1
|
Zhang S, Yang H, Wan Y, Shi Y, Wang X, Liu G, Zhao X, Zhao G. Paper-based sap enrichment device combined with laser-induced breakdown spectroscopy for the minimally invasive detection of Cd(Ⅱ) and Pb(Ⅱ) in plants. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138351. [PMID: 40273853 DOI: 10.1016/j.jhazmat.2025.138351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/01/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Detecting heavy metals in plants is highly important for diagnosing plant health and understanding the stress mechanisms induced by heavy metals. However, the minimally invasive detection of heavy metals in plants remains a challenge. A novel paper-based sap enrichment device (PBSED), combined with laser-induced breakdown spectroscopy (LIBS) was proposed for the minimally invasive detection of Cd(Ⅱ) and Pb(Ⅱ) in plants. The PBSED included a stainless-steel capillary and heavy metal ion enrichment filter paper (HMIE-FP). The stainless-steel capillary was inserted into the plant stem, where plant sap was transported onto the paper substrate through capillary action. The heavy metal ions (HMIs) in the plants were enriched on the HMIE-FP, and LIBS was used to detect Cd(Ⅱ) and Pb(Ⅱ) on the HMIE-FP to determine the Cd(Ⅱ) and Pb(Ⅱ) concentration within the plant. COMSOL simulations were employed to analyse the flow dynamics of plant sap within the PBSED. To increase the heavy metal enrichment amount, the HMIE-FP was modified with AuAg bimetallic nanoparticles (AuAgBNPs). The PBSED-LIBS method was applied to detect Cd(Ⅱ) and Pb(Ⅱ) in cucumber plants, and the results were strongly correlated with the inductively coupled plasma mass spectrometry (ICP-MS) results (R² = 0.99 for Cd(Ⅱ) and 0.96 for Pb(Ⅱ)). The proposed PBSED-LIBS method demonstrated high sensitivity and minimal invasiveness; thus, it is suitable for rapid, in vivo detection of HMIs in plants. These findings provide valuable insights for the development of efficient, nondestructive tools for environmental applications.
Collapse
Affiliation(s)
- Shijie Zhang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, PR China
| | - Haotian Yang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, PR China
| | - Yuanxin Wan
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Yujie Shi
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, PR China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Gang Liu
- Key Lab of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing 100083, PR China
| | - Xiande Zhao
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, PR China.
| |
Collapse
|
2
|
Danish M, Shahid M, Shafi Z, Farah MA, Al-Anazi KM. Cu-tolerant Klebsiella variicola SRB-4 increased the nanoparticle (NP) stress resilience in garden peas (Pisum sativum L.) raised in soil polluted with varying doses of copper oxide (CuO)-NP. World J Microbiol Biotechnol 2025; 41:34. [PMID: 39794604 DOI: 10.1007/s11274-024-04239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels. Cu-tolerant (800 µM) Klebsiella variicola strain SRB-4 (Accession no. OR715781.1) recovered from metal-contaminated soils produced various PGP traits, including IAA, EPS, siderophore, HCN, ammonia, and solubilized insoluble P. The PGP substances were marginally increased with increasing CuO-NP concentrations. When applied, Cu-tolerant SRB-4 strain increased root length (18%), root biomass (15.3%), total chlorophyll (29%), carotenoids (30%), root N (21%), root P (23%), total soluble protein (20%) nodule number (32%), nodule biomass (39%) and leghaemoglobin content (18%) in 50 µM CuO-NP-exposed peas. Furthermore, proline, malondialdehyde (MDA), superoxide radical, hydrogen peroxide (H2O2) content, and membrane injury in K. variicola-inoculated and 50 µM CuO-NP-treated plants were maximally and significantly (p ≤ 0.05) reduced by 70.6, 26.8, 60.8, and 71.6%, respectively, over uninoculated but treated with similar NP doses. Moreover, K. variicola inoculation caused a significant (p ≤ 0.05) decline in Cu uptake in roots (71%), shoots (65.5%), and grains (76.4%) of peas grown in soil contaminated with 50 µM CuO-NP. The multivariate i.e. heat map and pearson correlation analyses between the NP-treated and PGPR inoculated parameters revealed a significant and strong positive corelation. The NP-tolerant indigenous beneficial K. variicola could be applied as an alternative to enhance the production of P. sativum cultivated in nano-polluted soil systems. Additionally, more investigation is required to ascertain the seed/soil inoculation effect of K. variicola SRB-4 on soil biological activities and different crops under various experimental setups.
Collapse
Affiliation(s)
- Mohammad Danish
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India.
| | - Zaryab Shafi
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Naqqash T, Aziz A, Baber M, Shahid M, Sajid M, Emanuele R, Gaafar ARZ, Hodhod MS, Haider G. Metal-tolerant morganella morganii isolates can potentially mediate nickel stress tolerance in Arabidopsis by upregulating antioxidative enzyme activities. PLANT SIGNALING & BEHAVIOR 2024; 19:2318513. [PMID: 38526224 DOI: 10.1080/15592324.2024.2318513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/08/2024] [Indexed: 03/26/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPRs) have been utilized to immobilize heavy metals, limiting their translocation in metal contaminated settings. However, studies on the mechanisms and interactions that elucidate how PGPRs mediate Nickel (Ni) tolerance in plants are rare. Thus, in this study we investigated how two pre-characterized heavy metal tolerant isolates of Morganella morganii (ABT9 and ABT3) improve Ni stress tolerance in Arabidopsis while enhancing its growth and yield. Arabidopsis seedlings were grown for five weeks in control/Ni contaminated (control, 1.5 mM and 2.5 mM) potted soil, in the presence or absence of PGPRs. Plant growth characteristics, quantum yield, and antioxidative enzymatic activities were analyzed to assess the influence of PGPRs on plant physiology. Oxidative stress tolerance was quantified by measuring MDA accumulation in Arabidopsis plants. As expected, Ni stress substantially reduced plant growth (shoot and root fresh weight by 53.25% and 58.77%, dry weight by 49.80% and 57.41% and length by 47.16% and 64.63% over control), chlorophyll content and quantum yield (by 40.21% and 54.37% over control). It also increased MDA content by 84.28% at higher (2.5 mM) Ni concentrations. In contrast, inoculation with M. morganii led to significant improvements in leaf chlorophyll, quantum yield, and Arabidopsis biomass production. The mitigation of adverse effects of Ni stress on biomass observed in M. morganii-inoculated plants was attributed to the enhancement of antioxidative enzyme activities compared to Ni-treated plants. This upregulation of the antioxidative defense mechanism mitigated Ni-induced oxidative stress, leading to improved performance of the photosynthetic machinery, which, in turn, enhanced chlorophyll content and quantum yield. Understanding the underlying mechanisms of these tolerance-inducing processes will help to complete the picture of PGPRs-mediated defense signaling. Thus, it suggests that M. morganii PGPRs candidate can potentially be utilized for plant growth promotion by reducing oxidative stress via upregulating antioxidant defense systems in Ni-contaminated soils and reducing Ni metal uptake.
Collapse
Affiliation(s)
- Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Aeman Aziz
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Baber
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Radicetti Emanuele
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S Hodhod
- Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October City, Egypt
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
4
|
Sharma I, Sharma S, Sharma V, Singh AK, Sharma A, Kumar A, Singh J, Sharma A. PGPR-Enabled bioremediation of pesticide and heavy metal-contaminated soil: A review of recent advances and emerging challenges. CHEMOSPHERE 2024; 362:142678. [PMID: 38908452 DOI: 10.1016/j.chemosphere.2024.142678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
The excessive usage of agrochemicals, including pesticides, along with various reckless human actions, has ensued discriminating prevalence of pesticides and heavy metals (HMs) in crop plants and the environment. The enhanced exposure to these chemicals is a menace to living organisms. The pesticides may get bioaccumulated in the food chain, thereby leading to several deteriorative changes in the ecosystem health and a rise in the cases of some serious human ailments including cancer. Further, both HMs and pesticides cause some major metabolic disturbances in plants, which include oxidative burst, osmotic alterations and reduced levels of photosynthesis, leading to a decline in plant productivity. Moreover, the synergistic interaction between pesticides and HMs has a more serious impact on human and ecosystem health. Various attempts have been made to explore eco-friendly and environmentally sustainable methods of improving plant health under HMs and/or pesticide stress. Among these methods, the employment of PGPR can be a suitable and effective strategy for managing these contaminants and providing a long-term remedy. Although, the application of PGPR alone can alleviate HM-induced phytotoxicities; however, several recent reports advocate using PGPR with other micro- and macro-organisms, biochar, chelating agents, organic acids, plant growth regulators, etc., to further improve their stress ameliorative potential. Further, some PGPR are also capable of assisting in the degradation of pesticides or their sequestration, reducing their harmful effects on plants and the environment. This present review attempts to present the current status of our understanding of PGPR's potential in the remediation of pesticides and HMs-contaminated soil for the researchers working in the area.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Life Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Shivika Sharma
- Department of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, India
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, India
| | - Anil Kumar Singh
- Department of Agriculture Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Aksh Sharma
- Department of Life Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Joginder Singh
- Department of Botany, Nagaland University, Hqrs. Lumami, Zunheboto, Nagaland, 798627, India.
| | - Ashutosh Sharma
- Faculty of Agricultural Sciences, DAV University, Jalandhar, Punjab, 144012, India.
| |
Collapse
|
5
|
Garai S, Bhowal B, Gupta M, Sopory SK, Singla-Pareek SL, Pareek A, Kaur C. Role of methylglyoxal and redox homeostasis in microbe-mediated stress mitigation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111922. [PMID: 37952767 DOI: 10.1016/j.plantsci.2023.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
6
|
Rath S, Das S. Oxidative stress-induced DNA damage and DNA repair mechanisms in mangrove bacteria exposed to climatic and heavy metal stressors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122722. [PMID: 37863253 DOI: 10.1016/j.envpol.2023.122722] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Bacteria thriving in the mangrove ecosystem are major drivers of elemental cycles. Climate change and environmental stressors (heavy metals) influence the performance of these microorganisms, thereby affecting the biogeochemical cycle. The present study reports the genotoxic effect of climatic and heavy metal stressors on mangrove bacteria and their adaptation strategies. Comparative analysis between two bacterial strains, Bacillus stercoris GST-03 and Pseudomonas balearica DST-02 isolated from the Bhitarkanika mangrove ecosystem, Odisha, India, showed cellular injuries in response to various stressors as evident by declined growth, elevated levels of reactive oxygen species (ROS) and resulted DNA damage. B. stercoris GST-03 showed more tolerance towards acidic pH, whereas P. balearica DST-02 showed higher tolerance towards UV exposure and heavy metals (Lead and Cadmium). The adaptation strategies of the strains revealed a significant role of GST in ROS scavenging activity and the involvement of Nucleotide excision repair or SOS response pathways. However, irreparable DNA damage was observed at pH 9 and 200 ppm Cd in B. stercoris GST-03, and at pH 4, 1000 ppm of Pb and 200 ppm of Cd in P. balearica DST-02. The current findings provide a broad overview of bacterial response and adaptability concerning future climate and environmental changes.
Collapse
Affiliation(s)
- Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
7
|
Upadhyay SK, Rajput VD, Kumari A, Espinosa-Saiz D, Menendez E, Minkina T, Dwivedi P, Mandzhieva S. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9321-9344. [PMID: 36413266 DOI: 10.1007/s10653-022-01433-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The rapid expansion of degraded soil puts pressure on agricultural crop yield while also increasing the likelihood of food scarcity in the near future at the global level. The degraded soil does not suit plants growth owing to the alteration in biogeochemical cycles of nutrients, soil microbial diversity, soil organic matter, and increasing concentration of heavy metals and organic chemicals. Therefore, it is imperative that a solution should be found for such emerging issues in order to establish a sustainable future. In this context, the importance of plant growth-promoting rhizobacteria (PGPR) for their ability to reduce plant stress has been recognized. A direct and indirect mechanism in plant growth promotion is facilitated by PGPR via phytostimulation, biofertilizers, and biocontrol activities. However, plant stress mediated by deteriorated soil at the field level is not entirely addressed by the implementation of PGPR at the field level. Thus, emerging methods such as CRISPR and nanotechnological approaches along with PGPR could manage degraded soil effectively. In the pursuit of the critical gaps in this respect, the present review discusses the recent advancement in PGPR action when used along with nanomaterials and CRISPR, impacting plant growth under degraded soil, thereby opening a new horizon for researchers in this field to mitigate the challenges of degraded soil.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090.
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Daniel Espinosa-Saiz
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
| | - Esther Menendez
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| |
Collapse
|
8
|
Joradon P, Poolpak T, Kruatrachue M, Yang KM, Saengwilai P, Upatham S, Pokethitiyook P. Phytoremediation technology for recovery of Ni by Acacia plants in association with Bacillus amyloliquefaciens isolated from E-waste contaminated site. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:903-912. [PMID: 38018097 DOI: 10.1080/15226514.2023.2282043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Electronic waste (e-waste) illegally disposal in Thailand is becoming more widespread. A sustainable metal recovery technology is needed. A phytotechnology called "phytomining" of metals such as nickel (Ni) is a promising technology providing a sustainable solution to the growing e-waste problems. This study investigated the ability of Acacia species in association with e-waste site isolated, plant growth-promoting rhizobacteria (PGPR), Bacillus amyloliquefaciens. Acacia mangium accumulated higher Ni in their tissues when Ni concentrations in soil were lower than 200 mg kg-1. The inoculation of PGPR B. amyloliquefaciens enhanced Ni uptake and accumulation in the leaves, stem, and root. The results showed that the highest Ni concentration was found in the root ash (825.50 mg kg-1) when inoculated plants were grown in soil containing 600 mg kg-1 Ni. Hence, the Ni recovery process and mass balance were performed on root ashes. The highest Ni recovery was 91.3% from the acid (H2SO4) leachate of the ash of inoculated plant treated with 600 mg kg-1 Ni. This demonstrates the feasibility of PGPR-assisted phytomining from Ni-contaminated soil. Phytomining of Ni from any e-waste contaminated sites using Acacia mangium in combination with B. amyloliquefaciens can promote plant growth and improve the uptake of Ni.
Collapse
Affiliation(s)
- Pinida Joradon
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Toemthip Poolpak
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Maleeya Kruatrachue
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwang Mo Yang
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Patompong Saengwilai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Suchart Upatham
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| |
Collapse
|
9
|
Yamini V, Shanmugam V, Rameshpathy M, Venkatraman G, Ramanathan G, Al Garalleh H, Hashmi A, Brindhadevi K, Devi Rajeswari V. Environmental effects and interaction of nanoparticles on beneficial soil and aquatic microorganisms. ENVIRONMENTAL RESEARCH 2023; 236:116776. [PMID: 37517486 DOI: 10.1016/j.envres.2023.116776] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
A steadily increasing production volume of nanoparticles reflects their numerous industrial and domestic applications. These economic successes come with the potential adverse effects on natural systems that are associated with their presence in the environment. Biological activities and effects of nanoparticles are affected by their entry method together with their specificities like their size, shape, charge, area, and chemical composition. Particles can be classified as safe or dangerous depending on their specific properties. As both aquatic and terrestrial systems suffer from organic and inorganic contamination, nanoparticles remain a sink for these contaminants. Researching the sources, synthesis, fate, and toxicity of nanoparticles has advanced significantly during the last ten years. We summarise nanoparticle pathways throughout the ecosystem and their interactions with beneficial microorganisms in this research. The prevalence of nanoparticles in the ecosystem causes beneficial microorganisms to become hazardous to their cells, which prevents the synthesis of bioactive molecules from undergoing molecular modifications and diminishes the microbe population. Recently, observed concentrations in the field could support predictions of ambient concentrations based on modeling methodologies. The aim is to illustrate the beneficial and negative effects that nanoparticles have on aqueous and terrestrial ecosystems, as well as the methods utilized to reduce their toxicity.
Collapse
Affiliation(s)
- V Yamini
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Venkatkumar Shanmugam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - M Rameshpathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Dahban, Jeddah, 21361, Saudi Arabia
| | - Ahmed Hashmi
- Architectural Engineering Department, College of Engineering, University of Business and Technology - Dahban, Jeddah, 21361, Saudi Arabia
| | - Kathirvel Brindhadevi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, 140103, India.
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
10
|
Aloo BN, Dessureault-Rompré J, Tripathi V, Nyongesa BO, Were BA. Signaling and crosstalk of rhizobacterial and plant hormones that mediate abiotic stress tolerance in plants. Front Microbiol 2023; 14:1171104. [PMID: 37455718 PMCID: PMC10347528 DOI: 10.3389/fmicb.2023.1171104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Agricultural areas exhibiting numerous abiotic stressors, such as elevated water stress, temperatures, and salinity, have grown as a result of climate change. As such, abiotic stresses are some of the most pressing issues in contemporary agricultural production. Understanding plant responses to abiotic stressors is important for global food security, climate change adaptation, and improving crop resilience for sustainable agriculture, Over the decades, explorations have been made concerning plant tolerance to these environmental stresses. Plant growth-promoting rhizobacteria (PGPR) and their phytohormones are some of the players involved in developing resistance to abiotic stress in plants. Several studies have investigated the part of phytohormones in the ability of plants to withstand and adapt to non-living environmental factors, but very few have focused on rhizobacterial hormonal signaling and crosstalk that mediate abiotic stress tolerance in plants. The main objective of this review is to evaluate the functions of PGPR phytohormones in plant abiotic stress tolerance and outline the current research on rhizobacterial hormonal communication and crosstalk that govern plant abiotic stress responses. The review also includes the gene networks and regulation under diverse abiotic stressors. The review is important for understanding plant responses to abiotic stresses using PGPR phytohormones and hormonal signaling. It is envisaged that PGPR offer a useful approach to increasing plant tolerance to various abiotic stresses. However, further studies can reveal the unclear patterns of hormonal interactions between plants and rhizobacteria that mediate abiotic stress tolerance.
Collapse
Affiliation(s)
- B. N. Aloo
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | | | - V. Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - B. O. Nyongesa
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | - B. A. Were
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| |
Collapse
|
11
|
Xu Z, Huang J, Chu Z, Meng F, Liu J, Li K, Chen X, Jiang Y, Ban Y. Plant and microbial communities responded to copper and/or tetracyclines in mycorrhizal enhanced vertical flow constructed wetlands microcosms with Canna indica L. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131114. [PMID: 36870129 DOI: 10.1016/j.jhazmat.2023.131114] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) play a significant role in pollutants removal in constructed wetlands (CWs). However, the purification effects of AMF on combined copper (Cu) and tetracycline (TC) pollution in CWs remains unknown. This study investigated the growth, physiological characteristics and AMF colonization of Canna indica L. living in vertical flow CWs (VFCWs) treated for Cu and/or TC pollution, the purification effects of AMF enhanced VFCWs on Cu and TC, and the microbial community structures. The results showed that (1) Cu and TC inhibited plant growth and decreased AMF colonization; (2) the removal rates of TC and Cu by VFCWs were 99.13-99.80% and 93.17-99.64%, respectively; (3) the growth, Cu and TC uptakes of C. indica and Cu removal rates were enhanced by AMF inoculation; (4) TC and Cu stresses reduced and AMF inoculation increased bacterial operational taxonomic units (OTUs) in the VFCWs, Proteobacteria, Bacteroidetes, Firmicutes and Acidobacteria were the dominant bacteria, and AMF inoculation decreased the relative abundance of Novosphingobium and Cupriavidus. Therefore, AMF could enhance the pollutants purification in VFCWs by promoting plant growth and altering the microbial community structures.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jun Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhenya Chu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Fake Meng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jianjun Liu
- POWERCHINA Huadong Engineering Corporation Limited, Hangzhou 311122, Zhejiang, China
| | - Kaiguo Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xi Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yinghe Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
12
|
Meena M, Mehta T, Nagda A, Yadav G, Sonigra P. PGPR-mediated synthesis and alteration of different secondary metabolites during plant-microbe interactions. PLANT-MICROBE INTERACTION - RECENT ADVANCES IN MOLECULAR AND BIOCHEMICAL APPROACHES 2023:229-255. [DOI: 10.1016/b978-0-323-91875-6.00002-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
13
|
Mao Y, Tan H, Wang M, Jiang T, Wei H, Xu W, Jiang Q, Bao H, Ding Y, Wang F, Zhu C. Research Progress of Soil Microorganisms in Response to Heavy Metals in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8513-8522. [PMID: 35816106 DOI: 10.1021/acs.jafc.2c01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil heavy-metal pollution leads to excessive heavy metals in rice and other food crops, which has caused serious impacts on the ecological environment and on human health. In recent years, environmental friendly treatment methods that reduce the bioavailability of heavy metals in soil by soil microorganisms improving the tolerance of heavy metals in rice and reducing the transfer of heavy metals from the roots to the above-ground parts of rice have attracted much attention. This paper reviews the role and mechanism of soil microorganisms in alleviating heavy-metal stress in rice at home and abroad in recent years. At present, microorganisms tolerant to heavy metals mainly include bacteria and fungi, and their mechanisms include the adsorption of heavy metals by microorganisms, the secretion of growth-promoting substances (growth hormone, ACC deaminase, IAA), changing the physical and chemical properties of the soil and the composition of the microbial community, changing the transport mode of heavy metals in soil, the improvement of the antioxidant capacity of rice, etc. Hence, soil microorganisms have good application value and prospects in rice and other crops. However, the vast majority of current research focuses on a single strain, the screening principles of strains are limited, the pathogenicities of the strains have not been evaluated, and there are still few field experiments under natural conditions. In the future, we should strengthen the action of soil microorganisms on rice in response to the above problems in heavy metals, to better promote the microbial remediation technology.
Collapse
Affiliation(s)
- Yangbin Mao
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Haifeng Tan
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Maomao Wang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Tianheng Jiang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Hewen Wei
- Jinhua Institute of Food and Drug Inspection and Testing, Jinhua 321000, China
| | - Wenping Xu
- Armed Police Sergeant School, Hangzhou 310018, China
| | - Qiong Jiang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Hexigeduleng Bao
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Yanfei Ding
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Feijuan Wang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
14
|
Gulzar ABM, Mazumder PB. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40319-40341. [PMID: 35316490 DOI: 10.1007/s11356-022-19756-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals (HMs) are not destroyable or degradable and persist in the environment for a long duration. Thus, eliminating and counteracting the HMs pollution of the soil environment is an urgent task to develop a safe and sustainable environment. Plants are in close contact with the soil and can play an important role in soil clean-up, and the process is known as phytoremediation. However, under HM contaminated conditions, plants suffer from several complications, like nutrient and mineral deficiencies, alteration of various physiological and biological processes, which reduces the plant's growth rate. On the other hand, the bioavailability of HMs is another factor for reduced phytoremediation, as most of the HMs are not bioavailable to plants for efficient phytoremediation. The altered plant growth and reduced bioavailability of HMs could be overcome and enhance the phytoremediation efficiency by incorporating either nanotechnology, i.e., nanoparticles (NPs) or plant growth promoting rhizobacteria (PGPR) along with phytoremediation. Single incorporation of NPs and PGPR might improve the growth rate in plants by enhancing nutrient availability and uptake and also by regulating plant growth regulators under HM contaminated conditions. However, there are certain limitations, like a high dose of NPs that might have toxic effects on plants. Thus, the combination of two techniques such as PGPR and NPs-based remediation can conquer the limitations of individual techniques and consequently enhance phytoremediation efficiency. Considering the negative impacts of HMs on the environment and living organisms, this review is aimed at highlighting the concept of phytoremediation, the single or combined integration of NPs and PGPR to help plants deal with HMs and their basic mechanisms involved in the process of phytoremediation. Additionally, the complications of using NPs and PGPR in the phytoremediation process are discussed to determine future research questions and this will assist to stimulate further research in this field and increase its effectiveness in practical application.
Collapse
Affiliation(s)
- Abu Barkat Md Gulzar
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Pranab Behari Mazumder
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India.
| |
Collapse
|
15
|
Ajmal AW, Yasmin H, Hassan MN, Khan N, Jan BL, Mumtaz S. Heavy Metal–Resistant Plant Growth–Promoting Citrobacter werkmanii Strain WWN1 and Enterobacter cloacae Strain JWM6 Enhance Wheat (Triticum aestivum L.) Growth by Modulating Physiological Attributes and Some Key Antioxidants Under Multi-Metal Stress. Front Microbiol 2022; 13:815704. [PMID: 35602039 PMCID: PMC9120770 DOI: 10.3389/fmicb.2022.815704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Due to wastewater irrigation, heavy metal (HM) exposure of agricultural soils is a major limiting factor for crop productivity. Plant growth–promoting bacteria (PGPB) may lower the risk of HM toxicity and increase crop yield. In this context, we evaluated two HM-resistant PGPB strains, i.e., Citrobacter werkmanii strain WWN1 and Enterobacter cloacae strain JWM6 isolated from wastewater-irrigated agricultural soils, for their efficacy to mitigate HM (Cd, Ni, and Pb) stress in a pot experiment. Increasing concentrations (0, 50, 100, and 200 ppm) of each HM were used to challenge wheat plants. Heavy metal stress negatively affected wheat growth, biomass, and physiology. The plants under elevated HM concentration accumulated significantly higher amounts of heavy metals (HMs) in shoots and roots, resulting in increased oxidative stress, which was evident from increased malondialdehyde (MDA) content in roots and shoots. Moreover, alterations in antioxidants like superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) were observed in plants under HM stress. The severity of damage was more pronounced with rising HM concentration. However, inoculating wheat with Citrobacter werkmanii strain WWN1 and Enterobacter cloacae strain JWM6 (107 CFU ml–1) improved plant shoot length (11–42%), root length (19–125%), fresh weight (41–143%), dry weight (65–179%), and chlorophyll a (14%-24%) and chlorophyll b content (2–24%) under HM stress. Citrobacter werkmanii strain WWN1 and Enterobacter cloacae strain JWM6 either alone or in co-inoculation enhanced the antioxidant enzyme activity, which may lower oxidative stress in plants. However, seeds treated with the bacterial consortium showed an overall better outcome in altering oxidative stress and decreasing HM accumulation in wheat shoot and root tissues. Fourier transform infrared spectroscopy indicated the changes induced by HMs in functional groups on the biomass surface that display effective removal of HMs from aqueous medium using PGPB. Thus, the studied bacterial strains may have adequate fertilization and remediation potential for wheat cultivated in wastewater-irrigated soils. However, molecular investigation of mechanisms adopted by these bacteria to alleviate HM stress in wheat is required to be conducted.
Collapse
Affiliation(s)
- Abdul Wahab Ajmal
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- Humaira Yasmin,
| | | | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- *Correspondence: Saqib Mumtaz, ,
| |
Collapse
|
16
|
Jamil F, Mukhtar H, Fouillaud M, Dufossé L. Rhizosphere Signaling: Insights into Plant-Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms 2022; 10:microorganisms10050899. [PMID: 35630345 PMCID: PMC9147336 DOI: 10.3390/microorganisms10050899] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rhizospheric plant-microbe interactions have dynamic importance in sustainable agriculture systems that have a reduced reliance on agrochemicals. Rhizosphere signaling focuses on the interactions between plants and the surrounding symbiotic microorganisms that facilitate the development of rhizobiome diversity, which is beneficial for plant productivity. Plant-microbe communication comprises intricate systems that modulate local and systemic defense mechanisms to mitigate environmental stresses. This review deciphers insights into how the exudation of plant secondary metabolites can shape the functions and diversity of the root microbiome. It also elaborates on how rhizosphere interactions influence plant growth, regulate plant immunity against phytopathogens, and prime the plant for protection against biotic and abiotic stresses, along with some recent well-reported examples. A holistic understanding of these interactions can help in the development of tailored microbial inoculants for enhanced plant growth and targeted disease suppression.
Collapse
Affiliation(s)
- Fatima Jamil
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Mireille Fouillaud
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Laurent Dufossé
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, ESIROI Département Agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France;
| |
Collapse
|
17
|
Rashid U, Yasmin H, Hassan MN, Naz R, Nosheen A, Sajjad M, Ilyas N, Keyani R, Jabeen Z, Mumtaz S, Alyemeni MN, Ahmad P. Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. PLANT CELL REPORTS 2022; 41:549-569. [PMID: 33410927 DOI: 10.1007/s00299-020-02640-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 05/02/2023]
Abstract
A detailed study of the response of wheat plants, inoculated with drought-tolerant PGPR is studied which would be beneficial to achieve genetic improvement of wheat for drought tolerance. Drought stress, a major challenge under current climatic conditions, adversely affects wheat productivity. In the current study, we observed the response of wheat plants, inoculated with drought-tolerant plant growth-promoting rhizobacteria (PGPR) Bacillus megaterium (MU2) and Bacillus licheniformis (MU8) under induced drought stress. In vitro study of 90 rhizobacteria exhibited 38 isolates showed one or more plant growth-promoting properties, such as solubilization of phosphorus, potassium, and exopolysaccharide production. Four strains revealing the best activities were tested for their drought-tolerance ability by growing them on varying water potentials (- 0.05 to - 0.73 MPa). Among them, two bacterial strains Bacillus megaterium and Bacillus licheniformis showed the best drought-tolerance potential, ACC deaminase activities, IAA production, and antagonistic activities against plant pathogens. Additionally, these strains when exposed to drought stress (- 0.73 MPa) revealed the induction of three new polypeptides (18 kDa, 35 kDa, 30 kDa) in Bacillus megaterium. We determined that 106 cells/mL of Bacillus megaterium and Bacillus licheniformis were enough to induce drought tolerance in wheat under drought stress. These drought-tolerant strains increased the germination index (11-46%), promptness index (16-50%), seedling vigor index (11-151%), fresh weight (35-192%), and dry weight (58-226%) of wheat under irrigated and drought stress. Moreover, these strains efficiently colonized the wheat roots and increased plant biomass, relative water content, photosynthetic pigments, and osmolytes. Upon exposure to drought stress, Bacillus megaterium inoculated wheat plants exhibited improved tolerance by enhancing 59% relative water content, 260, 174 and 70% chlorophyll a, b and carotenoid, 136% protein content, 117% proline content and 57% decline in MDA content. Further, activities of defense-related antioxidant enzymes were also upregulated. Our results revealed that drought tolerance was more evident in Bacillus megaterium as compared to Bacillus licheniformis. These strains could be effective bioenhancer and biofertilizer for wheat cultivation in arid and semi-arid regions. However, a detailed study at the molecular level to deduce the mechanism by which these strains alleviate drought stress in wheat plants needs to be explored.
Collapse
Affiliation(s)
- Urooj Rashid
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan.
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S. P. College, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
18
|
Sharma A, Dev K, Sourirajan A, Choudhary M. Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. J Genet Eng Biotechnol 2021; 19:99. [PMID: 34181159 PMCID: PMC8239113 DOI: 10.1186/s43141-021-00186-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Background Soil salinity has been one of the biggest hurdles in achieving better crop yield and quality. Plant growth-promoting rhizobacteria (PGPR) are the symbiotic heterogeneous bacteria that play an important role in the recycling of plant nutrients through phytostimulation and phytoremediation. In this study, bacterial isolates were isolated from salt-polluted soil of Jhajjar and Panipat districts of Haryana, India. The potential salt-tolerant bacteria were screened for their PGPR activities such as phosphate solubilization, hydrogen cyanide (HCN), indole acetic acid (IAA) and ammonia production. The molecular characterization of potent isolates with salt tolerance and PGPR activity was done by 16S rDNA sequencing. Results Eighteen soil samples from saline soils of Haryana state were screened for salt-tolerant bacteria. The bacterial isolates were analyzed for salt tolerance ranging from 2 to 10%. Thirteen isolates were found salt tolerant at varied salt concentrations. Isolates HB6P2 and HB6J2 showed maximum tolerance to salts at 10% followed by HB4A1, HB4N3 and HB8P1. All the salt-tolerant bacterial isolates showed HCN production with maximum production by HB6J2. Phosphate solubilization was demonstrated by three isolates viz., HB4N3, HB6P2 and HB6J2. IAA production was maximum in HB4A1 (15.89) and HB6P2 (14.01) and least in HB4N3 (8.91). Ammonia production was maximum in HB6P2 (12.3) and least in HB8P1 (6.2). Three isolates HB6J2, HB8P1 and HB4N3 with significant salt tolerance, and PGPR ability were identified through sequencing of amplified 16SrRNA gene and were found to be Bacillus paramycoides, Bacillus amyloliquefaciens and Bacillus pumilus, respectively. Conclusions The salt-tolerant plant growth-promoting rhizobacteria (PGPR) isolated from saline soil can be used to overcome the detrimental effects of salt stress on plants, with beneficial effects of physiological functions of plants such as growth and yield, and overcome disease resistance. Therefore, application of microbial inoculants to alleviate stresses and enhance yield in plants could be a low cost and environmental friendly option for the management of saline soil for better crop productivity. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00186-3.
Collapse
Affiliation(s)
- Arti Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Bajhol, PO 173229, District Solan, Sultanpur, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Bajhol, PO 173229, District Solan, Sultanpur, Himachal Pradesh, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Bajhol, PO 173229, District Solan, Sultanpur, Himachal Pradesh, India.
| | - Madhu Choudhary
- ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, 132001, India.
| |
Collapse
|
19
|
Braga LPP, Coutinho FH, Amgarten DE, Kot W, Hansen L, Setubal JC, Philippot L. Novel virocell metabolic potential revealed in agricultural soils by virus-enriched soil metagenome analysis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:348-354. [PMID: 34018688 DOI: 10.1111/1758-2229.12939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Viruses are now recognized as important players in microbial dynamics and biogeochemical cycles in the oceans. Yet, compared with aquatic ecosystems, virus discovery in terrestrial ecosystems has been challenging partly due to the inherent complexity of soils. To expand our understanding of soil viruses and their putative contributions to soil microbial processes, we analysed metagenomes of community-level virus-enriched suspensions by tangential flow filtration obtained from two French agricultural soils. We found viral sequences representing a total of 239 viral operational taxonomic units that corresponded to 29.5% of the mapping reads in the metagenomic datasets. The analysis of their genomic sequences revealed novel virocell metabolic potential with implications to virus-host interactions, carbon cycling, plant-beneficial functions in the rhizosphere, horizontal gene transfer and other relevant microbial strategies applied to survive in soils.
Collapse
Affiliation(s)
- Lucas P P Braga
- University of Burgundy Franche-Comté, INRAE, AgroSup Dijon, Agroécologie Department, Dijon, France
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Felipe H Coutinho
- Evolutionary Genomics Group, Universidad Miguel Henández, Alicante, Spain
| | | | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lars Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - João C Setubal
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Laurent Philippot
- University of Burgundy Franche-Comté, INRAE, AgroSup Dijon, Agroécologie Department, Dijon, France
| |
Collapse
|
20
|
Delgado-González CR, Madariaga-Navarrete A, Fernández-Cortés JM, Islas-Pelcastre M, Oza G, Iqbal HMN, Sharma A. Advances and Applications of Water Phytoremediation: A Potential Biotechnological Approach for the Treatment of Heavy Metals from Contaminated Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5215. [PMID: 34068925 PMCID: PMC8157233 DOI: 10.3390/ijerph18105215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Potable and good-quality drinking water availability is a serious global concern, since several pollution sources significantly contribute to low water quality. Amongst these pollution sources, several are releasing an array of hazardous agents into various environmental and water matrices. Unfortunately, there are not very many ecologically friendly systems available to treat the contaminated environment exclusively. Consequently, heavy metal water contamination leads to many diseases in humans, such as cardiopulmonary diseases and cytotoxicity, among others. To solve this problem, there are a plethora of emerging technologies that play an important role in defining treatment strategies. Phytoremediation, the usage of plants to remove contaminants, is a technology that has been widely used to remediate pollution in soils, with particular reference to toxic elements. Thus, hydroponic systems coupled with bioremediation for the removal of water contaminants have shown great relevance. In this review, we addressed several studies that support the development of phytoremediation systems in water. We cover the importance of applied science and environmental engineering to generate sustainable strategies to improve water quality. In this context, the phytoremediation capabilities of different plant species and possible obstacles that phytoremediation systems may encounter are discussed with suitable examples by comparing different mechanistic processes. According to the presented data, there are a wide range of plant species with water phytoremediation potential that need to be studied from a multidisciplinary perspective to make water phytoremediation a viable method.
Collapse
Affiliation(s)
- Cristián Raziel Delgado-González
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - Alfredo Madariaga-Navarrete
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - José Miguel Fernández-Cortés
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo 76130, Mexico;
| | - Margarita Islas-Pelcastre
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico, Pedro Escobedo 76703, Mexico;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Ashutosh Sharma
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo 76130, Mexico;
| |
Collapse
|
21
|
Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L. PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.618230] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The above ground growth of the plant is highly dependent on the belowground root system. Rhizosphere is the zone of continuous interplay between plant roots and soil microbial communities. Plants, through root exudates, attract rhizosphere microorganisms to colonize the root surface and internal tissues. Many of these microorganisms known as plant growth promoting rhizobacteria (PGPR) improve plant growth through several direct and indirect mechanisms including biological nitrogen fixation, nutrient solubilization, and disease-control. Many PGPR, by producing phytohormones, volatile organic compounds, and secondary metabolites play important role in influencing the root architecture and growth, resulting in increased surface area for nutrient exchange and other rhizosphere effects. PGPR also improve resource use efficiency of the root system by improving the root system functioning at physiological levels. PGPR mediated root trait alterations can contribute to agroecosystem through improving crop stand, resource use efficiency, stress tolerance, soil structure etc. Thus, PGPR capable of modulating root traits can play important role in agricultural sustainability and root traits can be used as a primary criterion for the selection of potential PGPR strains. Available PGPR studies emphasize root morphological and physiological traits to assess the effect of PGPR. However, these traits can be influenced by various external factors and may give varying results. Therefore, it is important to understand the pathways and genes involved in plant root traits and the microbial signals/metabolites that can intercept and/or intersect these pathways for modulating root traits. The use of advanced tools and technologies can help to decipher the mechanisms involved in PGPR mediated determinants affecting the root traits. Further identification of PGPR based determinants/signaling molecules capable of regulating root trait genes and pathways can open up new avenues in PGPR research. The present review updates recent knowledge on the PGPR influence on root architecture and root functional traits and its benefits to the agro-ecosystem. Efforts have been made to understand the bacterial signals/determinants that can play regulatory role in the expression of root traits and their prospects in sustainable agriculture. The review will be helpful in providing future directions to the researchers working on PGPR and root system functioning.
Collapse
|
22
|
Shah AA, Yasin NA, Akram K, Ahmad A, Khan WU, Akram W, Akbar M. Ameliorative role of Bacillus subtilis FBL-10 and silicon against lead induced stress in Solanum melongena. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:486-496. [PMID: 33298367 DOI: 10.1016/j.plaphy.2020.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/20/2020] [Indexed: 05/28/2023]
Abstract
The continuous deterioration of arable lands by metal pollution compels finding suitable strategies to increase plant tolerance under contaminated regimes. Current study was designed to examine the synergistic role of Bacillus subtilis FBL-10 and silicon (Si) with respect to mitigation of lead (Pb) induced phytotoxicity in Solanum melongena L. Lead stress (75 mg kg-1) reduced chlorophyll (Chl) content, photosynthetic rate and gas exchange characteristics of S. melongena plants. The Si and B. subtilis FBL-10 individually upgraded all the above-mentioned growth attributes. However, co-application of Si (50 mg kg-1) and B. subtilis FBL-10 significantly improved biochemical and growth attributes of Pb challenged plants. The abridged levels of oxidative markers including hydrogen peroxide (H2O2), and malondialdehyde (MDA) besides reduced Pb accumulation in foliage tissues, were recorded in Si and microbe assisted plants. Furthermore, plants inoculated with B. subtilis FBL-10 alone or in combination with Si showed increment in total soluble proteins, photosynthetic rate and gas exchange attributes. The inoculated plants treated with Si exhibited higher level of auxins and improved activity of antioxidant enzymes under Pb stress. Present research elucidates interactive role of B. subtilis FBL-10 and Si in reduction of Pb toxicity in S. melongena plants. Alone application of Si or B. subtilis FBL-10 was less effective for attenuation of Pb stress; however, synergism between both phyto-protectants demonstrated fabulous ability for Pb stress assuagement. Consequently, executions of field studies become indispensable to comprehend the efficacy of Si applied alone or in combination with plant growth promoting bacteria (PGPB) like B. subtilis FBL-10. From current research, it is concluded that the interaction of Si and PGPB seems an auspicious technique and eco-friendly approach to enhance metal tolerance in crop plants.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Nasim Ahmad Yasin
- Guangdong Academy of Agricultural Sciences, Guangzhou, China; SSG, RO-II Department, University of the Punjab, Lahore, Pakistan.
| | - Kanwal Akram
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Aqeel Ahmad
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan; Department of Environmental Science, The Islamia University of Bahawalpur, Pakistan.
| | - Waheed Akram
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | |
Collapse
|
23
|
Abdel Latef AAH, Zaid A, Abo-Baker ABAE, Salem W, Abu Alhmad MF. Mitigation of Copper Stress in Maize by Inoculation with Paenibacillus polymyxa and Bacillus circulans. PLANTS 2020; 9:plants9111513. [PMID: 33171623 PMCID: PMC7695152 DOI: 10.3390/plants9111513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 01/24/2023]
Abstract
Copper (Cu) is a micronutrient that assumes a principal role in plant growth and development. However, its excess concentration in soil is imperiling crop productivity. Inoculation with different bacterial strains in cereals could modify growth traits, photosynthetic effectiveness, and generation of strong antioxidant defense systems to make them more tolerant of Cu stress. Therefore, a pot study was designed to test plant growth-promoting rhizobacteria (PGPR) including Paenibacillus polymyxa and Bacillus circulans to Cu exposed maize (Zea mays L.) plants. Increasing Cu (100 to 500 µM of CuSO4) concentration decreased growth traits, photosynthetic pigments, soluble sugars, phosphorous (P) and potassium (K) contents, and the activity of catalase (CAT) but increased proline and malondialdehyde (MDA) content, the activity of peroxidase (POD) and Cu ions at root and shoot level. Moreover, the bacterial treatment also modulated the antioxidant capability in stress-free plants. Nevertheless, inoculation with P. polymyxa and B. circulans alleviated Cu-induced growth, photosynthetic pigments and mineral nutrient (P and K) on one hand and regulating the pools of osmolytes and antioxidant enzymes, whilst simultaneously reducing MDA and Cu root and shoot contents. These improved activities of antioxidant enzymes and the regulation of osmolytes content elicited by the blend of bacterial inoculation would have retained the ability of maize plants to confer resilience to Cu stress. This study further affirms that the application of two specific bacterial strains to maize plants proved very effective to ameliorate the Cu toxicity.
Collapse
Affiliation(s)
- Arafat Abdel Hamed Abdel Latef
- Biology Department, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (W.S.); (M.F.A.A.)
- Correspondence: or or
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | | | - Wesam Salem
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (W.S.); (M.F.A.A.)
| | - Mona Fawzy Abu Alhmad
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (W.S.); (M.F.A.A.)
- Biology Department, Faculty of Science, Taif University, Al-Hawiyah, Taif 21944, Saudi Arabia
| |
Collapse
|
24
|
Mesa-Marín J, Pérez-Romero JA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID, Mateos-Naranjo E. Impact of Plant Growth Promoting Bacteria on Salicornia ramosissima Ecophysiology and Heavy Metal Phytoremediation Capacity in Estuarine Soils. Front Microbiol 2020; 11:553018. [PMID: 33042058 PMCID: PMC7527472 DOI: 10.3389/fmicb.2020.553018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/13/2020] [Indexed: 12/01/2022] Open
Abstract
Salicornia ramosissima is a C3 halophyte that grows naturally in South Western Spain salt marshes, under soil salinity and heavy metal pollution (mostly Cu, Zn, As, and Pb) caused by both natural and anthropogenic pressure. However, very few works have reported the phytoremediation potential of S. ramosissima. In this work, we studied a microbe-assisted phytoremediation strategy under greenhouse conditions. We inoculated plant growth promoting (PGP) and heavy metal resistant bacteria in pots with S. ramosissima and natural non-polluted and polluted sediments collected from Spanish estuaries. Then, we analyzed plant ecophysiological and metal phytoaccumulation response. Our data suggested that inoculation in polluted sediments improved S. ramosissima plant growth in terms of relative growth rate (RGR) (32%) and number of new branches (61%). S. ramosissima photosynthetic fitness was affected by heavy metal presence in soil, but bacteria inoculation improved the photochemical apparatus integrity and functionality, as reflected by increments in net photosynthetic rate (21%), functionality of PSII (Fm and Fv/Fm) and electron transport rate, according to OJIP derived parameters. Beneficial effect of bacteria in polluted sediments was also observed by augmentation of intrinsic water use efficiency (28%) and slightly water content (2%) in inoculated S. ramosissima. Finally, our results demonstrated that S. ramosissima was able to accumulate great concentrations of heavy metals, mostly at root level, up to 200 mg Kg–1 arsenic, 0.50 mg Kg–1 cadmium, 400 mg Kg–1 copper, 25 mg Kg–1 nickel, 300 mg Kg–1 lead, and 300 mg Kg–1 zinc. Bioaugmentation incremented S. ramosissima heavy metal phytoremediation potential due to plant biomass increment, which enabled a greater accumulation capacity. Thus, our results suggest the potential use of heavy metal resistant PGPB to ameliorate the capacity of S. ramosissima as candidate for phytoremediation of salty polluted ecosystems.
Collapse
Affiliation(s)
- Jennifer Mesa-Marín
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jesús A Pérez-Romero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | | | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
25
|
Awan SA, Ilyas N, Khan I, Raza MA, Rehman AU, Rizwan M, Rastogi A, Tariq R, Brestic M. Bacillus siamensis Reduces Cadmium Accumulation and Improves Growth and Antioxidant Defense System in Two Wheat ( Triticum aestivum L.) Varieties. PLANTS 2020; 9:plants9070878. [PMID: 32664464 PMCID: PMC7411916 DOI: 10.3390/plants9070878] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022]
Abstract
Bioavailability of cadmium (Cd) metal in the soils due to the scarcity of good quality water and industrial waste could be the major limiting factor for the growth and yield of crops. Therefore, there is a need for a prompt solution to the Cd toxicity, to fulfill increasing food demand resulting from growing world population. Today, a variable range of plant growth promoting rhizobacteria (PGPR) is being used at a large scale in agriculture, to reduce the risk of abiotic stresses on plants and increase crop productivity. The objective of this study was to evaluate the efficacy of Bacillus siamensis in relieving the Cd induced damage in two wheat varieties (i.e., NARC-2009 and NARC-2011) grown in Cd spiked soil at different concentrations (0, 20, 30, 50 mg/kg). The plants under Cd stress accumulated more Cd in the roots and shoots, resulting in severe oxidative stress, evident by an increase in malondialdehyde (MDA) content. Moreover, a decrease in cell osmotic status, and alteration in antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) were also observed in wheat plants under Cd stress. As a result, the Cd exposed plants showed a reduction in growth, tissue biomass, photosynthetic pigments, membrane stability, total soluble sugars, and amino acids, in comparison to control plants. The extent of damage was observed to be higher with an increase in Cd concentration. However, the inoculation of wheat with B. siamensis improved plant growth, reduced oxidative stress, and enhanced the activities of antioxidant enzymes in both wheat varieties. B. siamensis amendment brought a considerable improvement in every parameter determined with respect to Cd stress. The response of both wheat varieties on exposure to B. siamensis was positively enhanced, whereas NARC-2009 accumulated less Cd compared to NARC-2011, which indicated a higher tolerance to Cd stress mediated by B. siamensis inoculation. Overall, the B. siamensis reduced the Cd toxicity in wheat plants through the augmentation of the antioxidant defense system and sugars production.
Collapse
Affiliation(s)
- Samrah Afzal Awan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China; (S.A.A.); (I.K.)
- Department of Botany, Arid Agriculture University, Rawalpindi 46000, Pakistan; (N.I.); (A.U.R.)
| | - Noshin Ilyas
- Department of Botany, Arid Agriculture University, Rawalpindi 46000, Pakistan; (N.I.); (A.U.R.)
| | - Imran Khan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China; (S.A.A.); (I.K.)
- Department of Botany, Arid Agriculture University, Rawalpindi 46000, Pakistan; (N.I.); (A.U.R.)
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China;
| | - Abd Ur Rehman
- Department of Botany, Arid Agriculture University, Rawalpindi 46000, Pakistan; (N.I.); (A.U.R.)
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad 8000, Pakistan;
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piatkowska 94, 60-649 Poznan, Poland;
| | - Rezwan Tariq
- Jamia Masjid Sulemani, Toba Tek Singh, Punjab 36050, Pakistan;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence:
| |
Collapse
|
26
|
Nemat H, Shah AA, Akram W, Ramzan M, Yasin NA. Ameliorative effect of co-application of Bradyrhizobium japonicum EI09 and Se to mitigate chromium stress in Capsicum annum L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1396-1407. [PMID: 32608249 DOI: 10.1080/15226514.2020.1780412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The present study was conducted to explore the potential of Bradyrhizobium japonicum EI09 (EI09) and selenium (Se) alone or in combination to mitigate hexavalent chromium (Cr6+) stress in Capsicum annum L. Chromium stressed plants exhibited significant reduction in biomass, chlorophyll content and gas exchange characteristics. The inoculated seedlings subjected to Cr6+stress showed improvement in growth, proline content, gas exchange attributes and total soluble proteins. Likewise, inoculated C. annum seedlings exhibited augmented activity of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) under Cr6+ stress. The Cr6+ stress mitigation in inoculated seedlings was ascribed to reduction in malondialdehyde (MDA) content, hydrogen peroxide (H2O2) besides increase activity of flavonoids, proline, phenolic content along with modulation of antioxidative enzymes. The growth-enhancing attributes of bacteria such as indole acetic acid (IAA) content and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity enhanced growth in Cr6+-stressed plants. Moreover, co-treatment of EI09 and 5 µM Se effectively mitigated Cr (VI) stress in C. annum plants. Current studies provide a novel insight into potential of B. japonicum EI09 and Se in reduction of Cr6+ toxicity in C. annum plants.
Collapse
Affiliation(s)
- Hafsa Nemat
- Department of Botany, University of the Narowal, Narowal, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of the Narowal, Narowal, Pakistan
| | - Waheed Akram
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Musarrat Ramzan
- Department of Botany, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | | |
Collapse
|
27
|
Liu S, Yang B, Liang Y, Xiao Y, Fang J. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16069-16085. [PMID: 32173779 DOI: 10.1007/s11356-020-08282-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 04/16/2023]
Abstract
Accumulation of heavy metals in agricultural soils due to human production activities-mining, fossil fuel combustion, and application of chemical fertilizers/pesticides-results in severe environmental pollution. As the transmission of heavy metals through the food chain and their accumulation pose a serious risk to human health and safety, there has been increasing attention in the investigation of heavy metal pollution and search for effective soil remediation technologies. Here, we summarized and discussed the basic principles, strengths and weaknesses, and limitations of common standalone approaches such as those based on physics, chemistry, and biology, emphasizing their incompatibility with large-scale applications. Moreover, we explained the effects, advantages, and disadvantages of the combinations of common single repair approaches. We highlighted the latest research advances and prospects in phytoremediation-chemical, phytoremediation-microbe, and phytoremediation-genetic engineering combined with remediation approaches by changing metal availability, improving plant tolerance, promoting plant growth, improving phytoextraction and phytostabilization, etc. We then explained the improved safety and applicability of phytoremediation combined with other repair approaches compared to common standalone approaches. Finally, we established a prospective research direction of phytoremediation combined with multi-technology repair strategy.
Collapse
Affiliation(s)
- Shuming Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunshan Liang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| |
Collapse
|
28
|
Yasmin H, Naeem S, Bakhtawar M, Jabeen Z, Nosheen A, Naz R, Keyani R, Mumtaz S, Hassan MN. Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS One 2020; 15:e0231348. [PMID: 32298338 PMCID: PMC7162512 DOI: 10.1371/journal.pone.0231348] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
Abstract
Salt stress is one of the devastating factors that hampers growth and productivity of soybean. Use of Pseudomonas pseudoalcaligenes to improve salt tolerance in soybean has not been thoroughly explored yet. Therefore, we observed the response of hydroponically grown soybean plants, inoculated with halotolerant P. pseudoalcaligenes (SRM-16) and Bacillus subtilis (SRM-3) under salt stress. In vitro testing of 44 bacterial isolates revealed that four isolates showed high salt tolerance. Among them, B. subtilis and P. pseudoalcaligenes showed ACC deaminase activity, siderophore and indole acetic acid (IAA) production and were selected for the current study. We determined that 106 cells/mL of B. subtilis and P. pseudoalcaligenes was sufficient to induce tolerance in soybean against salinity stress (100 mM NaCl) in hydroponics by enhancing plant biomass, relative water content and osmolytes. Upon exposure of salinity stress, P. pseudoalcaligenes inoculated soybean plants showed tolerance by the increased activities of defense related system such as ion transport, antioxidant enzymes, proline and MDA content in shoots and roots. The Na+ concentration in the soybean plants was increased in the salt stress; while, bacterial priming significantly reduced the Na+ concentration in the salt stressed soybean plants. However, the antagonistic results were observed for K+ concentration. Additionally, soybean primed with P. pseudoalcaligenes and exposed to 100 mM NaCl showed a new protein band of 28 kDa suggesting that P. pseudoalcaligenes effectively reduced salt stress. Our results showed that salinity tolerance was more pronounced in P. pseudoalcaligenes as compared to B. subtilis. However, a detailed study at molecular level to interpret the mechanism by which P. pseudoalcaligenes alleviates salt stress in soybean plants need to be explored.
Collapse
Affiliation(s)
- Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad Campus, Islamabad, Pakistan
| | - Sana Naeem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad Campus, Islamabad, Pakistan
| | - Murk Bakhtawar
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad Campus, Islamabad, Pakistan
| | - Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad Campus, Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad Campus, Islamabad, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad Campus, Islamabad, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad Campus, Islamabad, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad Campus, Islamabad, Pakistan
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad Campus, Islamabad, Pakistan
| |
Collapse
|
29
|
Ahmed B, Ameen F, Rizvi A, Ali K, Sonbol H, Zaidi A, Khan MS, Musarrat J. Destruction of Cell Topography, Morphology, Membrane, Inhibition of Respiration, Biofilm Formation, and Bioactive Molecule Production by Nanoparticles of Ag, ZnO, CuO, TiO 2, and Al 2O 3 toward Beneficial Soil Bacteria. ACS OMEGA 2020; 5:7861-7876. [PMID: 32309695 PMCID: PMC7160826 DOI: 10.1021/acsomega.9b04084] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/23/2020] [Indexed: 05/18/2023]
Abstract
The unregulated discharge of nanoparticles (NPs) from various nanotechnology industries into the environment is expected to alter the composition and physiological functions of soil microbiota. Considering this knowledge gap, the impact of five NPs (Ag, ZnO, CuO, Al2O3, and TiO2) differing in size and morphology on growth behavior and physiological activity of Azotobacter chroococcum, Bacillus thuringiensis, Pseudomonas mosselii, and Sinorhizobium meliloti were investigated. Various biochemical and microscopic approaches were adopted. Interestingly, all bacterial strains were found sensitive to Ag-NPs and ZnO-NPs but showed tolerance toward CuO, Al2O3, and TiO2-NPs. The loss of cellular respiration due to NPs was coupled with a reduction in population size. ZnO-NPs at 387.5 μg mL-1 had a maximum inhibitory impact on A. chroococcum and reduced its population by 72%. Under Ag-NP stress, the reduction in IAA secretion by bacterial strains followed the order S. meliloti (74%) > P. mosselii (63%) > A. chroococcum (49%). The surface of bacterial cells had small- or large-sized aggregates of NPs. Also, numerous gaps, pits, fragmented, and disorganized cell envelopes were visible. Additionally, a treated cell surface appeared corrugated with depressions and alteration in cell length and a strong heterogeneity was noticed under atomic force microscopy (AFM). For instance, NPs induced cell roughness for P. mosselii followed the order 12.6 nm (control) > 58 nm (Ag-NPs) > 41 nm (ZnO-NPs). TEM analysis showed aberrant morphology, cracking, and disruption of the cell envelope with extracellular electron-dense materials. Increased permeability of the inner cell membrane caused cell death and lowered EPS production. Ag-NPs and ZnO-NPs also disrupted the surface adhering ability of bacteria, which varied with time and concentration of NPs. Conclusively, a plausible mechanism of NP toxicity to bacteria has been proposed to understand the mechanistic basis of ecological interaction between NPs and resourceful bacteria. These results also emphasize to develop strategies for the safe disposal of NPs.
Collapse
Affiliation(s)
- Bilal Ahmed
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
| | - Fuad Ameen
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asfa Rizvi
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
| | - Khursheed Ali
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
| | - Hana Sonbol
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Almas Zaidi
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
| | - Mohammad Saghir Khan
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
| | - Javed Musarrat
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
- School
of Biosciences and Biotechnology, Baba Ghulam
Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| |
Collapse
|
30
|
Vaishnav A, Singh J, Singh P, Rajput RS, Singh HB, Sarma BK. Sphingobacterium sp. BHU-AV3 Induces Salt Tolerance in Tomato by Enhancing Antioxidant Activities and Energy Metabolism. Front Microbiol 2020; 11:443. [PMID: 32308647 PMCID: PMC7145953 DOI: 10.3389/fmicb.2020.00443] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
Salt tolerant bacteria can be helpful in improving a plant's tolerance to salinity. Although plant-bacteria interactions in response to salt stress have been characterized, the precise molecular mechanisms by which bacterial inoculation alleviates salt stress in plants are still poorly explored. In the present study, we aimed to determine the role of a salt-tolerant plant growth-promoting rhizobacteria (PGPR) Sphingobacterium BHU-AV3 for improving salt tolerance in tomato through investigating the physiological responses of tomato roots and leaves under salinity stress. Tomato plants inoculated with BHU-AV3 and challenged with 200 mM NaCl exhibited less senescence, positively correlated with the maintenance of ion balance, lowered reactive oxygen species (ROS), and increased proline content compared to the non-inoculated plants. BHU-AV3-inoculated plant leaves were less affected by oxidative stress, as evident from a reduction in superoxide contents, cell death, and lipid peroxidation. The reduction in ROS level was associated with the increased antioxidant enzyme activities along with multiple-isoform expression [peroxidase (POD), polyphenol oxidase (PPO), and superoxide dismutase (SOD)] in plant roots. Additionally, BHU-AV3 inoculation induced the expression of proteins involved in (i) energy production [ATP synthase], (ii) carbohydrate metabolism (enolase), (iii) thiamine biosynthesis protein, (iv) translation protein (elongation factor 1 alpha), and the antioxidant defense system (catalase) in tomato roots. These findings have provided insight into the molecular mechanisms of bacteria-mediated alleviation of salt stress in plants. From the study, we can conclude that BHU-AV3 inoculation effectively induces antioxidant systems and energy metabolism in tomato roots, which leads to whole plant protection during salt stress through induced systemic tolerance.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jyoti Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prachi Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Singh Rajput
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
31
|
Riva V, Riva F, Vergani L, Crotti E, Borin S, Mapelli F. Microbial assisted phytodepuration for water reclamation: Environmental benefits and threats. CHEMOSPHERE 2020; 241:124843. [PMID: 31605997 DOI: 10.1016/j.chemosphere.2019.124843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Climate changes push for water reuse as a priority to counteract water scarcity and minimize water footprint especially in agriculture, one of the highest water consuming human activities. Phytodepuration is indicated as a promising technology for water reclamation, also in the light of its economic and ecological sustainability, and the use of specific bacterial inocula for microbial assisted phytodepuration has been proposed as a further advance for its implementation. Here we provided an overview on the selection and use of plant growth promoting bacteria in Constructed Wetland (CW) systems, showing their advantages in terms of plant growth support and pollutant degradation abilities. Moreover, CWs are also proposed for the removal of emerging organic pollutants like antibiotics from urban wastewaters. We focused on this issue, still debated in the literature, revealing the necessity to deepen the knowledge on the antibiotic resistance spread into the environment in relation to treated wastewater release and reuse. In addition, given the presence in the plant system of microhabitats (e.g. rhizosphere) that are hot spot for Horizontal Gene Transfer, we highlighted the importance of gene exchange to understand if these events can promote the diffusion of antibiotic resistance genes and antibiotic resistant bacteria, possibly entering in the food production chain when treated wastewater is used for irrigation. Ideally, this new knowledge will lead to improve the design of phytodepuration systems to maximize the quality and safety of the treated effluents in compliance with the 'One Health' concept.
Collapse
Affiliation(s)
- Valentina Riva
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Francesco Riva
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milano, Italy.
| |
Collapse
|
32
|
Serratia marcescens BM1 Enhances Cadmium Stress Tolerance and Phytoremediation Potential of Soybean Through Modulation of Osmolytes, Leaf Gas Exchange, Antioxidant Machinery, and Stress-Responsive Genes Expression. Antioxidants (Basel) 2020; 9:antiox9010043. [PMID: 31947957 PMCID: PMC7023057 DOI: 10.3390/antiox9010043] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 01/24/2023] Open
Abstract
The heavy metal contamination in plant-soil environment has increased manifold recently. In order to reduce the harmful effects of metal stress in plants, the application of beneficial soil microbes is gaining much attention. In the present research, the role of Serratia marcescens BM1 in enhancing cadmium (Cd) stress tolerance and phytoremediation potential of soybean plants, was investigated. Exposure of soybean plants to two Cd doses (150 and 300 µM) significantly reduced plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Additionally, Cd induced the stress levels of Cd, proline, glycine betaine, hydrogen peroxide, malondialdehyde, antioxidant enzymes (i.e., catalase, CAT; ascorbate peroxidase, APX; superoxide dismutase, SOD; peroxidise, POD), and the expression of stress-related genes (i.e., APX, CAT, Fe-SOD, POD, CHI, CHS, PHD2, VSO, NR, and P5CS) in soybean leaves. On the other hand, inoculation of Cd-stressed soybean plants with Serratia marcescens BM1 significantly enhanced the plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Moreover, Serratia marcescens BM1 inoculation reduced the levels of cadmium and oxidative stress markers, but significantly induced the activities of antioxidant enzymes and the levels of osmolytes and stress-related genes expression in Cd-stressed plants. The application of 300 µM CdCl2 and Serratia marcescens triggered the highest expression levels of stress-related genes. Overall, this study suggests that inoculation of soybean plants with Serratia marcescens BM1 promotes phytoremediation potential and Cd stress tolerance by modulating the photosynthetic attributes, osmolytes biosynthesis, antioxidants machinery, and the expression of stress-related genes.
Collapse
|
33
|
Arif MS, Yasmeen T, Shahzad SM, Riaz M, Rizwan M, Iqbal S, Asif M, Soliman MH, Ali S. Lead toxicity induced phytotoxic effects on mung bean can be relegated by lead tolerant Bacillus subtilis (PbRB3). CHEMOSPHERE 2019; 234:70-80. [PMID: 31203043 DOI: 10.1016/j.chemosphere.2019.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 05/20/2023]
Abstract
Being a primary toxic heavy metal, lead (Pb) contamination presents an imposing environmental and public health concern worldwide. A Bacillus subtilis PbRB3, displaying higher Pb tolerance, was isolated from the textile effluent. The bacterial culture was able to remove >80% of Pb from culture solution. Upon screening in the presence of Pb, PbRB3 strain exhibited significant plant growth promoting potential. A 3 weeks long pot experiment was established to examine the capability of PbRB3 strain for physiological and biochemical traits, and Pb accumulation tendency of mung bean at 250 and 500 mg kg-1 of Pb toxicity, respectively. With respect to control treatments, photosynthetic pigments, protein synthesis, net assimilation rate, transpiration rate and stomatal conductance were significantly constrained by Pb toxicity levels. Intrinsic and instantaneous water use efficiencies were considerably improved in inoculated plants under Pb toxicity. Compared to inoculated control, significantly higher superoxide dismutase activity in both Pb toxicity treatments, while higher malondialdehyde contents only at Pb500 treatment was recorded with PbRB3 inoculation. Catalase activity between Pb250 and Pb500 treatments was comparable at both inoculation level. Moreover, PbRB3 inoculation led to significantly higher peroxidase activity under Pb toxicity treatments compared to inoculated control. The PbRB3 inoculation led to comparable differences in root Pb content between Pb250 and Pb500 treatments. These results suggest that inoculation of Pb tolerant, Bacillus subtilis PbRB3, could be employed to improve mung bean growth potential and adaptation against Pb toxicity, and thereby accelerated Pb rhizoaccumulation from metal contaminated environment.
Collapse
Affiliation(s)
- Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Sher Muhammad Shahzad
- Department of Soil & Environmental Sciences, University College of Agriculture, University of Sargodha, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Shahid Iqbal
- Key Laboratory for Economic Plants and Biotechnology, Centre for Mountain Futures CMF, East and Central Asia Regional Office, World Agroforestry Centre ICRAF, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, CN, 650201, China
| | - Muntaha Asif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Mona H Soliman
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, 46429, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| |
Collapse
|
34
|
Ferchichi N, Toukabri W, Vrhovsek U, Angeli A, Masuero D, Mhamdi R, Trabelsi D. Inoculation of Lupinus albus with the nodule-endophyte Paenibacillus glycanilyticus LJ121 improves grain nutritional quality. Arch Microbiol 2019; 202:283-291. [PMID: 31650197 DOI: 10.1007/s00203-019-01745-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/27/2019] [Accepted: 10/10/2019] [Indexed: 12/01/2022]
Abstract
Metabolic changes occurring in white lupine grain were investigated in response to Plant Growth Promoting Rhizobacteria (PGPR) root inoculation under field condition. We precisely targeted lipids and phenolics changes occurring in white lupine grain in response to Pseudomonas brenneri LJ215 and/or Paenibacillus glycanilyticus LJ121 inoculation. Lipids and phenolic composition were analyzed using an Ultra High-Performance Liquid Chromatography/Tandem Mass Spectrometry Methods. As compared to grain of un-inoculated control plant, Paenibacillus glycaniliticus inoculation highly increased the total lipids content (from 232.55 in seeds of un-inoculated control plant to 944.95 mg/kg) and the relative percentage of several fatty acid such as oleic acid (+20.95%) and linoleic acid (+14.28%) and decreased the relative percentage of glycerophospholipids (- 13.11%), sterol (- 0.2% and - 0.34% for stigmasterol and campesterol, respectively) and prenol (- 17.45%) class. Paenibacillus glycaniliticus inoculation did not affect total phenolic content, while it modulated content of individual phenolic compounds and induced the accumulation of "new" phenolics compounds such as kaempferol. Paenibacillus glycanilyticus LJ121 can be a useful bio-fertilizer to enhance nutritional quality of white lupine grain.
Collapse
Affiliation(s)
- Nouha Ferchichi
- Faculté Des Sciences de Tunis, Université de Tunis El Manar, 2092, El Manar Tunis, Tunisia.,Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy.,Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia
| | - Wael Toukabri
- Faculté Des Sciences de Tunis, Université de Tunis El Manar, 2092, El Manar Tunis, Tunisia.,Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia
| | - Urska Vrhovsek
- Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Andrea Angeli
- Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Domenico Masuero
- Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Ridha Mhamdi
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia
| | - Darine Trabelsi
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia.
| |
Collapse
|
35
|
Mondal M, Biswas JK, Tsang YF, Sarkar B, Sarkar D, Rai M, Sarkar SK, Hooda PS. A wastewater bacterium Bacillus sp. KUJM2 acts as an agent for remediation of potentially toxic elements and promoter of plant (Lens culinaris) growth. CHEMOSPHERE 2019; 232:439-452. [PMID: 31158639 DOI: 10.1016/j.chemosphere.2019.05.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the role of an allochthonous Gram-positive wastewater bacterium (Bacillus sp. KUJM2) selected through rigorous screening, for the removal of potentially toxic elements (PTEs; As, Cd, Cu, Ni) and promotion of plant growth under PTE-stress conditions. The dried biomass of the bacterial strain removed PTEs (5 mg L-1) from water by 90.17-94.75 and 60.4-81.41%, whereas live cells removed 87.15-91.69 and 57.5-78.8%, respectively, under single-PTE and co-contaminated conditions. When subjected to a single PTE, the bacterial production of indole-3-acetic acid (IAA) reached the maxima with Cu (67.66%) and Ni (64.33%), but Cd showed an inhibitory effect beyond 5 mg L-1 level. The multiple-PTE treatment induced IAA production only up to 5 mg L-1 beyond which inhibition ensued. Enhanced germination rate, germination index and seed production of lentil plant (Lens culinaris) under the bacterial inoculation indicated the plant growth promotion potential of the microbial strain. Lentil plants, as a result of bacterial inoculation, responded with higher shoot length (7.1-27.61%), shoot dry weight (18.22-36.3%) and seed production (19.23-29.17%) under PTE-stress conditions. The PTE uptake in lentil shoots decreased by 67.02-79.85% and 65.94-78.08%, respectively, under single- and multiple-PTE contaminated conditions. Similarly, PTE uptake was reduced in seeds up to 72.82-86.62% and 68.68-85.94%, respectively. The bacteria-mediated inhibition of PTE translocation in lentil plant was confirmed from the translocation factor of the respective PTEs. Thus, the selected bacterium (Bacillus sp. KUJM2) offered considerable potential as a PTE remediating agent, plant growth promoter and regulator of PTE translocation curtailing environmental and human health risks.
Collapse
Affiliation(s)
- Monojit Mondal
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani- 741235, West Bengal, India.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Binoy Sarkar
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, 444602, Maharashtra, India
| | - Santosh Kumar Sarkar
- Department of Marine Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India
| | - Peter S Hooda
- School of Geography, Geology and the Environment, Kingston University London, Kingston Upon Thames KT1 2EE, UK
| |
Collapse
|
36
|
Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil. Arch Microbiol 2019; 201:1333-1349. [PMID: 31309236 DOI: 10.1007/s00203-019-01702-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
The present study aims to characterize nodule endophytic bacteria of spontaneous lupine plants regarding their diversity and their plant growth promoting (PGP) traits. The potential of PGPR inoculation was investigated to improve white lupine growth across controlled, semi-natural and field conditions. Lupinus luteus and Lupinus angustifolius nodules were shown inhabited by a large diversity of endophytes. Several endophytes harbor numerous plant growth promotion traits such as phosphates solubilization, siderophores production and 1-aminocyclopropane-1-carboxylate deaminase activity. In vivo analysis confirmed the plant growth promotion ability of two strains (Paenibacillus glycanilyticus LJ121 and Pseudomonas brenneri LJ215) in both sterilized and semi-natural conditions. Under field conditions, the co-inoculation of lupine by these strains increased shoot N content and grain yield by 25% and 36%, respectively. These two strains Paenibacillus glycanilyticus LJ121 and Pseudomonas brenneri LJ215 are effective plant growth-promoting bacteria and they may be used to develop an eco-friendly biofertilizer to boost white lupine productivity.
Collapse
|