1
|
Zhou Y, Hamiaux C, Andre CM, Cooney JM, Schwinn KE, van Klink JW, Bowman JL, Davies KM, Albert NW. Protection of naringenin chalcone by a pathogenesis-related 10 protein promotes flavonoid biosynthesis in Marchantia polymorpha. THE NEW PHYTOLOGIST 2025. [PMID: 40325841 DOI: 10.1111/nph.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Pathogenesis-related (PR) proteins are diverse stress- or pathogen-induced proteins. Some are associated with specialised metabolism, including proposed functions for anthocyanin biosynthesis. However, data are limited to a few angiosperm species, and the mode(s) of action are uncertain. Using the liverwort Marchantia polymorpha (Marchantia), we examined whether pathogenesis-related 10 (PR10) contributes to flavonoid biosynthesis in other land plant lineages and investigated its mode of action. Marchantia produces two major flavonoid types: flavones and the pigment auronidin. MpPR10.5 is a target of the auronidin regulator MpMYB14; therefore, Mppr10.5 mutants were generated using CRISPR/Cas9 and analysed for transcript abundance (via RNA sequencing) and for metabolite content. Recombinant MpPR10.5 protein was used for metabolite binding and stabilisation assays. Mppr10.5 mutants had reduced auronidin and flavone content, demonstrating that MpPR10.5 promotes flavonoid biosynthesis. Flavone and auronidin biosynthesis share a single flavonoid intermediate, naringenin chalcone (NC), suggesting MpPR10.5 acts on this compound. MpPR10.5 protein binds NC strongly (micromolar affinity), preventing spontaneous self-cyclisation in vitro. Several phenylpropanoid and flavonoid genes were downregulated in Mppr10.5 and Mpchalcone isomerase-like plants. This suggests PR10 proteins promote flavonoid biosynthesis by selectively binding unstable intermediates (NC), protecting them from degradation or undesirable nonenzymatic conversions and facilitating their transport to subsequent pathway steps.
Collapse
Affiliation(s)
- Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, 4472, New Zealand
| | - Cyril Hamiaux
- The New Zealand Institute for Plant and Food Research Limited, Auckland, 1142, New Zealand
| | - Christelle M Andre
- The New Zealand Institute for Plant and Food Research Limited, Auckland, 1142, New Zealand
| | - Janine M Cooney
- The New Zealand Institute for Plant and Food Research Limited, Ruakura, 3214, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, 4472, New Zealand
| | - John W van Klink
- The New Zealand Institute for Plant and Food Research Limited, Otago University, Dunedin, 9054, New Zealand
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, 4472, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, 4472, New Zealand
| |
Collapse
|
2
|
Ito-Harashima S, Miura N. Compartmentation of multiple metabolic enzymes and their preparation in vitro and in cellulo. Biochim Biophys Acta Gen Subj 2025; 1869:130787. [PMID: 40058614 DOI: 10.1016/j.bbagen.2025.130787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Compartmentalization of multiple enzymes in cellulo and in vitro is a means of controlling the cascade reaction of metabolic enzymes. The compartmentation of enzymes through liquid-liquid phase separation may facilitate the reversible control of biocatalytic cascade reactions, thereby reducing the transcriptional and translational burden. This has attracted attention as a potential application in bioproduction. Recent research has demonstrated the existence and regulatory mechanisms of various enzyme compartments within cells. Mounting evidence suggests that enzyme compartmentation allows in vitro and in vivo regulation of cellular metabolism. However, the comprehensive regulatory mechanisms of enzyme condensates in cells and ideal organization of cellular systems remain unknown. This review provides an overview of the recent progress in multiple enzyme compartmentation in cells and summarizes strategies to reconstruct multiple enzyme assemblies in vitro and in cellulo. By examining parallel examples, we have evaluated the consensus and future perspectives of enzyme condensation.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Natsuko Miura
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan.
| |
Collapse
|
3
|
Wu S, Tian L, Guo S, Lei H, Zhao X, Hao X, Li S, Xie Z, Hu W, Huang L, Tan Y, Long X, Li D. OsLC1, a transaldolase, regulates cell patterning and leaf morphology through modulation of secondary metabolism. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1751-1767. [PMID: 39950420 PMCID: PMC12018812 DOI: 10.1111/pbi.70004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 04/25/2025]
Abstract
Leaf morphogenesis is a crucial process in plants that governs essential physiological functions such as photosynthesis and transpiration. Despite significant advances in understanding leaf development, the mechanism of intricate cellular patterning remains elusive. We characterize the OsLC1 mutant, which displays a curly leaf phenotype alongside reductions in plant height and tiller number, which are indicative of multiple morphological abnormalities. Through map-based cloning, we identified OsLC1 as encoding a transaldolase (TA) protein, whose genetic variations in OsLC1 lead to the disruptions of cell patterning across the vasculature, bundle sheath cells, mesophyll, stomata, bulliform cells and sclerenchyma cells. OsLC1 exhibited TA activity and modulated metabolic flux to the shikimic pathway, thereby affecting phenylpropanoid metabolism. This regulation influenced lignin and flavonoid biosynthesis, ultimately modulating cellular pattern formation through perturbations to flavonoid-mediated auxin or lignin homeostasis. Notably, loss of OsLC1 function led to a reduction in leaf water status, which, along with abnormal cellular patterns in oslc1, caused leaf curling. Overall, our findings provide insights into the regulatory mechanisms underlying cell patterning in the leaf and offer valuable perspectives on leaf morphogenesis in rice.
Collapse
Affiliation(s)
- Sha Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Lianfu Tian
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Shasha Guo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Han Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Xinjie Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Xiaohua Hao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
- College of Life and Environmental ScienceHunan University of Arts and ScienceChangdeChina
| | - Shaozhuang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Zijing Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural BiogenomicsChangsha Medical UniversityChangshaHunanChina
| | - Wenli Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan ProvinceCollege of Life Sciences, Hainan Normal UniversityHaikouHainanChina
| | - Liqun Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Ying Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Xueying Long
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Dongping Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| |
Collapse
|
4
|
Uchida K, Fuji Y, Tabeta H, Akashi T, Hirai MY. Omics-based identification of the broader effects of 2-hydroxyisoflavanone synthase gene editing on a gene regulatory network beyond isoflavonoid loss in soybean hairy roots. PLANT & CELL PHYSIOLOGY 2025; 66:304-317. [PMID: 39786412 PMCID: PMC11957240 DOI: 10.1093/pcp/pcae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/07/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Soybean (Glycine max) is a leguminous crop cultivated worldwide that accumulates high levels of isoflavones. Although previous research has often focused on increasing the soybean isoflavone content because of the estrogen-like activity of dietary soy in humans, the rapidly increasing demand for soybean as a plant-based meat substitute has raised concerns about excessive isoflavone intake. Therefore, the production of isoflavone-free soybean has been anticipated. However, there have been no reports of an isoflavone-free soybean until now. Here, 2-hydroxyisoflavanone synthase (IFS), which is essential for isoflavone biosynthesis, was targeted for genome editing in soybean. A novel CRISPR/Cas9 system using Staphylococcus aureus Cas9 instead of the commonly used Streptococcus pyogenes Cas9 was established and customized. Through Agrobacterium rhizogenes-mediated transformation, IFS-edited hairy roots were generated in which all three IFS genes contained deletion mutations. Metabolome analyses of IFS-edited hairy roots revealed that isoflavone content significantly decreased, whereas levels of flavonoids, including a novel chalcone derivative, increased. A transcriptome analysis revealed changes in the expression levels of a large number of genes, including jasmonic acid-inducible genes. In addition, the functions of selected transcription factor genes (MYB14-L, GmbHLH112, and GmbHLH113), which were dramatically upregulated by IFS editing, were investigated by multiomics analyses of their over-expressing hairy root lines. They appear to be involved in flavonoid and triterpene saponin biosynthesis, salicylic acid metabolism, and central carbon metabolism. Overall, the results indicated that editing IFS genes caused the redirection of the metabolic flux from isoflavonoid biosynthesis to flavonoid accumulation, as well as dynamic changes in gene regulatory networks.
Collapse
Affiliation(s)
- Kai Uchida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Yokohama, Kanagawa 230-0045, Japan
| | - Yushiro Fuji
- RIKEN Center for Sustainable Resource Science, 1-7-22 Yokohama, Kanagawa 230-0045, Japan
| | - Hiromitsu Tabeta
- RIKEN Center for Sustainable Resource Science, 1-7-22 Yokohama, Kanagawa 230-0045, Japan
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601 Japan
| |
Collapse
|
5
|
Fu R, Yang G, Zheng L, Huang S, Wang X, Li L, Li M, Zhang D, Cao X, Chao N, Liu L. Flexible control of influx for flavonoids pathway based on diversity of MaCHI-fold proteins in mulberry. Int J Biol Macromol 2025:142673. [PMID: 40174840 DOI: 10.1016/j.ijbiomac.2025.142673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Mulberry (Morus spp., Moraceae) is considered as a rapidly evolving plant species with enriched unique gene family members involved in flavonoid biosynthesis. Recently, transcriptional regulatory mechanism controlling flavonoid biosynthesis in mulberry has been extensively reported, yet studies on the regulation of flavonoid biosynthesis beyond the transcriptional level are limited. In present study, our in vivo and in vitro assays have shown that four MaCHI-fold proteins with different roles in flavonoid biosynthesis coordinated to flexibly regulate the influx for flavonoid biosynthesis. MaCHI2N was the dominant CHI to ensure the normal influx. The mulberry-specific type IB MaCHI1 worked as substitute and could also enhance the influx. The MaCHI2 alternative transcript product, MaCHI2D with low activity for naringin chalcone provided a "braker" for flavonoid biosynthesis by competing with MaCHI2N in transcription process. MaCHIL enhanced the influx for flavonoid biosynthesis by interacting with MaCHS1 and increasing the production of naringenin. Therefore, we proposed a transmission box model that presented the complicated regulation of influx for flavonoid biosynthesis based on the diversity of MaCHI-fold proteins and the homeostasis of naringenin chalcone and naringenin in mulberry. Our results reveal the unique regulatory mechanism of influx for flavonoids pathway beyond transcriptional level.
Collapse
Affiliation(s)
- Rumeng Fu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Guang Yang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Longyan Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Shuai Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xinlei Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Ling Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Mengqi Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Dongyang Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xu Cao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China.
| | - Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China.
| |
Collapse
|
6
|
Dwivedi V, Okertchiri E, Yokom A, Schenck CA. A Metabolic Complex Involved in Tomato Specialized Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638719. [PMID: 40027690 PMCID: PMC11870507 DOI: 10.1101/2025.02.17.638719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Specialized metabolites mediate diverse plant-environment interactions. Although, recent work has begun to enzymatically characterize entire plant specialized metabolic pathways, little is known about how different pathway components organize and interact within the cell. Here we use acylsugars - a class of specialized metabolites found across the Solanaceae family - as a model to explore cellular localization and metabolic complex formation of pathway enzymes. These compounds consist of a sugar core decorated with acyl groups, which are connected through ester linkages. In Solanum lycopersicum (tomato) four acylsugar acyltransferases (SlASAT1-4) sequentially add acyl chains to specific hydroxyl positions on a sucrose core leading to accumulation of tri and tetraacylated sucroses in the trichomes. To elucidate the spatial organization and interactions of tomato ASATs, we expressed SlASAT1-4 proteins fused with YFP in N. benthamiana and Arabidopsis protoplasts. Our findings revealed a distributed ASAT pathway with SlASAT1 and SlASAT3 localized to the mitochondria, SlASAT2 localized to the cytoplasm and nucleus, and SlASAT4 localized to the endoplasmic reticulum. To explore potential pairwise protein-protein interactions in acylsugar biosynthesis, we used various techniques, including co-immunoprecipitation, split luciferase assays, and bimolecular fluorescence complementation. These complementary approaches based on different interaction principles all demonstrated interactions among the different SlASAT pairs. Following transient expression of SlASAT1-4 in N. benthamiana , we were able to pull down a complex consisting of SlASAT1-4, which was confirmed through proteomics. Size exclusion chromatography of the SlASAT pulldown suggests a heteromultimeric complex consisting of SlASATs and perhaps other proteins involved in this interaction network. This study sheds light on the metabolic coordination for acylsugar biosynthesis through formation of an interaction network of four sequential steps coordinating efficient production of plant chemical defenses.
Collapse
|
7
|
Davies KM, Andre CM, Kulshrestha S, Zhou Y, Schwinn KE, Albert NW, Chagné D, van Klink JW, Landi M, Bowman JL. The evolution of flavonoid biosynthesis. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230361. [PMID: 39343026 PMCID: PMC11528363 DOI: 10.1098/rstb.2023.0361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 10/01/2024] Open
Abstract
The flavonoid pathway is characteristic of land plants and a central biosynthetic component enabling life in a terrestrial environment. Flavonoids provide tolerance to both abiotic and biotic stresses and facilitate beneficial relationships, such as signalling to symbiont microorganisms, or attracting pollinators and seed dispersal agents. The biosynthetic pathway shows great diversity across species, resulting principally from repeated biosynthetic gene duplication and neofunctionalization events during evolution. Such events may reflect a selection for new flavonoid structures with novel functions that enable occupancy of varied ecological niches. However, the biochemical and genetic diversity of the pathway also likely resulted from evolution along parallel trends across land plant lineages, producing variant compounds with similar biological functions. Analyses of the wide range of whole-plant genome sequences now available, particularly for archegoniate plants, have enabled proposals on which genes were ancestral to land plants and which arose within the land plant lineages. In this review, we discuss the emerging proposals for how the flavonoid pathway may have evolved and diversified. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Kevin M. Davies
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - Christelle M. Andre
- Private Bag 92169, Auckland Mail Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland, 1142, New Zealand
| | - Samarth Kulshrestha
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - Yanfei Zhou
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - Kathy E. Schwinn
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - Nick W. Albert
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - David Chagné
- Private Bag 11600, The New Zealand Institute for Plant and Food Research Limited, Palmerston North4442, New Zealand
| | - John W. van Klink
- Department of Chemistry, Otago University, The New Zealand Institute for Plant and Food Research Limited, Dunedin9054, New Zealand
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa56124, Italy
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Victoria3800, Australia
| |
Collapse
|
8
|
An Z, Yang Z, Zhou Y, Huo S, Zhang S, Wu D, Shu X, Wang Y. OsJRL negatively regulates rice cold tolerance via interfering phenylalanine metabolism and flavonoid biosynthesis. PLANT, CELL & ENVIRONMENT 2024; 47:4071-4085. [PMID: 38884189 DOI: 10.1111/pce.15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
The identification of new genes involved in regulating cold tolerance in rice is urgent because low temperatures repress plant growth and reduce yields. Cold tolerance is controlled by multiple loci and involves a complex regulatory network. Here, we show that rice jacalin-related lectin (OsJRL) modulates cold tolerance in rice. The loss of OsJRL gene functions increased phenylalanine metabolism and flavonoid biosynthesis under cold stress. The OsJRL knock-out (KO) lines had higher phenylalanine ammonia-lyase (PAL) activity and greater flavonoid accumulation than the wild-type rice, Nipponbare (NIP), under cold stress. The leaves had lower levels of reactive oxygen species (ROS) and showed significantly enhanced cold tolerance compared to NIP. In contrast, the OsJRL overexpression (OE) lines had higher levels of ROS accumulation and showed lower cold tolerance than NIP. Additionally, the OsJRL KO lines accumulated more abscisic acid (ABA) and jasmonic acid (JA) under cold stress than NIP. The OsJRL OE lines showed increased sensitivity to ABA compared to NIP. We conclude that OsJRL negatively regulates the cold tolerance of rice via modulation of phenylalanine metabolism and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Zengxu An
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zihan Yang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, China
| | - Yi Zhou
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, China
| | - Shaojie Huo
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, China
| | - Siyan Zhang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, China
| | - Yin Wang
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Aravena-Calvo J, Busck-Mellor S, Laursen T. Global organization of phenylpropanoid and anthocyanin pathways revealed by proximity labeling of trans-cinnamic acid 4-hydroxylase in Petunia inflata petal protoplasts. FRONTIERS IN PLANT SCIENCE 2024; 15:1295750. [PMID: 39363925 PMCID: PMC11446795 DOI: 10.3389/fpls.2024.1295750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
The phenylpropanoid pathway is one of the main carbon sinks in plants, channeling phenylalanine towards thousands of products including monolignols, stilbenes, flavonoids and volatile compounds. The enzymatic steps involved in many of these pathways are well characterized, however the physical organization of these enzymes within the plant cell remains poorly understood. Proximity-dependent labeling allows untargeted determination of both direct and indirect protein interactions in vivo, and therefore stands as an attractive alternative to targeted binary assays for determining global protein-protein interaction networks. We used TurboID-based proximity labeling to study protein interaction networks of the core phenylpropanoid and anthocyanin pathways in petunia. To do so, we coupled the endoplasmic reticulum (ER) membrane anchored cytochrome P450 cinnamic acid 4-hydroxylase (C4H, CYP73A412) from Petunia inflata to TurboID and expressed it in protoplasts derived from anthocyanin-rich petunia petals. We identified multiple soluble enzymes from the late anthocyanin pathway among enriched proteins, along with other C4H isoforms, and other ER membrane anchored CYPs. Several of these interactions were subsequently confirmed by bimolecular fluorescence complementation (BiFC). Our results suggest that C4H co-localizes with enzymes from the phenylpropanoid- and downstream anthocyanin pathways, supporting the idea that C4H may serve as ER anchoring points for downstream metabolic pathways. Moreover, this study demonstrates the feasibility of using protoplasts to perform global mapping of protein network for enzymes in their native cellular environment.
Collapse
Affiliation(s)
| | | | - Tomas Laursen
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Hou J, Ai M, Li J, Cui X, Liu Y, Yang Q. Exogenous salicylic acid treatment enhances the disease resistance of Panax vietnamensis by regulating secondary metabolite production. FRONTIERS IN PLANT SCIENCE 2024; 15:1428272. [PMID: 39220009 PMCID: PMC11362055 DOI: 10.3389/fpls.2024.1428272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Introduction Salicylic acid (SA) is a phenolic compound widely found in plants. It plays a key role in exerting plant disease resistance. Panax vietnamensis Ha & Grushv., a valuable medicinal plant, contains high levels of phenolic compounds, which contribute significantly to the resilience of the plant against stress. However, the precise role of SA in regulating the synthesis of secondary metabolites in P.vietnamensis remains elusive. Methods Two-year-old P. vietnamensis seedlings were treated with exogenous SA. We systematically assessed the changes in the physiological parameters of SA-treated P. vietnamensis leaves, employing transcriptome and metabolome analyses to elucidate the underlying mechanisms. Results Our results revealed a significant improvement of the plant's antioxidant capacity at 6 h post-treatment. Furthermore, exogenous SA treatment promoted the biosynthesis of lignin and flavonoids such as rutin, coumarin, and cyanidin. In addition, it increased the levels of endogenous SA and jasmonic acid (JA), promoting the disease resistance of the plants. Thus, SA pretreatment enhanced the defense of P. vietnamensis against pathogens. Conclusions Our study provided novel insights into the potential molecular mechanisms underlying SA-mediated biosynthesis of secondary metabolites. Furthermore, our results provided a theoretical foundation for optimizing the cultivation practices of P.vietnamensis and the application of SA as a plant immunomodulator.
Collapse
Affiliation(s)
- Jiae Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Mingtao Ai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Jianbin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng
, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng
, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng
, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| |
Collapse
|
11
|
Ruan H, Gao L, Fang Z, Lei T, Xing D, Ding Y, Rashid A, Zhuang J, Zhang Q, Gu C, Qian W, Zhang N, Qian T, Li K, Xia T, Wang Y. A flavonoid metabolon: cytochrome b 5 enhances B-ring trihydroxylated flavan-3-ols synthesis in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1793-1814. [PMID: 38461478 DOI: 10.1111/tpj.16710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Flavan-3-ols are prominent phenolic compounds found abundantly in the young leaves of tea plants. The enzymes involved in flavan-3-ol biosynthesis in tea plants have been extensively investigated. However, the localization and associations of these numerous functional enzymes within cells have been largely neglected. In this study, we aimed to investigate the synthesis of flavan-3-ols in tea plants, particularly focusing on epigallocatechin gallate. Our analysis involving the DESI-MSI method to reveal a distinct distribution pattern of B-ring trihydroxylated flavonoids, primarily concentrated in the outer layer of buds. Subcellular localization showed that CsC4H, CsF3'H, and CsF3'5'H localizes endoplasmic reticulum. Protein-protein interaction studies demonstrated direct associations between CsC4H, CsF3'H, and cytoplasmic enzymes (CHS, CHI, F3H, DFR, FLS, and ANR), highlighting their interactions within the biosynthetic pathway. Notably, CsF3'5'H, the enzyme for B-ring trihydroxylation, did not directly interact with other enzymes. We identified cytochrome b5 isoform C serving as an essential redox partner, ensuring the proper functioning of CsF3'5'H. Our findings suggest the existence of distinct modules governing the synthesis of different B-ring hydroxylation compounds. This study provides valuable insights into the mechanisms underlying flavonoid diversity and efficient synthesis and enhances our understanding of the substantial accumulation of B-ring trihydroxylated flavan-3-ols in tea plants.
Collapse
Affiliation(s)
- Haixiang Ruan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhou Fang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ting Lei
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Dawei Xing
- School of Biological and Environmental Engineering, Chaohu University, Chaohu, Anhui, 238024, China
| | - Yan Ding
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Arif Rashid
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Juhua Zhuang
- College of Tea Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qiang Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chunyang Gu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wei Qian
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Niuniu Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Tao Qian
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Kongqing Li
- College of Humanities and Social Development, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
12
|
Zhao J, Xu Y, Li H, An W, Yin Y, Wang B, Wang L, Wang B, Duan L, Ren X, Liang X, Wang Y, Wan R, Huang T, Zhang B, Li Y, Luo J, Cao Y. Metabolite-based genome-wide association studies enable the dissection of the genetic bases of flavonoids, betaine and spermidine in wolfberry (Lycium). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1435-1452. [PMID: 38194521 PMCID: PMC11123438 DOI: 10.1111/pbi.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd.UrumchiChina
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bin Wang
- Wuhan Matware Biotechnology Co., Ltd.WuhanChina
| | - Liping Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Bi Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaoyue Ren
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yajun Wang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yanlong Li
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Jie Luo
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| |
Collapse
|
13
|
Lewis JA, Jacobo EP, Palmer N, Vermerris W, Sattler SE, Brozik JA, Sarath G, Kang C. Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein. Int J Mol Sci 2024; 25:5651. [PMID: 38891840 PMCID: PMC11172311 DOI: 10.3390/ijms25115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.
Collapse
Affiliation(s)
- Jacob A. Lewis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| | - Eric P. Jacobo
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| | - Nathan Palmer
- Department of Agriculture—Agricultural Research Service, Wheat, Sorghum, and Forage Research Unit, Lincoln, NE 68583, USA; (N.P.); (S.E.S.); (G.S.)
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Scott E. Sattler
- Department of Agriculture—Agricultural Research Service, Wheat, Sorghum, and Forage Research Unit, Lincoln, NE 68583, USA; (N.P.); (S.E.S.); (G.S.)
| | - James A Brozik
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| | - Gautam Sarath
- Department of Agriculture—Agricultural Research Service, Wheat, Sorghum, and Forage Research Unit, Lincoln, NE 68583, USA; (N.P.); (S.E.S.); (G.S.)
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| |
Collapse
|
14
|
Lam LPY, Lui ACW, Bartley LE, Mikami B, Umezawa T, Lo C. Multifunctional 5-hydroxyconiferaldehyde O-methyltransferases (CAldOMTs) in plant metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1671-1695. [PMID: 38198655 DOI: 10.1093/jxb/erae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
Lignin, flavonoids, melatonin, and stilbenes are plant specialized metabolites with diverse physiological and biological functions, supporting plant growth and conferring stress resistance. Their biosynthesis requires O-methylations catalyzed by 5-hydroxyconiferaldehyde O-methyltransferase (CAldOMT; also called caffeic acid O-methyltransferase, COMT). CAldOMT was first known for its roles in syringyl (S) lignin biosynthesis in angiosperm cell walls and later found to be multifunctional. This enzyme also catalyzes O-methylations in flavonoid, melatonin, and stilbene biosynthetic pathways. Phylogenetic analysis indicated the convergent evolution of enzymes with OMT activities towards the monolignol biosynthetic pathway intermediates in some gymnosperm species that lack S-lignin and Selaginella moellendorffii, a lycophyte which produces S-lignin. Furthermore, neofunctionalization of CAldOMTs occurred repeatedly during evolution, generating unique O-methyltransferases (OMTs) with novel catalytic activities and/or accepting novel substrates, including lignans, 1,2,3-trihydroxybenzene, and phenylpropenes. This review summarizes multiple aspects of CAldOMTs and their related proteins in plant metabolism and discusses their evolution, molecular mechanism, and roles in biorefineries, agriculture, and synthetic biology.
Collapse
Affiliation(s)
- Lydia Pui Ying Lam
- Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita 010-0852, Japan
| | - Andy C W Lui
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
15
|
Ghitti E, Rolli E, Vergani L, Borin S. Flavonoids influence key rhizocompetence traits for early root colonization and PCB degradation potential of Paraburkholderia xenovorans LB400. FRONTIERS IN PLANT SCIENCE 2024; 15:1325048. [PMID: 38371405 PMCID: PMC10869545 DOI: 10.3389/fpls.2024.1325048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Introduction Flavonoids are among the main plant root exudation components, and, in addition to their role in symbiosis, they can broadly affect the functionality of plant-associated microbes: in polluted environments, for instance, flavonoids can induce the expression of the enzymatic degradative machinery to clean-up soils from xenobiotics like polychlorinated biphenyls (PCBs). However, their involvement in root community recruitment and assembly involving non-symbiotic beneficial interactions remains understudied and may be crucial to sustain the holobiont fitness under PCB stress. Methods By using a set of model pure flavonoid molecules and a natural blend of root exudates (REs) with altered flavonoid composition produced by Arabidopsis mutant lines affected in flavonoid biosynthesis and abundance (null mutant tt4, flavonoid aglycones hyperproducer tt8, and flavonoid conjugates hyperaccumulator ttg), we investigated flavonoid contribution in stimulating rhizocompetence traits and the catabolic potential of the model bacterial strain for PCB degradation Paraburkholderia xenovorans LB400. Results Flavonoids influenced the traits involved in bacterial recruitment in the rhizoplane by improving chemotaxis and motility responses, by increasing biofilm formation and by promoting the growth and activation of the PCB-degradative pathway of strain LB400, being thus potentially exploited as carbon sources, stimulating factors and chemoattractant molecules. Indeed, early rhizoplane colonization was favored in plantlets of the tt8 Arabidopsis mutant and reduced in the ttg line. Bacterial growth was promoted by the REs of mutant lines tt4 and tt8 under control conditions and reduced upon PCB-18 stress, showing no significant differences compared with the WT and ttg, indicating that unidentified plant metabolites could be involved. PCB stress presumably altered the Arabidopsis root exudation profile, although a sudden "cry-for-help" response to recruit strain LB400 was excluded and flavonoids appeared not to be the main determinants. In the in vitro plant-microbe interaction assays, plant growth promotion and PCB resistance promoted by strain LB400 seemed to act through flavonoid-independent mechanisms without altering bacterial colonization efficiency and root adhesion pattern. Discussions This study further contributes to elucidate the vast array of functions provided by flavonoids in orchestrating the early events of PCB-degrading strain LB400 recruitment in the rhizosphere and to support the holobiont fitness by stimulating the catabolic machinery involved in xenobiotics decomposition and removal.
Collapse
Affiliation(s)
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | |
Collapse
|
16
|
Clayton EJ, Islam NS, Pannunzio K, Kuflu K, Sirjani R, Kohalmi SE, Dhaubhadel S. Soybean AROGENATE DEHYDRATASES (GmADTs): involvement in the cytosolic isoflavonoid metabolon or trans-organelle continuity? FRONTIERS IN PLANT SCIENCE 2024; 15:1307489. [PMID: 38322824 PMCID: PMC10845154 DOI: 10.3389/fpls.2024.1307489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Soybean (Glycine max) produces a class of phenylalanine (Phe) derived specialized metabolites, isoflavonoids. Isoflavonoids are unique to legumes and are involved in defense responses in planta, and they are also necessary for nodule formation with nitrogen-fixing bacteria. Since Phe is a precursor of isoflavonoids, it stands to reason that the synthesis of Phe is coordinated with isoflavonoid production. Two putative AROGENATE DEHYDRATASE (ADT) isoforms were previously co-purified with the soybean isoflavonoid metabolon anchor ISOFLAVONE SYNTHASE2 (GmIFS2), however the GmADT family had not been characterized. Here, we present the identification of the nine member GmADT family. We determined that the GmADTs share sequences required for enzymatic activity and allosteric regulation with other characterized plant ADTs. Furthermore, the GmADTs are differentially expressed, and multiple members have dual substrate specificity, also acting as PREPHENATE DEHYDRATASES. All GmADT isoforms were detected in the stromules of chloroplasts, and they all interact with GmIFS2 in the cytosol. In addition, GmADT12A interacts with multiple other isoflavonoid metabolon members. These data substantiate the involvement of GmADT isoforms in the isoflavonoid metabolon.
Collapse
Affiliation(s)
- Emily J. Clayton
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Nishat S. Islam
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Kelsey Pannunzio
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Kuflom Kuflu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ramtin Sirjani
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Susanne E. Kohalmi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Yang Z, Lin M, Yang X, Wu D, Chen K. Comprehensive analysis of transcriptome and metabolome provides insights into the stress response mechanisms of apple fruit to postharvest impact damage. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 7:100176. [PMID: 37457816 PMCID: PMC10344661 DOI: 10.1016/j.fochms.2023.100176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/06/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
An integrated analysis of the transcriptome and metabolome was conducted to investigate the underlying mechanisms of apple fruit response to impact damage stress. During the post-damage storage, a total of 124 differentially expressed genes (DEGs) were identified, which were mainly annotated in 13 pathways, including phenylpropanoid biosynthesis. Besides, 175 differentially expressed metabolites (DEMs), including 142 up-regulated and 33 down-regulated metabolites, exhibited significant alteration after impact damage. The DEGs and DEMs were simultaneously annotated in 7 metabolic pathways, including flavonoid biosynthesis. Key genes in the volatile esters and flavonoid biosynthesis pathways were revealed, which may play a crucial role in the coping mechanisms of apple fruit under impact damage stress. Moreover, 13 ABC transporters were significantly upregulated, indicating that ABC transporters may contribute to the transportation of secondary metabolites associated with response to impact damage stress. The results may elucidate the comprehension of metabolic networks and molecular mechanisms in apple fruits that have undergone impact damage.
Collapse
Affiliation(s)
- Zhichao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Menghua Lin
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xiangzheng Yang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, PR China
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China
| | - Kunsong Chen
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
18
|
Ono E, Murata J. Exploring the Evolvability of Plant Specialized Metabolism: Uniqueness Out Of Uniformity and Uniqueness Behind Uniformity. PLANT & CELL PHYSIOLOGY 2023; 64:1449-1465. [PMID: 37307423 PMCID: PMC10734894 DOI: 10.1093/pcp/pcad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
The huge structural diversity exhibited by plant specialized metabolites has primarily been considered to result from the catalytic specificity of their biosynthetic enzymes. Accordingly, enzyme gene multiplication and functional differentiation through spontaneous mutations have been established as the molecular mechanisms that drive metabolic evolution. Nevertheless, how plants have assembled and maintained such metabolic enzyme genes and the typical clusters that are observed in plant genomes, as well as why identical specialized metabolites often exist in phylogenetically remote lineages, is currently only poorly explained by a concept known as convergent evolution. Here, we compile recent knowledge on the co-presence of metabolic modules that are common in the plant kingdom but have evolved under specific historical and contextual constraints defined by the physicochemical properties of each plant specialized metabolite and the genetic presets of the biosynthetic genes. Furthermore, we discuss a common manner to generate uncommon metabolites (uniqueness out of uniformity) and an uncommon manner to generate common metabolites (uniqueness behind uniformity). This review describes the emerging aspects of the evolvability of plant specialized metabolism that underlie the vast structural diversity of plant specialized metabolites in nature.
Collapse
Affiliation(s)
- Eiichiro Ono
- Suntory Global Innovation Center Ltd. (SIC), 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Jun Murata
- Bioorganic Research Institute (SUNBOR), Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| |
Collapse
|
19
|
An S, Yamashita M, Iguchi S, Kihara T, Kamon E, Ishikawa K, Kobayashi M, Ishimizu T. Biochemical Characterization of Parsley Glycosyltransferases Involved in the Biosynthesis of a Flavonoid Glycoside, Apiin. Int J Mol Sci 2023; 24:17118. [PMID: 38069442 PMCID: PMC10706860 DOI: 10.3390/ijms242317118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The flavonoid glycoside apiin (apigenin 7-O-[β-D-apiosyl-(1→2)-β-D-glucoside]) is abundant in apiaceous and asteraceous plants, including celery and parsley. Although several enzymes involved in apiin biosynthesis have been identified in celery, many of the enzymes in parsley (Petroselinum crispum) have not been identified. In this study, we identified parsley genes encoding the glucosyltransferase, PcGlcT, and the apiosyltransferase, PcApiT, that catalyze the glycosylation steps of apiin biosynthesis. Their substrate specificities showed that they were involved in the biosynthesis of some flavonoid 7-O-apiosylglucosides, including apiin. The expression profiles of PcGlcT and PcApiT were closely correlated with the accumulation of flavonoid 7-O-apiosylglucosides in parsley organs and developmental stages. These findings support the idea that PcGlcT and PcApiT are involved in the biosynthesis of flavonoid 7-O-apiosylglucosides in parsley. The identification of these genes will elucidate the physiological significance of apiin and the development of apiin production methods.
Collapse
Affiliation(s)
- Song An
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Maho Yamashita
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Sho Iguchi
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Taketo Kihara
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Eri Kamon
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Kazuya Ishikawa
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Masaru Kobayashi
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Kyoto, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
20
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
21
|
Nagayoshi H, Murayama N, Kim V, Kim D, Takenaka S, Yamazaki H, Guengerich FP, Shimada T. Oxidation of Naringenin, Apigenin, and Genistein by Human Family 1 Cytochrome P450 Enzymes and Comparison of Interaction of Apigenin with Human P450 1B1.1 and Scutellaria P450 82D.1. Chem Res Toxicol 2023; 36:1778-1788. [PMID: 37783573 PMCID: PMC11497155 DOI: 10.1021/acs.chemrestox.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Naringenin, an initial synthesized flavanone in various plant species, is further utilized for production of many biologically active flavonoids, e.g., apigenin, eriodictyol, and genistein, by various plant enzymes including cytochrome P450s (P450s or CYPs). We examined how these flavonoids are oxidized by human P450 family 1 and 2A enzymes. Naringenin was principally oxidized at the 3'-position to form eriodictyol by CYP1 enzymes more efficiently than by CYP2A enzymes, and the resulting eriodictyol was further oxidized to two penta-hydroxylated products. In contrast to plant P450 enzymes, these human P450s did not mediate the desaturation of naringenin and eriodictyol to give apigenin and luteolin, respectively. Apigenin was oxidized at the C3' and C6 positions to form luteolin and scutellarein by these P450s. CYP1B1.1 and 1B1.3 had high activities in apigenin 6-hydroxylation with a homotropic cooperative manner, as has been observed previously in chrysin 6-hydroxylation (Nagayoshi et al., Chem. Res. Toxicol. 2019, 32, 1268-1280). Molecular docking analysis suggested that CYP1B1 had two apigenin binding sites and showed similarities in substrate recognition sites to plant CYP82D.1, one of the enzymes in catalyzing apigenin and chrysin 6-hydroxylations in Scutellaria baicalensis. The present results suggest that human CYP1 enzymes and CYP2A13 in some reactions have important roles in the oxidation of naringenin, eriodictyol, apigenin, and genistein and that human CYP1B1 and Scutellaria CYP82D.1 have similarities in their SRS regions, catalyzing 6-hydroxylation of both apigenin and chrysin.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Food Chemistry Section, Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka 537-0025, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| |
Collapse
|
22
|
Júnior MA, Silva LC, Rocha OB, Oliveira AA, Portis IG, Alonso A, Alonso L, Silva KS, Gomes MN, Andrade CH, Soares CM, Pereira M. Proteomic identification of metabolic changes in Paracoccidioides brasiliensis induced by a nitroheteroarylchalcone. Future Microbiol 2023; 18:1077-1093. [PMID: 37424510 DOI: 10.2217/fmb-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Aim: To access the metabolic changes caused by a chalcone derivative (LabMol-75) through a proteomic approach. Methods: Proteomic analysis was performed after 9 h of Paracoccidioides brasiliensis yeast (Pb18) cell incubation with the LabMol-75 at MIC. The proteomic findings were validated through in vitro and in silico assays. Results: Exposure to the compound led to the downregulation of proteins associated with glycolysis and gluconeogenesis, β-oxidation, the citrate cycle and the electron transport chain. Conclusion: LabMol-75 caused an energetic imbalance in the fungus metabolism and deep oxidative stress. Additionally, the in silico molecular docking approach pointed to this molecule as a putative competitive inhibitor of DHPS.
Collapse
Affiliation(s)
- Marcos Abc Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lívia C Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Olivia B Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Amanda A Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Igor G Portis
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Antonio Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lais Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Kleber Sf Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Marcelo N Gomes
- InsiChem, Goiás State University, Anápolis, Goiás, Brazil
- Faculdade Metropolitana de Anápolis, Anápolis, Goiás, Brazil
| | - Carolina H Andrade
- Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Célia Ma Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
23
|
Lim SH, Kim DH, Lee JY. Molecular mechanism controlling anthocyanin composition and content in radish plants with different root colors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108091. [PMID: 37864927 DOI: 10.1016/j.plaphy.2023.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Radish (Raphanus sativus) roots exhibit various colors that reflect their anthocyanin compositions and contents. However, the details of the mechanism linking the expression of anthocyanin biosynthesis and their transcriptional regulators to anthocyanin composition in radish roots remained unknown. Here, we characterized the role of the anthocyanin biosynthetic enzyme flavonoid 3'-hydroxylase (RsF3'H), together with the R2R3 MYB transcription factor (TF) RsMYB1 and the basic helix-loop-helix (bHLH) TF TRANSPARENT TESTA 8 (RsTT8), in four radish plants with different root colors: white (W), deep red (DR), dark purple (DP), and dark greyish purple (DGP). The DR plant contained heterozygous for RsF3'H with low expression level and accumulated a large amount of pelargonidin, resulting in deep red color. While, the DP and DGP plants accumulated the cyanidin due to the higher expression level of functional RsF3'H. Notably, RsMYB1 and RsTT8 transcripts were abundant in all pigmented roots, but not in white roots. To investigate the differential expression of RsMYB1 and RsTT8, we compared the sequences of their promoter regions among the four radish plants, revealing variations in the numbers of cis-elements and in promoter architecture. Promoter activation assays demonstrated that variation in the RsMYB1 and RsTT8 promoters may contribute to the expression level of these genes, and RsMYB1 can activate its own expression as well as promote the RsTT8 expression. These results suggested that RsF3'H plays a vital role in anthocyanin composition and the expression level of both RsMYB1 and RsTT8 are crucial determinants for anthocyanin content in radish roots. Overall, these findings provide insight into the molecular basis of anthocyanin composition and level in radish roots.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Republic of Korea; Research Institute of International Technology and Information, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Republic of Korea; Research Institute of International Technology and Information, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jong-Yeol Lee
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
24
|
Saxena S, Pal G, Pandey A. Functional characterization of 2-oxoglutarate-dependent dioxygenase gene family in chickpea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111836. [PMID: 37619866 DOI: 10.1016/j.plantsci.2023.111836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Chickpea is an important leguminous crop plant with two cultivated types, desi and kabuli. It is nutritionally enriched in flavonoid content in addition to minerals and vitamins imparting huge health benefits to human beings. Our study elucidates the functionality of 2-oxoglutarate dependent dioxygenase (2-ODD) gene family members i.e., flavanone-3-hydroxylase (F3H), flavonol synthase (FLS) and anthocyanidin synthase (ANS) in chickpea using heterologous bacterial system and in-planta studies in Arabidopsis. This provides information about the biosynthesis of two very significant sub-classes of flavonoids- flavonols and anthocyanins. Here, we show that all the three homologs of F3H in chickpea can utilize not just naringenin but also eriodictyol as their substrate. Moreover, we show that FLS in chickpea exhibits bifunctionality having both FLS and F3H activity. Also, our study indicates the richness of desi chickpea over kabuli type through gene expression and metabolite content analyses. Overall, our study establishes the functionality of 2-ODD gene family involved in the early and late steps of flavonoid biosynthesis pathway in chickpea. It paves way for better genetic manipulation of the pathway for direct or indirect synthesis of three major subclasses of flavonoids (flavonol, anthocyanin and proanthocyanin) to develop nutritious, environmentally stable and healthy chickpea (Cicer arietinum) crop.
Collapse
Affiliation(s)
- Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gaurav Pal
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
25
|
Bulut M, Wendenburg R, Bitocchi E, Bellucci E, Kroc M, Gioia T, Susek K, Papa R, Fernie AR, Alseekh S. A comprehensive metabolomics and lipidomics atlas for the legumes common bean, chickpea, lentil and lupin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1152-1171. [PMID: 37285370 DOI: 10.1111/tpj.16329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.
Collapse
Affiliation(s)
- Mustafa Bulut
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Regina Wendenburg
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Magdalena Kroc
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Karolina Susek
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| |
Collapse
|
26
|
Li X, Martín-Pizarro C, Zhou L, Hou B, Wang Y, Shen Y, Li B, Posé D, Qin G. Deciphering the regulatory network of the NAC transcription factor FvRIF, a key regulator of strawberry (Fragaria vesca) fruit ripening. THE PLANT CELL 2023; 35:4020-4045. [PMID: 37506031 PMCID: PMC10615214 DOI: 10.1093/plcell/koad210] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
The NAC transcription factor ripening inducing factor (RIF) was previously reported to be necessary for the ripening of octoploid strawberry (Fragaria × ananassa) fruit, but the mechanistic basis of RIF-mediated transcriptional regulation and how RIF activity is modulated remains elusive. Here, we show that FvRIF in diploid strawberry, Fragaria vesca, is a key regulator in the control of fruit ripening and that knockout mutations of FvRIF result in a complete block of fruit ripening. DNA affinity purification sequencing coupled with transcriptome deep sequencing suggests that 2,080 genes are direct targets of FvRIF-mediated regulation, including those related to various aspects of fruit ripening. We provide evidence that FvRIF modulates anthocyanin biosynthesis and fruit softening by directly regulating the related core genes. Moreover, we demonstrate that FvRIF interacts with and serves as a substrate of MAP kinase 6 (FvMAPK6), which regulates the transcriptional activation function of FvRIF by phosphorylating FvRIF at Thr-310. Our findings uncover the FvRIF-mediated transcriptional regulatory network in controlling strawberry fruit ripening and highlight the physiological significance of phosphorylation modification on FvRIF activity in ripening.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Carmen Martín-Pizarro
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga 29071,Spain
| | - Leilei Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
| | - Bingzhu Hou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
| | - Yuying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206,China
| | - Bingbing Li
- College of Horticulture, China Agricultural University, Beijing 100193,China
| | - David Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga 29071,Spain
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| |
Collapse
|
27
|
Ortiz A, Sansinenea E. Phenylpropanoid Derivatives and Their Role in Plants' Health and as antimicrobials. Curr Microbiol 2023; 80:380. [PMID: 37864088 DOI: 10.1007/s00284-023-03502-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Phenylpropanoids belong to a wide group of compounds commonly secreted by plants and involved in different roles related with plant growth and development and the defense against plant pathogens. Some key intermediates from shikimate pathway are used to synthesize these compounds. In this way, by the phenylpropanoid pathway several building blocks are achieved to obtain flavonoids, isoflavonoids, coumarins, monolignols, phenylpropenes, phenolic acids, stilbenes and stilbenoids, and lignin, suberin and sporopollenin for plant-microbe interactions, structural support and mechanical strength, organ pigmentation, UV protection and acting against pathogens. Some reviews have revised phenylpropanoid biosynthesis and regulation of the biosynthetic pathways. In this review, the most important chemical structures about phenylpropanoid derivatives are summarized grouping them in different sections according to their structure. We have put special attention on their different roles in plants especially in plant health, growth and development and plant-environment interactions. Their interaction with microorganisms is discussed including their role as antimicrobials. We summarize all new findings about new developed structures and their involvement in plants health.
Collapse
Affiliation(s)
- Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, Mexico
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, Mexico.
| |
Collapse
|
28
|
Han S, Xu X, Yuan H, Li S, Lin T, Liu Y, Li S, Zhu T. Integrated Transcriptome and Metabolome Analysis Reveals the Molecular Mechanism of Rust Resistance in Resistant (Youkang) and Susceptive (Tengjiao) Zanthoxylum armatum Cultivars. Int J Mol Sci 2023; 24:14761. [PMID: 37834210 PMCID: PMC10573174 DOI: 10.3390/ijms241914761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Chinese pepper rust is a live parasitic fungal disease caused by Coleosporium zanthoxyli, which seriously affects the cultivation and industrial development of Z. armatum. Cultivating and planting resistant cultivars is considered the most economical and environmentally friendly strategy to control this disease. Therefore, the mining of excellent genes for rust resistance and the analysis of the mechanism of rust resistance are the key strategies to achieve the targeted breeding of rust resistance. However, there is no relevant report on pepper rust resistance at present. The aim of the present study was to further explore the resistance mechanism of pepper by screening the rust-resistant germplasm resources in the early stage. Combined with the analysis of plant pathology, transcriptomics, and metabolomics, we found that compared with susceptible cultivar TJ, resistant cultivar YK had 2752 differentially expressed genes (DEGs, 1253 up-, and 1499 downregulated) and 321 differentially accumulated metabolites (DAMs, 133 up- and 188 down-accumulated) after pathogen infection. And the genes and metabolites related to phenylpropanoid metabolism were highly enriched in resistant varieties, which indicated that phenylpropanoid metabolism might mediate the resistance of Z. armatum. This finding was further confirmed by a real-time quantitative polymerase chain reaction analysis, which revealed that the expression levels of core genes involved in phenylpropane metabolism in disease-resistant varieties were high. In addition, the difference in flavonoid and MeJA contents in the leaves between resistant and susceptible varieties further supported the conclusion that the flavonoid pathway and methyl jasmonate may be involved in the formation of Chinese pepper resistance. Our research results not only help to better understand the resistance mechanism of Z. armatum rust but also contribute to the breeding and utilization of resistant varieties.
Collapse
Affiliation(s)
- Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiu Xu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Huan Yuan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
29
|
Wu Y, Liu C, Koganitsky A, Gong FL, Li S. Discovering Dynamic Plant Enzyme Complexes in Yeast for Kratom Alkaloid Pathway Identification. Angew Chem Int Ed Engl 2023; 62:e202307995. [PMID: 37549372 PMCID: PMC10530425 DOI: 10.1002/anie.202307995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Discovering natural product biosynthetic pathways of medicinal plants is challenging and laborious. Capturing the coregulation patterns of pathway enzymes, particularly transcriptomic regulation, has proven an effective method to accelerate pathway identification. In this study, we developed a yeast-based screening method to capture the protein-protein interactions (PPI) between plant enzymes, which is another useful pattern to complement the prevalent approach. Combining this method with plant multiomics analysis, we discovered four enzyme complexes and their organized pathways from kratom, an alkaloid-producing plant. The four pathway branches involved six enzymes, including a strictosidine synthase, a strictosidine β-D-glucosidase (MsSGD), and four medium-chain dehydrogenase/reductases (MsMDRs). PPI screening selected six MsMDRs interacting with MsSGD from 20 candidates predicted by multiomics analysis. Four of the six MsMDRs were then characterized as functional, indicating the high selectivity of the PPI screening method. This study highlights the opportunity of leveraging post-translational regulation features to discover novel plant natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Yinan Wu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Chang Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Anna Koganitsky
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Franklin L Gong
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
30
|
Eichenberger M, Schwander T, Hüppi S, Kreuzer J, Mittl PRE, Peccati F, Jiménez-Osés G, Naesby M, Buller RM. The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis. Nat Catal 2023; 6:927-938. [PMID: 37881531 PMCID: PMC10593608 DOI: 10.1038/s41929-023-01018-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/01/2023] [Indexed: 10/27/2023]
Abstract
Anthocyanins are ubiquitous plant pigments used in a variety of technological applications. Yet, after over a century of research, the penultimate biosynthetic step to anthocyanidins attributed to the action of leucoanthocyanidin dioxygenase has never been efficiently reconstituted outside plants, preventing the construction of heterologous cell factories. Through biochemical and structural analysis, here we show that anthocyanin-related glutathione transferases, currently implicated only in anthocyanin transport, catalyse an essential dehydration of the leucoanthocyanidin dioxygenase product, flavan-3,3,4-triol, to generate cyanidin. Building on this knowledge, introduction of anthocyanin-related glutathione transferases into a heterologous biosynthetic pathway in baker's yeast results in >35-fold increased anthocyanin production. In addition to unravelling the long-elusive anthocyanin biosynthesis, our findings pave the way for the colourants' heterologous microbial production and could impact the breeding of industrial and ornamental plants.
Collapse
Affiliation(s)
- Michael Eichenberger
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Thomas Schwander
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Sean Hüppi
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jan Kreuzer
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Rebecca M. Buller
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Wädenswil, Switzerland
| |
Collapse
|
31
|
Nabil-Adam A, E. Elnosary M, L. Ashour M, M. Abd El-Moneam N, A. Shreadah M. Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning Pharmacodynamics and Pharmacokinetic Properties. FLAVONOID METABOLISM - RECENT ADVANCES AND APPLICATIONS IN CROP BREEDING 2023. [DOI: 10.5772/intechopen.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Flavonoids are a major class of secondary metabolites that comprises more than 6000 compounds that have been identified. They are biosynthesized via the phenylpropanoid metabolic pathway that involves groups of enzymes such as isomerases, hydroxylases, and reductases that greatly affect the determination of the flavonoid skeleton. For example, transferase enzymes responsible for the modification of sugar result in changes in the physiological activity of the flavonoids and changes in their physical properties, such as solubility, reactivity, and interaction with cellular target molecules, which affect their pharmacodynamics and pharmacokinetic properties. In addition, flavonoids have diverse biological activities such as antioxidants, anticancer, and antiviral in managing Alzheimer’s disease. However, most marine flavonoids are still incompletely discovered because marine flavonoid biosynthesis is produced and possesses unique substitutions that are not commonly found in terrestrial bioactive compounds. The current chapter will illustrate the importance of flavonoids’ role in metabolism and the main difference between marine and terrestrial flavonoids.
Collapse
|
32
|
Lv L, Guo X, Zhao A, Liu Y, Li H, Chen X. Combined analysis of metabolome and transcriptome of wheat kernels reveals constitutive defense mechanism against maize weevils. FRONTIERS IN PLANT SCIENCE 2023; 14:1147145. [PMID: 37229118 PMCID: PMC10204651 DOI: 10.3389/fpls.2023.1147145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Sitophilus zeamais (maize weevil) is one of the most destructive pests that seriously affects the quantity and quality of wheat (Triticum aestivum L.). However, little is known about the constitutive defense mechanism of wheat kernels against maize weevils. In this study, we obtained a highly resistant variety RIL-116 and a highly susceptible variety after two years of screening. The morphological observations and germination rates of wheat kernels after feeding ad libitum showed that the degree of infection in RIL-116 was far less than that in RIL-72. The combined analysis of metabolome and transcriptome of RIL-116 and RIL-72 wheat kernels revealed differentially accumulated metabolites were mainly enriched in flavonoids biosynthesis-related pathway, followed by glyoxylate and dicarboxylate metabolism, and benzoxazinoid biosynthesis. Several flavonoids metabolites were significantly up-accumulated in resistant variety RIL-116. In addition, the expression of structural genes and transcription factors (TFs) related to flavonoids biosynthesis were up-regulated to varying degrees in RIL-116 than RIL-72. Taken together, these results indicated that the biosynthesis and accumulation of flavonoids contributes the most to wheat kernels defense against maize weevils. This study not only provides insights into the constitutive defense mechanism of wheat kernels against maize weevils, but may also play an important role in the breeding of resistant varieties.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- *Correspondence: Hui Li, ; Xiyong Chen,
| | | |
Collapse
|
33
|
Nyero A, Anywar GU, Achaye I, Malinga GM. Phytochemical composition and antioxidant activities of some wild edible plants locally consumed by rural communities in northern Uganda. Front Nutr 2023; 10:1070031. [PMID: 37081916 PMCID: PMC10111026 DOI: 10.3389/fnut.2023.1070031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/27/2023] [Indexed: 04/22/2023] Open
Abstract
Background Acalypha rhomboidea, Asystacia gangetica, Crassocephalum sacrobasis, Crotalaria ochroleuca, Heterosis rotundifolia, Hibiscus cannabinus, Hibiscus sp., Hibiscus surratensis, Ipomoea eriocarpa, Maerua angolensis, Senna obtusifolia and Vigna membranacea are among the common wild edible plants in the Acholi sub-region, northern Uganda. This study evaluated the phytochemical constituents and antioxidant potential of the plants. Methods Fresh leaves collected from each plant species were air-dried under shade. The phytochemical contents of the ethanol and petroleum ether extracts were determined using standard protocols. The antioxidant content of the methanolic extracts was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Results Preliminary phytochemical analyses indicated the presence of tannins, reducing compounds, alkaloids, flavonoids, flavons aglycones, flavanosides, anthracenosides, anthocyanosides, volatile oils, coumarins, steroid glycosides, sterols and triterpenes. However, the extracts did not contain any emodols and saponins. The results of the quantitative phytochemical analysis showed that the contents of different phytochemicals detected varied significantly (p < 0.05) among the selected plants. The amount of tannins in mg/g (gallic acid equivalent) of dry weight varied from 3.90 ± 0.16 in C. ochroleuca to 10.41 ± 0.78 in I. eriocarpa, total flavonoids in RE, mg/g dry matter from 4.07 ± 0.11 in I. eriocarpa to 14.94 ± 0.08 in S. obtusifolia. Total alkaloids in mg/100 g ranged from 1.59 ± 0.30 in I. eriocarpa to 6.37 ± 0.24 in Hibiscus sp. Total phenolic content in GAE, mg/g dry matter ranged from 13.39 ± 0.26 in A. rhomboidea to 64.25 ± 0.54 in I. eriocarpa. The in vitro antioxidant assays revealed substantial free radical scavenging activity in all the plants. Antioxidant activity expressed as IC50 (ppm) ranged from 13.39 for A. rhomboidea to 64.84 for I. eriocarpa, compared to 12.82 for ascorbic acid standard. The total phenolic compounds and total tannins had significant and positive correlations with DPPH free radical scavenging activity. Conclusion The findings of this study provide evidence that the species are good natural sources of phytochemicals and antioxidants, whose regular consumption could provide human health benefits by protecting against oxidative stress related diseases. Further research is needed on the structural characterization of the phytochemicals, profiling the plant extracts with high antioxidant activity and determining the antimicrobial activities.
Collapse
Affiliation(s)
- Alfred Nyero
- Department of Chemistry, Faculty of Science, Gulu University, Gulu, Uganda
| | - Godwin Upoki Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Innocent Achaye
- Department of Chemistry, Faculty of Science, Gulu University, Gulu, Uganda
| | | |
Collapse
|
34
|
Zhang L, Xu J, Ding Y, Cao N, Gao X, Feng Z, Li K, Cheng B, Zhou L, Ren M, Tao Y, Zou G. GWAS of grain color and tannin content in Chinese sorghum based on whole-genome sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:77. [PMID: 36952041 PMCID: PMC10036430 DOI: 10.1007/s00122-023-04307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Seventy-three QTL related to grain color and tannin content were identified in Chinese sorghum accessions, and a new recessive allelic variant of TAN2 gene was discovered. Sorghum is mainly used for brewing distilled liquors in China. Since grain tannins play an important role in liquor brewing, accurately understanding the relationship between grain color and tannin content can provide basis for selection standards of tannin sorghum. We resequenced a panel of 242 Chinese sorghum accessions and performed population structure and genome-wide association study (GWAS) to identify quantitative trait locus (QTL) affecting pericarp color, testa pigment, and tannin content. Phylogenetic analysis, principal component analysis (PCA), and admixture model were used to infer population structure. Two distinct genetic sub-populations were identified according to their corresponding northern and southern geographic origin. To investigate the genetic basis of natural variation in sorghum grain color, GWAS with 2,760,264 SNPs was conducted in four environments using multiple models (Blink, FarmCPU, GLM, and MLM). Seventy-three QTL were identified to be associated for the color of exocarp, mesocarp, testa, and tannin content on all chromosomes except chromosome 5, of which 47 might be novel QTL. Some important QTL were found to colocalize with orthologous genes in the flavonoid biosynthetic pathway from other plants, including orthologous of Arabidopsis (Arabidopsis thaliana) TT2, TT7, TT12, TT16 and AT5G41220 (GST), as well as orthologous of rice (Oryza sativa) MYB61 and OsbHLH025. Our investigation of the variation in grain color and tannin content in Chinese sorghum germplasm may help guide future sorghum breeding for liquor brewing.
Collapse
Affiliation(s)
- Liyi Zhang
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| | - Jianxia Xu
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yanqing Ding
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Ning Cao
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Xu Gao
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Zhou Feng
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Kuiying Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Bing Cheng
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Lengbo Zhou
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yuezhi Tao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Guihua Zou
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China.
| |
Collapse
|
35
|
Lei T, Huang J, Ruan H, Qian W, Fang Z, Gu C, Zhang N, Liang Y, Wang Z, Gao L, Wang Y. Competition between FLS and DFR regulates the distribution of flavonols and proanthocyanidins in Rubus chingii Hu. FRONTIERS IN PLANT SCIENCE 2023; 14:1134993. [PMID: 36968391 PMCID: PMC10031046 DOI: 10.3389/fpls.2023.1134993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Rubus chingii Hu is a berry plant of the genus Rubus of the Rosaceae family, which has high nutritional and medicinal value and is rich in flavonoids. Flavonol synthase (FLS) and dihydroflavonol 4-reductase (DFR) compete for the common substrate dihydroflavonols to regulate the metabolic flux of flavonoids. However, the competition between FLS and DFR based on enzyme is rarely reported. Here, we isolated and identified two FLS genes (RcFLS1 and RcFLS2) and one DFR gene (RcDFR) from Rubus chingii Hu. RcFLSs and RcDFR were highly expressed in stems, leaves, and flowers, although the flavonol accumulation in these organs was significantly higher than that of proanthocyanidins (PAs). The recombinant RcFLSs demonstrated bifunctional activities via hydroxylation and desaturation at the C-3α position having a lower Michaelis constant (Km) for dihydroflavonols than RcDFR. We also found that a low concentration of flavonols could significantly inhibit RcDFR activity. To investigate the competitive relationship between RcFLSs and RcDFR, we used a prokaryotic expression system (E. coli) to co-express these proteins. The transgenic cells expressing recombinant proteins were incubated with substrates, and the reaction products were analyzed. Furthermore, two transient expression systems (tobacco leaves and strawberry fruits) and a stable genetic system (Arabidopsis thaliana) were used to co-express these proteins in vivo. The results showed that RcFLS1 was dominant in the competition with RcDFR. Our results demonstrated that the competition between FLS and DFR regulated the metabolic flux distribution of flavonols and PAs, which will be of great significance for the molecular breeding of Rubus plants.
Collapse
Affiliation(s)
- Ting Lei
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei Anhui, China
| | - Jun Huang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Haixiang Ruan
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Wei Qian
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Zhou Fang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Chunyang Gu
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Niuniu Zhang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Yaxuan Liang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Ziyun Wang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei Anhui, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei Anhui, China
| |
Collapse
|
36
|
Furumura S, Ozaki T, Sugawara A, Morishita Y, Tsukada K, Ikuta T, Inoue A, Asai T. Identification and Functional Characterization of Fungal Chalcone Synthase and Chalcone Isomerase. JOURNAL OF NATURAL PRODUCTS 2023; 86:398-405. [PMID: 36762727 PMCID: PMC9972472 DOI: 10.1021/acs.jnatprod.2c01027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 05/23/2023]
Abstract
By mining fungal genomic information, a noncanonical iterative type I PKS fused with an N-terminal adenylation-thiolation didomain, which catalyzes the formation of naringenin chalcone, was found. Structural prediction and molecular docking analysis indicated that a C-terminal thioesterase domain was involved in the Claisen-type cyclization. An enzyme responsible for formation of (2S)-flavanone in the biosynthesis of fungal flavonoids was also identified. Collectively, these findings demonstrate unprecedented fungal biosynthetic machinery leading to plant-like metabolites.
Collapse
|
37
|
Wu X, Chen B, Xiao J, Guo H. Different doses of UV-B radiation affect pigmented potatoes' growth and quality during the whole growth period. FRONTIERS IN PLANT SCIENCE 2023; 14:1101172. [PMID: 36818873 PMCID: PMC9929570 DOI: 10.3389/fpls.2023.1101172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION UltraViolet- Biological (UV-B) plays an important role in plant growth and the formation of nutrients, especially secondary metabolites. METHODS To investigate the phenotypic changes, physiological responses, and internal genes expression of potatoes under enhanced UV-B radiation, two Yunnan native pigmented potatoes varieties named "Huaxinyangyu" and "Jianchuanhong" were exposed to different UV-B doses during whole growth duration. RESULTS Pearson correlation analysis and principal component analysis showed that the agronomic characters (i.e. plant height, pitch, stem diameter, and root shoot ratio) of plants treated with low dose ultraviolet (T1) did not change significantly compared with the absence of ultraviolet radiation (CK), even unit yield increased slightly; Similarly, under low UV-B radiation, photosynthetic and physiological parameters (photosynthetic rate, stomatal conductance, respiration rate, and transpiration rate) of leaves were significantly increased. In addition, low-dose UV-B treatment promoted the synthesis of tuber nutrients (e.g. phenols, chlorogenic acids, flavonoids, vitamin C, anthocyanins) and increased the expression of structural genes for anthocyanin synthesis. The number of nutrients and gene expression in tubers raised by the "Huaxinyangyu" was the highest at 84 days, and "Jianchuanhong" was the highest at 72 days. However, the higher dose of UV-B radiation (T2) will cause greater damage to the pigmented potatoes plants, making the plants reduce the yield, and significantly reduce the tuber nutrients. DISCUSSION This study showed that proper ultraviolet radiation will not harm pigmented potatoes, but also improve their oxidative stress tolerance, increase the structure genes expression of anthocyanins and continuously synthesize beneficial substances to improve the yield and quality of potato tubers.
Collapse
|
38
|
Miranda S, Piazza S, Nuzzo F, Li M, Lagrèze J, Mithöfer A, Cestaro A, Tarkowska D, Espley R, Dare A, Malnoy M, Martens S. CRISPR/Cas9 genome-editing applied to MdPGT1 in apple results in reduced foliar phloridzin without impacting plant growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:92-105. [PMID: 36401738 DOI: 10.1111/tpj.16036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Phloridzin is the most abundant polyphenolic compound in apple (Malus × domestica Borkh.), which results from the action of a key phloretin-specific UDP-2'-O-glucosyltransferase (MdPGT1). Here, we simultaneously assessed the effects of targeting MdPGT1 by conventional transgenesis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing. To this end, we conducted transcriptomic and metabolic analyses of MdPGT1 RNA interference knockdown and genome-edited lines. Knockdown lines exhibited characteristic impairment of plant growth and leaf morphology, whereas genome-edited lines exhibited normal growth despite reduced foliar phloridzin. RNA-sequencing analysis identified a common core of regulated genes, involved in phenylpropanoid and flavonoid pathways. However, we identified genes and processes differentially modulated in stunted and genome-edited lines, including key transcription factors and genes involved in phytohormone signalling. Therefore, we conducted a phytohormone profiling to obtain insight into their role in the phenotypes observed. We found that salicylic and jasmonic acid were increased in dwarf lines, whereas auxin and ABA showed no correlation with the growth phenotype. Furthermore, bioactive brassinosteroids were commonly up-regulated, whereas gibberellin GA4 was distinctively altered, showing a sharp decrease in RNA interference knockdown lines. Expression analysis by reverse transcriptase-quantitative polymerase chain reaction expression analysis further confirmed transcriptional regulation of key factors involved in brassinosteroid and gibberellin interaction. These findings suggest that a differential modulation of phytohormones may be involved in the contrasting effects on growth following phloridzin reduction. The present study also illustrates how CRISPR/Cas9 genome editing can be applied to dissect the contribution of genes involved in phloridzin biosynthesis in apple.
Collapse
Affiliation(s)
- Simón Miranda
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
- C3A Center Agriculture Food Environment, University of Trento, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland, 1025, New Zealand
| | - Stefano Piazza
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Floriana Nuzzo
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Mingai Li
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Jorge Lagrèze
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
- C3A Center Agriculture Food Environment, University of Trento, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Alessandro Cestaro
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Danuše Tarkowska
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacky University, Slechtitelu 19, Olomouc, CZ-783 71, Czech Republic
| | - Richard Espley
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland, 1025, New Zealand
| | - Andrew Dare
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland, 1025, New Zealand
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Stefan Martens
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| |
Collapse
|
39
|
Afifi OA, Tobimatsu Y, Lam PY, Martin AF, Miyamoto T, Osakabe Y, Osakabe K, Umezawa T. Genome-edited rice deficient in two 4-COUMARATE:COENZYME A LIGASE genes displays diverse lignin alterations. PLANT PHYSIOLOGY 2022; 190:2155-2172. [PMID: 36149320 PMCID: PMC9706450 DOI: 10.1093/plphys/kiac450] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The 4-coumarate:coenzyme A ligase (4CL) is a key enzyme that contributes to channeling metabolic flux in the cinnamate/monolignol pathway, leading to the production of monolignols, p-hydroxycinnamates, and a flavonoid tricin, the major building blocks of lignin polymer in grass cell walls. Vascular plants often contain multiple 4CL genes; however, the contribution of each 4CL isoform to lignin biosynthesis remains unclear, especially in grasses. In this study, we characterized the functions of two rice (Oryza sativa L.) 4CL isoforms (Os4CL3 and Os4CL4) primarily by analyzing the cell wall chemical structures of rice mutants generated by CRISPR/Cas9-mediated targeted mutagenesis. A series of chemical and nuclear magnetic resonance analyses revealed that loss-of-function of Os4CL3 and Os4CL4 differently altered the composition of lignin polymer units. Loss of function of Os4CL3 induced marked reductions in the major guaiacyl and syringyl lignin units derived from both the conserved non-γ-p-coumaroylated and the grass-specific γ-p-coumaroylated monolignols, with more prominent reductions in guaiacyl units than in syringyl units. In contrast, the loss-of-function mutation to Os4CL4 primarily decreased the abundance of the non-γ-p-coumaroylated guaiacyl units. Loss-of-function of Os4CL4, but not of Os4CL3, reduced the grass-specific lignin-bound tricin units, indicating that Os4CL4 plays a key role not only in monolignol biosynthesis but also in the biosynthesis of tricin used for lignification. Further, the loss-of-function of Os4CL3 and Os4CL4 notably reduced cell-wall-bound ferulates, indicating their roles in cell wall feruloylation. Overall, this study demonstrates the overlapping but divergent roles of 4CL isoforms during the coordinated production of various lignin monomers.
Collapse
Affiliation(s)
- Osama Ahmed Afifi
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto 611-0011, Japan
- Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto 611-0011, Japan
| | - Pui Ying Lam
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Akita 010-8502, Japan
| | - Andri Fadillah Martin
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Takuji Miyamoto
- Sakeology Center, Niigata University, Niigata 950-2181, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8506, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto 611-0011, Japan
- Research Unit for Realization of Sustainable Society (RURSS), Kyoto University, Kyoto 611-0011, Japan
| |
Collapse
|
40
|
Wiles D, Shanbhag BK, O'Brien M, Doblin MS, Bacic A, Beddoe T. Heterologous production of Cannabis sativa-derived specialised metabolites of medicinal significance - Insights into engineering strategies. PHYTOCHEMISTRY 2022; 203:113380. [PMID: 36049526 DOI: 10.1016/j.phytochem.2022.113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cannabis sativa L. has been known for at least 2000 years as a source of important, medically significant specialised metabolites and several bio-active molecules have been enriched from multiple chemotypes. However, due to the many levels of complexity in both the commercial cultivation of cannabis and extraction of its specialised metabolites, several heterologous production approaches are being pursued in parallel. In this review, we outline the recent achievements in engineering strategies used for heterologous production of cannabinoids, terpenes and flavonoids along with their strength and weakness. We provide an overview of the specialised metabolism pathway in C. sativa and a comprehensive list of the specialised metabolites produced along with their medicinal significance. We highlight cannabinoid-like molecules produced by other species. We discuss the key biosynthetic enzymes and their heterologous production using various hosts such as microbial and eukaryotic systems. A brief discussion on complementary production strategies using co-culturing and cell-free systems is described. Various approaches to optimise specialised metabolite production through co-expression, enzyme engineering and pathway engineering are discussed. We derive insights from recent advances in metabolic engineering of hosts with improved precursor supply and suggest their application for the production of C. sativa speciality metabolites. We present a collation of non-conventional hosts with speciality traits that can improve the feasibility of commercial heterologous production of cannabis-based specialised metabolites. We provide a perspective of emerging research in synthetic biology, allied analytical techniques and plant heterologous platforms as focus areas for heterologous production of cannabis specialised metabolites in the future.
Collapse
Affiliation(s)
- Danielle Wiles
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bhuvana K Shanbhag
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Martin O'Brien
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Monika S Doblin
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
41
|
Rajput R, Naik J, Stracke R, Pandey A. Interplay between R2R3 MYB-type activators and repressors regulates proanthocyanidin biosynthesis in banana (Musa acuminata). THE NEW PHYTOLOGIST 2022; 236:1108-1127. [PMID: 35842782 DOI: 10.1111/nph.18382] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Proanthocyanidins are oligomeric flavonoids that promote plant disease resistance and benefit human health. Banana is one of the world's most extensively farmed crops and its fruit pulp contain proanthocyanidins. However, the transcriptional regulatory network that fine tunes proanthocyanidin biosynthesis in banana remains poorly understood. We characterised two proanthocyanidin-specific R2R3 MYB activators (MaMYBPA1-MaMYBPA2) and four repressors (MaMYBPR1-MaMYBPR4) to elucidate the mechanisms underlying the transcriptional regulation of proanthocyanidin biosynthesis in banana. Heterologous expression of MaMYBPA1 and MaMYBPA2 partially complemented the Arabidopsis thaliana proanthocyanidin-deficient transparent testa2 mutant. MaMYBPA1 and MaMYBPA2 interacted physically with MaMYCs to transactivate anthocyanin synthase, leucoanthocyanidin reductase, and anthocyanidin reductase genes in vitro and form functional MYB-bHLH-WD Repeat (MBW) complexes with MaTTG1 to transactivate these promoters in vivo. Overexpression of MaMYBPAs alone or with MaMYC in banana fruits induced proanthocyanidin accumulation and transcription of proanthocyanidin biosynthesis-related genes. MaMYBPR repressors are also shown to interact with MaMYCs forming repressing MBW complexes, and diminished proanthocyanidin accumulation. Interestingly overexpression of MaMYBPA induces the expression of MaMYBPR, indicating an agile regulation of proanthocyanidin biosynthesis through the formation of competitive MBW complexes. Our results reveal regulatory modules of R2R3 MYB- that fine tune proanthocyanidin biosynthesis and offer possible targets for genetic manipulation for nutritional improvement of banana.
Collapse
Affiliation(s)
- Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jogindra Naik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ralf Stracke
- Chair of Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
42
|
Guo L, Zhao W, Wang Y, Yang Y, Wei C, Guo J, Dai J, Hirai MY, Bao A, Yang Z, Chen H, Li Y. Heterologous biosynthesis of isobavachalcone in tobacco based on in planta screening of prenyltransferases. FRONTIERS IN PLANT SCIENCE 2022; 13:1034625. [PMID: 36275607 PMCID: PMC9582842 DOI: 10.3389/fpls.2022.1034625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Isobavachalcone (IBC) is a prenylated chalcone mainly distributed in some Fabaceae and Moraceae species. IBC exhibits a wide range of pharmacological properties, including anti-bacterial, anti-viral, anti-inflammatory, and anti-cancer activities. In this study, we attempted to construct the heterologous biosynthesis pathway of IBC in tobacco (Nicotiana tabacum). Four previously reported prenyltransferases, including GuILDT from Glycyrrhiza uralensis, HlPT1 from Humulus lupulus, and SfILDT and SfFPT from Sophora flavescens, were subjected to an in planta screening to verify their activities for the biosynthesis of IBC, by using tobacco transient expression with exogenous isoliquiritigenin as the substrate. Only SfFPT and HlPT1 could convert isoliquiritigenin to IBC, and the activity of SfFPT was higher than that of HlPT1. By co-expression of GmCHS8 and GmCHR5 from Glycine max, endogenous isoliquiritigenin was generated in tobacco leaves (21.0 μg/g dry weight). After transformation with a multigene vector carrying GmCHS8, GmCHR5, and SfFPT, de novo biosynthesis of IBC was achieved in transgenic tobacco T0 lines, in which the highest amount of IBC was 0.56 μg/g dry weight. The yield of IBC in transgenic plants was nearly equal to that in SfFPT transient expression experiments, in which substrate supplement was sufficient, indicating that low IBC yield was not attributed to the substrate supplement. Our research provided a prospect to produce valuable prenylflavonoids using plant-based metabolic engineering.
Collapse
Affiliation(s)
- Lirong Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wei Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yu Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Cuimei Wei
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jian Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Aike Bao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haijuan Chen
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yimeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| |
Collapse
|
43
|
Wan D, Wan Y, Zhang T, Wang R, Ding Y. Multi-omics analysis reveals the molecular changes accompanying heavy-grazing-induced dwarfing of Stipa grandis. FRONTIERS IN PLANT SCIENCE 2022; 13:995074. [PMID: 36407579 PMCID: PMC9673880 DOI: 10.3389/fpls.2022.995074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Heavy grazing significantly reduces Stipa grandis growth. To enhance our understanding of plant responses to heavy grazing, we conducted transcriptomic, proteomic, and metabolic analyses of the leaves of non-grazed plants (NG) and heavy-grazing-induced dwarf plants (HG) of S. grandis. A total of 101 metabolites, 167 proteins, and 1,268 genes differed in abundance between the HG and NG groups. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways among differentially accumulated metabolites (DAMs) revealed that the most enriched pathways were flavone and flavonol biosynthesis, tryptophan metabolism, and phenylpropanoid biosynthesis. An integrative analysis of differentially expressed genes (DEGs) and proteins, and DAMs in these three pathways was performed. Heavy-grazing-induced dwarfism decreased the accumulation of DAMs enriched in phenylpropanoid biosynthesis, among which four DAMs were associated with lignin biosynthesis. In contrast, all DAMs enriched in flavone and flavonol biosynthesis and tryptophan metabolism showed increased accumulation in HG compared with NG plants. Among the DAMs enriched in tryptophan metabolism, three were involved in tryptophan-dependent IAA biosynthesis. Some of the DEGs and proteins enriched in these pathways showed different expression trends. The results indicated that these pathways play important roles in the regulation of growth and grazing-associated stress adaptions of S. grandis. This study enriches the knowledge of the mechanism of heavy-grazing-induced growth inhibition of S. grandis and provides valuable information for restoration of the productivity in degraded grassland.
Collapse
Affiliation(s)
- Dongli Wan
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yongqing Wan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Tongrui Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong Ding
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
44
|
Pukalski J, Latowski D. Secrets of Flavonoid Synthesis in Mushroom Cells. Cells 2022; 11:cells11193052. [PMID: 36231014 PMCID: PMC9562910 DOI: 10.3390/cells11193052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are chemical compounds that occur widely across the plant kingdom. They are considered valuable food additives with pro-health properties, and their sources have also been identified in other kingdoms. Especially interesting is the ability of edible mushrooms to synthesize flavonoids. Mushrooms are usually defined as a group of fungal species capable of producing macroscopic fruiting bodies, and there are many articles considering the content of flavonoids in this group of fungi. Whereas the synthesis of flavonoids was revealed in mycelial cells, the ability of mushroom fruiting bodies to produce flavonoids does not seem to be clearly resolved. This article, as an overview of the latest key scientific findings on flavonoids in mushrooms, outlines and organizes the current state of knowledge on the ability of mushroom fruiting bodies to synthesize this important group of compounds for vital processes. Putting the puzzle of the current state of knowledge on flavonoid biosynthesis in mushroom cells together, we propose a universal scheme of studies to unambiguously decide whether the fruiting bodies of individual mushrooms are capable of synthesizing flavonoids.
Collapse
|
45
|
Therapeutic Potential and Mechanisms of Novel Simple O-Substituted Isoflavones against Cerebral Ischemia Reperfusion. Int J Mol Sci 2022; 23:ijms231810394. [PMID: 36142301 PMCID: PMC9498989 DOI: 10.3390/ijms231810394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Isoflavones have been widely studied and have attracted extensive attention in fields ranging from chemotaxonomy and plant physiology to human nutrition and medicine. Isoflavones are often divided into three subgroups: simple O-substituted derivatives, prenylated derivatives, and glycosides. Simple O-substituted isoflavones and their glycosides, such as daidzein (daidzin), genistein (genistin), glycitein (glycitin), biochanin A (astroside), and formononetin (ononin), are the most common ingredients in legumes and are considered as phytoestrogens for daily dietary hormone replacement therapy due to their structural similarity to 17-β-estradiol. On the basis of the known estrogen-like potency, these above isoflavones possess multiple pharmacological activities such as antioxidant, anti-inflammatory, anticancer, anti-angiogenetic, hepatoprotective, antidiabetic, antilipidemic, anti-osteoporotic, and neuroprotective activities. However, there are very few review studies on the protective effects of these novel isoflavones and their related compounds in cerebral ischemia reperfusion. This review primarily focuses on the biosynthesis, metabolism, and neuroprotective mechanism of these aforementioned novel isoflavones in cerebral ischemia reperfusion. From these published works in in vitro and in vivo studies, simple O-substituted isoflavones could serve as promising therapeutic compounds for the prevention and treatment of cerebral ischemia reperfusion via their estrogenic receptor properties and neuron-modulatory, antioxidant, anti-inflammatory, and anti-apoptotic effects. The detailed mechanism of the protective effects of simple O-substituted isoflavones against cerebral ischemia reperfusion might be related to the PI3K/AKT/ERK/mTOR or GSK-3β pathway, eNOS/Keap1/Nrf-2/HO-1 pathway, TLRs/TIRAP/MyD88/NFκ-B pathway, and Bcl-2-regulated anti-apoptotic pathway. However, clinical trials are needed to verify their potential on cerebral ischemia reperfusion because past studies were conducted with rodents and prophylactic administration.
Collapse
|
46
|
Zhou Z, Li H, Wei R, Li D, Lu W, Weng Z, Yang Z, Guo Y, Lin Y, Chen H. RNA-seq reveals transcriptional differences in anthocyanin and vitamin biosynthetic pathways between black and white rice. Gene X 2022; 844:146845. [PMID: 36038026 DOI: 10.1016/j.gene.2022.146845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Anthocyanins and vitamins in black rice are the micronutrients vital to human health, both of which predominantly accumulate in the bran fraction. Some studies have demonstrated that black rice contains more vitamins compared with common white rice, indicating potential association between anthocyanin and vitamin accumulation. In this study, transcriptomes of pericarps collected from 27 black rice accessions and 49 white rice accessions at 10 days after flowering (DAF) were sequenced and analyzed. We identified 830 differentially expressed genes (DEGs) including 58 transcription factors (TFs) between black and white rice. Among 58 differentially expressed transcription factors, OsTTG1 was confirmed to be the one and only WD40 repeat protein regulating anthocyanin biosynthesis in the pericarp. Moreover, we identified 53 differentially expressed synthetic-related genes among 42 main synthesis enzymes in the biosynthesis pathway of seven vitamins including β-carotene, vitamin B1, vitamin B2, vitamin B5, vitamin B7, vitamin B9 and vitamin E. Collectively, our results provide valuable insights into the molecular mechanism of biosynthesis of anthocyanins and vitamins and the potential effect of anthocyanin biosynthesis on vitamin biosynthesis in black rice.
Collapse
Affiliation(s)
- Zaihui Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Han Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ruixue Wei
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dianwei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Lu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zijin Weng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zenan Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongmei Guo
- Food Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
47
|
Silencing of Dihydroflavonol 4-reductase in Chrysanthemum Ray Florets Enhances Flavonoid Biosynthesis and Antioxidant Capacity. PLANTS 2022; 11:plants11131681. [PMID: 35807633 PMCID: PMC9269342 DOI: 10.3390/plants11131681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 01/08/2023]
Abstract
Flavonoid biosynthesis requires the activities of several enzymes, which form weakly-bound, ordered protein complexes termed metabolons. To decipher flux regulation in the flavonoid biosynthetic pathway of chrysanthemum (Chrysanthemum morifolium Ramat), we suppressed the gene-encoding dihydroflavonol 4-reductase (DFR) through RNA interference (RNAi)-mediated post-transcriptional gene silencing under a floral-specific promoter. Transgenic CmDFR-RNAi chrysanthemum plants were obtained by Agrobacterium-mediated transformation. Genomic PCR analysis of CmDFR-RNAi chrysanthemums propagated by several rounds of stem cuttings verified stable transgene integration into the genome. CmDFR mRNA levels were reduced by 60–80% in CmDFR-RNAi lines compared to those in wild-type (WT) plants in ray florets, but not leaves. Additionally, transcript levels of flavonoid biosynthetic genes were highly upregulated in ray florets of CmDFR-RNAi chrysanthemum relative to those in WT plants, while transcript levels in leaves were similar to WT. Total flavonoid contents were high in ray florets of CmDFR-RNAi chrysanthemums, but flavonoid contents of leaves were similar to WT, consistent with transcript levels of flavonoid biosynthetic genes. Ray florets of CmDFR-RNAi chrysanthemums exhibited stronger antioxidant capacity than those of WT plants. We propose that post-transcriptional silencing of CmDFR in ray florets modifies metabolic flux, resulting in enhanced flavonoid content and antioxidant activity.
Collapse
|
48
|
Yu K, Dixon RA, Duan C. A role for ascorbate conjugates of (+)-catechin in proanthocyanidin polymerization. Nat Commun 2022; 13:3425. [PMID: 35701431 PMCID: PMC9197940 DOI: 10.1038/s41467-022-31153-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Proanthocyanidins (PAs) are natural polymers of flavan-3-ols, commonly (+)-catechin and (-)-epicatechin. However, exactly how PA oligomerization proceeds is poorly understood. Here we show, both biochemically and genetically, that ascorbate (AsA) is an alternative "starter unit" to flavan-3-ol monomers for leucocyanidin-derived (+)-catechin subunit extension in the Arabidopsis thaliana anthocyanidin synthase (ans) mutant. These (catechin)n:ascorbate conjugates (AsA-[C]n) also accumulate throughout the phase of active PA biosynthesis in wild-type grape flowers, berry skins and seeds. In the presence of (-)-epicatechin, AsA-[C]n can further provide monomeric or oligomeric PA extension units for non-enzymatic polymerization in vitro, and their role in vivo is inferred from analysis of relative metabolite levels in both Arabidopsis and grape. Our findings advance the knowledge of (+)-catechin-type PA extension and indicate that PA oligomerization does not necessarily proceed by sequential addition of a single extension unit. AsA-[C]n defines a new type of PA intermediate which we term "sub-PAs".
Collapse
Affiliation(s)
- Keji Yu
- grid.22935.3f0000 0004 0530 8290Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083 China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| | - Richard A. Dixon
- grid.266869.50000 0001 1008 957XBioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
| | - Changqing Duan
- grid.22935.3f0000 0004 0530 8290Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083 China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| |
Collapse
|
49
|
Dai M, Kang X, Wang Y, Huang S, Guo Y, Wang R, Chao N, Liu L. Functional Characterization of Flavanone 3-Hydroxylase (F3H) and Its Role in Anthocyanin and Flavonoid Biosynthesis in Mulberry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103341. [PMID: 35630816 PMCID: PMC9144561 DOI: 10.3390/molecules27103341] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022]
Abstract
Mulberry (Morus spp., Moraceae) is an important economic crop plant and is rich in flavonoids and anthocyanidins in ripe fruits. Anthocyanins are glycosides of anthocyanidins. Flavanone 3-hydroxylase (F3H) catalyzes the conversion of naringenin into dihydroflavonols and is responsible for the biosynthesis of flavonols and anthocyanidins. In this study, MazsF3H was cloned and characterized from Morus atropurpurea var. Zhongshen 1. Conserved motif analysis based on alignment and phylogenetic analysis indicated that MazsF3H belonged to 2-oxoglutarate-dependent dioxygenase and MazsF3H clustered with F3Hs from other plants. MazsF3H was located in both nucleus and cytosol. MazsF3H was expressed in stems, leaves, stigmas and ovaries, except buds. F3H expression levels showed a positive and close relationship with anthocyanin content during the anthocyanin-rich fruit ripening process, while it showed a negative correlation with anthocyanin content in LvShenZi, whose fruits are white and would not experience anthocyanin accumulation during fruit ripening. Significantly different F3H expression levels were also found in different mulberry varieties that have quite different anthocyanin contents in ripe fruits. Overexpression MazsF3H in tobacco showed unexpected results, including decreased anthocyanin content. Down-regulation of F3H expression levels resulted in co-expression of the genes involved in anthocyanin biosynthesis and a significant decrease in anthocyanin content, but the change in total flavonoid content was subtle. Our results indicated that F3H may play quite different roles in different varieties that have quite different fruit colors. In addition, possible complex regulation of flavonoid biosynthesis should be further explored in some of the featured plant species.
Collapse
Affiliation(s)
- Mingjie Dai
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (M.D.); (X.K.); (Y.W.); (S.H.); (Y.G.); (R.W.)
| | - Xiaoru Kang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (M.D.); (X.K.); (Y.W.); (S.H.); (Y.G.); (R.W.)
| | - Yuqiong Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (M.D.); (X.K.); (Y.W.); (S.H.); (Y.G.); (R.W.)
| | - Shuai Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (M.D.); (X.K.); (Y.W.); (S.H.); (Y.G.); (R.W.)
| | - Yangyang Guo
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (M.D.); (X.K.); (Y.W.); (S.H.); (Y.G.); (R.W.)
| | - Rufeng Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (M.D.); (X.K.); (Y.W.); (S.H.); (Y.G.); (R.W.)
| | - Nan Chao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (M.D.); (X.K.); (Y.W.); (S.H.); (Y.G.); (R.W.)
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
- Correspondence: (N.C.); (L.L.); Tel./Fax: +86-511-8561-6638 (L.L.)
| | - Li Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (M.D.); (X.K.); (Y.W.); (S.H.); (Y.G.); (R.W.)
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
- Correspondence: (N.C.); (L.L.); Tel./Fax: +86-511-8561-6638 (L.L.)
| |
Collapse
|
50
|
Yang J, Li H, Ma R, Chang Y, Qin X, Xu J, Fu Y. Genome-wide transcriptome analysis and characterization of the cytochrome P450 flavonoid biosynthesis genes in pigeon pea (Cajanus cajan). PLANTA 2022; 255:120. [PMID: 35538269 DOI: 10.1007/s00425-022-03896-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
226 CcCYP450 genes were identified at the genomic level and were classified into 45 clades based on phylogenetic analysis. CcCYP75B165 gene was found that might play important roles in the biosynthesis of flavonoids in pigeon pea, and was significantly induced by methyl jasmonate (MeJA). The cytochrome P450 mono-oxygenase (CYP450) superfamily plays a key role in the flavonoid biosynthesis pathway and resists different kinds of stresses. Several CYP450 genes have been identified to be involved in the biosynthesis of crop protection agents. However, the CcCYP450 genes from pigeon pea have not been identified. Here, 226 CcCYP450 genes were identified at the genomic level by analysing the gene structure, distribution on chromosomes, gene duplication, and conserved motifs and were classified into 45 clades based on phylogenetic analysis. RNA-seq analysis revealed clear details of CcCYP450 genes that varied with time of MeJA (methyl jasmonate) induction. Among them, six CcCYP450 subfamily genes were found that might play important roles in the biosynthesis of flavonoids in pigeon pea. The overexpression of CcCYP75B165 in pigeon pea significantly induced the accumulation of genistin and downregulated the contents of cajaninstilbene acid, apigenin, isovitexin, and genistein and the expression of flavonoid synthase genes. This study provides theoretical guidance and plant genetic resources for cultivating new pigeon pea varieties with high flavonoid contents and exploring the molecular mechanisms of the biosynthesis of flavonoids under MeJA treatment.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Hongquan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ruijin Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yuanhang Chang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xiangyu Qin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|