1
|
A Aksenov A, Blacutt A, Ginnan N, Rolshausen PE, V Melnik A, Lotfi A, C Gentry E, Ramasamy M, Zuniga C, Zengler K, Mandadi KK, McCollum G, Dorrestein PC, Roper MC. Spatial chemistry of citrus reveals molecules bactericidal to Candidatus Liberibacter asiaticus. Sci Rep 2024; 14:20306. [PMID: 39218988 PMCID: PMC11366753 DOI: 10.1038/s41598-024-70499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Huanglongbing (HLB), associated with the psyllid-vectored phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), is a disease threat to all citrus production worldwide. Currently, there are no sustainable curative or prophylactic treatments available. In this study, we utilized mass spectrometry (MS)-based metabolomics in combination with 3D molecular mapping to visualize complex chemistries within plant tissues to explore how these chemistries change in vivo in HLB-infected trees. We demonstrate how spatial information from molecular maps of branches and single leaves yields insight into the biology not accessible otherwise. In particular, we found evidence that flavonoid biosynthesis is disrupted in HLB-infected trees, and an increase in the polyamine, feruloylputrescine, is highly correlated with an increase in disease severity. Based on mechanistic details revealed by these molecular maps, followed by metabolic modeling, we formulated and tested the hypothesis that CLas infection either directly or indirectly converts the precursor compound, ferulic acid, to feruloylputrescine to suppress the antimicrobial effects of ferulic acid and biosynthetically downstream flavonoids. Using in vitro bioassays, we demonstrated that ferulic acid and bioflavonoids are indeed highly bactericidal to CLas, with the activity on par with a reference antibiotic, oxytetracycline, recently approved for HLB management. We propose these compounds should be evaluated as therapeutics alternatives to the antibiotics for HLB treatment. Overall, the utilized 3D metabolic mapping approach provides a promising methodological framework to identify pathogen-specific inhibitory compounds in planta for potential prophylactic or therapeutic applications.
Collapse
Affiliation(s)
- Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA.
- Arome Science Inc., Farmington, CT, USA.
- Department of Chemistry, University of Connecticut, Storrs, CT, USA.
| | - Alex Blacutt
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Nichole Ginnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Alexey V Melnik
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
- Arome Science Inc., Farmington, CT, USA
| | - Ali Lotfi
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Emily C Gentry
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Manikandan Ramasamy
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Cristal Zuniga
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Kranthi K Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, USA
| | - Greg McCollum
- US Dept of Agriculture, Agricultural Research Service US Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
2
|
Mallawarachchi S, Wang H, Mulgaonkar N, Irigoyen S, Padilla C, Mandadi K, Borneman J, Fernando S. Specifically targeting antimicrobial peptides for inhibition of Candidatus Liberibacter asiaticus. J Appl Microbiol 2024; 135:lxae061. [PMID: 38509024 DOI: 10.1093/jambio/lxae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
AIMS Huanglongbing (citrus greening) is a plant disease putatively caused by the unculturable Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas), and it has caused severe damage to citrus plantations worldwide. There are no definitive treatments for this disease, and conventional disease control techniques have shown limited efficacy. This work presents an in silico evaluation of using specifically targeting anti-microbial peptides (STAMPs) consisting of a targeting segment and an antimicrobial segment to inhibit citrus greening by inhibiting the BamA protein of CLas, which is an outer membrane protein crucial for bacterial viability. METHODS AND RESULTS Initially, a set of peptides with a high affinity toward BamA protein were screened and evaluated via molecular docking and molecular dynamics simulations and were verified in vitro via bio-layer interferometry (BLI). In silico studies and BLI experiments indicated that two peptides, HASP2 and HASP3, showed stable binding to BamA. Protein structures for STAMPs were created by fusing known anti-microbial peptides (AMPs) with the selected short peptides. The binding of STAMPs to BamA was assessed using molecular docking and binding energy calculations. The attachment of high-affinity short peptides significantly reduced the free energy of binding for AMPs, suggesting that it would make it easier for the STAMPs to bind to BamA. Efficacy testing in vitro using a closely related CLas surrogate bacterium showed that STAMPs had greater inhibitory activity than AMP alone. CONCLUSIONS In silico and in vitro results indicate that the STAMPs can inhibit CLas surrogate Rhizobium grahamii more effectively compared to AMPs, suggesting that STAMPs can achieve better inhibition of CLas, potentially via enhancing the site specificity of AMPs.
Collapse
Affiliation(s)
- Samavath Mallawarachchi
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Nirmitee Mulgaonkar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Carmen Padilla
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Kranthi Mandadi
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, United States
- Institute for Advancing Health through Agriculture, Texas A&M AgriLife, College Station, TX 77843, United States
| | - James Borneman
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
3
|
Kennedy JP, Wood K, Pitino M, Mandadi K, Igwe DO, Shatters RG, Widmer TL, Niedz R, Heck M. A Perspective on Current Therapeutic Molecule Screening Methods Against ' Candidatus Liberibacter asiaticus', the Presumed Causative Agent of Citrus Huanglongbing. PHYTOPATHOLOGY 2023; 113:1171-1179. [PMID: 36750555 DOI: 10.1094/phyto-12-22-0455-per] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Huanglongbing (HLB), referred to as citrus greening disease, is a bacterial disease impacting citrus production worldwide and is fatal to young trees and mature trees of certain varieties. In some areas, the disease is devastating the citrus industry. A successful solution to HLB will be measured in economics: citrus growers need treatments that improve tree health, fruit production, and most importantly, economic yield. The profitability of citrus groves is the ultimate metric that truly matters when searching for solutions to HLB. Scientific approaches used in the laboratory, greenhouse, or field trials are critical to the discovery of those solutions and to estimate the likelihood of success of a treatment aimed at commercialization. Researchers and the citrus industry use a number of proxy evaluations of potential HLB solutions; understanding the strengths and limitations of each assay, as well as how best to compare different assays, is critical for decision-making to advance therapies into field trials and commercialization. This perspective aims to help the reader compare and understand the limitations of different proxy evaluation systems based on the treatment and evaluation under consideration. The researcher must determine the suitability of one or more of these metrics to identify treatments and predict the usefulness of these treatments in having an eventual impact on citrus production and HLB mitigation. As therapies advance to field trials in the next few years, a reevaluation of these metrics will be useful to guide future research efforts on strategies to mitigate HLB and vascular bacterial pathogens in other perennial crops.
Collapse
Affiliation(s)
- John Paul Kennedy
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | | | | | - Kranthi Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
- Texas A&M AgriLife Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX 77843
| | - David O Igwe
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Robert G Shatters
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | - Timothy L Widmer
- U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Randall Niedz
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | - Michelle Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
| |
Collapse
|
4
|
Archer L, Kunwar S, Alferez F, Batuman O, Albrecht U. Trunk Injection of Oxytetracycline for Huanglongbing Management in Mature Grapefruit and Sweet Orange Trees. PHYTOPATHOLOGY 2023; 113:1010-1021. [PMID: 36474420 DOI: 10.1094/phyto-09-22-0330-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Huanglongbing (HLB) is a devastating bacterial disease associated with 'Candidatus Liberibacter asiaticus'. The location of the pathogen within the vasculature of the tree has left growers with limited options for the effective management of the disease. Trunk injection is a crop protection technique that applies therapeutics directly into the xylem of woody tree species and allows for their systemic uptake and transport, which may provide more effective management of vascular diseases such as HLB. In this study, mature 'Valencia' and 'Hamlin' sweet orange (Citrus sinensis) and 'Duncan' grapefruit (C. paradisi) trees were injected with oxytetracycline (OTC) in the spring and/or fall to evaluate the effects of injection timing and response to injection. In addition to seasonal evaluations of tree health and bacterial titer, preharvest fruit drop, yield, and fruit quality were measured at harvest to determine the effects of OTC injection. The benefits associated with injection included a reduction in fruit drop, an increase in fruit yield and fruit size, and improvements in juice quality. However, results varied due to the timing of injection and were not consistent across all three varieties. Residue analysis at different time points after injection suggests that trunk injection effectively delivers therapeutics to mature citrus trees. This study provides fundamental information on the short-term benefits associated with trunk injection of OTC for HLB management in citrus groves. The potential for use of trunk injection at the commercial scale and the possible risks are discussed.
Collapse
Affiliation(s)
- Leigh Archer
- Horticultural Sciences Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Sanju Kunwar
- Plant Pathology Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Fernando Alferez
- Horticultural Sciences Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Ozgur Batuman
- Plant Pathology Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Ute Albrecht
- Horticultural Sciences Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| |
Collapse
|
5
|
Roldán EL, Stelinski LL, Pelz-Stelinski KS. Foliar Antibiotic Treatment Reduces Candidatus Liberibacter asiaticus Acquisition by the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae), but Does not Reduce Tree Infection Rate. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:78-89. [PMID: 36516405 DOI: 10.1093/jee/toac200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 06/17/2023]
Abstract
Huanglongbing (HLB), or citrus greening, is the most destructive disease of cultivated citrus worldwide. Candidatus Liberibacter asiaticus (CLas), the putative causal agent of HLB, is transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). In Florida, D. citri was first reported in 1998, and CLas was confirmed in 2005. Management of HLB relies on the use of insecticides to reduce vector populations. In 2016, antibiotics were approved to manage CLas infection in citrus. Diaphorina citri is host to several bacterial endosymbionts and reducing endosymbiont abundance is known to cause a corresponding reduction in host fitness. We hypothesized that applications of oxytetracycline and streptomycin would reduce: CLas populations in young and mature citrus trees, CLas acquisition by D. citri, and D. citri abundance. Our results indicate that treatment of citrus with oxytetracycline and streptomycin reduced acquisition of CLas by D. citri adults and emerging F1 nymphs as compared with that observed in trees treated only with insecticides, but not with antibiotics. However, under field conditions, neither antibiotic treatment frequency tested affected CLas infection of young or mature trees as compared with insecticide treatment alone (negative control); whereas trees enveloped with mesh screening that excluded vectors did prevent bacterial infection (positive control). Populations of D. citri were not consistently affected by antibiotic treatment under field conditions, as compared with an insecticide only comparison. Collectively, our results suggest that while foliar application of oxytetracycline and streptomycin to citrus reduces acquisition of CLas bacteria by the vector, even high frequency applications of these formulations under field conditions do not prevent or reduce tree infection.
Collapse
Affiliation(s)
- Erik L Roldán
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Kirsten S Pelz-Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
6
|
Chen X, Xu Z, Zhao B, Yang Y, Mi J, Zhao Z, Liu J. Physiological and Proteomic Analysis Responsive Mechanisms for Salt Stress in Oat. FRONTIERS IN PLANT SCIENCE 2022; 13:891674. [PMID: 35783977 PMCID: PMC9240473 DOI: 10.3389/fpls.2022.891674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Oat is considered as a moderately salt-tolerant crop that can be used to improve saline and alkaline soils. Previous studies have focused on short-term salt stress exposure, and the molecular mechanisms of salt tolerance in oat have not yet been elucidated. In this study, the salt-tolerant oat cultivar Vao-9 and the salt-sensitive oat cultivar Bai5 were treated with 6 days of 0 and 150 mmol L-1 salt stress (nNaCl:nNa2SO4 = 1:1). Label-Free technology was then used to analyze the differentially expressed proteins in leaves under 0 and 150 mmol L-1 salt stress. The obtained results indicated that total of 2,631 proteins were identified by mass spectrometry in the four samples. The salt-tolerant cultivar Vao-9 mainly enhances its carbohydrate and energy metabolism through the pentose and glucuronate interconversions, and carbon fixation pathways in prokaryotes, thereby reducing the damage caused by salt stress. In addition, the down-regulation of ribosomes expression and the up-regulated expression of HSPs and CRT are all through the regulation of protein synthesis in response to salt stress. However, GABA metabolism presents a different synthesis pattern in Bai5 and Vao-9. The main KEGG function of differential expressed protein (DEP) in Bai5 is classified into protein processing in the endoplasmic reticulum, estrogen signaling pathway, antigen processing and presentation, longevity regulating pathway-multiple species, arginine and proline metabolism, beta-alanine metabolism, vitamin B6 metabolism, salmonella infection, chloroalkane and chloroalkene degradation, and limonene and pinene degradation. Moreover, the main KEGG functions of DEP in Vao-9 are classified as ribosome and carbon fixation pathways in prokaryotes, pentose and glucuronate interconversions, GABA ergic synapse, and taurine and hypotaurine metabolism. The results obtained in this study provide an important basis for further research on the underlying mechanisms of salt response and tolerance in oat and other plant species.
Collapse
Affiliation(s)
- Xiaojing Chen
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Zhongshan Xu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Baoping Zhao
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Yanming Yang
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Junzhen Mi
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Zhou Zhao
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Jinghui Liu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| |
Collapse
|
7
|
Li X, Ruan H, Zhou C, Meng X, Chen W. Controlling Citrus Huanglongbing: Green Sustainable Development Route Is the Future. FRONTIERS IN PLANT SCIENCE 2021; 12:760481. [PMID: 34868155 PMCID: PMC8636133 DOI: 10.3389/fpls.2021.760481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 05/12/2023]
Abstract
Huanglongbing (HLB) is the most severe bacterial disease of citrus crops caused by Candidatus Liberibacter spp. It causes a reduction in fruit yield, poor fruit quality, and even plants death. Due to the lack of effective medicine, HLB is also called citrus "AIDS." Currently, it is essential for the prevention and control of HLB to use antibiotics and pesticides while reducing the spread of HLB by cultivating pathogen-free seedlings, removing disease trees, and killing Asian citrus psyllid (ACP). New compounds [e.g., antimicrobial peptides (AMPs) and nanoemulsions] with higher effectiveness and less toxicity were also found and they have made significant achievements. However, further evaluation is required before these new antimicrobial agents can be used commercially. In this review, we mainly introduced the current strategies from the aspects of physical, chemical, and biological and discussed their environmental impacts. We also proposed a green and ecological strategy for controlling HLB basing on the existing methods and previous research results.
Collapse
Affiliation(s)
- Xue Li
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Huaqin Ruan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Xiangchun Meng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
Nan J, Zhang S, Zhan P, Jiang L. Discovery of Novel GMPS Inhibitors of Candidatus Liberibacter Asiaticus by Structure Based Design and Enzyme Kinetic. BIOLOGY 2021; 10:biology10070594. [PMID: 34203217 PMCID: PMC8301025 DOI: 10.3390/biology10070594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The spread of citrus Huanglongbing caused significant damage to the world’s citrus industry. Thermotherapy and chemical agents were used to control this disease; however, the effectiveness of these treatments is frequently inconsistent. In addition, CLas cannot be cultured in vitro. Therefore, structure-based virtual screening is a novel method to find compounds that work against CLas. This study used CLas GMPS as a target for high-throughput screening and selected some compounds which have a higher binding affinity to test their inhibition of CLas GMPS. Finally, two molecules were identified as the lead compound to control citrus HLB. Abstract Citrus production is facing an unprecedented problem because of huanglongbing (HLB) disease. Presently, no effective HLB-easing method is available when citrus becomes infected. Guanosine 5′-monophosphate synthetase (GMPS) is a key protein in the de novo synthesis of guanine nucleotides. GMPS is used as an attractive target for developing agents that are effective against the patogen infection. In this research, homology modeling, structure-based virtual screening, and molecular docking were used to discover the new inhibitors against CLas GMPS. Enzyme assay showed that folic acid and AZD1152 showed high inhibition at micromole concentrations, with AZD1152 being the most potent molecule. The inhibition constant (Ki) value of folic acid and AZD1152 was 51.98 µM and 4.05 µM, respectively. These results suggested that folic acid and AZD1152 could be considered as promising candidates for the development of CLas agents.
Collapse
Affiliation(s)
- Jing Nan
- Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| | - Shaoran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ping Zhan
- Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| | - Ling Jiang
- Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
- Correspondence:
| |
Collapse
|
9
|
Antunes VDC, Freitag D, Serrato RV. Differential exopolysaccharide production and composition by Herbaspirillum strains from diverse ecological environments. Arch Microbiol 2021; 203:3883-3892. [PMID: 34009446 DOI: 10.1007/s00203-021-02371-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 11/26/2022]
Abstract
Bacteria belonging to the genus Herbaspirillum are found in many different ecological niches. Some species are typically endophytic, while others were reported as free-living organisms that occupy various environments. Also, opportunistic herbaspirilli have been found infecting humans affected by several diseases. We have analyzed the production of exopolysaccharides (EPS) by Herbaspirillum strains isolated from different sources and with distinct ecological characteristics. The monosaccharide composition was determined for the EPS obtained for selected strains including free-living, plant-associated and clinical isolates, and the relationship with the ecological niches occupied by Herbaspirillum spp. is proposed.
Collapse
Affiliation(s)
- Valquíria D C Antunes
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas-Centro Politécnico, Universidade Federal do Paraná , R. Francisco H. dos Santos, 100 , PO Box 19046, Curitiba, PR, 81531-980, Brazil
| | - Daniela Freitag
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas-Centro Politécnico, Universidade Federal do Paraná , R. Francisco H. dos Santos, 100 , PO Box 19046, Curitiba, PR, 81531-980, Brazil
| | - Rodrigo V Serrato
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas-Centro Politécnico, Universidade Federal do Paraná , R. Francisco H. dos Santos, 100 , PO Box 19046, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
10
|
Zou X, Zhao K, Liu Y, Du M, Zheng L, Wang S, Xu L, Peng A, He Y, Long Q, Chen S. Overexpression of Salicylic Acid Carboxyl Methyltransferase ( CsSAMT1) Enhances Tolerance to Huanglongbing Disease in Wanjincheng Orange ( Citrus sinensis (L.) Osbeck). Int J Mol Sci 2021; 22:ijms22062803. [PMID: 33802058 PMCID: PMC7999837 DOI: 10.3390/ijms22062803] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Citrus Huanglongbing (HLB) disease or citrus greening is caused by Candidatus Liberibacter asiaticus (Las) and is the most devastating disease in the global citrus industry. Salicylic acid (SA) plays a central role in regulating plant defenses against pathogenic attack. SA methyltransferase (SAMT) modulates SA homeostasis by converting SA to methyl salicylate (MeSA). Here, we report on the functions of the citrus SAMT (CsSAMT1) gene from HLB-susceptible Wanjincheng orange (Citrus sinensis (L.) Osbeck) in plant defenses against Las infection. The CsSAMT1 cDNA was expressed in yeast. Using in vitro enzyme assays, yeast expressing CsSAMT1 was confirmed to specifically catalyze the formation of MeSA using SA as a substrate. Transgenic Wanjincheng orange plants overexpressing CsSAMT1 had significantly increased levels of SA and MeSA compared to wild-type controls. HLB resistance was evaluated for two years and showed that transgenic plants displayed significantly alleviated symptoms including a lack of chlorosis, low bacterial counts, reduced hyperplasia of the phloem cells, and lower levels of starch and callose compared to wild-type plants. These data confirmed that CsSAMT1 overexpression confers an enhanced tolerance to Las in citrus fruits. RNA-seq analysis revealed that CsSAMT1 overexpression significantly upregulated the citrus defense response by enhancing the transcription of disease resistance genes. This study provides insight for improving host resistance to HLB by manipulation of SA signaling in citrus fruits.
Collapse
|
11
|
Nan J, Zhang S, Jiang L. Antibacterial Potential of Bacillus amyloliquefaciens GJ1 against Citrus Huanglongbing. PLANTS 2021; 10:plants10020261. [PMID: 33572917 PMCID: PMC7910844 DOI: 10.3390/plants10020261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/13/2023]
Abstract
Citrus huanglongbing (HLB) is a destructive disease caused by Candidatus Liberibacter species and is a serious global concern for the citrus industry. To date, there is no established strategy for control of this disease. Previously, Bacillus amyloliquefaciens GJ1 was screened as the biocontrol agent against HLB. In this study, two-year-old citrus infected by Ca. L. asiaticus were treated with B. amyloliquefaciens GJ1 solution via root irrigation. In these plants, after seven irrigation treatments, the results indicated that the photosynthetic parameters, chlorophyll content, resistance-associated enzyme content and the expression of defense-related genes were significantly higher than for the plants treated with the same volume water. The content of starch and soluble sugar were significantly lower, compared to the control treatment. The parallel reaction monitoring (PRM) results revealed that treatment with B. amyloliquefaciens GJ1 solution, the expression levels of 3 proteins with photosynthetic function were upregulated in citrus leaves. The accumulation of reactive oxygen species (ROS) in citrus leaves treated with B. amyloliquefaciens GJ1 flag22 was significantly higher than untreated plants and induced the defense-related gene expression in citrus. Finally, surfactin was identified from the fermentation broth of B. amyloliquefaciens GJ1 by high-performance liquid chromatography. These results indicate that B. amyloliquefaciens GJ1 may improve the immunity of citrus by increasing the photosynthesis and enhancing the expression of the resistance-related genes.
Collapse
Affiliation(s)
- Jing Nan
- College of Horticulture and Forestry, Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Shaoran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ling Jiang
- College of Horticulture and Forestry, Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence:
| |
Collapse
|
12
|
Zhang M, Karuppaiya P, Zheng D, Sun X, Bai J, Ferrarezi RS, Powell CA, Duan Y. Field Evaluation of Chemotherapy on HLB-Affected Citrus Trees With Emphasis on Fruit Yield and Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:611287. [PMID: 33719285 PMCID: PMC7953902 DOI: 10.3389/fpls.2021.611287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/14/2021] [Indexed: 05/05/2023]
Abstract
Huanglongbing (HLB) is one of the most devastating diseases of citrus, which is associated with Candidatus Liberibacter asiaticus (Las) in the United States. To date, no effective antimicrobial compound is commercially available to control the disease. In this study, we investigated the effects of different antimicrobial chemicals with suitable surfactants on HLB-affected matured citrus trees with emphasis on the fruit yield and quality. Each treatment was applied three times in a 2-week interval during the spring flush period, one time in summer and three times during the autumn flushing period. We extensively examined different parameters such as pathogenic index, disease index, tree canopy, fruit yield, quality, and nutritional status. The results showed that among the treatments, penicillin (PEN) with surfactant was most effective in suppressing Las titer in infected citrus trees, followed by Fosetyl-Al (ALI), Carvacrol (CARV), and Validamycin (VA). Fruit quality analysis revealed that PEN treatment increased the soluble solids content (SSC), whereas Oxytetracycline (OXY) treatment significantly reduced titratable acidity (TA) level and increased the SSC/TA ratio compared to the control. Nutrient analysis showed increased N and Zn levels in ALI and PEN treatments, and OXY treatment increased leaf P, K, S, and Mg levels compared to untreated control. Furthermore, B, Ca, Cu, Fe, and Mn in leaves were reduced in all chemical treatments than that of the untreated control. These findings revealed that some of the chemical treatments were able to suppress Las pathogen, enhance nutritional status in leaves, and improve tree growth and fruit quality of HLB-affected trees.
Collapse
Affiliation(s)
- Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United States
| | - Palaniyandi Karuppaiya
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Desen Zheng
- US Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States
| | - Xiuxiu Sun
- US Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States
| | - Jinhe Bai
- US Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States
| | - Rhuanito S. Ferrarezi
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United States
| | - Charles A. Powell
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United States
| | - Yongping Duan
- US Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States
- *Correspondence: Yongping Duan,
| |
Collapse
|
13
|
Irigoyen S, Ramasamy M, Pant S, Niraula P, Bedre R, Gurung M, Rossi D, Laughlin C, Gorman Z, Achor D, Levy A, Kolomiets MV, Sétamou M, Badillo-Vargas IE, Avila CA, Irey MS, Mandadi KK. Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. Nat Commun 2020; 11:5802. [PMID: 33199718 PMCID: PMC7669877 DOI: 10.1038/s41467-020-19631-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
A major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens like Candidatus Liberibacter spp., the presumptive causal agents of citrus greening, potato zebra chip and tomato vein greening diseases. Importantly, we leverage the microbial hairy roots for rapid, reproducible efficacy screening of multiple therapies. We identify six antimicrobial peptides, two plant immune regulators and eight chemicals which inhibit Candidatus Liberibacter spp. in plant tissues. The antimicrobials, either singly or in combination, can be used as near- and long-term therapies to control citrus greening, potato zebra chip and tomato vein greening diseases.
Collapse
Affiliation(s)
- Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | | | - Shankar Pant
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Agricultural Research Service, US Department of Agriculture, Stillwater, OK, USA
| | - Prakash Niraula
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Renesh Bedre
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Meena Gurung
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Denise Rossi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Corinne Laughlin
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Mamoudou Sétamou
- Texas A&M University-Kingsville, Citrus Center, Weslaco, TX, USA
| | - Ismael E Badillo-Vargas
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Carlos A Avila
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | | | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
14
|
Acid Soil Improvement Enhances Disease Tolerance in Citrus Infected by Candidatus Liberibacter asiaticus. Int J Mol Sci 2020; 21:ijms21103614. [PMID: 32443846 PMCID: PMC7279377 DOI: 10.3390/ijms21103614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
Huanglongbing (HLB) is a devastating citrus disease that has caused massive economic losses to the citrus industry worldwide. The disease is endemic in most citrus-producing areas of southern China, especially in the sweet orange orchards where soil acidification has intensified. In this work, we used lime as soil pH amendment to optimize soil pH and enhance the endurance capacity of citrus against Candidatus Liberibacter asiaticus (CLas). The results showed that regulation of soil acidity is effective to reduce the occurrence of new infections and mitigate disease severity in the presence of HLB disease. We also studied the associated molecular mechanism and found that acid soil improvement can (i) increase the root metabolic activity and up-regulate the expression of ion transporter-related genes in HLB-infected roots, (ii) alleviate the physiological disorders of sieve tube blockage of HLB-infected leaves, (iii) strengthen the citrus immune response by increasing the expression of genes involved in SAR and activating the salicylic acid signal pathway, (iv) up-regulate 55 proteins related to stress/defence response and secondary metabolism. This study contributes to a better understanding of the correlation between environment factors and HLB disease outbreaks and also suggests that acid soil improvement is of potential value for the management of HLB disease in southern China.
Collapse
|
15
|
Patt JM, Tarshis Moreno AM, Niedz RP. Response surface methodology reveals proportionality effects of plant species in conservation plantings on occurrence of generalist predatory arthropods. PLoS One 2020; 15:e0231471. [PMID: 32348341 PMCID: PMC7190168 DOI: 10.1371/journal.pone.0231471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022] Open
Abstract
Multivariate geometric designs for mixture experiments and response surface methodology (RSM) were tested as a means of optimizing plant mixtures to support generalist predatory arthropods. The mixture design included 14 treatment groups, each comprised of six planters and having a proportion of 0.00, 0.17, 0.33, 0.66, or 1.00 of each plant species. The response variable was the frequency of predators trapped on sticky card traps placed in each group and replaced 2 times per week. The following plant species were used: Spring 2017: Euphorbia milii, E. heterophylla, and Phaseolus lunatus; Summer 2017: E. milii, Fagopyrum esculentum, and Chamaecrista fasciculata; and, Summer 2018: E. milii, F. esculentum, and Portulaca umbraticola. Predator occurrence was influenced by: 1) Linear mixture effects, which indicated that predator occurrence was driven by the amount of a single plant species in the mixture; or, 2) Nonlinear blending effects, which indicated that the plant mixture itself had emergent properties that contributed to predator occurrence. Predator abundance was highest in the Spring 2017 experiment and both linear mixture effects and nonlinear blending effects were observed. Predator occurrence decreased in subsequent experiments, which were conducted in the warmer summer months. In both Summer experiments, only linear mixture effects were observed, indicating that predator occurrence was driven by the amount of a single plant species in the test mixtures: Euphorbia milii in 2017 and Portulaca umbraticola in 2018. The results showed that not only did the species composition of a plant mixture drive predator occurrence but that proportionality of species contributed to the outcome as well. This suggests that, when formulating a plant mixture to aid in conservation biological control consideration should be given to the proportion of each plant species included in the mixture. RSM can be an important tool for achieving the goal of optimizing mixtures of plants for conservation biological control.
Collapse
Affiliation(s)
- Joseph M Patt
- U.S. Horticultural Research Laboratory, USDA-Agricultural Research Service, Fort Pierce,Florida, United States of America
| | - Aleena M Tarshis Moreno
- U.S. Horticultural Research Laboratory, USDA-Agricultural Research Service, Fort Pierce,Florida, United States of America
| | - Randall P Niedz
- U.S. Horticultural Research Laboratory, USDA-Agricultural Research Service, Fort Pierce,Florida, United States of America
| |
Collapse
|
16
|
Li J, Pang Z, Duan S, Lee D, Kolbasov VG, Wang N. The in Planta Effective Concentration of Oxytetracycline Against ' Candidatus Liberibacter asiaticus' for Suppression of Citrus Huanglongbing. PHYTOPATHOLOGY 2019; 109:2046-2054. [PMID: 31369360 DOI: 10.1094/phyto-06-19-0198-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Huanglongbing (HLB) or greening currently is the most devastating citrus disease worldwide. The fastidious phloem-colonizing bacterium 'Candidatus Liberibacter asiaticus' (CLas) is the causal agent of citrus HLB in Florida. Bactericides containing the active ingredient oxytetracycline (OTC) have been used in foliar spray to control citrus HLB in Florida since 2016. However, the minimum concentration of OTC required to suppress CLas in planta remains unknown. We developed a new method for evaluating the effects of OTC treatment on CLas titers in infected plants and determined the relationship between OTC residue levels and control levels achieved for CLas using mathematical modeling in greenhouse and field experiments. In both greenhouse and field, OTC spray did not reduce the titers of CLas, and it produced undetectable or mild levels of OTC residue in leaves within 7 days post-application (DPA). In greenhouse, OTC injection at 0.05 g per tree decreased CLas titers to an undetectable level (cycle threshold value ≥ 36.0) from 7 to 30 DPA and produced a residue level of OTC at 0.68 to 0.73 µg/g of fresh tissue over this period. In the field, OTC injection at 0.50 g per tree resulted in the decline of CLas titers by 1.52 log reduction from 14 to 60 DPA, with residue levels of OTC at 0.27 to 0.33 µg/g of fresh tissue. In both trials, a first-order compart model of OTC residue dynamics in leaves of trunk-injected trees was specified for estimating the retention of effective concentrations. Furthermore, nonlinear modeling revealed significant positive correlations between OTC residue levels in leaves and the control levels for CLas achieved. The results suggested that the minimum concentrations of OTC required to suppress CLas populations in planta to below the detection limit are 0.68 and 0.86 µg/g and that the minimum concentrations of OTC required for initial inhibition of CLas growth in planta are ∼0.17 and ∼0.215 µg/g in leaf tissues under greenhouse and field conditions, respectively. This finding highlights that a minimum concentration of OTC should be guaranteed to be delivered to target CLas in infected plants for effective control of citrus HLB.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Shuo Duan
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Donghwan Lee
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Vladimir G Kolbasov
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|