1
|
Wang S, Liao Z, Cao P, Schmid MW, Zhang L, Bi J, Endriss SB, Zhao Y, Parepa M, Hu W, Akamine H, Wu J, Ju R, Bossdorf O, Richards CL, Li B. General-purpose genotypes and evolution of higher plasticity in clonality underlie knotweed invasion. THE NEW PHYTOLOGIST 2025; 246:758-768. [PMID: 39967423 PMCID: PMC11923409 DOI: 10.1111/nph.20452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
Many widespread invasive plant species express high phenotypic variation across novel environments, providing a unique opportunity to examine ecological and evolutionary dynamics under global change. However, studies often lack information about the origin of introduced populations, limiting our understanding of post-introduction evolution. We assessed the responses of Reynoutria japonica from 128 populations spanning latitudinal transects in the native (China and Japan), and introduced (North America and Europe) ranges when grown in two common gardens. Plants from introduced populations differed in almost all traits from those from Chinese populations, but were similar to plants from the putative origin in Japan. Compared to Chinese populations, North American, European and Japanese populations expressed lower trait values and plasticity in most traits. However, plants from both introduced and Japanese populations expressed higher clonality and plasticity in clonality than plants from Chinese populations. Further, introduced populations expressed higher plasticity in clonality but lower plasticity in basal diameter compared to Japanese populations. Our findings emphasize the potential role of clonality and plasticity in clonality for invasion success. In addition, our study highlights the importance of comparisons to source populations within the native range to identify evolutionary responses of introduced plants to novel environments.
Collapse
Affiliation(s)
- Shengyu Wang
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | - Zhi‐Yong Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303China
| | - Peipei Cao
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | | | - Lei Zhang
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | - Jingwen Bi
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | - Stacy B. Endriss
- Department of Natural ResourcesCornell UniversityIthacaNY14853USA
- Department of Environmental SciencesUniversity of North Carolina WilmingtonWilmingtonNC28403USA
- Department of EntomologyVirginia TechBlacksburgVA24061USA
| | - Yujie Zhao
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | - Madalin Parepa
- Plant Evolutionary Ecology, Institute of Evolution & EcologyUniversity of Tübingen72076TübingenGermany
| | - Wenyi Hu
- Graduate School of AgricultureUniversity of the Ryukyus903‐0213OkinawaJapan
| | - Hikaru Akamine
- Subtropical Field Science Center, Faculty of AgricultureUniversity of the Ryukyus903‐0213OkinawaJapan
| | - Jihua Wu
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou University730000LanzhouChina
| | - Rui‐Ting Ju
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution & EcologyUniversity of Tübingen72076TübingenGermany
| | - Christina L. Richards
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303China
- Plant Evolutionary Ecology, Institute of Evolution & EcologyUniversity of Tübingen72076TübingenGermany
- Department of Integrative BiologyUniversity of South FloridaTampaFL33620USA
| | - Bo Li
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science, and Southwest United Graduate SchoolYunnan University650500KunmingChina
| |
Collapse
|
2
|
Luis PB, Schneider C. Large variability in the alkaloid content of Corydalis yanhusuo dietary supplements. Front Pharmacol 2025; 15:1518750. [PMID: 39881869 PMCID: PMC11774941 DOI: 10.3389/fphar.2024.1518750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Extracts from the rhizome of the traditional Chinese medicinal plant Corydalis yanhusuo (CY) mediate a number of biologic effects that are associated with its content of isoquinoline alkaloids. CY alkaloids have shown analgesic, cardioprotective, and anti-addictive effects in animal models of disease. Since CY alkaloids are available to consumers as dietary supplements we analyzed the content of alkaloids in 14 products including open powders, capsules, and liquid formulations, capturing a majority of the products available online in the US. Methods Nineteen alkaloids were quantified using HPLC analyses with diode array detection after extraction using a weak cation exchange column. Results Total alkaloid content was highly variable among the products, ranging from below quantifiable in some to ≈11 mg/g in others. Five of the products had comparable content of alkaloids (9.5 ± 1.6 mg/g), equaling about the amount of alkaloids of an extract prepared from CY rhizome (12.7 mg/g). The other samples had much lower content (1.8 ± 0.9 mg/g), or alkaloids were below quantifiable. One of the products was highly enriched in tetrahydropalmatine (≈5 mg/g), suggesting adulteration from the natural product, and raising concerns about possible toxicologic liability. Discussion Considering alkaloid content as a key quality criterium for CY supplements, the large variability among the products seems unacceptable and makes it difficult for consumers to select products with an appropriate content of alkaloids.
Collapse
Affiliation(s)
| | - Claus Schneider
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
3
|
Kielich N, Mazur O, Musidlak O, Gracz-Bernaciak J, Nawrot R. Herbgenomics meets Papaveraceae: a promising -omics perspective on medicinal plant research. Brief Funct Genomics 2024; 23:579-594. [PMID: 37952099 PMCID: PMC11812042 DOI: 10.1093/bfgp/elad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.
Collapse
Affiliation(s)
- Natalia Kielich
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Gracz-Bernaciak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Zang Y, Xie L, Su J, Luo Z, Jia X, Ma X. Advances in DNA methylation and demethylation in medicinal plants: a review. Mol Biol Rep 2023; 50:7783-7796. [PMID: 37480509 DOI: 10.1007/s11033-023-08618-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/21/2023] [Indexed: 07/24/2023]
Abstract
DNA methylation and demethylation are widely acknowledged epigenetic phenomena which can cause heritable and phenotypic changes in functional genes without changing the DNA sequence. They can thus affect phenotype formation in medicinal plants. However, a comprehensive review of the literature summarizing current research trends in this field is lacking. Thus, this review aims to provide an up-to-date summary of current methods for the detection of 5-mC DNA methylation, identification and analysis of DNA methyltransferases and demethyltransferases, and regulation of DNA methylation in medicinal plants. The data showed that polyploidy and environmental changes can affect DNA methylation levels in medicinal plants. Changes in DNA methylation can thus regulate plant morphogenesis, growth and development, and formation of secondary metabolites. Future research is required to explore the mechanisms by which DNA methylation regulates the accumulation of secondary metabolites in medicinal plants.
Collapse
Affiliation(s)
- Yimei Zang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Biomedicine College, Beijing City University, Beijing, 100094, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiaxian Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
5
|
Zhang H, Tang Y, Li Q, Zhao S, Zhang Z, Chen Y, Shen Z, Chen C. Genetic and epigenetic variation separately contribute to range expansion and local metalliferous habitat adaptation during invasions of Chenopodium ambrosioides into China. ANNALS OF BOTANY 2022; 130:1041-1056. [PMID: 36413156 PMCID: PMC9851312 DOI: 10.1093/aob/mcac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Invasive plants often colonize wide-ranging geographical areas with various local microenvironments. The specific roles of epigenetic and genetic variation during such expansion are still unclear. Chenopodium ambrosioides is a well-known invasive alien species in China that can thrive in metalliferous habitats. This study aims to comprehensively understand the effects of genetic and epigenetic variation on the successful invasion of C. ambrosioides. METHODS We sampled 367 individuals from 21 heavy metal-contaminated and uncontaminated sites with a wide geographical distribution in regions of China. We obtained environmental factors of these sampling sites, including 13 meteorological factors and the contents of four heavy metals in soils. Microsatellite markers were used to investigate the demographic history of C. ambrosioides populations in China. We also analysed the effect of epigenetic variation on metalliferous microhabitat adaptation using methylation-sensitive amplified polymorphism (MSAP) markers. A common garden experiment was conducted to compare heritable phenotypic variations among populations. KEY RESULTS Two distinct genetic clusters that diverged thousands of years ago were identified, suggesting that the eastern and south-western C. ambrosioides populations in China may have originated from independent introduction events without recombination. Genetic variation was shown to be a dominant determinant of phenotypic differentiation relative to epigenetic variation, and further affected the geographical distribution pattern of invasive C. ambrosioides. The global DNA unmethylation level was reduced in metalliferous habitats. Dozens of methylated loci were significantly associated with the heavy metal accumulation trait of C. ambrosioides and may contribute to coping with metalliferous microenvironments. CONCLUSIONS Our study of C. ambrosioides highlighted the dominant roles of genetic variation in large geographical range expansion and epigenetic variation in local metalliferous habitat adaptation.
Collapse
Affiliation(s)
- Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yongwei Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Quanyuan Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Shangjun Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhou Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
- Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
- Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
- Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
6
|
Lieberman-Lazarovich M, Kaiserli E, Bucher E, Mladenov V. Natural and induced epigenetic variation for crop improvement. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102297. [PMID: 36108411 DOI: 10.1016/j.pbi.2022.102297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Maintaining global food security is a major challenge that requires novel strategies for crop improvement. Epigenetic regulation of plant responses to adverse environmental conditions provides a tunable mechanism to optimize plant growth, adaptation and ultimately yield. Epibreeding employs agricultural practices that rely on key epigenetic features as a means of engineering favorable phenotypic traits in target crops. This review summarizes recent findings on the role of epigenetic marks such as DNA methylation and histone modifications, in controlling phenotypic variation in crop species in response to environmental factors. The potential use of natural and induced epigenetic features as platforms for crop improvement via epibreeding, is discussed.
Collapse
Affiliation(s)
- Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel.
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| |
Collapse
|
7
|
Rajpal VR, Rathore P, Mehta S, Wadhwa N, Yadav P, Berry E, Goel S, Bhat V, Raina SN. Epigenetic variation: A major player in facilitating plant fitness under changing environmental conditions. Front Cell Dev Biol 2022; 10:1020958. [PMID: 36340045 PMCID: PMC9628676 DOI: 10.3389/fcell.2022.1020958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research in plant epigenetics has increased our understanding of how epigenetic variability can contribute to adaptive phenotypic plasticity in natural populations. Studies show that environmental changes induce epigenetic switches either independently or in complementation with the genetic variation. Although most of the induced epigenetic variability gets reset between generations and is short-lived, some variation becomes transgenerational and results in heritable phenotypic traits. The short-term epigenetic responses provide the first tier of transient plasticity required for local adaptations while transgenerational epigenetic changes contribute to stress memory and help the plants respond better to recurring or long-term stresses. These transgenerational epigenetic variations translate into an additional tier of diversity which results in stable epialleles. In recent years, studies have been conducted on epigenetic variation in natural populations related to various biological processes, ecological factors, communities, and habitats. With the advent of advanced NGS-based technologies, epigenetic studies targeting plants in diverse environments have increased manifold to enhance our understanding of epigenetic responses to environmental stimuli in facilitating plant fitness. Taking all points together in a frame, the present review is a compilation of present-day knowledge and understanding of the role of epigenetics and its fitness benefits in diverse ecological systems in natural populations.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | | | - Sahil Mehta
- School of Agricultural Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Eapsa Berry
- Maharishi Kanad Bhawan, Delhi School of Climate Change and Sustainability, University of Delhi, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Vishnu Bhat
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| |
Collapse
|
8
|
Jing M, Zhang H, Wei M, Tang Y, Xia Y, Chen Y, Shen Z, Chen C. Reactive Oxygen Species Partly Mediate DNA Methylation in Responses to Different Heavy Metals in Pokeweed. FRONTIERS IN PLANT SCIENCE 2022; 13:845108. [PMID: 35463456 PMCID: PMC9021841 DOI: 10.3389/fpls.2022.845108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
DNA methylation is a rapid response strategy promoting plant survival under heavy metal (HM) stress. However, the roles of DNA methylation underlying plant adaptation to HM stress remain largely unknown. Here, we used pokeweed, a hyperaccumulator of manganese (Mn) and cadmium (Cd), to explore responses of plant to HM stress at phenotypic, transcriptional and DNA methylation levels. Mn- and Cd-specific response patterns were detected in pokeweed. The growth of pokeweed was both inhibited with exposure to excess Mn/Cd, but pokeweed distinguished Mn and Cd with different subcellular distributions, ROS scavenging systems, transcriptional patterns including genes involved in DNA methylation, and differentially methylated loci (DML). The number of DML between Mn/Cd treated and untreated samples increased with increased Mn/Cd concentrations. Meanwhile, pretreatment with NADPH oxidase inhibitors prior to HM exposure markedly reduced HM-induced reactive oxygen species (ROS), which caused reductions in expressions of DNA methylase and demethylase in pretreated samples. The increased levels of HM-induced demethylation were suppressed with alleviated ROS stress, and a series of HM-related methylated loci were also ROS-related. Taken together, our study demonstrates that different HMs affect different DNA methylation sites in a dose-dependent manner and changes in DNA methylation under Mn/Cd stress are partly mediated by HM-induced ROS.
Collapse
Affiliation(s)
- Minyu Jing
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyue Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongwei Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Neinavaie F, Ibrahim-Hashim A, Kramer AM, Brown JS, Richards CL. The Genomic Processes of Biological Invasions: From Invasive Species to Cancer Metastases and Back Again. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of invasion is useful across a broad range of contexts, spanning from the fine scale landscape of cancer tumors up to the broader landscape of ecosystems. Invasion biology provides extraordinary opportunities for studying the mechanistic basis of contemporary evolution at the molecular level. Although the field of invasion genetics was established in ecology and evolution more than 50 years ago, there is still a limited understanding of how genomic level processes translate into invasive phenotypes across different taxa in response to complex environmental conditions. This is largely because the study of most invasive species is limited by information about complex genome level processes. We lack good reference genomes for most species. Rigorous studies to examine genomic processes are generally too costly. On the contrary, cancer studies are fortified with extensive resources for studying genome level dynamics and the interactions among genetic and non-genetic mechanisms. Extensive analysis of primary tumors and metastatic samples have revealed the importance of several genomic mechanisms including higher mutation rates, specific types of mutations, aneuploidy or whole genome doubling and non-genetic effects. Metastatic sites can be directly compared to primary tumor cell counterparts. At the same time, clonal dynamics shape the genomics and evolution of metastatic cancers. Clonal diversity varies by cancer type, and the tumors’ donor and recipient tissues. Still, the cancer research community has been unable to identify any common events that provide a universal predictor of “metastatic potential” which parallels findings in evolutionary ecology. Instead, invasion in cancer studies depends strongly on context, including order of events and clonal composition. The detailed studies of the behavior of a variety of human cancers promises to inform our understanding of genome level dynamics in the diversity of invasive species and provide novel insights for management.
Collapse
|
10
|
Mounger J, Boquete MT, Schmid MW, Granado R, Robertson MH, Voors SA, Langanke KL, Alvarez M, Wagemaker CAM, Schrey AW, Fox GA, Lewis DB, Lira CF, Richards CL. Inheritance of DNA methylation differences in the mangrove Rhizophora mangle. Evol Dev 2021; 23:351-374. [PMID: 34382741 DOI: 10.1111/ede.12388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/15/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022]
Abstract
The capacity to respond to environmental challenges ultimately relies on phenotypic variation which manifests from complex interactions of genetic and nongenetic mechanisms through development. While we know something about genetic variation and structure of many species of conservation importance, we know very little about the nongenetic contributions to variation. Rhizophora mangle is a foundation species that occurs in coastal estuarine habitats throughout the neotropics where it provides critical ecosystem functions and is potentially threatened by anthropogenic environmental changes. Several studies have documented landscape-level patterns of genetic variation in this species, but we know virtually nothing about the inheritance of nongenetic variation. To assess one type of nongenetic variation, we examined the patterns of DNA sequence and DNA methylation in maternal plants and offspring from natural populations of R. mangle from the Gulf Coast of Florida. We used a reduced representation bisulfite sequencing approach (epi-genotyping by sequencing; epiGBS) to address the following questions: (a) What are the levels of genetic and epigenetic diversity in natural populations of R. mangle? (b) How are genetic and epigenetic variation structured within and among populations? (c) How faithfully is epigenetic variation inherited? We found low genetic diversity but high epigenetic diversity from natural populations of maternal plants in the field. In addition, a large portion (up to ~25%) of epigenetic differences among offspring grown in common garden was explained by maternal family. Therefore, epigenetic variation could be an important source of response to challenging environments in the genetically depauperate populations of this foundation species.
Collapse
Affiliation(s)
- Jeannie Mounger
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - M Teresa Boquete
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Department of Evolutionary Ecology, CSIC, Estación Biológica de Doñana, Sevilla, Spain
| | | | - Renan Granado
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Marta H Robertson
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Sandy A Voors
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Kristen L Langanke
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Mariano Alvarez
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Avalo, Durham, NC, USA
| | | | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Armstrong Campus, Savannah, Georgia, USA
| | - Gordon A Fox
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - David B Lewis
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Catarina Fonseca Lira
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Plant Evolutionary Ecology, University of Tübingen, Institute of Evolution & Ecology, Tübingen, Germany
| |
Collapse
|
11
|
Mounger J, Ainouche ML, Bossdorf O, Cavé-Radet A, Li B, Parepa M, Salmon A, Yang J, Richards CL. Epigenetics and the success of invasive plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200117. [PMID: 33866809 PMCID: PMC8059582 DOI: 10.1098/rstb.2020.0117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Biological invasions impose ecological and economic problems on a global scale, but also provide extraordinary opportunities for studying contemporary evolution. It is critical to understand the evolutionary processes that underly invasion success in order to successfully manage existing invaders, and to prevent future invasions. As successful invasive species sometimes are suspected to rapidly adjust to their new environments in spite of very low genetic diversity, we are obliged to re-evaluate genomic-level processes that translate into phenotypic diversity. In this paper, we review work that supports the idea that trait variation, within and among invasive populations, can be created through epigenetic or other non-genetic processes, particularly in clonal invaders where somatic changes can persist indefinitely. We consider several processes that have been implicated as adaptive in invasion success, focusing on various forms of 'genomic shock' resulting from exposure to environmental stress, hybridization and whole-genome duplication (polyploidy), and leading to various patterns of gene expression re-programming and epigenetic changes that contribute to phenotypic variation or even novelty. These mechanisms can contribute to transgressive phenotypes, including hybrid vigour and novel traits, and may thus help to understand the huge successes of some plant invaders, especially those that are genetically impoverished. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Jeannie Mounger
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33617, USA
| | - Malika L. Ainouche
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Armand Cavé-Radet
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Bo Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Madalin Parepa
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Ji Yang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Christina L. Richards
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33617, USA
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Li H, Yang X, Wang Q, Chen J, Shi T. Distinct methylome patterns contribute to ecotypic differentiation in the growth of the storage organ of a flowering plant (sacred lotus). Mol Ecol 2021; 30:2831-2845. [PMID: 33899994 DOI: 10.1111/mec.15933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022]
Abstract
DNA methylation is an epigenetic modification involved in phenotypic diversity, plant development, and environmental responses. However, the mechanisms of DNA methylation underpinning the adaption of lotus (Nelumbo nucifera) ecotypes to high and low latitudes remain unsolved, especially adaptive evolution of their storage organs. Tropical and temperate lotus ecotypes have thin and enlarged rhizomes which are adapted to low and high latitudes, respectively. Here, we investigated the DNA methylomes and transcriptomes of rhizomes of the temperate and tropical lotus to address this issue. Compared with that of the tropical lotus, the DNA of the temperate lotus was significantly more hypermethylated, indicating an increase in global DNA methylation in the lotus, with rhizome enlargement. Meanwhile, genes associated with differentially methylated regions in their promoters tended to be differentially expressed between the two ecotypes. Interestingly, the genes with their expression negatively correlated with methylation levels in their promoters and genomic regions displayed significantly higher transposon coverage, while the genes showing a significant positive correlation between expression and methylation showed lesser transposon coverage. Further, we identified that DNA methylation, especially in the promoter region, was significantly correlated with the expression of many starch-biosynthetic, gibberellin-, and brassinosteroid-signalling genes associated with rhizome differentiation. Overall, our study unveiled that distinct global and local methylation patterns between the two lotus ecotypes contribute to their expression differences and adaptive phenotypic divergence of their storage organs, highlighting the role of DNA methylation in shaping the ecotypic differentiation of lotus.
Collapse
Affiliation(s)
- Hui Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Qingfeng Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|