Importantly, expression of NtXIP1;1 under the control of the AtNIP5;1 promoter complemented the B deficiency phenotype of the Atnip5;1 knockout mutant, defining its ability to act as a boric acid channel in planta. Protein quantification analysis revealed that NtXIP1;1 was predominantly expressed in young B-demanding tissues and induced under B-deficient conditions. Our results strongly suggest that NtXIP1;1 plays a role in B homeostasis and its tissue-specific expression critically contributes to the distribution of B within tobacco.
Collapse
Affiliation(s)
- Manuela Desiree Bienert
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Beatriz Muries
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Delphine Crappe
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Gerd Patrick Bienert
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| |
Collapse
|