1
|
Buirs L, Punja ZK. Endophytes in Cannabis sativa: Identifying and Characterizing Microbes with Beneficial and Detrimental Effects on Plant Health. PLANTS (BASEL, SWITZERLAND) 2025; 14:1247. [PMID: 40284136 PMCID: PMC12030312 DOI: 10.3390/plants14081247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The roles of endophytes in Cannabis sativa (cannabis, hemp) remain poorly explored. While in vitro studies suggest that there can be several benefits, such as plant growth promotion and protection against pathogens, more in planta studies are needed. This review summarizes the bacterial and fungal endophytes previously reported in tissues of C. sativa and discusses the factors influencing their presence, as well as their potential beneficial and detrimental effects. Using genome sequencing and culture-based approaches, we describe the microbial diversity in hydroponically cultivated cannabis plants at several developmental stages. These include mother plants, cuttings, vegetative and flowering plants, and tissue-cultured plantlets. Microbes that were present include fungal, yeast, and bacterial endophytes found in roots, stems, leaves, inflorescences, and seeds. These may have originated from the growing substrate or be transmitted through vegetative propagation. Notable endophytes included Rhizophagus irregularis (a mycorrhizal fungus), Penicillium chrysogenum (an antibiotic producer), and various endophytic yeast species not previously described in C. sativa. Endophytes representing potential plant pathogens, such as Fusarium oxysporum, are also present within cannabis tissues, which can negatively impact plant health. Using scanning electron microscopy, we observed that fungal propagules are present within pith parenchyma cells and xylem vessel elements in stem tissues, illustrating for the first time the in situ localization and distribution of endophytes in cannabis vascular tissues. The mechanism of spread through xylem vessels likely contributes to the spread of endophytes within cannabis and hemp plants. Further research is required to validate the roles of endophytes in cannabis and hemp plants grown under commercial production conditions.
Collapse
Affiliation(s)
- Liam Buirs
- Pure Sunfarms Corp., Delta, BC V4K 3N3, Canada;
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
2
|
Abiri R, O’Reilly D, Jones AMP. Bottom Cooling During Culture Initiation Increases Survival and Reduces Hyperhydricity in Micropropagated Cannabis Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:886. [PMID: 40265814 PMCID: PMC11945952 DOI: 10.3390/plants14060886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 04/24/2025]
Abstract
Hyperhydricity is characterized by morphological abnormalities and reduced plant vigour. This study investigated the use of a bottom cooling system (creating an approximate 2 °C temperature differential) during culture initiation to evaluate the impact on hyperhydricity in cannabis micropropagation. Nodal explants from two clonal triploid cultivars known to exhibit hyperhydricity, Higher Education 1 (HED-1) and Higher Education 2 (HED-2), were surface sterilized and placed in culture tubes using standard methods. Treatments included bottom cooling, metal pads without bottom cooling, and standard shelving (controls-no pad). Various morphological and physiological traits were assessed, including a detached leave water loss assay, dry mass, chlorophyll content, and survival rate. Plants cultured with bottom cooling showed significantly higher survival rates, healthier appearance, and improved physiological parameters compared to controls. In contrast, many control explants were hyperhydric with translucent and brittle leaves. Quantitative data revealed significant improvements in fresh weight (54.84% for HED-1 and 51.42% for HED-2), dry weight (36% for HED-1 and 8% for HED-2), chlorophyll fluorescence ratios (7.24% for HED-1 and 9.18% for HED-2), chlorophyll content (18.38% for HED-1 and 20.67% for HED-2), and cuticle/stomate function (30% for HED-1 and 27.27% for HED-2) using bottom cooling. Moreover, our morphological observation showed that almost 85% of control plants were hyperhydric, whereas only 10% of the plants cultured with a bottom cooling system were hyperhydric. This study confirmed that bottom cooling helps reduce the rate and impacts of hyperhydricity in cannabis and significantly improves the survival and quality of in vitro plants.
Collapse
|
3
|
Liu S, Wang J, Jia W, Liao X, Zhang Y, Wang C. Prediction and Validation of New Targets of NNPCN in Inhibiting Rhizoctonia Solani Based on Molecular Docking, Dynamics, and Biotechnology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2853-2864. [PMID: 39849890 DOI: 10.1021/acs.jafc.4c10513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The antifungal targets of the new fungicide N-(naphthalen-1-yl)-phenazine-1-carboxamide (NNPCN) are still incomplete, limiting its application. To identify potential new targets of NNPCN and facilitate target hunting, a suite of techniques was employed to conduct experiments on Rhizoctonia solani. Nine potential targets were identified, exhibiting strong binding affinity to NNPCN, as indicated by binding free energies below -100.000 kJ/mol. Notably, pectin lyase, glycosyl hydrolase, fumarate transporter, and cytochrome monooxygenase showed exceptionally strong binding. The mRNA expression analysis revealed significant downregulation in certain target genes: E3 ubiquitin ligase (AG1IA_02506), aldehyde dehydrogenase (AG1IA_03762), fumarate transporter (AG1IA_03944), and pectin lyase (AG1IA_03046) decreased by 42%, 66%, 83%, and 69%, respectively, while other key genes were upregulated. Pectin lyase protein was obtained through prokaryotic expression at 0.4 mg/mL concentration. A novel thiobarbituric acid test system verified pectin lyase as a potential NNPCN target, with the enzyme activity multiple being only 0.169 after NNPCN treatment. These findings enhance our understanding of NNPCN's mode of action and could guide its improved application.
Collapse
Affiliation(s)
- Shuangqing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Junlin Wang
- Guiyang Plant Protection and Quarantine Station, Guiyang 424400, China
| | - Wenhui Jia
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xiaolan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Ya Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Baek Y, Grab H, Chen C. Postharvest Drying and Curing Affect Cannabinoid Contents and Microbial Levels in Industrial Hemp ( Cannabis sativa L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:414. [PMID: 39942976 PMCID: PMC11821007 DOI: 10.3390/plants14030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Postharvest operations affect the yield and quality of industrial hemp (Cannabis sativa L.). This study aimed to investigate the postharvest drying and curing effects on the key quality and safety indicators of cannabinoid-type hemp. Freshly harvested hemp inflorescence of Hempress and Wild Bourbon cultivars were dried by three methods: (1) Hot air drying at 75 °C; (2) Ambient air drying at 25 °C; and (3) Freeze drying. The dried hemp was then cured in sealed glass jars or mylar bags in dark conditions at ambient temperatures. The drying time, overall cannabinoid contents, decarboxylation level, color metrics and total aerobic loads were experimentally determined. Hot air drying can reduce the hemp moisture from 77% to safe-storage level of 6% within 8 h, and achieved up to 2-log reduction in the total yeast and mold counts. The drying time required for ambient air drying and freeze drying were 1 week and 24 h, respectively. Curing led to a 3.3% to 13.6% increase in hemp moisture, while the influence of curing method was not significant. Both drying and curing did not significantly affect the total cannabinoid contents, but resulted in decarboxylation, and reduction in the greenness. The findings suggested that hot air drying followed by glass jar curing is preferred for higher drying efficiency, better preservation of the cannabinoids and microbial safety.
Collapse
Affiliation(s)
- Yousoon Baek
- School of Integrated Plant Science, Horticulture Section, Cornell University, Ithaca, NY 14853, USA; (Y.B.); (H.G.)
| | - Heather Grab
- School of Integrated Plant Science, Horticulture Section, Cornell University, Ithaca, NY 14853, USA; (Y.B.); (H.G.)
| | - Chang Chen
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
5
|
Sorokin A, Kovalchuk I. Development of efficient and scalable regeneration tissue culture method for Cannabis sativa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112296. [PMID: 39427697 DOI: 10.1016/j.plantsci.2024.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Large scale production of uniform disease-free plants is crucial for Cannabis sativa biotechnology. Existing micropropagation protocols rely heavily on shoot multiplication from existing meristems via direct organogenesis. Such protocols do not allow multiplication of plant material through continuous sub-culturing. Protocols that use indirect regeneration are usually not efficient enough and have very low multiplication rates. In the present study, an efficient protocol that uses a combination of direct organogenesis and callogenesis to induce multiple shoot development cultures is developed. Callogenesis was induced from various explants cultured on the media having various combinations of thidiazuron (TDZ) and naphthaleneacetic acid (NAA); best callogenesis and shoot regeneration was achieved from hypocotyl explants cultured on TDZ 0.4 mg l-1 NAA 0.2 mg l-1. Hypocotyls with cotyledonary node and shoot apical meristem were significantly better for shoot regeneration than explants without it. Shoots obtained from multiple shoot cultures were successfully rooted and then acclimatized under greenhouse conditions to develop into adult cannabis plants.
Collapse
Affiliation(s)
- Aleksei Sorokin
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada.
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
6
|
Trono D. Cannabis sativa: From Plants to Humans. Int J Mol Sci 2024; 25:13288. [PMID: 39769053 PMCID: PMC11680015 DOI: 10.3390/ijms252413288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
This Special Issue aims to highlight some of the most recent developments in the study of Cannabis sativa by collecting contributions that range from studies on the crop and its interaction with the environment and pathogens to the pharmaceutical applications of cannabinoid-based drugs, also including the health risks associated with the consumption of C [...].
Collapse
Affiliation(s)
- Daniela Trono
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), S.S. 673, Meters 25200, 71122 Foggia, Italy
| |
Collapse
|
7
|
Rašić D, Zandona A, Katalinić M, Češi M, Kopjar N. Assessing the Potential Synergistic/Antagonistic Effects of Citrinin and Cannabidiol on SH-SY5Y, HepG2, HEK293 Cell Lines, and Human Lymphocytes. Toxins (Basel) 2024; 16:534. [PMID: 39728792 PMCID: PMC11679033 DOI: 10.3390/toxins16120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The increasing use of Cannabis sativa products for medicinal, dietary, and recreational purposes has raised concerns about mycotoxin contamination in cannabis and hemp. Mycotoxins persist in these products' post-processing, posing health risks via multiple exposure routes. This study investigated cytotoxic and genotoxic interactions between cannabidiol (CBD) and the mycotoxin citrinin (CIT) using human cell models: SH-SY5Y, HepG2, HEK293, and peripheral blood lymphocytes. IC50 values and membrane disruption were initially assessed, followed by an evaluation of genotoxicity in lymphocytes using the Comet Assay and Cytokinesis Blocked Micronucleus Cytome Assay. Obtained findings demonstrate that cell-type sensitivity varied across treatments, with combined CBD and CIT exposure exhibiting distinct interactions. Lactate dehydrogenase (LDH) release remained minimal, suggesting cytotoxicity did not stem from membrane disruption but likely involved intracellular pathways. In lymphocytes, CBD alone produced negligible cyto/genotoxic effects and weak antiproliferative responses, whereas CIT displayed clear toxic impacts. DNA damage indicates that CIT may induce genome instability through indirect mechanisms rather than direct DNA interaction, with evidence of potential aneuploidic effects from the CBMN Cyt Assay. Combined exposure led to a reduction in CIT-induced DNA and cytogenetic damage, suggesting CIT's potential interference with the beneficial properties of CBD. These results provide a foundation for further toxicological assessments and highlight the necessity of standardized mycotoxin monitoring in cannabis-derived products.
Collapse
Affiliation(s)
- Dubravka Rašić
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Antonio Zandona
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Maja Katalinić
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Martin Češi
- Independent Researcher, Kauzlarićev Prilaz 9, HR-10 000 Zagreb, Croatia;
| | - Nevenka Kopjar
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| |
Collapse
|
8
|
Cotter A, Dracatos P, Beddoe T, Johnson K. Isothermal Detection Methods for Fungal Pathogens in Closed Environment Agriculture. J Fungi (Basel) 2024; 10:851. [PMID: 39728347 DOI: 10.3390/jof10120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
Closed environment agriculture (CEA) is rapidly gaining traction as a sustainable option to meet global food demands while mitigating the impacts of climate change. Fungal pathogens represent a significant threat to crop productivity in CEA, where the controlled conditions can inadvertently foster their growth. Historically, the detection of pathogens has largely relied on the manual observation of signs and symptoms of disease in the crops. These approaches are challenging at large scale, time consuming, and often too late to limit crop loss. The emergence of fungicide resistance further complicates management strategies, necessitating the development of more effective diagnostic tools. Recent advancements in technology, particularly in molecular and isothermal diagnostics, offer promising tools for the early detection and management of fungal pathogens. Innovative detection methods have the potential to provide real-time results and enhance pathogen management in CEA systems. This review explores isothermal amplification and other new technologies in detection of fungal pathogens that occur in CEA.
Collapse
Affiliation(s)
- Aylwen Cotter
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Bundoora 3083, Australia
| | - Peter Dracatos
- La Trobe Institute for Sustainable Agriculture and Food, Department of Ecological, Plant and Animal Sciences, La Trobe University, Bundoora 3083, Australia
| | - Travis Beddoe
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Bundoora 3083, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Ecological, Plant and Animal Sciences, La Trobe University, Bundoora 3083, Australia
| | - Kim Johnson
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Bundoora 3083, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Ecological, Plant and Animal Sciences, La Trobe University, Bundoora 3083, Australia
| |
Collapse
|
9
|
Eidem T, Nordgren T, Hernandez M. Bioaerosol Exposures and Respiratory Diseases in Cannabis Workers. Curr Allergy Asthma Rep 2024; 24:395-406. [PMID: 38878249 PMCID: PMC11233357 DOI: 10.1007/s11882-024-01157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW This review investigates occupational inhalation hazards associated with biologically derived airborne particles (bioaerosols) generated in indoor cannabis cultivation and manufacturing facilities. RECENT FINDINGS Indoor cannabis production is growing across the US as are recent reports of respiratory diseases among cannabis workers, including occupational asthma morbidity and mortality. More information is needed to understand how bioaerosol exposure in cannabis facilities impacts worker health and occupational disease risk. Preliminary studies demonstrate a significant fraction of airborne particles in cannabis facilities are comprised of fungal spores, bacteria, and plant material, which may also contain hazardous microbial metabolites and allergens. These bioaerosols may pose pathogenic, allergenic, toxigenic, and pro-inflammatory risks to workers. The absence of multi-level, holistic bioaerosol research in cannabis work environments necessitates further characterization of the potential respiratory hazards and effective risk prevention methods to safeguard occupational health as the cannabis industry continues to expand across the US and beyond.
Collapse
Affiliation(s)
- Tess Eidem
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309-0428, US.
| | - Tara Nordgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523-1601, US
| | - Mark Hernandez
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309-0428, US
| |
Collapse
|
10
|
Liu C, Zhang L, Li H, He X, Dong J, Qiu B. Assessing the biodiversity of rhizosphere and endophytic fungi in Knoxia valerianoides under continuous cropping conditions. BMC Microbiol 2024; 24:195. [PMID: 38849736 PMCID: PMC11157913 DOI: 10.1186/s12866-024-03357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.
Collapse
Affiliation(s)
- Chunju Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Lei Zhang
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Heng Li
- R&D center of Yunnan Yuntianhua Co., Ltd, Kunming, 650228, China
| | - Xiahong He
- Southwest Forestry University, Kunming, 650244, China.
| | - Jiahong Dong
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Bin Qiu
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
11
|
Xu J, Knight T, Boone D, Saleem M, Finley SJ, Gauthier N, Ayariga JA, Akinrinlola R, Pulkoski M, Britt K, Tolosa T, Rosado-Rivera YI, Iddrisu I, Thweatt I, Li T, Zebelo S, Burrack H, Thiessen L, Hansen Z, Bernard E, Kuhar T, Samuel-Foo M, Ajayi OS. Influence of Fungicide Application on Rhizosphere Microbiota Structure and Microbial Secreted Enzymes in Diverse Cannabinoid-Rich Hemp Cultivars. Int J Mol Sci 2024; 25:5892. [PMID: 38892079 PMCID: PMC11172691 DOI: 10.3390/ijms25115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Microbes and enzymes play essential roles in soil and plant rhizosphere ecosystem functioning. However, fungicides and plant root secretions may impact the diversity and abundance of microbiota structure and enzymatic activities in the plant rhizosphere. In this study, we analyzed soil samples from the rhizosphere of four cannabinoid-rich hemp (Cannabis sativa) cultivars (Otto II, BaOx, Cherry Citrus, and Wife) subjected to three different treatments (natural infection, fungal inoculation, and fungicide treatment). DNA was extracted from the soil samples, 16S rDNA was sequenced, and data were analyzed for diversity and abundance among different fungicide treatments and hemp cultivars. Fungicide treatment significantly impacted the diversity and abundance of the hemp rhizosphere microbiota structure, and it substantially increased the abundance of the phyla Archaea and Rokubacteria. However, the abundances of the phyla Pseudomonadota and Gemmatimonadetes were substantially decreased in treatments with fungicides compared to those without fungicides in the four hemp cultivars. In addition, the diversity and abundance of the rhizosphere microbiota structure were influenced by hemp cultivars. The influence of Cherry Citrus on the diversity and abundance of the hemp rhizosphere microbiota structure was less compared to the other three hemp cultivars (Otto II, BaOx, and Wife). Moreover, fungicide treatment affected enzymatic activities in the hemp rhizosphere. The application of fungicides significantly decreased enzyme abundance in the rhizosphere of all four hemp cultivars. Enzymes such as dehydrogenase, dioxygenase, hydrolase, transferase, oxidase, carboxylase, and peptidase significantly decreased in all the four hemp rhizosphere treated with fungicides compared to those not treated. These enzymes may be involved in the function of metabolizing organic matter and degrading xenobiotics. The ecological significance of these findings lies in the recognition that fungicides impact enzymes, microbiota structure, and the overall ecosystem within the hemp rhizosphere.
Collapse
Affiliation(s)
- Junhuan Xu
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Tyson Knight
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Donchel Boone
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Sheree J. Finley
- Department of Physical and Forensic Sciences, Alabama State University, 915 S. Jackson Street, Montgomery, AL 36104, USA
| | - Nicole Gauthier
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, KY 40546, USA;
| | - Joseph A. Ayariga
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Rufus Akinrinlola
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Melissa Pulkoski
- Department of Crop Science, North Carolina State University, Raleigh, NC 27962, USA
| | - Kadie Britt
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, 220 Price Hall, Blacksburg, VA 24061, USA; (K.B.)
| | - Tigist Tolosa
- Department of Agriculture Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | | | - Ibrahim Iddrisu
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Ivy Thweatt
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Ting Li
- Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Simon Zebelo
- Department of Agriculture Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Hannah Burrack
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Lindsey Thiessen
- Department of Crop Science, North Carolina State University, Raleigh, NC 27962, USA
- USDA-APHIS-PPQ, Raleigh, NC 27606, USA
| | - Zachariah Hansen
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
- Emerging Pests and Pathogens Research Unit, USDA-ARS, 538 Tower Rd., Ithaca, NY 14850, USA
| | - Ernest Bernard
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Thomas Kuhar
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, 220 Price Hall, Blacksburg, VA 24061, USA; (K.B.)
| | - Michelle Samuel-Foo
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| |
Collapse
|
12
|
Lanzanova C, Giorni P, Bulla G, Locatelli S, Montanari M, Alberti I, Leni G, Abate A, Bertuzzi T. Investigation on the presence of mycotoxins in seed hemp varieties. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:400-409. [PMID: 38408274 DOI: 10.1080/19440049.2024.2311850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
In recent years, the cultivation of hemp (Cannabis sativa L.) in Europe has aroused interest among farmers for the potential market opportunities of its products; its cultivation has increased from 20,450 ha in 2015 to 33,020 ha in 2022. Thanks to the great versatility of this crop, there are opportunities in the food and nutraceutical fields (gluten free), cosmetics, energy and industrial sectors. As for several crops, hemp seeds may also be contaminated by fungal pathogens compromising its quality and safety. Considering the recent interest of consumers in using hemp for food purposes, in the present work, a small survey on mycotoxin contamination was carried out during 2018-2022 in hemp seed samples cultivated in Italy for food use. The results showed a limited occurrence of the most common regulated mycotoxins (aflatoxins [AFs], fumonisins [FBs], ochratoxin A [OTA], deoxynivalenol [DON] and zearalenone), but very high levels of alternariols, reaching a maximum value of 38510, 308, 226 and 288 ug/kg for tenuazonic acid [TeA], tentoxin [TEN], alternariol [AOH] and alternariol monoether, respectively. In the same period, an investigation carried out in an experimental field showed that fungal contamination and mycotoxin occurrence were influenced by different meteorological conditions and different varieties.
Collapse
Affiliation(s)
- Chiara Lanzanova
- CREA Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Paola Giorni
- Department of Sustainable Crop Production - DIPROVES, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giulia Bulla
- Department of Sustainable Crop Production - DIPROVES, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Sabrina Locatelli
- CREA Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Massimo Montanari
- CREA Research Centre for Cereal and Industrial Crops, Bologna, Italy
| | - Ilaria Alberti
- CREA Research Centre for Cereal and Industrial Crops, Rovigo, Italy
| | - Giulia Leni
- Department of Animal, Food and Nutrition Science - DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessio Abate
- Department of Animal, Food and Nutrition Science - DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Terenzio Bertuzzi
- Department of Animal, Food and Nutrition Science - DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
13
|
Alijani Mamaghani N, Masiello M, Somma S, Moretti A, Saremi H, Haidukowski M, Altomare C. Endophytic Alternaria and Fusarium species associated to potato plants ( Solanum tuberosum L.) in Iran and their capability to produce regulated and emerging mycotoxins. Heliyon 2024; 10:e26385. [PMID: 38434378 PMCID: PMC10907534 DOI: 10.1016/j.heliyon.2024.e26385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Endophytic fungi live inside virtually every plant species, without causing any apparent disease or damage to the host. Nevertheless, under particular conditions, mutualistic lifestyle of endophytes may change to pathogenic. In this study, the biodiversity of Alternaria and Fusarium species, the two most abundant endophytic fungi isolated from healthy potato plants in two climatically different regions of Iran, Ardebil in the north-west and Kerman in the south-east, was investigated. Seventy-five Fusarium strains and 83 Alternaria strains were molecularly characterized by multi-locus gene sequencing. Alternaria strains were characterized by the sequences of gpd and caM gene fragments and the phylogenetic tree was resolved in 3 well-separated clades. Seventy-three strains were included in the clade A, referred as Alternaria section, 6 strains were included in clade B, referred as Ulocladioides section, and 4 strains were included in clade C, referred as Infectoriae section. Fusarium strains, identified by sequencing the translation elongation factor 1α (tef1), β-tubulin (tub2) and internal transcribed spacer (ITS) genomic regions, were assigned to 13 species, viz. F. brachygibosum, F. clavum, F. equiseti, F. flocciferum, F. incarnatum, F. nirenbergiae, F. nygamai, F. oxysporum, F. proliferatum, F. redolens, F. sambucinum, F. solani and F. thapsinum. Twenty-six selected strains, representative of F. equiseti, F. nirenbergiae, F. oxysporum, F. nygamai, F. proliferatum, and F. sambucinum, were also tested for production of the mycotoxins deoxynivalenol (DON), nivalenol (NIV), diacetoxyscirpenol (DAS), T-2 toxin (T-2), beauvericin (BEA), enniatins (ENNs), fumonisins (FBs), fusaric acid (FA) and moniliformin (MON). None of the tested strains produced trichothecene toxins (DON, NIV, DAS and T-2). Two out of 2 F. equiseti isolates, 1/6 F. oxysporum, 1/3 F. proliferatum, and 1/9 F. nygamai did not produce any of the tested toxins; the rest of strains produced one or more BEA, ENNs, FBs, FA and MON toxins. The most toxigenic strain, F. nygamai ITEM-19012, produced the highest quantities of FBs (7946, 4693 and 4333 μg/g of B1, B2, and B3 respectively), along with the highest quantities of both BEA (4190 μg/g) and MON (538 μg/g). These findings suggest that contamination of potato tubers with mycotoxins in the field or at post-harvest, due to a change in lifestyle of endophytic microflora, should be carefully considered and furtherly investigated.
Collapse
Affiliation(s)
- Nasim Alijani Mamaghani
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 77871-31587, Karaj, Iran
| | - Mario Masiello
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Stefania Somma
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Hossein Saremi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 77871-31587, Karaj, Iran
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Claudio Altomare
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| |
Collapse
|
14
|
Buirs L, Punja ZK. Integrated Management of Pathogens and Microbes in Cannabis sativa L. (Cannabis) under Greenhouse Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:786. [PMID: 38592798 PMCID: PMC10974757 DOI: 10.3390/plants13060786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
The increased cultivation of high THC-containing Cannabis sativa L. (cannabis), particularly in greenhouses, has resulted in a greater incidence of diseases and molds that can negatively affect the growth and quality of the crop. Among them, the most important diseases are root rots (Fusarium and Pythium spp.), bud rot (Botrytis cinerea), powdery mildew (Golovinomyces ambrosiae), cannabis stunt disease (caused by hop latent viroid), and a range of microbes that reduce post-harvest quality. An integrated management approach to reduce the impact of these diseases/microbes requires combining different approaches that target the reproduction, spread, and survival of the associated pathogens, many of which can occur on the same plant simultaneously. These approaches will be discussed in the context of developing an integrated plan to manage the important pathogens of greenhouse-grown cannabis at different stages of plant development. These stages include the maintenance of stock plants, propagation through cuttings, vegetative growth of plants, and flowering. The cultivation of cannabis genotypes with tolerance or resistance to various pathogens is a very important approach, as well as the maintenance of pathogen-free stock plants. When combined with cultural approaches (sanitation, management of irrigation, and monitoring for diseases) and environmental approaches (greenhouse climate modification), a significant reduction in pathogen development and spread can be achieved. The use of preventive applications of microbial biological control agents and reduced-risk biorational products can also reduce disease development at all stages of production in jurisdictions where they are registered for use. The combined use of promising strategies for integrated disease management in cannabis plants during greenhouse production will be reviewed. Future areas for research are identified.
Collapse
Affiliation(s)
- Liam Buirs
- Pure Sunfarms Corp., Delta, BC V4K 3N3, Canada;
| | - Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
15
|
Su Z, Liu G, Li C, Liu X, Guo Q, Wang P, Dong L, Lu X, Zhao W, Zhang X, Qu Y, Zhang J, Mo S, Li S, Ma P. Establishment and application of quantitative detection of Bacillus velezensis HMB26553, a biocontrol agent against cotton damping-off caused by Rhizoctonia. Biotechnol J 2024; 19:e2300412. [PMID: 38375560 DOI: 10.1002/biot.202300412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024]
Abstract
A highly sensitive quantitative PCR (qPCR) method was developed for detection and quantification of Bacillus velezensis HMB26553 in cotton rhizosphere. The study aimed to develop a quantitative detection method for the strain HMB26553, and explore the relationship between its colonization of the cotton rhizosphere and its control effect. The whole genome sequence of strain HMB26553 was obtained by genome sequencing and a unique specific sequence pB-gene0026 on plasmid plaBV2 was identified by using high-throughput alignment against NCBI. Plasmid plaBV2 could be stably genetically inherited. Based on this sequence, specific primers for amplifying 106 bp and a minor groove binder (MGB) TaqMan probe for enhancing sensitivity were designed. The copy number of plaBV2 in strain HMB26553, which was 2, was confirmed by internal reference primers and the MGB TaqMan probe based on housekeeping gene gyrB. The established detection technique based on these primers and probes had high specificity and sensitivity compared to traditional plate counting method, with a detection limit of 1.5 copy genome. Using this method, the study discovered a likely correlation between the quantity of colonization in cotton rhizosphere and efficacy against cotton damping-off caused by Rhizoctonia after seed soaking and irrigation with strain HMB26553. Thus, this method provides scientific support for the rational application of strain HMB26553 in the future.
Collapse
Affiliation(s)
- Zhenhe Su
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Gaoge Liu
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Cong Li
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Xiaomeng Liu
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Qinggang Guo
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Peipei Wang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Lihong Dong
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Xiuyun Lu
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Weisong Zhao
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Xiaoyun Zhang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Yuanghang Qu
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Jiaqi Zhang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Shaojing Mo
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Shezeng Li
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Ping Ma
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| |
Collapse
|
16
|
Punja ZK, Kahl D, Reade R, Xiang Y, Munz J, Nachappa P. Challenges to Cannabis sativa Production from Pathogens and Microbes-The Role of Molecular Diagnostics and Bioinformatics. Int J Mol Sci 2023; 25:14. [PMID: 38203190 PMCID: PMC10779078 DOI: 10.3390/ijms25010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
The increased cultivation of Cannabis sativa L. in North America, represented by high Δ9-tetrahydrocannabinol-containing (high-THC) cannabis genotypes and low-THC-containing hemp genotypes, has been impacted by an increasing number of plant pathogens. These include fungi which destroy roots, stems, and leaves, in some cases causing a build-up of populations and mycotoxins in the inflorescences that can negatively impact quality. Viroids and viruses have also increased in prevalence and severity and can reduce plant growth and product quality. Rapid diagnosis of the occurrence and spread of these pathogens is critical. Techniques in the area of molecular diagnostics have been applied to study these pathogens in both cannabis and hemp. These include polymerase chain reaction (PCR)-based technologies, including RT-PCR, multiplex RT-PCR, RT-qPCR, and ddPCR, as well as whole-genome sequencing (NGS) and bioinformatics. In this study, examples of how these technologies have enhanced the rapidity and sensitivity of pathogen diagnosis on cannabis and hemp will be illustrated. These molecular tools have also enabled studies on the diversity and origins of specific pathogens, specifically viruses and viroids, and these will be illustrated. Comparative studies on the genomics and metabolomics of healthy and diseased plants are urgently needed to provide insight into their impact on the quality and composition of cannabis and hemp-derived products. Management of these pathogens will require monitoring of their spread and survival using the appropriate technologies to allow accurate detection, followed by appropriate implementation of disease control measures.
Collapse
Affiliation(s)
- Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Dieter Kahl
- Agriculture and Agri-Food Canada, Summerland Research and Development Center, Summerland, BC V5A 1S6, Canada; (D.K.); (R.R.); (Y.X.)
| | - Ron Reade
- Agriculture and Agri-Food Canada, Summerland Research and Development Center, Summerland, BC V5A 1S6, Canada; (D.K.); (R.R.); (Y.X.)
| | - Yu Xiang
- Agriculture and Agri-Food Canada, Summerland Research and Development Center, Summerland, BC V5A 1S6, Canada; (D.K.); (R.R.); (Y.X.)
| | - Jack Munz
- 3 Rivers Biotech, Coquitlam, BC V5A 1S6, Canada;
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523-1177, USA;
| |
Collapse
|
17
|
Gwinn KD, Leung MCK, Stephens AB, Punja ZK. Fungal and mycotoxin contaminants in cannabis and hemp flowers: implications for consumer health and directions for further research. Front Microbiol 2023; 14:1278189. [PMID: 37928692 PMCID: PMC10620813 DOI: 10.3389/fmicb.2023.1278189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Medicinal and recreational uses of Cannabis sativa, commonly known as cannabis or hemp, has increased following its legalization in certain regions of the world. Cannabis and hemp plants interact with a community of microbes (i.e., the phytobiome), which can influence various aspects of the host plant. The fungal composition of the C. sativa phytobiome (i.e., mycobiome) currently consists of over 100 species of fungi, which includes phytopathogens, epiphytes, and endophytes, This mycobiome has often been understudied in research aimed at evaluating the safety of cannabis products for humans. Medical research has historically focused instead on substance use and medicinal uses of the plant. Because several components of the mycobiome are reported to produce toxic secondary metabolites (i.e., mycotoxins) that can potentially affect the health of humans and animals and initiate opportunistic infections in immunocompromised patients, there is a need to determine the potential health risks that these contaminants could pose for consumers. This review discusses the mycobiome of cannabis and hemp flowers with a focus on plant-infecting and toxigenic fungi that are most commonly found and are of potential concern (e.g., Aspergillus, Penicillium, Fusarium, and Mucor spp.). We review current regulations for molds and mycotoxins worldwide and review assessment methods including culture-based assays, liquid chromatography, immuno-based technologies, and emerging technologies for these contaminants. We also discuss approaches to reduce fungal contaminants on cannabis and hemp and identify future research needs for contaminant detection, data dissemination, and management approaches. These approaches are designed to yield safer products for all consumers.
Collapse
Affiliation(s)
- Kimberly D. Gwinn
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Maxwell C. K. Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Ariell B. Stephens
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
18
|
Duvnjak T, Vrandecic K, Sudaric A, Cosic J, Siber T, Matosa Kocar M. First Report of Hemp Fusarium Wilt Caused by Fusarium oxysporum in Croatia. PLANTS (BASEL, SWITZERLAND) 2023; 12:3305. [PMID: 37765469 PMCID: PMC10537888 DOI: 10.3390/plants12183305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Wilted hemp (Cannabis sativa L.) plants were observed in August 2019 in commercial fields around Osijek, Croatia. Plants and roots with disease symptoms were collected. The single-spored isolates produced septate cottony white to light pink aerial mycelium and purple undersurface on potato dextrose agar (PDA). Smooth and hyaline hyphae were branched and septate. Macroconidia were fusiform to sickle-shaped with foot-shaped basal cells, elongated apical cells and three to five septa. Sequencing of the internal transcribed spacer and the partial elongation factor 1-α gene identified the species as Fusarium oxysporum. Artificial infection fulfills Koch's postulates, producing plants which show stunted growth and wilt symptoms similar to those observed in the commercial fields. Control seedlings remained symptomless and healthy. To the best of our knowledge, this is the first report of hemp Fusarium wilt causing F. oxysporum in Croatia. Considering that F. oxysporum has been reported in main field crops in Croatia, the presence of this pathogen could cause economically significant hemp production decreases, especially in humid and cold springs and susceptible varieties.
Collapse
Affiliation(s)
- Tomislav Duvnjak
- Department of Industrial Plants Breeding and Genetics, Agricultural Institute Osijek, 31000 Osijek, Croatia
| | - Karolina Vrandecic
- Department of Phytomedicine, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Aleksandra Sudaric
- Department of Industrial Plants Breeding and Genetics, Agricultural Institute Osijek, 31000 Osijek, Croatia
- Center of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Svetosimunska Cesta 25, 10000 Zagreb, Croatia
| | - Jasenka Cosic
- Department of Phytomedicine, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tamara Siber
- Department of Phytomedicine, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Maja Matosa Kocar
- Department of Industrial Plants Breeding and Genetics, Agricultural Institute Osijek, 31000 Osijek, Croatia
| |
Collapse
|
19
|
Dumigan CR, Maddock S, Bray-Stone D, Deyholos MK. Hybrid Genome Assembly of Berkeleyomyces rouxiae, an Emerging Cannabis Fungal Pathogen Causing Black Root Rot in an Aeroponic Facility. PLANT DISEASE 2023; 107:2679-2686. [PMID: 36774565 DOI: 10.1094/pdis-11-22-2690-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The resurged interest in cultivation of Cannabis sativa has presented an array of new challenges. Among them are the difficult-to-control pests and pathogens that infect cannabis plants. The limited methods for disease control available to cannabis growers necessitates early detection of plant pathogens, something that molecular techniques such as DNA sequencing has greatly improved. This study reports for the first time the fungal plant pathogen Berkeleyomyces rouxiae causing black root rot in high THC-containing cannabis. Aeroponically grown cannabis plants at a licenced production facility in Cranbrook BC, Canada, rapidly displayed root discoloration and rot symptoms despite testing negative for all commercially available pathogen tests. Developing sequencing-based disease diagnostics requires genomic information, so this study presents the first whole genome sequence of the multihost, widespread black root rot pathogen B. rouxiae. Hybrid genome assembly using Oxford Nanopore long-reads and Illumina short-reads yielded a genome size of 28.2 Mb represented over 404 contigs with an N50 of 267 kb. Genome annotation predicted 6,960 protein-coding genes with 59,477 functional annotations. The availability of this genome will assist in sequence-based diagnostic development, comparative genomics, and taxonomic resolution of this globally important plant pathogen.
Collapse
Affiliation(s)
- Christopher R Dumigan
- University of British Columbia Okanagan, Irving K. Barber Faculty of Science, Kelowna, British Columbia V1V 1V7, Canada
| | - Savanna Maddock
- University of British Columbia Okanagan, Irving K. Barber Faculty of Science, Kelowna, British Columbia V1V 1V7, Canada
| | | | - Michael K Deyholos
- University of British Columbia Okanagan, Irving K. Barber Faculty of Science, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
20
|
Sirangelo TM, Ludlow RA, Spadafora ND. Molecular Mechanisms Underlying Potential Pathogen Resistance in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:2764. [PMID: 37570918 PMCID: PMC10420965 DOI: 10.3390/plants12152764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Cannabis (Cannabis sativa L.) is one of the earliest cultivated crops, valued for producing a broad spectrum of compounds used in medicinal products and being a source of food and fibre. Despite the availability of its genome sequences, few studies explore the molecular mechanisms involved in pathogen defense, and the underlying biological pathways are poorly defined in places. Here, we provide an overview of Cannabis defence responses against common pathogens, such as Golovinomyces spp., Fusarium spp., Botrytis cinerea and Pythium spp. For each of these pathogens, after a summary of their characteristics and symptoms, we explore studies identifying genes involved in Cannabis resistance mechanisms. Many studies focus on the potential involvement of disease-resistance genes, while others refer to other plants however whose results may be of use for Cannabis research. Omics investigations allowing the identification of candidate defence genes are highlighted, and genome editing approaches to generate resistant Cannabis species based on CRISPR/Cas9 technology are discussed. According to the emerging results, a potential defence model including both immune and defence mechanisms in Cannabis plant-pathogen interactions is finally proposed. To our knowledge, this is the first review of the molecular mechanisms underlying pathogen resistance in Cannabis.
Collapse
Affiliation(s)
- Tiziana M. Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123 Rome, Italy
| | - Richard A. Ludlow
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK;
| | - Natasha D. Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
21
|
Punja ZK, Ni L, Lung S, Buirs L. Total yeast and mold levels in high THC-containing cannabis ( Cannabis sativa L.) inflorescences are influenced by genotype, environment, and pre-and post-harvest handling practices. Front Microbiol 2023; 14:1192035. [PMID: 37383630 PMCID: PMC10294073 DOI: 10.3389/fmicb.2023.1192035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
Total yeast and mold (TYM) levels in inflorescences of high THC-containing Cannabis sativa (cannabis) are regulated to ensure that medicinal and recreational users, especially those with immunocompromised systems, are not exposed to potentially harmful levels. In North America, the limits imposed range from 1,000-10,000 cfu/g of dried product to 50,000-100,000 cfu/g, depending on the jurisdiction. Factors affecting a build-up of TYM in cannabis inflorescences have not been previously researched. In this study, >2,000 fresh and dried samples were assayed for TYM over a 3-year period (2019-2022) to identify specific factors which can contribute to TYM levels. Greenhouse-grown inflorescences were sampled before and after commercial harvest, homogenized for 30 s, and plated onto potato dextrose agar (PDA) with 140 mg/L streptomycin sulfate. Colony-forming-units (cfu) were rated after 5 days of incubation at 23°C under 10-14 h light. PDA provided more consistent counts of cfu compared to Sabouraud dextrose and tryptic soy agars. The predominant fungal genera identified by PCR of the ITS1-5.8S-ITS2 region of rDNA were Penicillium, Aspergillus, Cladosporium, and Fusarium. In addition, four yeast genera were recovered. In total, 21 species of fungi and yeasts constituted the total cfu present in the inflorescences. The variables that significantly (p < 0.05) increased these TYM levels in inflorescences were: the genotype (strain) grown, presence of leaf litter in the greenhouse, harvesting activity by workers, genotypes with a higher abundance of stigmatic tissues and inflorescence leaves, higher temperature and relative humidity within the inflorescence microclimate, time of year (May-October), method of drying buds after harvest, and inadequate drying of buds. The variables which significantly (p < 0.05) decreased TYM in samples were: genotypes with lower numbers of inflorescence leaves, air circulation achieved by fans during inflorescence maturation, harvesting during November-April, hang-drying of entire inflorescence stems, and drying to a moisture content of 12-14% (water activity of 0.65-0.7) or lower which was inversely correlated with cfu levels. Under these conditions, the majority of dried commercial cannabis samples contained <1,000-5,000 cfu/g. Our findings indicate that TYM in cannabis inflorescences are the result of a dynamic interaction between genotype, environment, and post-harvest handling methods. Some of these factors may be altered by cannabis producers to reduce the potential build-up of these microbes. Among the 21 fungal and yeast species recovered from greenhouse-grown cannabis inflorescences, a few could pose a potential threat to human health, while many do not and they could provide beneficial interactions within the cannabis plant. The currently recommended plating methods onto agar media and enumeration of total cfu are unable to distinguish between these two groups.
Collapse
|
22
|
Sack C, Simpson C, Pacheco K. The Emerging Spectrum of Respiratory Diseases in the U.S. Cannabis Industry. Semin Respir Crit Care Med 2023; 44:405-414. [PMID: 37015286 PMCID: PMC10449032 DOI: 10.1055/s-0043-1766116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
While the cannabis industry is one of the fastest growing job markets in the United States and globally, relatively little is known about the occupational hazards that cannabis production workers face. Based on the closely related hemp industry and preliminary studies from recreational cannabis grow facilities, there is concern for significant respiratory exposures to bioaerosols containing microbial and plant allergens, chemicals such as pesticides, volatile organic compounds, and other irritant gases. Components of the cannabis plant have also recently been identified as allergenic and capable of inducing an immunoglobulin E-mediated response. Accumulating evidence indicates a spectrum of work-related respiratory diseases, particularly asthma and other allergic diseases. Disentangling causal relationships is difficult given the heterogeneity of mixed exposures, diagnostic challenges, and confounding by personal cannabis use. Despite and because of these uncertainties, better regulatory guidance and exposure controls need to be defined in order to reduce the risk of work-related disease.
Collapse
Affiliation(s)
- Coralynn Sack
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Christopher Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Karin Pacheco
- Department of Environmental and Occupational Health Sciences, National Jewish Hospital, Denver, CO
| |
Collapse
|
23
|
Suwanchaikasem P, Nie S, Idnurm A, Selby‐Pham J, Walker R, Boughton BA. Effects of chitin and chitosan on root growth, biochemical defense response and exudate proteome of Cannabis sativa. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:115-133. [PMID: 37362423 PMCID: PMC10290428 DOI: 10.1002/pei3.10106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 06/28/2023]
Abstract
Fungal pathogens pose a major threat to Cannabis sativa production, requiring safe and effective management procedures to control disease. Chitin and chitosan are natural molecules that elicit plant defense responses. Investigation of their effects on C. sativa will advance understanding of plant responses towards elicitors and provide a potential pathway to enhance plant resistance against diseases. Plants were grown in the in vitro Root-TRAPR system and treated with colloidal chitin and chitosan. Plant morphology was monitored, then plant tissues and exudates were collected for enzymatic activity assays, phytohormone quantification, qPCR analysis and proteomics profiling. Chitosan treatments showed increased total chitinase activity and expression of pathogenesis-related (PR) genes by 3-5 times in the root tissues. In the exudates, total peroxidase and chitinase activities and levels of defense proteins such as PR protein 1 and endochitinase 2 were increased. Shoot development was unaffected, but root development was inhibited after chitosan exposure. In contrast, chitin treatments had no significant impact on any defense parameters, including enzymatic activities, hormone quantities, gene expression levels and root secreted proteins. These results indicate that colloidal chitosan, significantly enhancing defense responses in C. sativa root system, could be used as a potential elicitor, particularly in hydroponic scenarios to manage crop diseases.
Collapse
Affiliation(s)
| | - Shuai Nie
- Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneMelbourneVictoria3052Australia
| | - Alexander Idnurm
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Jamie Selby‐Pham
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
- Cannabis and Biostimulants Research Group Pty LtdMelbourneVictoria3020Australia
| | - Robert Walker
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Berin A. Boughton
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
- Australian National Phenome CentreMurdoch UniversityPerthWestern Australia6150Australia
| |
Collapse
|
24
|
Punja ZK, Sutton DB, Kim T. Glandular trichome development, morphology, and maturation are influenced by plant age and genotype in high THC-containing cannabis (Cannabis sativa L.) inflorescences. J Cannabis Res 2023; 5:12. [PMID: 37016398 PMCID: PMC10071647 DOI: 10.1186/s42238-023-00178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/28/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Glandular capitate trichomes which form on bract tissues of female inflorescences of high THC-containing Cannabis sativa L. plants are important sources of terpenes and cannabinoids. The influence of plant age and cannabis genotype on capitate trichome development, morphology, and maturation has not been extensively studied. Knowledge of the various developmental changes that occur in trichomes over time and the influence of genotype and plant age on distribution, numbers, and morphological features should lead to a better understanding of cannabis quality and consistency. METHODS Bract tissues of two genotypes-"Moby Dick" and "Space Queen"-were examined from 3 weeks to 8 weeks of flower development using light and scanning electron microscopy. Numbers of capitate trichomes on upper and lower bract surfaces were recorded at different positions within the inflorescence. Observations on distribution, extent of stalk formation, glandular head diameter, production of resin, and extent of dehiscence and senescence were made at various time points. The effects of post-harvesting handling and drying on trichome morphology were examined in an additional five genotypes. RESULTS Two glandular trichome types-bulbous and capitate (sessile or stalked)-were observed. Capitate trichome numbers and stalk length were significantly (P = 0.05) greater in "Space Queen" compared to "Moby Dick" at 3 and 6 weeks of flower development. Significantly more stalked-capitate trichomes were present on lower compared to upper bract surfaces at 6 weeks in both genotypes, while sessile-capitate trichomes predominated at 3 weeks. Epidermal and hypodermal cells elongated to different extents during stalk formation, producing significant variation in length (from 20 to 1100 μm). Glandular heads ranged from 40 to 110 μm in diameter. Maturation of stalked-capitate glandular heads was accompanied by a brown color development, reduced UV autofluorescence, and head senescence and dehiscence. Secreted resinous material from glandular heads appeared as droplets on the cuticular surface that caused many heads to stick together or collapse. Trichome morphology was affected by the drying process. CONCLUSION Capitate trichome numbers, development, and degree of maturation were influenced by cannabis genotype and plant age. The observations of trichome development indicate that asynchronous formation leads to different stages of trichome maturity on bracts. Trichome stalk lengths also varied between the two genotypes selected for study as well as over time. The variability in developmental stage and maturation between genotypes can potentially lead to variation in total cannabinoid levels in final product. Post-harvest handling and drying were shown to affect trichome morphology.
Collapse
Affiliation(s)
- Zamir K Punja
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Darren B Sutton
- Department of Computing Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Tommy Kim
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
25
|
Willow J, Silva AI, Taning CNT, Smagghe G, Veromann E. Towards dsRNA-integrated protection of medical Cannabis crops: considering human safety, recent- and developing RNAi methods, and research inroads. PEST MANAGEMENT SCIENCE 2023; 79:1267-1272. [PMID: 36514999 DOI: 10.1002/ps.7323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Owing to the expanding industry of medical Cannabis, we discuss recent milestones in RNA interference (RNAi)-based crop protection research and development that are transferable to medical Cannabis cultivation. Recent and prospective increases in pest pressure in both indoor and outdoor Cannabis production systems, and the need for effective nonchemical pest control technologies (particularly crucial in the context of cultivating plants for medical purposes), are discussed. We support the idea that developing RNAi tactics towards protection of medical Cannabis could play a major role in maximizing success in this continuously expanding industry. However, there remain critical knowledge gaps, especially with regard to RNA pesticide biosafety from a human toxicological viewpoint, as a result of the medical context of Cannabis product use. Furthermore, efforts are needed to optimize transformation and micropropagation of Cannabis plants, examine cutting edge RNAi techniques for various Cannabis-pest scenarios, and investigate the combined application of RNAi- and biological control tactics in medical Cannabis cultivation. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Willow
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Ana I Silva
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eve Veromann
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
26
|
Fernández S, Castro R, López-Radcenco A, Rodriguez P, Carrera I, García-Carnelli C, Moyna G. Beyond cannabinoids: Application of NMR-based metabolomics for the assessment of Cannabis sativa L. crop health. FRONTIERS IN PLANT SCIENCE 2023; 14:1025932. [PMID: 37035042 PMCID: PMC10075229 DOI: 10.3389/fpls.2023.1025932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
While Cannabis sativa L. varieties have been traditionally characterized by their major cannabinoid profile, it is now well established that other plant metabolites can also have physiological effects, including minor cannabinoids, terpenes, and flavonoids. Given the multiple applications of cannabis in the medical field, it is therefore critical to characterize it according to its chemical composition (i.e., its metabolome) and not only its botanical traits. With this in mind, the cannabinoid and metabolomic profiles from inflorescences of two C. sativa varieties with either high Δ9-tetrahydrocannabinolic acid (THCA) or high cannabidiolic acid (CBDA) contents harvested at different times were studied. According to results from HPLC and NMR-based untargeted metabolomic analyses of organic and aqueous plant material extracts, we show that in addition to expected variations according to cannabinoid profiles, it is possible to distinguish between harvests of the same variety. In particular, it was possible to correlate variations in the metabolome with presence of powdery mildew, leading to the identification of molecular markers associated with this fungal infection in C. sativa.
Collapse
Affiliation(s)
- Santiago Fernández
- Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Rossina Castro
- Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Andrés López-Radcenco
- Laboratorio de Fisicoquímica Orgánica, Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Paula Rodriguez
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica and Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Inés Carrera
- Laboratorio de Experimentación Animal – Área Farmacología, Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Carlos García-Carnelli
- Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Guillermo Moyna
- Laboratorio de Fisicoquímica Orgánica, Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| |
Collapse
|
27
|
Hristeva T, Nikolov N, Nikolova V, Peeva S. Microbiome status of unregulated raw tobacco blends for hand-rolling cigarettes (RYO tobaccos). BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235801022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The research was conducted on 18 samples of RYO tobacco. The density (CFU/g a.d.s.) of three heterotrophic groups of microorganisms and some physical-chemical indicators were determined. The analyses were performed according to classic methods. Quantitative and qualitative changes at the microbiome as a result of disruption of homeostasis in microbial communities and development of secondary succession in the direction of intensive mineralization processes were found. Statistically significant correlation dependences with the physical-chemical parameters were registered. In addition to a potential risk in term of sanitary-hygiene and health aspects, the changes also have a negative impact on the consumer qualities of tobacco blends.
Collapse
|
28
|
Maidana L, de Souza M, Bracarense APFRL. Lactobacillus plantarum and Deoxynivalenol Detoxification: A Concise Review. J Food Prot 2022; 85:1815-1823. [PMID: 36173895 DOI: 10.4315/jfp-22-077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Mycotoxins are toxic secondary fungal metabolites that contaminate feeds, and their levels remain stable during feed processing. The economic impact of mycotoxins on animal production happens mainly due to losses related to direct effects on animal health and trade losses related to grain rejection. Deoxynivalenol (DON) is a trichothecene mycotoxin that has contaminated approximately 60% of the grains worldwide. Ingestion of DON induces many toxic effects on human and animal health. Detoxification strategies to decrease DON levels in food and feeds include physical and chemical methods; however, they are not very effective when incorporated into the industrial production process. A valuable alternative to achieve this aim is the use of lactic acid bacteria. These bacteria can control fungal growth and thus overcome DON production or can detoxify the mycotoxin through adsorption and biotransformation. Some Lactobacillus spp. strains, such as Lactobacillus plantarum, have demonstrated preventive effects against DON toxicity in poultry and swine. This beneficial effect is associated with a binding capacity of lactic acid bacteria cell wall peptidoglycan with mycotoxins. Moreover, several antifungal compounds have been isolated from L. plantarum supernatants, including lactic, acetic, caproic, phenyl lactic, 3-hydroxylated fatty, and cyclic dipeptide acids. Biotransformation of DON by L. plantarum into other products is also hypothesized, but the mechanism remains unknown. In this concise review, we highlight the use of L. plantarum as an alternative approach to reduce DON levels and toxicity. Although the action mechanism of L. plantarum is still not fully understood, these bacteria are a safe, efficient, and low-cost strategy to reduce economic losses from mycotoxin contamination cases. HIGHLIGHTS
Collapse
Affiliation(s)
- Leila Maidana
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil.,Department of Pathological Sciences, Veterinary Sciences Faculty, Universidad Nacional de Asunción, San Lorenzo, 111408, Paraguay
| | - Marielen de Souza
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| |
Collapse
|
29
|
Zarei A, Feyissa BA, Davis B, Tavakouli Dinani E. Cannabis Synthetic Seeds: An Alternative Approach for Commercial Scale of Clonal Propagation and Germplasm Conservation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3186. [PMID: 36501226 PMCID: PMC9738115 DOI: 10.3390/plants11233186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Indoor cannabis (Cannabis sativa) cultivation has been rapidly increasing in many countries after legalization. Besides conventional propagation through cuttings, synthetic seed production provides a competent system for mass propagation, germplasm conservation and international exchange of genetic materials. The present study developed a reliable protocol for cannabis synthetic seed production using encapsulation of nodal segments derived from in vitro or in vivo sources. Synthetic seeds were produced in 3% sodium alginate and 75 mM calcium chloride in Murashige and Skoog (MS) medium and stored under various environmental conditions for up to 150 days. The plantlets regrowth efficiency was monitored on culture media up to 30 days after the storage period. Regrowth rates of 70% and 90% were observed in synthetic seeds from in vitro and in vivo-derived sources, respectively, when stored in 6 °C under 50 μmol s-1 m-2 light for 150 days. Furthermore, addition of acetylsalicylic acid (ASA) to the encapsulation matrix not only postponed precocious germination of synthetic seeds at 22 °C, but also improved the regrowth rate of in vivo-derived synthetic seeds to 100% when they were stored in 6 °C under light. Exposure to light during storage significantly increased shoot length of regrown synseeds when compared to those stored in darkness. This difference in shoot growth disappeared when synseeds were treated with 25 µM ASA. All regenerated plantlets were rooted and acclimatized in sterile rockwool plugs without morphological changes.
Collapse
|
30
|
Quansah Amissah R. Ghana's preparedness to exploit the medicinal value of industrial hemp. J Cannabis Res 2022; 4:58. [PMID: 36329502 PMCID: PMC9632111 DOI: 10.1186/s42238-022-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Interest in industrial hemp is increasing steadily, as can be seen by the growing number of countries that have either decriminalized industrial hemp or are contemplating its decriminalization. In line with this trend, Ghana recently decriminalized the cultivation of industrial hemp (the cannabis variety with low Δ9-tetrahydrocannabinol (THC) and high cannabidiol (CBD) content), resulting in the need for research into its benefits to Ghanaians. This article examines cannabis (including industrial hemp) production, facilities for industrial hemp exploitation, and the potential benefits of industrial hemp in Ghana. MAIN BODY Indigenous cannabis strains in Ghana have high THC to CBD ratios suggesting the need for the government to purchase foreign hemp seeds, considering that the alternative will require significant research into decreasing the THC to CBD ratio of indigenous cannabis strains. Furthermore, there are several facilities within the country that could be leveraged for the production of medicinal hemp-based drugs, as well as the existence of a number of possible regulatory bodies in the country, suggesting the need for less capital. Research has also shown the potential for treatment of some medical conditions prevalent among Ghanaians using medicinal hemp-based products. These reasons suggest that the most feasible option may be for the government to invest in medicinal hemp. CONCLUSION Considering the challenges associated with the development of other hemp-based products, the availability of resources in the country for exploitation of medicinal hemp, and the potential benefits of hemp-based drugs to Ghanaians, investing in medicinal hemp may be the best option for the government of Ghana.
Collapse
Affiliation(s)
- Richard Quansah Amissah
- grid.34429.380000 0004 1936 8198Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
31
|
Danziger N, Bernstein N. Too Dense or Not Too Dense: Higher Planting Density Reduces Cannabinoid Uniformity but Increases Yield/Area in Drug-Type Medical Cannabis. FRONTIERS IN PLANT SCIENCE 2022; 13:713481. [PMID: 36247643 PMCID: PMC9559401 DOI: 10.3389/fpls.2022.713481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/15/2022] [Indexed: 06/16/2023]
Abstract
A major challenge for utilizing cannabis for modern medicine is the spatial variability of cannabinoids in the plant, which entail differences in medical potency. Since secondary metabolism is affected by environmental conditions, a key trigger for the variability in secondary metabolites throughout the plant is variation in local micro-climates. We have, therefore, hypothesized that plant density, which is well-known to alter micro-climate in the canopy, affects spatial standardization, and concentrations of cannabinoids in cannabis plants. Canopy density is affected by shoot architecture and by plant spacing, and we have therefore evaluated the interplay between plant architecture and plant density on the standardization of the cannabinoid profile in the plant. Four plant architecture modulation treatments were employed on a drug-type medicinal cannabis cultivar, under a density of 1 or 2 plants/m2. The plants were cultivated in a naturally lit greenhouse with photoperiodic light supplementation. Analysis of cannabinoid concentrations at five locations throughout the plant was used to evaluate treatment effects on chemical uniformity. The results revealed an effect of plant density on cannabinoid standardization, as well as an interaction between plant density and plant architecture on the standardization of cannabinoids, thus supporting the hypothesis. Increasing planting density from 1 to 2 plants/m2 reduced inflorescence yield/plant, but increased yield quantity per area by 28-44% in most plant architecture treatments. The chemical response to plant density and architecture modulation was cannabinoid-specific. Concentrations of cannabinoids in axillary inflorescences from the bottom of the plants were up to 90% lower than in the apical inflorescence at the top of the plant, considerably reducing plant uniformity. Concentrations of all detected cannabinoids in these inflorescences were lower at the higher density plants; however, cannabinoid yield per cultivation area was not affected by neither architecture nor density treatments. Cannabigerolic acid (CBGA) was the cannabinoid least affected by spatial location in the plant. The morpho-physiological response of the plants to high density involved enhanced leaf drying at the bottom of the plants, increased plant elongation, and reduced cannabinoid concentrations, suggesting an involvement of chronic light deprivation at the bottom of the plants. Therefore, most importantly, under high density growth, architectural modulating treatments that facilitate increased light penetration to the bottom of the plant such as "Defoliation", or that eliminated inflorescences development at the bottom of the plant such as removal of branches from the lower parts of the plant, increased chemical standardization. This study revealed the importance of plant density and architecture for chemical quality and standardization in drug-type medical cannabis.
Collapse
|
32
|
Dumigan CR, Deyholos MK. Cannabis Seedlings Inherit Seed-Borne Bioactive and Anti-Fungal Endophytic Bacilli. PLANTS (BASEL, SWITZERLAND) 2022; 11:2127. [PMID: 36015430 PMCID: PMC9415172 DOI: 10.3390/plants11162127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Throughout the hundreds of millions of years of co-evolution, plants and microorganisms have established intricate symbiotic and pathogenic relationships. Microbial communities associated with plants are in constant flux and can ultimately determine whether a plant will successfully reproduce or be destroyed by their environment. Inheritance of beneficial microorganisms is an adaptation plants can use to protect germinating seeds against biotic and abiotic stresses as seedlings develop. The interest in Cannabis as a modern crop requires research into effective biocontrol of common fungal pathogens, an area that has seen little research. This study examines the seed-borne endophytes present across 15 accessions of Cannabis grown to seed across Western Canada. Both hemp and marijuana seedlings inherited a closely related group of bioactive endophytic Bacilli. All Cannabis accessions possessed seed-inherited Paenibacillus mobilis with the capacity to solubilize mineral phosphate. Additionally, seeds were found to carry genera of fungal isolates known to be Cannabis pathogens and post-harvest molds: Alternaria, Penicillium, Cladosporium, Chaetomium, Aspergillus, Rhizopus, and Fusarium. Thirteen seed-borne endophytes showed antibiotic activity against Alternaria, Aspergillus, Penicillium, and Fusarium. This study suggests both fungal pathogens and bacterial endophytes that antagonize them are vectored across generations in Cannabis as they compete over this shared niche.
Collapse
|
33
|
Balthazar C, St-Onge R, Léger G, Lamarre SG, Joly DL, Filion M. Pyoluteorin and 2,4-diacetylphloroglucinol are major contributors to Pseudomonas protegens Pf-5 biocontrol against Botrytis cinerea in cannabis. Front Microbiol 2022; 13:945498. [PMID: 36016777 PMCID: PMC9395707 DOI: 10.3389/fmicb.2022.945498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas protegens Pf-5 is an effective biocontrol agent that protects many crops against pathogens, including the fungal pathogen Botrytis cinerea causing gray mold disease in Cannabis sativa crops. Previous studies have demonstrated the important role of antibiotics pyoluteorin (PLT) and 2,4-diacetylphloroglucinol (DAPG) in Pf-5-mediated biocontrol. To assess the potential involvement of PLT and DAPG in the biocontrol exerted by Pf-5 against B. cinerea in the phyllosphere of C. sativa, two knockout Pf-5 mutants were generated by in-frame deletion of genes pltD or phlA, required for the synthesis of PLT or DAPG respectively, using a two-step allelic exchange method. Additionally, two complemented mutants were constructed by introducing a multicopy plasmid carrying the deleted gene into each deletion mutant. In vitro confrontation assays revealed that deletion mutant ∆pltD inhibited B. cinerea growth significantly less than wild-type Pf-5, supporting antifungal activity of PLT. However, deletion mutant ∆phlA inhibited mycelial growth significantly more than the wild-type, hypothetically due to a co-regulation of PLT and DAPG biosynthesis pathways. Both complemented mutants recovered in vitro inhibition levels similar to that of the wild-type. In subsequent growth chamber inoculation trials, characterization of gray mold disease symptoms on infected cannabis plants revealed that both ∆pltD and ∆phlA significantly lost a part of their biocontrol capabilities, achieving only 10 and 19% disease reduction respectively, compared to 40% achieved by inoculation with the wild-type. Finally, both complemented mutants recovered biocontrol capabilities in planta similar to that of the wild-type. These results indicate that intact biosynthesis pathways for production of PLT and DAPG are required for the optimal antagonistic activity of P. protegens Pf-5 against B. cinerea in the cannabis phyllosphere.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Renée St-Onge
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Geneviève Léger
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Simon G. Lamarre
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - David L. Joly
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB, Canada
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Center, Saint-Jean-sur-Richelieu, QC, Canada
- *Correspondence: Martin Filion,
| |
Collapse
|
34
|
Milia A, Fruttuoso S, Mancini A, Riccobono E, Luise F, Sammicheli L, Rossolini GM, Pieralli F. "Smoke on the water": a challenging case of pneumonia. Intern Emerg Med 2022; 17:1439-1443. [PMID: 35006539 DOI: 10.1007/s11739-021-02925-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/30/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Alessandro Milia
- Internal Medicine and Intermediate Care Unit, Careggi University Hospital, Largo Brambilla, 3, 50134, Florence, Italy.
| | - Silvia Fruttuoso
- Internal Medicine and Intermediate Care Unit, Careggi University Hospital, Largo Brambilla, 3, 50134, Florence, Italy
| | - Antonio Mancini
- Internal Medicine and Intermediate Care Unit, Careggi University Hospital, Largo Brambilla, 3, 50134, Florence, Italy
| | - Eleonora Riccobono
- Clinical Microbiology and Virology Unit, Careggi University Hospital, Largo Brambilla, 3, 50134, Florence, Italy
| | - Fabio Luise
- Internal Medicine and Intermediate Care Unit, Careggi University Hospital, Largo Brambilla, 3, 50134, Florence, Italy
| | - Lucia Sammicheli
- Internal Medicine and Intermediate Care Unit, Careggi University Hospital, Largo Brambilla, 3, 50134, Florence, Italy
| | - Gian Maria Rossolini
- Clinical Microbiology and Virology Unit, Careggi University Hospital, Largo Brambilla, 3, 50134, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Filippo Pieralli
- Internal Medicine and Intermediate Care Unit, Careggi University Hospital, Largo Brambilla, 3, 50134, Florence, Italy
| |
Collapse
|
35
|
Katchman BA, Tomchaney M, Bueschel D, Ulrich P, Freeman S, O’Brian K, Eggers R, May M, Hogan M, Thompson W, Benzinger MJ, Bastin B. Independent Study for the Detectx Combined Assay for the Detection of Aspergillus, Salmonella, and STEC ( stx1 and/or 2) in Dried Cannabis Flower and Dried Hemp Flower: Level 3 Modification Study 012201. J AOAC Int 2022; 105:1105-1125. [DOI: 10.1093/jaoacint/qsac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Background
The PathogenDx family of assays uses microarray technology to simultaneously detect the presence of bacterial and fungal pathogens in food products, environmental surfaces, and cannabis products.
Objective
The Detectx Combined assay was validated for the detection of Aspergillus, (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Aspergillus terreus), Salmonella, and a broad range of STEC (stx1 and/or 2) species. The validation consisted of two matrix studies in dried hemp flower and dried cannabis flower (>0.3% delta-9 tetrahydrocannabinol) flower, product consistency, stability, robustness, and inclusivity and exclusivity for two targets: Aspergillus and STEC.
Method
The PathogenDx Detectx Combined assay was evaluated with 30 replicates in each matrix and confirmed according to the instructions outlined in this study.
Results
Results of the validation study met the requirements of AOAC Standard Method Performance Requirement (SMPR®) 2020.002 and 2020.012. In the inclusivity and exclusivity study, all target isolates (Aspergillus and STEC) were correctly detected. For the exclusivity study, 26 out of 30 Aspergillus and 30 out of 30 STEC non-target strains were correctly excluded. In the matrix study, the PathogenDx Detectx Combined assay showed no significant statistical differences between confirmed results for dried hemp and cannabis flower. Robustness testing indicated that small changes to the method parameters did not impact the performance of the assay. Stability and consistency studies verified that the assay’s shelf-life claims were appropriate, and manufacturing of the assay was consistent.
Conclusions
The validation study indicated that the PathogenDx DetectX Combined assay was successful in detection of the new target analytes (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Aspergillus terreus and STEC containing stx1 and/or 2) and could successfully recover these organisms and Salmonella from dried hemp flower and dried cannabis flower (>0.3% delta-9 tetrahydrocannabinol).
Highlights
The PathogenDx DetectX Combined Assay will be the first PTM approved multiplex assay for Aspergillus, E. coli and Salmonella that does not require an enrichment step.
Collapse
|
36
|
Analysis of Microbiological and Clinical Characteristics of Bacterial Infection in Patients with Pulmonary Infection. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5607358. [PMID: 35755768 PMCID: PMC9225854 DOI: 10.1155/2022/5607358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 01/06/2023]
Abstract
Objective Using data investigation, the microbiology of bacterial infection in patients with pulmonary infection was discussed, and its clinical characteristics were analyzed. Methods The clinical data of 160 patients with pulmonary infection in our hospital from March 2019 to March 2021 were collected and analyzed. Blood samples were collected and cultured, and the pathogens were identified. The distribution, constituent ratio, and drug resistance of pathogens in elderly patients with pulmonary infection were analyzed. Logistics regression analysis was adopted to analyze the risk factors of pulmonary infection. Results Of the 160 patients with pulmonary infection, 107 were males (66.88%) and 53 were females (33.13%). The age ranged from 12 to 97 years old, with an average of 63.82 ± 12.64 years old. Sevent-six patients (47.50%) were over 65 years old. Urban patients accounted for 71.88%, and rural patients accounted for 28.13%, of which workers accounted for 46.25%, and farmers and cadres each accounted for about 4%. 85.62% of smokers have smoked for more than 4 years. Eighty-five patients had chronic diseases such as coronary heart disease, hypertension, diabetes, and cerebrovascular disease. Heart failure occurred in 10.00%, old tuberculosis in 11.25%, and new tuberculosis in 5.63%. The average hospital stay of the patients was 14.93 days, and the improvement rate was 91.25%. Eleven patients died. Among the 160 patients with pulmonary infection, COPD, pneumonia, and lung cancer accounted for the highest proportions, and idiopathic pulmonary fibrosis, bronchitis dilatation, tuberculosis, and bronchial asthma also played an important role. Pathogenic bacteria were detected in 104 of the 160 elderly patients with pulmonary infection, and the detection rate was 65.00%. A total of 444 strains of pathogenic bacteria were detected, including 328 strains of Gram-negative bacteria (73.87%, mainly Klebsiella pneumoniae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Serratia marcescens), 28 strains of Gram-positive bacteria (6.30%, mainly Staphylococcus aureus), and 88 strains of fungi (20.00%, mainly Candida albicans). Regarding Klebsiella pneumoniae in elderly patients with pulmonary infection, the drug resistance rates were 59.72% for amoxicillin-clavulanate potassium, 52.78% for ampicillin sodium-sulbactam sodium, and 51.39% for cefazolin sodium. Regarding Pseudomonas aeruginosa, the drug resistance rates were 29.31% for ticarcillin sodium-potassium clavulanate, 27.59% for piperacillin sodium, and 24.14% for gentamicin. Regarding Stenotrophomonas maltophilia, the drug resistance rates were 79.55% for ceftazidime, 38.64% for chloramphenicol, and 31.82% for levofloxacin. Regarding Serratia marcescens, the drug resistance rates from high to low were 74.42% for cefotaxime, 72.09% for moxifloxacin, and 69.77% for gentamicin. Regarding Staphylococcus aureus in elderly patients with pulmonary infection, the drug resistance rates were 100.00% for penicillin, 61.54% for erythromycin, 61.54% for clarithromycin, and 61.54% for azithromycin. Regarding Candida albicans, the drug resistance rates from high to low were 22.41% for caspofungin, 15.52% for itraconazole, and 9.09% for fluconazole. The results of univariate analysis of pulmonary bacterial infection indicated that there were no significant differences in sex and body mass index between nonbacterial infection group and bacterial infection group (P > 0.05). There were significant differences in terms of dust or harmful gas exposure, family member smoking, chronic lung disease history, age, smoking, family cooking, hospital stay, and indwelling catheter (P < 0.05). Exposure to dust or harmful gases, family cooking, age, history of chronic lung disease, indwelling catheter, and length of hospital stay were risk factors for pulmonary bacterial infection (P < 0.05). Conclusion Gram-negative bacteria are the main pathogens in elderly patients with pulmonary infection. Antibiotics should be administered reasonably according to the results of the drug sensitivity test. Older age, history of chronic lung disease, catheter indwelling, and length of stay are the risk factors for pulmonary bacterial infection.
Collapse
|
37
|
Pollard-Flamand J, Boulé J, Hart M, Úrbez-Torres JR. Biocontrol Activity of Trichoderma Species Isolated from Grapevines in British Columbia against Botryosphaeria Dieback Fungal Pathogens. J Fungi (Basel) 2022; 8:409. [PMID: 35448640 PMCID: PMC9030288 DOI: 10.3390/jof8040409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
Botryosphaeria dieback (BD) is a grapevine trunk disease (GTD) causing significant yield losses and limiting the lifespan of vineyards worldwide. Fungi responsible for BD infect grapevines primarily through pruning wounds, and thus pruning wound protection, using either synthetic chemicals or biological control agents (BCAs), is the main available management strategy. However, no products to control GTDs are currently registered in Canada. With a focus on more sustainable grapevine production, there is an increasing demand for alternatives to chemical products to manage GTDs. Accordingly, the objective of this study was to identify Trichoderma species from grapevines in British Columbia (BC) and evaluate their potential biocontrol activity against BD fungi Diplodia seriata and Neofusicoccum parvum. Phylogenetic analyses identified seven species, including T. asperelloides, T. atroviride, T. harzianum, T. koningii, T. tomentosum, and two novel species, T. canadense and T. viticola. In vitro dual culture antagonistic assays showed several isolates to inhibit fungal pathogen mycelial growth by up to 75%. In planta detached cane assays under controlled greenhouse conditions identified T. asperelloides, T. atroviride and T. canadense isolates from BC as providing 70% to 100% pruning wound protection against BD fungi for up to 21 days after treatment. In addition, these isolates were shown to provide similar or better control when compared against commercial chemical and biocontrol products. This study demonstrates the potential that locally sourced Trichoderma species can have for pruning wound protection against BD fungi, and further supports the evaluation of these isolates under natural field conditions.
Collapse
Affiliation(s)
- Jinxz Pollard-Flamand
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada; (J.P.-F.); (J.B.)
- Department of Biology, The University of British Columbia Okanagan, 3187 University Way, Kelowna, BC V1V 1V7, Canada;
| | - Julie Boulé
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada; (J.P.-F.); (J.B.)
| | - Miranda Hart
- Department of Biology, The University of British Columbia Okanagan, 3187 University Way, Kelowna, BC V1V 1V7, Canada;
| | - José Ramón Úrbez-Torres
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada; (J.P.-F.); (J.B.)
| |
Collapse
|
38
|
Suwanchaikasem P, Idnurm A, Selby-Pham J, Walker R, Boughton BA. Root-TRAPR: a modular plant growth device to visualize root development and monitor growth parameters, as applied to an elicitor response of Cannabis sativa. PLANT METHODS 2022; 18:46. [PMID: 35397608 PMCID: PMC8994333 DOI: 10.1186/s13007-022-00875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/14/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant growth devices, for example, rhizoponics, rhizoboxes, and ecosystem fabrication (EcoFAB), have been developed to facilitate studies of plant root morphology and plant-microbe interactions in controlled laboratory settings. However, several of these designs are suitable only for studying small model plants such as Arabidopsis thaliana and Brachypodium distachyon and therefore require modification to be extended to larger plant species like crop plants. In addition, specific tools and technical skills needed for fabricating these devices may not be available to researchers. Hence, this study aimed to establish an alternative protocol to generate a larger, modular and reusable plant growth device based on different available resources. RESULTS Root-TRAPR (Root-Transparent, Reusable, Affordable three-dimensional Printed Rhizo-hydroponic) system was successfully developed. It consists of two main parts, an internal root growth chamber and an external structural frame. The internal root growth chamber comprises a polydimethylsiloxane (PDMS) gasket, microscope slide and acrylic sheet, while the external frame is printed from a three-dimensional (3D) printer and secured with nylon screws. To test the efficiency and applicability of the system, industrial hemp (Cannabis sativa) was grown with or without exposure to chitosan, a well-known plant elicitor used for stimulating plant defense. Plant root morphology was detected in the system, and plant tissues were easily collected and processed to examine plant biological responses. Upon chitosan treatment, chitinase and peroxidase activities increased in root tissues (1.7- and 2.3-fold, respectively) and exudates (7.2- and 21.6-fold, respectively). In addition, root to shoot ratio of phytohormone contents were increased in response to chitosan. Within 2 weeks of observation, hemp plants exhibited dwarf growth in the Root-TRAPR system, easing plant handling and allowing increased replication under limited growing space. CONCLUSION The Root-TRAPR system facilitates the exploration of root morphology and root exudate of C. sativa under controlled conditions and at a smaller scale. The device is easy to fabricate and applicable for investigating plant responses toward elicitor challenge. In addition, this fabrication protocol is adaptable to study other plants and can be applied to investigate plant physiology in different biological contexts, such as plant responses against biotic and abiotic stresses.
Collapse
Affiliation(s)
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jamie Selby-Pham
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Nutrifield Pty Ltd, Melbourne, VIC, 3020, Australia
| | - Robert Walker
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Berin A Boughton
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Australian National Phenome Centre, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
39
|
AL Ubeed HMS, Wills RBH, Chandrapala J. Post-Harvest Operations to Generate High-Quality Medicinal Cannabis Products: A Systemic Review. Molecules 2022; 27:1719. [PMID: 35268820 PMCID: PMC8911901 DOI: 10.3390/molecules27051719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/30/2023] Open
Abstract
The traditional Cannabis plant as a medicinal crop has been explored for many thousands of years. The Cannabis industry is rapidly growing; therefore, optimising drying methods and producing high-quality medical products have been a hot topic in recent years. We systemically analysed the current literature and drew a critical summary of the drying methods implemented thus far to preserve the quality of bioactive compounds from medicinal Cannabis. Different drying techniques have been one of the focal points during the post-harvesting operations, as drying preserves these Cannabis products with increased shelf life. We followed or even highlighted the most popular methods used. Drying methods have advanced from traditional hot air and oven drying methods to microwave-assisted hot air drying or freeze-drying. In this review, traditional and modern drying technologies are reviewed. Each technology will have different pros and cons of its own. Moreover, this review outlines the quality of the Cannabis plant component harvested plays a major role in drying efficiency and preserving the chemical constituents. The emergence of medical Cannabis, and cannabinoid research requires optimal post-harvesting processes for different Cannabis strains. We proposed the most suitable method for drying medicinal Cannabis to produce consistent, reliable and potent medicinal Cannabis. In addition, drying temperature, rate of drying, mode and storage conditions after drying influenced the Cannabis component retention and quality.
Collapse
Affiliation(s)
- Hebah Muhsien Sabiah AL Ubeed
- School of Science, College of Sciences, Engineering, Computing Technologies and Health and Medical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia;
| | - Ronald B. H. Wills
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia;
| | - Jayani Chandrapala
- School of Science, College of Sciences, Engineering, Computing Technologies and Health and Medical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia;
| |
Collapse
|
40
|
Balthazar C, Novinscak A, Cantin G, Joly DL, Filion M. Biocontrol Activity of Bacillus spp. and Pseudomonas spp. Against Botrytis cinerea and Other Cannabis Fungal Pathogens. PHYTOPATHOLOGY 2022; 112:549-560. [PMID: 34293909 DOI: 10.1094/phyto-03-21-0128-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gray mold caused by Botrytis cinerea is one of the most widespread and damaging diseases in cannabis crops worldwide. With challenging restrictions on pesticide use and few effective control measures, biocontrol agents are needed to manage this disease. The aim of this study was to identify bacterial biocontrol agents with wide-spectrum activity against B. cinerea and other cannabis fungal pathogens. Twelve Bacillus and Pseudomonas strains were first screened with in vitro confrontational assays against 10 culturable cannabis pathogens, namely B. cinerea, Sclerotinia sclerotiorum, Fusarium culmorum, F. sporotrichoides, F. oxysporum, Nigrospora sphaerica, N. oryzae, Alternaria alternata, Phoma sp., and Cercospora sp. Six strains displaying the highest inhibitory activity, namely Bacillus velezensis LBUM279, FZB42, LBUM1082, Bacillus subtilis LBUM979, P. synxantha LBUM223, and P. protegens Pf-5, were further assessed in planta where all, except LBUM223, significantly controlled gray mold development on cannabis leaves. Notably, LBUM279 and FZB42 reduced disease severity by at least half compared with water-treated plants and prevented lesion development and/or sporulation up to 9 days after pathogen inoculation. Genomes of LBUM279, LBUM1082, and LBUM979 were sequenced de novo and taxonomic affiliations were determined to ensure nonrelatedness with pathogenic strains. Moreover, the genomes were exempt of detrimental genes encoding major toxins and virulence factors that could otherwise pose a biosafety risk when used on crops. Eighteen gene clusters of potential biocontrol interest were also identified. To our knowledge, this is the first reported attempt to control cannabis fungal diseases in planta by direct antagonism with beneficial bacteria.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Gabrielle Cantin
- Institute of Health and Life Sciences, Collège La Cité, Ottawa, ON K1K 4R3, Canada
| | - David L Joly
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Saint-Jean-sur-Richelieu Research and Development Center, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
41
|
Welch G, Sabour A, Patel K, Leuthner K, Saquib SF, Medina-Garcia L. Invasive cutaneous mucormycosis: A case report on a deadly complication of a severe burn. IDCases 2022; 30:e01613. [PMID: 36131803 PMCID: PMC9483795 DOI: 10.1016/j.idcr.2022.e01613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022] Open
Abstract
A 38 year old woman presented with burns totaling 45 % total body surface area, following an explosion resulting from manufacturing cannabis wax. Initial debridement, was delayed to hospital day 7 due to hemodynamic instability. Over the course of her, hospitalization, she required multiple debridements and grafting to her lower, extremities; grafted tissue never survived longer than 72 h. Her bilateral lower, extremities began to exhibit visible mold growth. She underwent repeated, debridements down to vitalized tissue only for recurrent necrosis and mold growth to, occur. She underwent serial amputations eventually reaching the level of her midthigh, At this point her clinical condition deteriorated further resulting in multiorgan failure., Ultimately family made the decision to remove her from life support, and she expired, within a few hours. Postmortem analysis identified Rhizopus spp, Fusarium spp, and, Geotrichum candidum. Mucormycosis species are a frequent infector of Cannabis, sativa, which our patient was working with in the inciting explosion. Cutaneous, mucormycosis is a documented but rare manifestation. We propose that the patient's, relatively young age, severity of burns, and exposure to cannabis plants resulted in this, unusual presentation
Collapse
|
42
|
Hamilton L, Klavins A, Malherbe R, Youngblood J, Ito Y, Hsiung A. OUP accepted manuscript. J AOAC Int 2022; 105:1663-1670. [PMID: 35543475 DOI: 10.1093/jaoacint/qsac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Lauren Hamilton
- Technical Services, Hardy Diagnostics, 1430 West McCoy Lane, Santa Maria, CA 93455, USA
| | - Anna Klavins
- Technical Services, Hardy Diagnostics, 1430 West McCoy Lane, Santa Maria, CA 93455, USA
| | - Rianna Malherbe
- Technical Services, Hardy Diagnostics, 1430 West McCoy Lane, Santa Maria, CA 93455, USA
| | - Jessa Youngblood
- Marketing, Hardy Diagnostics, 1430 West McCoy Lane, Santa Maria, CA 93455, USA
| | - Yusuke Ito
- International Sales, Nissui Pharmaceutical Co. Ltd., 3-24-6, Ueno, Taito-ku, Tokyo 110-0005, Japan
| | - Andre Hsiung
- Chief Scientific Officer, Hardy Diagnostics, 1430 West McCoy Lane, Santa Maria, CA 93455, USA
| |
Collapse
|
43
|
Goldman S, Bramante J, Vrdoljak G, Guo W, Wang Y, Marjanovic O, Orlowicz S, Di Lorenzo R, Noestheden M. The analytical landscape of cannabis compliance testing. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1996390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Julia Bramante
- Cannabis Sciences Program, Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Gordon Vrdoljak
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Weihong Guo
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Yun Wang
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Olivera Marjanovic
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | | | | | - Matthew Noestheden
- SCIEX, Concord, Canada
- Department of Chemistry, University of British Columbia Okanagan, Kelowna, Canada
| |
Collapse
|
44
|
Carlson CH, Stack GM, Jiang Y, Taşkıran B, Cala AR, Toth JA, Philippe G, Rose JKC, Smart CD, Smart LB. Morphometric relationships and their contribution to biomass and cannabinoid yield in hybrids of hemp (Cannabis sativa). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7694-7709. [PMID: 34286838 PMCID: PMC8643699 DOI: 10.1093/jxb/erab346] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The breeding of hybrid cultivars of hemp (Cannabis sativa L.) is not well described, especially the segregation and inheritance of traits that are important for yield. A total of 23 families were produced from genetically diverse parents to investigate the inheritance of morphological traits and their association with biomass accumulation and cannabinoid yield. In addition, a novel classification method for canopy architecture was developed. The strong linear relationship between wet and dry biomass provided an accurate estimate of final dry stripped floral biomass. Of all field and aerial measurements, basal stem diameter was determined to be the single best selection criterion for final dry stripped floral biomass yield. Along with stem diameter, canopy architecture and stem growth predictors described the majority of the explainable variation of biomass yield. Within-family variance for morphological and cannabinoid measurements reflected the heterozygosity of the parents. While selfed populations suffered from inbreeding depression, hybrid development in hemp will require at least one inbred parent to achieve uniform growth and biomass yield. Nevertheless, floral phenology remains a confounding factor in selection because of its underlying influence on biomass production, highlighting the need to understand the genetic basis for flowering time in the breeding of uniform cultivars.
Collapse
Affiliation(s)
- Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - George M Stack
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - Yu Jiang
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - Bircan Taşkıran
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - Ali R Cala
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY,USA
| | - Jacob A Toth
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - Glenn Philippe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY,USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| |
Collapse
|
45
|
Slosse A, Van Durme F, Samyn N, Mangelings D, Vander Heyden Y. Gas Chromatographic Fingerprint Analysis for the Comparison of Seized Cannabis Samples. Molecules 2021; 26:6643. [PMID: 34771050 PMCID: PMC8587667 DOI: 10.3390/molecules26216643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022] Open
Abstract
Cannabis sativa L. is widely used as recreational illegal drugs. Illicit Cannabis profiling, comparing seized samples, is challenging due to natural Cannabis heterogeneity. The aim of this study was to use GC-FID and GC-MS herbal fingerprints for intra (within)- and inter (between)-location variability evaluation. This study focused on finding an acceptable threshold to link seized samples. Through Pearson correlation-coefficient calculations between intra-location samples, 'linked' thresholds were derived using 95% and 99% confidence limits. False negative (FN) and false positive (FP) error rate calculations, aiming at obtaining the lowest possible FP value, were performed for different data pre-treatments. Fingerprint-alignment parameters were optimized using Automated Correlation-Optimized Warping (ACOW) or Design of Experiments (DoE), which presented similar results. Hence, ACOW data, as reference, showed 54% and 65% FP values (95 and 99% confidence, respectively). An additional fourth root normalization pre-treatment provided the best results for both the GC-FID and GC-MS datasets. For GC-FID, which showed the best improved FP error rate, 54 and 65% FP for the reference data decreased to 24 and 32%, respectively, after fourth root transformation. Cross-validation showed FP values similar as the entire calibration set, indicating the representativeness of the thresholds. A noteworthy improvement in discrimination between seized Cannabis samples could be concluded.
Collapse
Affiliation(s)
- Amorn Slosse
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, B-1120 Brussels, Belgium; (A.S.); (F.V.D.); (N.S.)
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium;
| | - Filip Van Durme
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, B-1120 Brussels, Belgium; (A.S.); (F.V.D.); (N.S.)
| | - Nele Samyn
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, B-1120 Brussels, Belgium; (A.S.); (F.V.D.); (N.S.)
| | - Debby Mangelings
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium;
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium;
| |
Collapse
|
46
|
EFSA Panel on Plant Health (PLH), Bragard C, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Migheli Q, Vloutoglou I, Campese C, Czwienczek E, Maiorano A, Streissl F, Reignault PL. Pest categorisation of Fusarium brachygibbosum. EFSA J 2021; 19:e06887. [PMID: 34804234 PMCID: PMC8590089 DOI: 10.2903/j.efsa.2021.6887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The EFSA Plant Health Panel performed a pest categorisation of Fusarium brachygibbosum Padwick. F. brachygibbosum is a well-characterised fungal plant pathogen with opportunistic behaviour, mostly isolated along with other fungal pathogens in symptomatic hosts. It has been reported from Africa, America, Asia and Oceania where it is has been associated with a wide range of symptoms on approximately 25 cultivated and non-cultivated plant species. The pathogen has been reported in Italy in soil/marine sediments and in quinoa (Chenopodium quinoa) and durum wheat (Triticum turgidum subsp. durum) seeds. The pathogen is not included in the EU Commission Implementing Regulation 2019/2072. This pest categorisation focused on a selected range of host plant species on which F. brachygibbosum fulfilled Koch's postulates and was formally identified by multilocus gene sequencing analysis. Host plants for planting, seed of host plants and soil and other substrates originating in infested third countries are main pathways for the entry of the pathogen into the EU. There are no reports of interceptions of F. brachygibbosum in the EU. Host availability and climate suitability factors occurring in the EU are favourable for the establishment of the pathogen in Member States (MSs). Phytosanitary measures are available to prevent the introduction of the pathogen into the EU. Additional measures are available to mitigate the risk of entry and spread of the pathogen in the EU. Despite the low aggressiveness observed in some reported hosts, it has been shown that, in the areas of its present distribution, the pathogen has a direct impact on certain hosts (e.g. almond, onion, soybean, tobacco) that are also relevant for the EU. The Panel concludes that F. brachygibbosum satisfies all the criteria to be regarded as a potential Union quarantine pest. However, high uncertainty remains regarding the distribution of the pathogen in the EU and some uncertainty exists about its potential impact in the EU. Specific surveys and re-evaluation of Fusarium isolates in culture collections could reduce these uncertainties.
Collapse
|
47
|
Wei G, Ning K, Zhang G, Yu H, Yang S, Dai F, Dong L, Chen S. Compartment Niche Shapes the Assembly and Network of Cannabis sativa-Associated Microbiome. Front Microbiol 2021; 12:714993. [PMID: 34675893 PMCID: PMC8524047 DOI: 10.3389/fmicb.2021.714993] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Interactions between plants and microbes may promote the growth of plants and regulate the production of secondary metabolites. Hemp (Cannabis sativa) is an annual herb and an important commercial crop. However, the assembly and network of hemp-associated microbiomes inhabiting in soil and plant compartments have not been comprehensively understood. This work investigated the assembly and network of bacterial and fungal communities living in soils (bulk and rhizosphere) and plant compartments (root, stem, leaf, and flower) of four hemp ecotypes cultivated in the same habitat. Microbiome assembly was predominantly shaped by compartment niche. Microbial alpha diversity was the highest in soil, continually decreased from root to flower. Core bacterial genera Pseudomonas, Bacillus, Rhizobium, Planococcus, and Sphingomonas were mostly enriched in aerial endosphere niches; Clitopilus, Plectosphaerella, and Mortierella were enriched in belowground endosphere. Microbial network complexity and connectivity decreased from root to flower. According to source tracking analysis, hemp microbiota primarily originated from soil and were subsequently filtered in different plant compartments. This work provides details on hemp-associated microbiome along the soil-plant continuum and a comprehensive understanding of the origin and transmission mode of endophytes in hemp.
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haibin Yu
- Yunnan Industrial Investment Group, Yunnan Hemp Seed Industry Co., Ltd., Kunming, China
| | - Shuming Yang
- Yunnan Industrial Investment Group, Yunnan Hemp Seed Industry Co., Ltd., Kunming, China
| | - Fei Dai
- Yunnan Industrial Investment Group, Yunnan Hemp Seed Industry Co., Ltd., Kunming, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Holmes JE, Lung S, Collyer D, Punja ZK. Variables Affecting Shoot Growth and Plantlet Recovery in Tissue Cultures of Drug-Type Cannabis sativa L. FRONTIERS IN PLANT SCIENCE 2021; 12:732344. [PMID: 34621286 PMCID: PMC8491305 DOI: 10.3389/fpls.2021.732344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Tissue culture approaches are widely used in crop plants for the purposes of micropropagation, regeneration of plants through organogenesis, obtaining pathogen-free plantlets from meristem culture, and developing genetically modified plants. In this research, we evaluated variables that can influence the success of shoot growth and plantlet production in tissue cultures of drug-type Cannabis sativa L. (marijuana). Various sterilization methods were tested to ensure shoot development from nodal explants by limiting the frequency of contaminating endophytes, which otherwise caused the death of explants. Seven commercially grown tetrahydrocannabinol (THC)-containing cannabis genotypes (strains) showed significant differences in response to shoot growth from meristems and nodal explants on Murashige and Skoog (MS) medium containing thidiazuron (1 μM) and naphthaleneacetic acid (0.5 μM) plus 1% activated charcoal. The effect of Driver and Kuniyuki Walnut (DKW) or MS basal salts in media on shoot length and leaf numbers from nodal explants was compared and showed genotype dependency with regard to the growth response. To obtain rooted plantlets, shoots from meristems and nodal explants of genotype Moby Dick were evaluated for rooting, following the addition of sodium metasilicate, silver nitrate, indole-3-butyric acid (IBA), kinetin, or 2,4-D. Sodium metasilicate improved the visual appearance of the foliage and improved the rate of rooting. Silver nitrate also promoted rooting. Following acclimatization, plantlet survival in hydroponic culture, peat plugs, and rockwool substrate was 57, 76, and 83%, respectively. The development of plantlets from meristems is described for the first time in C. sativa and has potential for obtaining pathogen-free plants. The callogenesis response of leaf explants of 11 genotypes on MS medium without activated charcoal was 35% to 100%, depending on the genotype; organogenesis was not observed. The success in recovery of plantlets from meristems and nodal explants is influenced by cannabis genotype, degree of endophytic contamination of the explants, and frequency of rooting. The procedures described here have potential applications for research and commercial utility to obtain plantlets in stage 1 tissue cultures of C. sativa.
Collapse
|
49
|
Madsen AM, Crook B. Occupational exposure to fungi on recyclable paper pots and growing media and associated health effects - A review of the literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147832. [PMID: 34034170 DOI: 10.1016/j.scitotenv.2021.147832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Different types of pots and growing and casing media, including biodegradable materials, are used for plant and mushroom production. The fungus Peziza ostracoderma has gained attention for its visible growth on growing media for plants and casing media for mushrooms. Through a review of the literature we aim to evaluate whether exposure to fungi from recyclable pots and different growing and casing media occurs and causes occupational health effects. Based on the published papers, specific fungal species were not related to a specific medium. Thus P. ostracoderma has been found on paper pots, peat, sterilized soil, vermiculite, and rockwool with plants, and on peat, pumice, and paper casing for mushrooms. It has been found in high concentrations in the air in mushroom farms. Also Acremonium spp., Aspergillus niger, A. fumigatus, Athelia turficola, Aureobasidium pullulans, Chaetomium globosum, Chrysonilia sitophila, Cladosporium spp., Cryptostroma corticale, Lecanicillium aphanocladii, Sporothrix schenckii, Stachybotrys chartarum, and Trichoderma spp. have been found on different types of growing or casing media. Most of the fungi have also been found in the air in greenhouses, but the knowledge about airborne fungal species in mushroom farms is very limited. Eight publications describe cases of health effects associated directly with exposure to fungi from pots or growing or casing media. These include cases of hypersensitivity pneumonitis caused by exposure to: A. fumigatus, A. niger, Au. pullulans, Cr. corticale, P. ostracoderma, and a mixture of fungi growing on different media. Different approaches have been used to avoid growth of saprophytes including: chemical fungicides, the formulation of biodegradable pots and growing media and types of peat. To increase the sustainability of growing media different types of media are tested for their use and with the present study we highlight the importance of also considering the occupational health of the growers who may be exposed to fungi from the media and pots.
Collapse
Affiliation(s)
- Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | - Brian Crook
- Health and Safety Executive, Science and Research Centre, Buxton SK17 9JN, UK
| |
Collapse
|
50
|
Pépin N, Hebert FO, Joly DL. Genome-Wide Characterization of the MLO Gene Family in Cannabis sativa Reveals Two Genes as Strong Candidates for Powdery Mildew Susceptibility. FRONTIERS IN PLANT SCIENCE 2021; 12:729261. [PMID: 34589104 PMCID: PMC8475652 DOI: 10.3389/fpls.2021.729261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Cannabis sativa is increasingly being grown around the world for medicinal, industrial, and recreational purposes. As in all cultivated plants, cannabis is exposed to a wide range of pathogens, including powdery mildew (PM). This fungal disease stresses cannabis plants and reduces flower bud quality, resulting in significant economic losses for licensed producers. The Mildew Locus O (MLO) gene family encodes plant-specific proteins distributed among conserved clades, of which clades IV and V are known to be involved in susceptibility to PM in monocots and dicots, respectively. In several studies, the inactivation of those genes resulted in durable resistance to the disease. In this study, we identified and characterized the MLO gene family members in five different cannabis genomes. Fifteen Cannabis sativa MLO (CsMLO) genes were manually curated in cannabis, with numbers varying between 14, 17, 19, 18, and 18 for CBDRx, Jamaican Lion female, Jamaican Lion male, Purple Kush, and Finola, respectively (when considering paralogs and incomplete genes). Further analysis of the CsMLO genes and their deduced protein sequences revealed that many characteristics of the gene family, such as the presence of seven transmembrane domains, the MLO functional domain, and particular amino acid positions, were present and well conserved. Phylogenetic analysis of the MLO protein sequences from all five cannabis genomes and other plant species indicated seven distinct clades (I through VII), as reported in other crops. Expression analysis revealed that the CsMLOs from clade V, CsMLO1 and CsMLO4, were significantly upregulated following Golovinomyces ambrosiae infection, providing preliminary evidence that they could be involved in PM susceptibility. Finally, the examination of variation within CsMLO1 and CsMLO4 in 32 cannabis cultivars revealed several amino acid changes, which could affect their function. Altogether, cannabis MLO genes were identified and characterized, among which candidates potentially involved in PM susceptibility were noted. The results of this study will lay the foundation for further investigations, such as the functional characterization of clade V MLOs as well as the potential impact of the amino acid changes reported. Those will be useful for breeding purposes in order to develop resistant cultivars.
Collapse
Affiliation(s)
- Noémi Pépin
- Centre d’Innovation et de Recherche sur le Cannabis, Université de Moncton, Département de biologie, Moncton, NB, Canada
| | - Francois Olivier Hebert
- Centre d’Innovation et de Recherche sur le Cannabis, Université de Moncton, Département de biologie, Moncton, NB, Canada
- Institut National des Cannabinoïdes, Montréal, QC, Canada
| | - David L. Joly
- Centre d’Innovation et de Recherche sur le Cannabis, Université de Moncton, Département de biologie, Moncton, NB, Canada
| |
Collapse
|