1
|
Zhang Y, Li Y, Liu H, Xie H, Liu J, Hua J, Xiong M, Song H, Yong C. Effect of Exogenous Melatonin on Corn Seed Germination and Seedling Salt Damage Mitigation Under NaCl Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1139. [PMID: 40219206 PMCID: PMC11991619 DOI: 10.3390/plants14071139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Maize is very sensitive to salt stress during seed germination and seedling growth periods, which can seriously affect the development of the maize industry. In this study, we applied exogenous melatonin (MT) to treat maize seeds and seedlings to investigate the alleviation mechanism of salt damage in maize. Phenotypic analyses showed that 100 µmol/L MT alleviated the effects of salt stress on maize seed germination, and germination index and vigor index were increased compared with salt treatment. MT also alleviated the effects of salt stress on biomass and photosynthesis of maize seedlings, and at a concentration of 100 µmol/L, root and shoot lengths were increased, Gs and Tr were significantly elevated, and LWUEint and LWUEins were decreased. MT also scavenged ROS accumulation, reduced MDA, H2O2, and O2- production, and increased antioxidant enzyme activities and osmoregulatory substances in maize seedlings, but too high a concentration exacerbated oxidative and osmotic stresses. In addition, MT reduced Na+ content and increased K+ content in leaves and roots of maize seedlings. The principal components analysis explained 99.1% of the total variance in the first two axes (PC1 and PC2), and the differences between the treatment groups along the PC1 and PC2 axes were obvious. Correlation analysis elucidated the correlation between the indicators. Random forest analysis showed that different treatments had significant effects on germination percentage (GP), free proline (FP), CAT, and leaf intrinsic water use efficiency (LWUEint). Partial least squares analysis showed that photosynthetic parameters and pigment content played an important role in the salt tolerance of maize seedlings. In conclusion, the application of exogenous MT can effectively alleviate the negative effects of salt stress on the growth of maize seeds and seedlings, especially at a concentration of 100 µmol/L, which is the most effective.
Collapse
Affiliation(s)
- Yuyu Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Yuchuang Li
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - He Liu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Haili Xie
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Jiani Liu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Jinzhu Hua
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Mingchun Xiong
- Yunnan Jiayuanshi Biotechnology Co., Ltd., Kunming 650214, China;
| | - Huaifei Song
- Agricultural and Rural Work Service Centre, Haiping Street, Shuicheng District, Liupanshui 553000, China;
| | - Chengjian Yong
- Yunnan Jiayuanshi Biotechnology Co., Ltd., Kunming 650214, China;
| |
Collapse
|
2
|
Ali S, Khan M, Moon YS. Synergistic Effect of Serratia fonticola and Pseudomonas koreensis on Mitigating Salt Stress in Cucumis sativus L. Curr Issues Mol Biol 2025; 47:194. [PMID: 40136448 PMCID: PMC11941737 DOI: 10.3390/cimb47030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Beneficial microbes enhance plant growth and development, even under stressful conditions. Serratia fonticola (S1T1) and Pseudomonas koreensis (S4T10) are two multi-trait plant growth-promoting rhizobacteria (PGPRs) that are resistant to saline conditions. This study evaluated the synergistic effect of these PGPRs on mitigating salinity stress (200 mM) in Cucumis sativus. Presently, the synergistic effect of both strains enhances the plant growth-promoting attributes of cucumber, and the growth parameters were significantly higher than those of uninoculated plants. The PGPR-treated plants revealed a significantly higher biomass and improved chlorophyll content. The inoculation of S1T1 and S4T10 and the synergistic effect of both promoted 23, 24, and 28% increases, respectively, in the fresh biomass and 16, 19.8, and 24% increases, respectively, in the dry biomass. Similarly, S1T1 and S4T10 and their synergistic effects led to 16.5, 28.4, and 38% increases, respectively, in the water potential and 18, 22, and 28% decreases, respectively, in abscisic acid (ABA). A reduction in the electrolytic leakage (EL) was additional proof of successful PGPR activities. Similarly, a decrease in the antioxidant levels, including those of malondialdehyde (21-30%), hydrogen peroxide (19-38%), and superoxide anions (24-34%), was observed, alongside an increase in antioxidant enzymes such as catalase (22-29%) and superoxide dismutase (17-27%). Additionally, the synergistic inoculation of the PGPRs enhanced the NaCl stress tolerance by upregulating the expression of the ion transporter genes HKT1 (1-2-fold), NHX (1-3-fold), and SOS1 (2-4-fold). Conclusively, the synergistic effect of the multi-trait PGPRs significantly enhances C. sativus L. growth under salt stress.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Murtaza Khan
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Li WQ, Li JY, Bi SJ, Jin JY, Fan ZL, Shang ZL, Zhang YF, Wang YJ. Melatonin Enhances Maize Germination, Growth, and Salt Tolerance by Regulating Reactive Oxygen Species Accumulation and Antioxidant Systems. PLANTS (BASEL, SWITZERLAND) 2025; 14:296. [PMID: 39861647 PMCID: PMC11768311 DOI: 10.3390/plants14020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/27/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the H2O2 and O2- content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings. However, exogenous melatonin considerably reduced the development inhibition caused by salt stress in maize seedlings. Moreover, exogenous melatonin alleviated NaCl-induced membrane damage and oxidative stress, and reduced Na+ content and excessively large quantities of reactive oxygen species (ROS). In addition, exogenous melatonin increased antioxidant enzyme activity and the expression of the antioxidant enzyme genes ZmSOD4, ZmCAT2, and ZmAPX2. This study demonstrates the potential role of combined melatonin seed initiation and foliar spray treatments in mitigating the detrimental effects of salt stress on maize growth, giving a theoretical foundation to future research on the possible advantages of exogenous regulating chemicals in attaining sustainable production in salt-alkaline soils.
Collapse
Affiliation(s)
- Wei-Qing Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (Y.-F.Z.)
| | - Jia-Yu Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (Y.-F.Z.)
| | - Shao-Jie Bi
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.-J.B.); (J.-Y.J.); (Z.-L.F.); (Z.-L.S.)
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Daqing 163319, China
| | - Jia-Yue Jin
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.-J.B.); (J.-Y.J.); (Z.-L.F.); (Z.-L.S.)
| | - Zhong-Ling Fan
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.-J.B.); (J.-Y.J.); (Z.-L.F.); (Z.-L.S.)
| | - Zi-Lin Shang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.-J.B.); (J.-Y.J.); (Z.-L.F.); (Z.-L.S.)
| | - Yi-Fei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (Y.-F.Z.)
| | - Yan-Jie Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (Y.-F.Z.)
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.-J.B.); (J.-Y.J.); (Z.-L.F.); (Z.-L.S.)
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Daqing 163319, China
| |
Collapse
|
4
|
Gam HJ, Adhikari A, Kang Y, Injamum-Ul-Hoque M, Shaffique S, Woo JI, Jeon JR, An BK, Back MY, Kim KY, Kang SM, Lee IJ. Investigating the Allelopathic and Bioherbicidal Potential of Solidago altissima with a Focus on Chemical Signaling in Trifolium repens. PLANTS (BASEL, SWITZERLAND) 2024; 14:96. [PMID: 39795356 PMCID: PMC11723385 DOI: 10.3390/plants14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Invasive weed species exhibit both advantages, such as the potential for allelochemicals in bioherbicide development, and risks, including their threat to crop production. Therefore, this study aims to identify an allelochemical from Solidago altissima, an invasive weed species. The dose-dependent effects of S. altissima shoot and root extracts (SSE, SRE) on the signaling in the forage crop Trifolium repens and germination in various weed species (Echinochloa oryzicola, Cyperus microiria, Alopecurus aequalis, Portulaca oleracea, and Amaranthus retroflexus) were evaluated. The results showed that the T. repens seedlings treated with root extracts exhibited a significant decrease in plant height, dry weight, and chlorophyll content, along with an increase in H2O2 levels. Additionally, antioxidant activities, such as superoxide dismutase, catalase, and peroxidase enzyme activities, were significantly elevated in T. repens treated with SRE. Moreover, SRE treatment significantly inhibited the seed germination of all tested weed species in a concentration-dependent manner. Gas chromatography-mass spectrometry analysis of S. altissima root extract identified a high concentration of methyl kolavenate, a clerodane diterpene predicted to act as a phytotoxic agent. These findings highlight the potential of S. altissima for the development of crop-protective agents while emphasizing its potential risks in agriculture.
Collapse
Affiliation(s)
- Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Yosep Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Ji-In Woo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Jin Ryeol Jeon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Byeong-Kwan An
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Min Young Back
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Ki-Yong Kim
- National Institute of Animal Science, Rural Development Administration (RDA), Cheonan 31000, Republic of Korea;
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| |
Collapse
|
5
|
He F, Zhao X, Qi G, Sun S, Shi Z, Niu Y, Wu Z, Zhou W. Exogenous Melatonin Alleviates NaCl Injury by Influencing Stomatal Morphology, Photosynthetic Performance, and Antioxidant Balance in Maize. Int J Mol Sci 2024; 25:10077. [PMID: 39337563 PMCID: PMC11432274 DOI: 10.3390/ijms251810077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Maize (Zea mays L.) is sensitive to salt stress, especially during seed germination and seedling morphogenesis, which limits maize growth and productivity formation. As a novel recognized plant hormone, melatonin (MT) participates in multiple growth and developmental processes and mediates biotic/abiotic stress responses, yet the effects of salt stress on maize seedlings remain unclear. Herein, we investigated the effects of 150 μM exogenous MT on multiple phenotypes and physiologic metabolisms in three-leaf seedlings across eight maize inbred lines under 180 mM NaCl salt stress, including growth parameters, stomatal morphology, photosynthetic metabolisms, antioxidant enzyme activities, and reactive oxygen species (ROS). Meanwhile, the six gene expression levels controlling antioxidant enzyme activities and photosynthetic pigment biosynthesis in two materials with contrasting salt resistance were examined for all treatments to explore the possible molecular mechanism of exogenous MT alleviating salt injury in maize. The results showed that 150 μM exogenous MT application protected membrane integrity and reduced ROS accumulation by activating the antioxidant system in leaves of maize seedlings under salt stress, their relative conductivity and H2O2 level average reduced by 20.91% and 17.22%, while the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) averaged increased by 13.90%, 17.02%, 22.00%, and 14.24% relative to salt stress alone. The improvement of stomatal size and the deposition of photosynthetic pigments were more favorable to enhancing photosynthesis in leaves when these seedlings treated with MT application under salt stress, their stomatal size, chlorophyll content, and net photosynthetic rate averaged increased by 11.60%, 19.64%, and 27.62%. Additionally, Gene expression analysis showed that MT stimulation significantly increased the expression of antioxidant enzyme genes (Zm00001d009990, Zm00001d047479, Zm00001d014848, and Zm00001d007234) and photosynthetic pigment biosynthesis genes (Zm00001d011819 and Zm00001d017766) under salt stress. At the same time, 150 μM MT significantly promoted seedling growth and biomass accumulation. In conclusion, our study may unravel crucial evidence of the role of MT in maize seedlings against salt stress, which can provide a novel strategy for improving maize salt stress resistance.
Collapse
Affiliation(s)
- Fuqiang He
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoxiang Qi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Siqi Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zefeng Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenqi Zhou
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| |
Collapse
|
6
|
Song C, Manzoor MA, Ren Y, Guo J, Zhang P, Zhang Y. Exogenous melatonin alleviates sodium chloride stress and increases vegetative growth in Lonicera japonica seedlings via gene regulation. BMC PLANT BIOLOGY 2024; 24:790. [PMID: 39164652 PMCID: PMC11337751 DOI: 10.1186/s12870-024-05506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Melatonin (Mt) functions as a growth regulator and multifunctional signaling molecule in plants, thereby playing a crucial role in promoting growth and orchestrating protective responses to various abiotic stresses. However, the mechanism whereby exogenous Mt protects Lonicera japonica Thunb. (L. japonica) against salt stress has not been fully elucidated. Therefore, this study aimed to elucidate how exogenous Mt alleviates sodium chloride (NaCl) stress in L. japonica seedlings. Salt-sensitive L. japonica seedlings were treated with an aqueous solution containing 150 mM of NaCl and aqueous solutions containing various concentrations of Mt. The results revealed that treatment of NaCl-stressed L. japonica seedlings with a 60 µM aqueous solution of Mt significantly enhanced vegetative plant growth by scavenging reactive oxygen species and thus reducing oxidative stress. The latter was evidenced by decreases in electrical conductivity and malondialdehyde (MDA) concentrations. Moreover, Mt treatment led to increases in the NaCl-stressed L. japonica seedlings' total chlorophyll content, soluble sugar content, and flavonoid content, demonstrating that Mt treatment improved the seedlings' tolerance of NaCl stress. This was also indicated by the NaCl-stressed L. japonica seedlings exhibiting marked increases in the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) and in photosynthetic functions. Furthermore, Mt treatment of NaCl-stressed L. japonica seedlings increased their expression of phenylalanine ammonia-lyase 1 (PAL1), phenylalanine ammonia-lyase 2 (PAL2), calcium-dependent protein kinase (CPK), cinnamyl alcohol dehydrogenase (CAD), flavanol synthase (FLS), and chalcone synthase (CHS). In conclusion, our results demonstrate that treatment of L. japonica seedlings with a 60 µM aqueous solution of Mt significantly ameliorated the detrimental effects of NaCl stress in the seedlings. Therefore, such treatment has substantial potential for use in safeguarding medicinal plant crops against severe salinity.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 201109, China
| | - Yanshuang Ren
- The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China
| | - Jingjing Guo
- The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China
| | - Pengfei Zhang
- Henan Denuoanke Occupational Health Evaluation Co., Ltd, Anyang, 473000, China
| | - Yingyu Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
7
|
Wang J, Yan D, Liu R, Wang T, Lian Y, Lu Z, Hong Y, Wang Y, Li R. The Physiological and Molecular Mechanisms of Exogenous Melatonin Promote the Seed Germination of Maize ( Zea mays L.) under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2142. [PMID: 39124260 PMCID: PMC11313997 DOI: 10.3390/plants13152142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Salt stress caused by high concentrations of Na+ and Cl- in soil is one of the most important abiotic stresses in agricultural production, which seriously affects grain yield. The alleviation of salt stress through the application of exogenous substances is important for grain production. Melatonin (MT, N-acetyl-5-methoxytryptamine) is an indole-like small molecule that can effectively alleviate the damage caused by adversity stress on crops. Current studies have mainly focused on the effects of MT on the physiology and biochemistry of crops at the seedling stage, with fewer studies on the gene regulatory mechanisms of crops at the germination stage. The aim of this study was to explain the mechanism of MT-induced salt tolerance at physiological, biochemical, and molecular levels and to provide a theoretical basis for the resolution of MT-mediated regulatory mechanisms of plant adaptation to salt stress. In this study, we investigated the germination, physiology, and transcript levels of maize seeds, analyzed the relevant differentially expressed genes (DEGs), and examined salt tolerance-related pathways. The results showed that MT could increase the seed germination rate by 14.28-19.04%, improve seed antioxidant enzyme activities (average increase of 11.61%), and reduce reactive oxygen species accumulation and membrane oxidative damage. In addition, MT was involved in regulating the changes of endogenous hormones during the germination of maize seeds under salt stress. Transcriptome results showed that MT affected the activity of antioxidant enzymes, response to stress, and seed germination-related genes in maize seeds under salt stress and regulated the expression of genes related to starch and sucrose metabolism and phytohormone signal transduction pathways. Taken together, the results indicate that exogenous MT can affect the expression of stress response-related genes in salt-stressed maize seeds, enhance the antioxidant capacity of the seeds, reduce the damage induced by salt stress, and thus promote the germination of maize seeds under salt stress. The results provide a theoretical basis for the MT-mediated regulatory mechanism of plant adaptation to salt stress and screen potential candidate genes for molecular breeding of salt-tolerant maize.
Collapse
Affiliation(s)
- Jiajie Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Di Yan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Rui Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Ting Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Yijia Lian
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Zhenzong Lu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Yue Hong
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Ye Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Runzhi Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| |
Collapse
|
8
|
Khan M, Hussain A, Yun BW, Mun BG. Melatonin: The Multifaceted Molecule in Plant Growth and Defense. Int J Mol Sci 2024; 25:6799. [PMID: 38928504 PMCID: PMC11203645 DOI: 10.3390/ijms25126799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Melatonin (MEL), a hormone primarily known for its role in regulating sleep and circadian rhythms in animals, has emerged as a multifaceted molecule in plants. Recent research has shed light on its diverse functions in plant growth and defense mechanisms. This review explores the intricate roles of MEL in plant growth and defense responses. MEL is involved in plant growth owing to its influence on hormone regulation. MEL promotes root elongation and lateral root formation and enhances photosynthesis, thereby promoting overall plant growth and productivity. Additionally, MEL is implicated in regulating the circadian rhythm of plants, affecting key physiological processes that influence plant growth patterns. MEL also exhibits antioxidant properties and scavenges reactive oxygen species, thereby mitigating oxidative stress. Furthermore, it activates defense pathways against various biotic stressors. MEL also enhances the production of secondary metabolites that contribute to plant resistance against environmental changes. MEL's ability to modulate plant response to abiotic stresses has also been extensively studied. It regulates stomatal closure, conserves water, and enhances stress tolerance by activating stress-responsive genes and modulating signaling pathways. Moreover, MEL and nitric oxide cooperate in stress responses, antioxidant defense, and plant growth. Understanding the mechanisms underlying MEL's actions in plants will provide new insights into the development of innovative strategies for enhancing crop productivity, improving stress tolerance, and combating plant diseases. Further research in this area will deepen our knowledge of MEL's intricate functions and its potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Adil Hussain
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
9
|
Tian Z, Zhao M, Wang J, Yang Q, Ma Y, Yang X, Ma L, Qi Y, Li J, Quinet M, Shi B, Meng Y. Exogenous melatonin improves germination rate in buckwheat under high temperature stress by regulating seed physiological and biochemical characteristics. PeerJ 2024; 12:e17136. [PMID: 38590707 PMCID: PMC11000643 DOI: 10.7717/peerj.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
The germinations of three common buckwheat (Fagopyrum esculentum) varieties and two Tartary buckwheat (Fagopyrum tataricum) varieties seeds are known to be affected by high temperature. However, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on buckwheat seed germination under high temperature. This work studied the effects of exogenous MT on buckwheat seed germination under high temperature. MT was sprayed. The parameters, including growth, and physiological factors, were examined. The results showed that exogenous MT significantly increased the germination rate (GR), germination potential (GP), radicle length (RL), and fresh weight (FW) of these buckwheat seeds under high-temperature stress and enhanced the content of osmotic adjustment substances and enzyme activity. Comprehensive analysis revealed that under high-temperature stress during germination, antioxidant enzymes play a predominant role, while osmotic adjustment substances work synergistically to reduce the extent of damage to the membrane structure, serving as the primary key indicators for studying high-temperature resistance. Consequently, our results showed that MT had a positive protective effect on buckwheat seeds exposed to high temperature stress, providing a theoretical basis for improving the ability to adapt to high temperature environments.
Collapse
Affiliation(s)
- Zemiao Tian
- Hebei Agricultrual University, Baoding, China
- Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing, China
| | - Mengyu Zhao
- Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing, China
| | - Junzhen Wang
- Liangshan Yi Autonomous Prefecture Academy of Agricultural Sciences, Xichang, China
| | - Qian Yang
- Hebei Agricultrual University, Baoding, China
| | - Yini Ma
- Hebei Agricultrual University, Baoding, China
| | - Xinlei Yang
- Hebei Agricultrual University, Baoding, China
| | - Luping Ma
- Hebei Agricultrual University, Baoding, China
| | - Yongzhi Qi
- Hebei Agricultrual University, Baoding, China
| | - Jinbo Li
- Luoyang Normal University, Luoyang, China
| | - Muriel Quinet
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Yu Meng
- Hebei Agricultrual University, Baoding, China
| |
Collapse
|
10
|
Jia Y, Yin X, Zhao J, Pan Y, Jiang B, Liu Q, Li Y, Li Z. Effects of 24-Epibrassinolide, melatonin and their combined effect on cadmium tolerance in Primula forbesii Franch. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115217. [PMID: 37406607 DOI: 10.1016/j.ecoenv.2023.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
This study aimed to investigate the interaction between 24-Epibrassinolide (EBR) and melatonin (MT) and their effects on cadmium (Cd)-stressed Primula forbesii Franch. P. forbesii seedlings were hydroponically acclimatized at 6-7 weeks, then treated with Cd (200 μmol L-1), 24-EBR (0.1 μmol L-1), and MT (100 μmol L-1) after two weeks. Cd stress significantly reduced crown width, shoot, root length, shoot fresh weight, and fresh and dry root weights. Herein, 24-EBR, MT, and 24-EBR+MT treatments attenuated the growth inhibition caused by Cd stress and improved the morphology, growth indexes, and ornamental characteristics of P. forbesii under Cd stress. 24-EBR had the best effect by effectively alleviating Cd stress and promoting plant growth and development. 24-EBR significantly increased all growth parameters compared to Cd treatment. In addition, 24-EBR significantly improved the gas exchange parameters, activities of antioxidant enzymes, and the cycle efficiency of AsA-GSH. Furthermore, 24-EBR increased the activities of ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) by 127.29%, 61.31%, 61.22%, and 51.04%, respectively, compared with the Cd treatment. Therefore, 24-EBR removed the reactive oxygen species produced by stress, thus protecting plants against stress damage. These results indicate that 24-EBR can effectively enhance the tolerance of P. forbesii to Cd stress.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhuolin Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Jan R, Asif S, Asaf S, Du XX, Park JR, Nari K, Bhatta D, Lee IJ, Kim KM. Melatonin alleviates arsenic (As) toxicity in rice plants via modulating antioxidant defense system and secondary metabolites and reducing oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120868. [PMID: 36526054 DOI: 10.1016/j.envpol.2022.120868] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The Arsenic (As) load on the environment has increased immensely due to large-scale industrial and agricultural uses of As in several synthetic products, such as fertilizers, herbicides, and pesticides. Melatonin is a plant hormone that has a key role in abiotic stress inhibition, but the mechanism of resilience to As stress remains unexplored in rice plants. In this study, we determined how As affects rice plant and how melatonin facilitate As stress tolerance in rice. Here we investigated that, exogenous melatonin reduced As stress by inducing anthocyanin biosynthesis. Melatonin induced the expression of anthocyanin biosynthesis genes such as PAL, CHS, CHI, F3H, DFR, and ANS, which resulted in 1659% and 389% increases in cyanidin and delphinidin, respectively. Similarly, melatonin application significantly induced SA and ABA accumulation in response to As stress in rice plant. Application of melatonin also significantly reduced expression of PT-2 and PT-8 (transporter genes) and reduced uptake of As and its translocation to other compartments. Melatonin and As analysis revealed that melatonin application significantly reduced As contents in the melatonin-supplemented plants, suggesting that As uptake is largely dependent on either the melatonin basal level or anthocyanin in rice plants. In this study, we investigated new symptoms on leaves, which can severely damage leaves and impair photosynthesis. However, anthocyanin as a chelating agent, detoxifies As in vacuole and reduces oxidative stress induced by As.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea; Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Xiao-Xuan Du
- Biosafty Division, National Academy of Agriculture Science, Rural Development, Administration, Jeonju, 54874, South Korea
| | - Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365, South Korea
| | - Kim Nari
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea; Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
12
|
Aghdam MS, Mukherjee S, Flores FB, Arnao MB, Luo Z, Corpas FJ. Functions of Melatonin during Postharvest of Horticultural Crops. PLANT & CELL PHYSIOLOGY 2023; 63:1764-1786. [PMID: 34910215 DOI: 10.1093/pcp/pcab175] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India
| | - Francisco Borja Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia 30100, Spain
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
13
|
Moon YS, Khan M, Khan MA, Ali S. Ameliorative symbiosis of Serratia fonticola (S1T1) under salt stress condition enhance growth-promoting attributes of Cucumis sativus L. Symbiosis 2023. [DOI: 10.1007/s13199-023-00897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Ma C, Pei ZQ, Bai X, Feng JY, Zhang L, Fan JR, Wang J, Zhang TG, Zheng S. Involvement of NO and Ca 2+ in the enhancement of cold tolerance induced by melatonin in winter turnip rape (Brassica rapa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:262-276. [PMID: 36152511 DOI: 10.1016/j.plaphy.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
As a multifunctional phytohormone, melatonin (Mel) plays pivotal roles in plant responses to multiple stresses. However, its mechanism of action remains elusive. In the present study, we evaluated the role of NO and Ca2+ signaling in Mel enhanced cold tolerance in winter turnip rape. The results showed that the NO content and concentration of intracellular free Ca2+ ([Ca2+]cyt) increased by 35.42% and 30.87%, respectively, in the leaves of rape seedlings exposed to cold stress. Compared with those of the seedlings in cold stress alone, the NO content and concentration of [Ca2+]cyt in rape seedlings pretreated with Mel increased further. In addition, the Mel-mediated improvement of cold tolerance was inhibited by L-NAME (a NO synthase inhibitor), tungstate (a nitrate reductase inhibitor), LaCl3 (a Ca2+ channel blocker), and EGTA (a Ca2+ chelator), and this finding was mainly reflected in the increase in ROS content and the decrease in osmoregulatory capacity, photosynthetic efficiency and antioxidant enzyme activities, and expression levels of antioxidant enzyme genes. These findings suggest that NO and Ca2+ are necessary for Mel to improve cold tolerance and function synergistically downstream of Mel. Notably, the co-treatment of Mel with L-NAME, tungstate, LaCl3, or EGTA also inhibited the Mel-induced expression of MAPK3/6 under cold stress. In conclusion, NO and Ca2+ are involved in the enhancement of cold tolerance induced by Mel through activating the MAPK cascades in rape seedlings, and a crosstalk may exist between NO and Ca2+ signaling.
Collapse
Affiliation(s)
- Cheng Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Zi-Qi Pei
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xue Bai
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Ju-Yan Feng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Lu Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Jie-Ru Fan
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Teng-Guo Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
15
|
Khalid M, Rehman HM, Ahmed N, Nawaz S, Saleem F, Ahmad S, Uzair M, Rana IA, Atif RM, Zaman QU, Lam HM. Using Exogenous Melatonin, Glutathione, Proline, and Glycine Betaine Treatments to Combat Abiotic Stresses in Crops. Int J Mol Sci 2022; 23:12913. [PMID: 36361700 PMCID: PMC9657122 DOI: 10.3390/ijms232112913] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/06/2023] Open
Abstract
Abiotic stresses, such as drought, salinity, heat, cold, and heavy metals, are associated with global climate change and hamper plant growth and development, affecting crop yields and quality. However, the negative effects of abiotic stresses can be mitigated through exogenous treatments using small biomolecules. For example, the foliar application of melatonin provides the following: it protects the photosynthetic apparatus; it increases the antioxidant defenses, osmoprotectant, and soluble sugar levels; it prevents tissue damage and reduces electrolyte leakage; it improves reactive oxygen species (ROS) scavenging; and it increases biomass, maintains the redox and ion homeostasis, and improves gaseous exchange. Glutathione spray upregulates the glyoxalase system, reduces methylglyoxal (MG) toxicity and oxidative stress, decreases hydrogen peroxide and malondialdehyde accumulation, improves the defense mechanisms, tissue repairs, and nitrogen fixation, and upregulates the phytochelatins. The exogenous application of proline enhances growth and other physiological characteristics, upregulates osmoprotection, protects the integrity of the plasma lemma, reduces lipid peroxidation, increases photosynthetic pigments, phenolic acids, flavonoids, and amino acids, and enhances stress tolerance, carbon fixation, and leaf nitrogen content. The foliar application of glycine betaine improves growth, upregulates osmoprotection and osmoregulation, increases relative water content, net photosynthetic rate, and catalase activity, decreases photorespiration, ion leakage, and lipid peroxidation, protects the oxygen-evolving complex, and prevents chlorosis. Chemical priming has various important advantages over transgenic technology as it is typically more affordable for farmers and safe for plants, people, and animals, while being considered environmentally acceptable. Chemical priming helps to improve the quality and quantity of the yield. This review summarizes and discusses how exogenous melatonin, glutathione, proline, and glycine betaine can help crops combat abiotic stresses.
Collapse
Affiliation(s)
- Memoona Khalid
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Hafiz Mamoon Rehman
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nisar Ahmed
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Sehar Nawaz
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Fozia Saleem
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shakeel Ahmad
- Seed Center, Ministry of Environment, Water & Agriculture, Riyadh 14712, Saudi Arabia
| | - Muhammad Uzair
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Iqrar Ahmad Rana
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Rana Muhammad Atif
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Qamar U. Zaman
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Hon-Ming Lam
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
16
|
Liu Y, Wang X, Lv H, Cao M, Li Y, Yuan X, Zhang X, Guo YD, Zhang N. Anabolism and signaling pathways of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5801-5817. [PMID: 35430630 DOI: 10.1093/jxb/erac158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a small multifunctional molecule found ubiquitously in plants, which plays an important role in plant growth, development, and biotic and abiotic stress responses. The classical biosynthetic and metabolic pathways of phytomelatonin have been elucidated, and uncovering alternative pathways has deepened our understanding of phytomelatonin synthesis. Phytomelatonin functions mainly via two pathways. In the direct pathway, phytomelatonin mediates the stress-induced reactive oxygen species burst through its strong antioxidant capacity. In the indirect pathway, phytomelatonin acts as a signal to activate signaling cascades and crosstalk with other plant hormones. The phytomelatonin receptor PMTR1/CAND2 was discovered in 2018, which enhanced our understanding of phytomelatonin function. This review summarizes the classical and potential pathways involved in phytomelatonin synthesis and metabolism. To elucidate the functions of phytomelatonin, we focus on the crosstalk between phytomelatonin and other phytohormones. We propose two models to explain how PMTR1 transmits the phytomelatonin signal through the G protein and MAPK cascade. This review will facilitate the identification of additional signaling molecules that function downstream of the phytomelatonin signaling pathway, thus improving our understanding of phytomelatonin signal transmission.
Collapse
Affiliation(s)
- Ying Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoyun Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongmei Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meng Cao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yongchong Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Yuan
- Huasheng Agriculture Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Xichun Zhang
- School of Plant Science and Technology, Beijing Agricultural University, Beijing, 102206, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| |
Collapse
|
17
|
Yao X, Zhou M, Ruan J, Peng Y, Ma C, Wu W, Gao A, Weng W, Cheng J. Physiological and Biochemical Regulation Mechanism of Exogenous Hydrogen Peroxide in Alleviating NaCl Stress Toxicity in Tartary Buckwheat ( Fagopyrum tataricum (L.) Gaertn). Int J Mol Sci 2022; 23:10698. [PMID: 36142630 PMCID: PMC9505081 DOI: 10.3390/ijms231810698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to elucidate the physiological and biochemical mechanism by which exogenous hydrogen peroxide (H2O2) alleviates salt stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). Tartary buckwheat "Chuanqiao-2" under 150 mmol·L-1 salt (NaCl) stress was treated with 5 or 10 mmol·L-1 H2O2, and seedling growth, physiology and biochemistry, and related gene expression were studied. Treatment with 5 mmol·L-1 H2O2 significantly increased plant height (PH), fresh and dry weights of shoots (SFWs/SDWs) and roots (RFWs/RDWs), leaf length (LL) and area (LA), and relative water content (LRWC); increased chlorophyll a (Chl a) and b (Chl b) contents; improved fluorescence parameters; enhanced antioxidant enzyme activity and content; and reduced malondialdehyde (MDA) content. Expressions of all stress-related and enzyme-related genes were up-regulated. The F3'H gene (flavonoid synthesis pathway) exhibited similar up-regulation under 10 mmol·L-1 H2O2 treatment. Correlation and principal component analyses showed that 5 mmol·L-1 H2O2 could significantly alleviate the toxic effect of salt stress on Tartary buckwheat. Our results show that exogenous 5 mmol·L-1 H2O2 can alleviate the inhibitory or toxic effects of 150 mmol·L-1 NaCl stress on Tartary buckwheat by promoting growth, enhancing photosynthesis, improving enzymatic reactions, reducing membrane lipid peroxidation, and inducing the expression of related genes.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing 100081, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Yan Peng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Chao Ma
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Weijiao Wu
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Anjing Gao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Wenfeng Weng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Jianping Cheng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
18
|
Zeng W, Mostafa S, Lu Z, Jin B. Melatonin-Mediated Abiotic Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:847175. [PMID: 35615125 PMCID: PMC9125191 DOI: 10.3389/fpls.2022.847175] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/19/2022] [Indexed: 05/07/2023]
Abstract
Melatonin is a multi-functional molecule that is ubiquitous in all living organisms. Melatonin performs essential roles in plant stress tolerance; its application can reduce the harmful effects of abiotic stresses. Plant melatonin biosynthesis, which usually occurs within chloroplasts, and its related metabolic pathways have been extensively characterized. Melatonin regulates plant stress responses by directly inhibiting the accumulation of reactive oxygen and nitrogen species, and by indirectly affecting stress response pathways. In this review, we summarize recent research concerning melatonin biosynthesis, metabolism, and antioxidation; we focus on melatonin-mediated tolerance to abiotic stresses including drought, waterlogging, salt, heat, cold, heavy metal toxicity, light and others. We also examine exogenous melatonin treatment in plants under abiotic stress. Finally, we discuss future perspectives in melatonin research and its applications in plants.
Collapse
Affiliation(s)
- Wen Zeng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhaogeng Lu,
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Biao Jin,
| |
Collapse
|
19
|
Abstract
Abiotic stress adversely affects plant growth and metabolism and as such reduces plant productivity. Recognized as a major contributor in the production of reactive oxygen species (ROS), it hinders the growth of plants through induction of oxidative stress. Biostimulants such as melatonin have a multifunctional role, acting as a defense strategy in minimizing the effects of oxidative stress. Melatonin plays important role in plant processes ranging from seed germination to senescence, besides performing the function of a biostimulant in improving the plant’s productivity. In addition to its important role in the signaling cascade, melatonin acts as an antioxidant that helps in scavenging ROS, generated as part of different stresses among plants. The current study was undertaken to elaborate the synthesis and regulation of melatonin in plants, besides emphasizing its function under various abiotic stress namely, salt, temperature, herbicides, heavy metals, and drought. Additionally, a special consideration was put on the crosstalk of melatonin with phytohormones to overcome plant abiotic stress.
Collapse
|