1
|
Wu Y, Ye Q, Chen L, Han B, Li P, Du B, Li L. Enzymatic cross-linking mechanism of different structural polyphenols with Inca peanut albumin and its potential application in emulsion. Int J Biol Macromol 2025; 309:143042. [PMID: 40220816 DOI: 10.1016/j.ijbiomac.2025.143042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
In this study, four polyphenols (protocatechuic acid [PCA], vanillic acid [VA], gallic acid [GA], and syringic acid [SA]) with different types and numbers of substituents were selected for cross-linking with Inca peanut albumin (IPA) to investigate the effect of polyphenol structure on the enzyme-promoted cross-linking ability. The results showed that the enzymatic cross-linking reaction was based on the formation of quinone and hydrogen bond, and the catalytic oxidation efficiencies by laccase(L) were L-GA > L-SA > L-PCA > L-VA, with GA having the highest binding energy of -4.51 kcal/mol. Covalent binding of all four polyphenols to IPA resulted in increased surface hydrophobicity and emulsification capacity. Among them, the IPA-GA conjugates had a better stabilization ability for high oil phase emulsions. The results demonstrated that the polyhydroxy-substituted GA had a better modification effect on IPA. Therefore, the conjugates formed between polyphenols with a greater number of hydroxyl substituents (such as GA) and IPA under laccase catalysis have great potential as emulsifiers to stabilize high oil phase emulsions.
Collapse
Affiliation(s)
- Yongqing Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianjun Ye
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lixuan Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Han
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Jasminka M, Vuk M, Dragan R, Slavica S, Dragišić Maksimović J. How does fertilizer management strategy in soilless blueberry cultivation change the phytochemical profile and phenoloxidases activity during fruit ripening? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3084-3096. [PMID: 39667902 DOI: 10.1002/jsfa.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Highbush blueberry fruits have attracted a lot of attention from consumers due to their exquisite taste and considerable quantities of bioactive compounds. This premium-class foodstuff also contains antioxidant enzymes (phenoloxidases) implicated in the degradation of polyphenols that lead to discoloration and loss of antioxidant activity during fruit ripening. Despite substantial progress in research focused on fruit quality, unanswered questions remain about the effect of fertilizer strategy in soilless blueberry cultivation on the phytochemical content and phenoloxidases activities. Therefore, this study aimed to compare the individual effect of mineral fertilizers (Min treatment) and combined application of organic and mineral fertilizers (Org-Min treatment) the content of targeted primary and secondary metabolites, as well as phenoloxidases activities of blueberry cultivar 'Bluecrop' grown in pots. RESULTS The sugar content and sweetness index were not affected by the fertilizer treatment, while the predominant organic acids content (citrate and malate) increased significantly by the Org-Min treatment in both years studied. The Org-Min treatment also stimulated the synthesis of phenolic acids, primarily chlorogenic and p-coumaric acid, while the Min treatment contributed to significant increase in polyphenol oxidase (PPO) activity in both years of the study. CONCLUSION The Org-Min treatment in annual amounts of 72 kg ha-1 nitrogen, 48 kg ha-1 phosphorus, and 68 kg ha-1 potassium had the most pronounced positive effect on the content of phenolic bioactives, which indicates that a partial replacement of mineral by organic fertilizers can be recommended in soilless cultivation of blueberries. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Maksimović Vuk
- University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | | | | | | |
Collapse
|
3
|
Aati S, Aati HY, Hamed AA, El-Shamy S, Aati SH, Abdelmohsen UR, Bringmann G, Taha MN, Hassan HM, Bahr HS. Gold nanoparticles synthesized from soil-derived Streptomyces sp. ASM19: characterization, antimicrobial, anticancer potency targeted G2/M phase cell-cycle arrest, and in silico studies. RSC Adv 2025; 15:3954-3968. [PMID: 39917041 PMCID: PMC11799888 DOI: 10.1039/d4ra07608g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Gold nanoparticles (Au) have attracted considerable attention in the field of biomedicine in recent years. The present work was designed to investigate gold nanoparticles obtained using a soil-associated actinomycetes, Streptomyces sp. ASM19. This microorganism was isolated and identified using DNA sequencing. The chemical profile of the Streptomyces sp. ASM19 extract was analyzed using LC-HRES-MS. Streptomyces sp. ASM19 extract was utilized to synthesize actinomycetes-based gold nanoparticles (Ac-AuNPs), which were analyzed using ultraviolet-visible (UV-vis) spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). In addition, the antibacterial, and anti-biofilm, as well as, the anti-proliferative properties of Ac-AuNPs against seven cancer lines were investigated. LC-HRES-MS analysis traced a total of 111 peaks, 14 of them are key peaks belonging to the chemical classes, alkaloids, steroids, and polyketides. Analysis of the synthesized Ac-AuNPs revealed that they exhibited a wine-red color and a plasmon band appeared at 540 nm, confirming the formation of the Ac-AuNPs. Further, FTIR confirmed various functional groups present in Ac-AuNPs. The crude extract of Streptomyces sp. ASM19 demonstrated consistent antibacterial activity in contrast to Ac-AuNPs. The anti-proliferative properties of Ac-AuNPs demonstrated encouraging anticancer properties against SCC9 and SCC25 cell lines with IC50 values of 3.77 and 1.56 μg mL-1. Furthermore, Ac-AuNPs had total apoptotic percentages of 26.37% (SCC9) and 32.08% (SCC25), which are around 25 times higher than the control (0.95%). Additionally, it caused a notable G2/M phase cell-cycle arrest. On the other hand, molecular docking study carried out for the annotated compounds; tomaymycin (8) and nocapyrone P (5), showed considerable binding affinities compared to the co-crystallized inhibitor (fisetin) against the cyclin-dependent kinase 6 active site. Overall, the present study could be useful for nano drug delivery and may be applied for clinical studies in the future.
Collapse
Affiliation(s)
- Sultan Aati
- Dental Health Department, College of Applied Medical Sciences, King Saud University Riyadh Saudi Arabia
| | - Hanan Y Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh 11495 Saudi Arabia
| | - Ahmed A Hamed
- National Research Centre, Microbial Chemistry Department 33 El-Buhouth Street Dokki Giza 12622 Egypt
| | - Sherine El-Shamy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology and Information Cairo Egypt
| | - Shahad H Aati
- College of Dentistry, King Saud University Riyadh Saudi Arabia
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University New Minia City 61111 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia Egypt
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg Am Hubland Würzburg 97074 Germany
| | - Mostafa N Taha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Hossam M Hassan
- Department of Pharmacy, Kut University College Wasit 52001 Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Hebatallah S Bahr
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| |
Collapse
|
4
|
Kirakosyan RN, Kalasnikova EA, Bolotina EA, Saleh A, Balakina AA, Zaytseva SM. Localization of Secondary Metabolites in Relict Gymnosperms of the Genus Sequoia In Vivo and in Cell Cultures In Vitro, and the Biological Activity of Their Extracts. Life (Basel) 2024; 14:1694. [PMID: 39768400 PMCID: PMC11680049 DOI: 10.3390/life14121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In order to scientifically search for new sources of secondary metabolites with valuable qualities for phytopharmacognosy, tasks requiring a step-by-step solution were set. The primary task is the development of technologies for obtaining in vitro highly productive biomass of cells of relict gymnosperms of the genus Sequoia, capable of accumulating various classes of secondary metabolites. The study of the accumulation and localization of secondary metabolites allowed us to evaluate the biological activity and cytotoxicity of in vitro Sequoia cultures. In our study, histochemical methods were used to determine the localization of secondary compounds (phenolic and terpenoid in nature) in plant tissues. Secondary metabolites-polyphenols, catechins, and terpenoids-are mainly localized in the epidermal, parenchymal, and conductive tissues of Sequoia leaves and stems. In callus and suspension cultures of Sequoia, secondary metabolites were localized in cell walls and vacuoles. The mineral composition of the nutrient medium (MS and WPM), the light source (photoperiod), and the endogenous content of polyphenols in the primary explant influenced the initiation and growth characteristics of the in vitro culture of Sequoia plants. Inhibition of growth in suspension cultures on the WPM nutrient medium was noted. The cultivation of Sequoia cell lines at a 16 h photoperiod stimulated the formation of polyphenols but had a negative effect on the growth of callus cultures. Extractive substances obtained from intact and callus tissues of evergreen Sequoia demonstrate high biological (fungicidal) activity and cytotoxicity. The inhibitory effect on Fusarium oxisporum was noted when 200 mg/L of Sequoia extract was added to the nutrient medium. Extracts of redwood callus cultures were low in toxicity to normal FetMSC cells but inhibited the growth of lines of "immortal" cervical HeLa cancer cells and human glioblastoma A172. Intact tissues of Sequoia plants and cell cultures initiated from them in vitro are producers of secondary metabolites with high biological activity.
Collapse
Affiliation(s)
- Rima N. Kirakosyan
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Elena A. Kalasnikova
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Elizaveta A. Bolotina
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Abdulrahman Saleh
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Anastasiya A. Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science, Ac. Semenov Avenue 1, Moscow Region, Chernogolovka, Moscow 142432, Russia;
| | - Svetlana M. Zaytseva
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| |
Collapse
|
5
|
Liu M, Zheng S, Tang Y, Han W, Li W, Li T. Specific Substrate Activity of Lotus Root Polyphenol Oxidase: Insights from Gaussian-Accelerated Molecular Dynamics and Markov State Models. Int J Mol Sci 2024; 25:10074. [PMID: 39337569 PMCID: PMC11432685 DOI: 10.3390/ijms251810074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Polyphenol oxidase (PPO) plays a key role in the enzymatic browning process, and this study employed Gaussian-accelerated molecular dynamics (GaMD) simulations to investigate the catalytic efficiency mechanisms of lotus root PPO with different substrates, including catechin, epicatechin, and chlorogenic acid, as well as the inhibitor oxalic acid. Key findings reveal significant conformational changes in PPO that correlate with its enzymatic activity. Upon substrate binding, the alpha-helix in the Q53-D63 region near the copper ion extends, likely stabilizing the active site and enhancing catalysis. In contrast, this helix is disrupted in the presence of the inhibitor, resulting in a decrease in enzymatic efficiency. Additionally, the F350-V378 region, which covers the substrate-binding site, forms an alpha-helix upon substrate binding, further stabilizing the substrate and promoting catalytic function. However, this alpha-helix does not form when the inhibitor is bound, destabilizing the binding site and contributing to inhibition. These findings offer new insights into the substrate-specific and inhibitor-induced structural dynamics of lotus root PPO, providing valuable information for enhancing food processing and preservation techniques.
Collapse
Affiliation(s)
- Minghao Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (M.L.); (W.H.)
| | - Siyun Zheng
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.Z.); (Y.T.); (W.L.)
| | - Yijia Tang
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.Z.); (Y.T.); (W.L.)
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (M.L.); (W.H.)
| | - Wannan Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.Z.); (Y.T.); (W.L.)
| | - Tao Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (M.L.); (W.H.)
| |
Collapse
|
6
|
Capasso C, Supuran CT. Overview on tyrosinases: Genetics, molecular biology, phylogenetic relationship. Enzymes 2024; 56:1-30. [PMID: 39304284 DOI: 10.1016/bs.enz.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tyrosinases (TYRs) are enzymes found in various organisms that are crucial for melanin biosynthesis, coloration, and UV protection. They play vital roles in insect cuticle sclerotization, mollusk shell formation, fungal and bacterial pigmentation, biofilm formation, and virulence. Structurally, TYRs feature copper-binding sites that are essential for catalytic activity, facilitating substrate oxidation via interactions with conserved histidine residues. TYRs exhibit diversity across animals, plants, fungi, mollusks, and bacteria, reflecting their roles and function. Eukaryotic TYRs undergo post-translational modifications, such as glycosylation, which affect protein folding and activity. Bacterial TYRs are categorized into five types based on their structural variation, domain organization and enzymatic properties, showing versatility across bacterial species. Moreover, bacterial TYRs, akin to fungal TYRs, have been implicated in the synthesis of secondary metabolites with antimicrobial properties. TYRs share significant sequence homology with hemocyanins, oxygen-carrier proteins in mollusks and arthropods, highlighting their evolutionary relationships. The evolution of TYRs underscores the dynamic nature of these enzymes and reflects adaptive strategies across diverse taxa.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
7
|
Hasanagić D, Samelak I, Maksimović T, Jovanović-Cvetković T, Maksimović V. Phenolic profile, antioxidant capacity and oxidoreductase enzyme activity in autochthonous grape varieties from Bosnia and Herzegovina. Nat Prod Res 2024:1-10. [PMID: 39222473 DOI: 10.1080/14786419.2024.2398721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The variability of phenolic compounds among grape varieties has an important role in selecting winemaking techniques, but the use of phenolic profiles for quality control is still fragmented and incomplete. Given the recent climate change and global warming, biochemical characterisation of secondary metabolites in autochthonous grape varieties is a very important factor for their preservation and sustainable agriculture. Two autochthonous grape varieties from the western Herzegovina region in Bosnia and Herzegovina have been selected for the research targeting at the evaluation of their phenolic profiles, antioxidant activities, and the correlation with oxidoreductase enzymes polyphenol oxidase and Class III peroxidase, in different berry tissues. The obtained results indicate a similar qualitative profile of phenolic compounds in exocarp and mesocarp in both varieties, but their concentrations and antioxidant activity vary significantly. The correlation between phenolic compounds and oxidoreductase enzyme activities in different grape berry tissues is discussed in this article.
Collapse
Affiliation(s)
- Dino Hasanagić
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ivan Samelak
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Tanja Maksimović
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | | | - Vuk Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Guo W, Yang K, Ye H, Yao J, Li J. WRKY10 Regulates Seed Size through the miR397a-LAC2 Module in Arabidopsis thaliana. Genes (Basel) 2024; 15:1040. [PMID: 39202400 PMCID: PMC11354073 DOI: 10.3390/genes15081040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
In angiosperms, seed size is a critical trait that is influenced by the complex interplay between the endosperm and seed coat. The HAIKU (IKU) pathway, involving the transcription factor WRKY10, plays a crucial role in regulating seed size in Arabidopsis thaliana. However, the downstream targets of WRKY10 and their roles in seed size determination remain largely unexplored. Here, we identified LACCASE2 (LAC2), a laccase gene involved in lignin biosynthesis, as a new downstream target of WRKY10. We observed that the expression of LAC2 was upregulated in the mini3 mutant, which is defective in WRKY10. We demonstrated that WRKY10 directly binds to the promoter of miR397a, activating its expression. miR397a, in turn, represses the expression of LAC2. Genetic analyses revealed that a mutation in LAC2 or overexpression of miR397a partially rescued the small seed phenotype of the MINISEED3 (MINI3) mutant mini3. Conversely, the overexpression of LAC2 in the wild type led to a decrease in seed size. These findings suggest that LAC2 functions as a negative regulator of seed size, and its expression is modulated by WRKY10 through miR397a. Our study uncovers a novel WRKY10-miR397a-LAC2 pathway that regulates seed size in Arabidopsis, providing new insights into the complex regulatory network governing seed development in plants.
Collapse
Affiliation(s)
- Wenbin Guo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Ke Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hang Ye
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
9
|
Dai JJ, Chen GY, Xu L, Zhu H, Yang FQ. Applications of Nanozymes in Chiral-Molecule Recognition through Electrochemical and Ultraviolet-Visible Analysis. Molecules 2024; 29:3376. [PMID: 39064954 PMCID: PMC11280305 DOI: 10.3390/molecules29143376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Chiral molecules have similar physicochemical properties, which are different in terms of physiological activities and toxicities, rendering their differentiation and recognition highly significant. Nanozymes, which are nanomaterials with inherent enzyme-like activities, have garnered significant interest owing to their high cost-effectiveness, enhanced stability, and straightforward synthesis. However, constructing nanozymes with high activity and enantioselectivity remains a significant challenge. This review briefly introduces the synthesis methods of chiral nanozymes and systematically summarizes the latest research progress in enantioselective recognition of chiral molecules based on electrochemical methods and ultraviolet-visible absorption spectroscopy. Moreover, the challenges and development trends in developing enantioselective nanozymes are discussed. It is expected that this review will provide new ideas for the design of multifunctional chiral nanozymes and broaden the application field of nanozymes.
Collapse
Affiliation(s)
| | | | | | | | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (J.-J.D.); (G.-Y.C.); (L.X.); (H.Z.)
| |
Collapse
|
10
|
Pan C, Zhang M, Chen J, Lu H, Zhao X, Chen X, Wang L, Guo P, Liu S. miR397 regulates cadmium stress response by coordinating lignin polymerization in the root exodermis in Kandelia obovata. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134313. [PMID: 38669927 DOI: 10.1016/j.jhazmat.2024.134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Secondary lignification of the root exodermis of Kandelia obovata is crucial for its response to adversity such as high salinity and anaerobic environment, and this lignification is also effective in blocking cadmium transport to the roots. However, how the differences in lignification of root exodermis at different developmental stages respond to Cd stress and its regulatory mechanisms have not been revealed. In this study, after analyzing the root structure and cell wall thickness using a Phenom scanning electron microscope as well as measuring cadmium content in the root cell wall, we found that the exodermis of young and mature roots of K. obovata responded to Cd stress through the polymerization of different lignin monomers, forming two different mechanisms: chelation and blocking. Through small RNA sequencing, RLM-5'-RACE and dual luciferase transient expression system, we found that miR397 targets and regulates KoLAC4/17/7 expression. The expression of KoLAC4/17 promoted the accumulation of guaiacyl lignin during lignification and enhanced the binding of cadmium to the cell wall. Meanwhile, KoLAC7 expression promotes the accumulation of syringyl lignin during lignification, which enhances the obstruction of cadmium and improves the tolerance to cadmium. These findings enhance our understanding of the molecular mechanisms underlying the differential lignification of the root exodermis of K. obovata in response to cadmium stress, and provide scientific guidance for the conservation of mangrove forests under heavy metal pollution.
Collapse
Affiliation(s)
- Chenglang Pan
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China.
| | - Mingxiong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xuemei Zhao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Xiaofeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Lu Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Pingping Guo
- Fujian Minjiang River Estuary Wetland National Nature Reserve Administrative Office, Fuzhou 350001, China
| | - Shuyu Liu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Young R, Ahmed KA, Court L, Castro-Vargas C, Marcora A, Boctor J, Paull C, Wijffels G, Rane R, Edwards O, Walsh T, Pandey G. Improved reference quality genome sequence of the plastic-degrading greater wax moth, Galleria mellonella. G3 (BETHESDA, MD.) 2024; 14:jkae070. [PMID: 38564250 DOI: 10.1093/g3journal/jkae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/19/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Galleria mellonella is a pest of honeybees in many countries because its larvae feed on beeswax. However, G. mellonella larvae can also eat various plastics, including polyethylene, polystyrene, and polypropylene, and therefore, the species is garnering increasing interest as a tool for plastic biodegradation research. This paper presents an improved genome (99.3% completed lepidoptera_odb10 BUSCO; genome mode) for G. mellonella. This 472 Mb genome is in 221 contigs with an N50 of 6.4 Mb and contains 13,604 protein-coding genes. Genes that code for known and putative polyethylene-degrading enzymes and their similarity to proteins found in other Lepidoptera are highlighted. An analysis of secretory proteins more likely to be involved in the plastic catabolic process has also been carried out.
Collapse
Affiliation(s)
| | | | - Leon Court
- CSIRO Environment, Acton, ACT 2601, Australia
| | | | - Anna Marcora
- CSIRO Agriculture and Food, Dutton Park, QLD 4102, Australia
| | - Joseph Boctor
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Cate Paull
- CSIRO Agriculture and Food, Dutton Park, QLD 4102, Australia
| | - Gene Wijffels
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Rahul Rane
- CSIRO Health and Biosecurity, Parkville, VIC 3052, Australia
| | | | - Tom Walsh
- CSIRO Environment, Acton, ACT 2601, Australia
| | | |
Collapse
|
12
|
Blaschek L, Serk H, Pesquet E. Functional Complexity on a Cellular Scale: Why In Situ Analyses Are Indispensable for Our Understanding of Lignified Tissues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38832924 DOI: 10.1021/acs.jafc.4c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Lignins are a key adaptation that enables vascular plants to thrive in terrestrial habitats. Lignin is heterogeneous, containing upward of 30 different monomers, and its function is multifarious: It provides structural support, predetermined breaking points, ultraviolet protection, diffusion barriers, pathogen resistance, and drought resilience. Recent studies, carefully characterizing lignin in situ, have started to identify specific lignin compositions and ultrastructures with distinct cellular functions, but our understanding remains fractional. We summarize recent works and highlight where further in situ lignin analysis could provide valuable insights into plant growth and adaptation. We also summarize strengths and weaknesses of lignin in situ analysis methods.
Collapse
Affiliation(s)
- Leonard Blaschek
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Han Q, Yang L, Xia L, Zhang H, Zhang S. Interspecific grafting promotes poplar growth and drought resistance via regulating phytohormone signaling and secondary metabolic pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108594. [PMID: 38581808 DOI: 10.1016/j.plaphy.2024.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Populus cathayana (C) grafted onto P. deltoides (D) (C/D) can promote growth better than self-grafting (C/C and D/D). However, the mechanisms underlying growth and resistance to drought stress are not clear. In this study, we performed physiological and RNA-seq analysis on the different grafted combinations. It was found that C/D plants exhibited higher growth, net photosynthetic rate, IAA content and intrinsic water use efficiency (WUEi) than C/C and D/D plants under both well-watered and drought-stressed conditions. However, most growth, photosynthetic indices, and IAA content were decreased less in C/D, whereas ABA content, WUEi and root characteristics (e.g., root length, volume, surface area and vitality) were increased more in C/D than in other grafting combinations under drought-stressed conditions. Transcriptomic analysis revealed that the number of differentially expressed genes (DEGs) in leaves of C/D vs C/C (control, 181; drought, 121) was much lower than that in the roots of C/D vs D/D (control, 1639; drought, 1706), indicating that the rootstocks were more responsive to drought resistance. KEGG and GO functional enrichment analysis showed that the enhanced growth and drought resistance of C/D were mainly related to DEGs involved in the pathways of ABA and IAA signaling, and secondary metabolite biosynthesis, especially the pathways for lignin and dopamine synthesis and metabolism. Therefore, our results further demonstrated the dominant role of rootstock in drought resistance, and enriched our knowledge on the mechanism of how interspecific grafting enhanced the growth and drought resistance in poplar.
Collapse
Affiliation(s)
- Qingquan Han
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
14
|
Wei X, Tao K, Liu Z, Qin B, Su J, Luo Y, Zhao C, Liao J, Zhang J. The PPO family in Nicotiana tabacum is an important regulator to participate in pollination. BMC PLANT BIOLOGY 2024; 24:102. [PMID: 38331761 PMCID: PMC10854075 DOI: 10.1186/s12870-024-04769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Polyphenol oxidases (PPOs) are type-3 copper enzymes and are involved in many biological processes. However, the potential functions of PPOs in pollination are not fully understood. In this work, we have screened 13 PPO members in Nicotiana. tabacum (named NtPPO1-13, NtPPOs) to explore their characteristics and functions in pollination. The results show that NtPPOs are closely related to PPOs in Solanaceae and share conserved domains except NtPPO4. Generally, NtPPOs are diversely expressed in different tissues and are distributed in pistil and male gametes. Specifically, NtPPO9 and NtPPO10 are highly expressed in the pistil and mature anther. In addition, the expression levels and enzyme activities of NtPPOs are increased after N. tabacum self-pollination. Knockdown of NtPPOs would affect pollen growth after pollination, and the purines and flavonoid compounds are accumulated in self-pollinated pistil. Altogether, our findings demonstrate that NtPPOs potentially play a role in the pollen tube growth after pollination through purines and flavonoid compounds, and will provide new insights into the role of PPOs in plant reproduction.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Keliang Tao
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Zhengmei Liu
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Boyuan Qin
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Jie Su
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Yanbi Luo
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Jugou Liao
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China.
| | - Junpeng Zhang
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China.
| |
Collapse
|
15
|
Casal-Porras I, Muñoz K, Ortega MJ, Brun FG, Zubía E. Rosmarinic Acid and Flavonoids of the Seagrass Zostera noltei: New Aspects on Their Quantification and Their Correlation with Sunlight Exposure. PLANTS (BASEL, SWITZERLAND) 2023; 12:4078. [PMID: 38140405 PMCID: PMC10748107 DOI: 10.3390/plants12244078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Seagrasses are plants adapted to the marine environment that inhabit shallow coastal waters, where they may be exposed to direct sunlight during low tides. These plants have photoprotection mechanisms, which could include the use of phenolic secondary metabolites. In this study, rosmarinic acid (RA) and the flavonoids of Zostera noltei from the Bay of Cadiz (Spain) have been analyzed, first to define suitable conditions of leaves (i.e., fresh, dried, or frozen) for quantitative analysis, and then to explore the potential correlation between the phenolic profile of the leaves and sunlight exposure using an in situ experimental approach. Compared with fresh leaves, the contents of RA and flavonoids were significantly lower in air-dried and freeze-dried leaves. Freezing caused highly variable effects on RA and did not affect to flavonoid levels. On the other hand, the content of RA was significantly higher in plants that emerged during low tides than in plants permanently submerged, while plants underneath an artificial UV filter experienced a progressive reduction in RA content. However, the major flavonoids did not show a clear response to sunlight exposure and were unresponsive to diminished UV incidence. The results showed a positive correlation of RA with direct sunlight and UV exposure of leaves, suggesting that this compound contributes to the photoprotection of Z. noltei.
Collapse
Affiliation(s)
- Isabel Casal-Porras
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (I.C.-P.); (K.M.); (F.G.B.)
| | - Kimberly Muñoz
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (I.C.-P.); (K.M.); (F.G.B.)
| | - María J. Ortega
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Fernando G. Brun
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (I.C.-P.); (K.M.); (F.G.B.)
| | - Eva Zubía
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| |
Collapse
|
16
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
17
|
Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander AD, Hage DE, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Chamcheu JC, Murru S. Synthesis, in silico modelling, and in vitro biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. J Enzyme Inhib Med Chem 2023; 38:2205042. [PMID: 37184042 PMCID: PMC10187093 DOI: 10.1080/14756366.2023.2205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 μM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.
Collapse
Affiliation(s)
- Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kara Torrey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Uchechi Owunna
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, USA
| | - David Basnet
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Eleonora Niedda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alexis D. Alexander
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Denzel El Hage
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siriki Atchimnaidu
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - Ann Findley
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Mario Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
18
|
Liao J, Wei X, Tao K, Deng G, Shu J, Qiao Q, Chen G, Wei Z, Fan M, Saud S, Fahad S, Chen S. Phenoloxidases: catechol oxidase - the temporary employer and laccase - the rising star of vascular plants. HORTICULTURE RESEARCH 2023; 10:uhad102. [PMID: 37786731 PMCID: PMC10541563 DOI: 10.1093/hr/uhad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2023] [Accepted: 05/05/2023] [Indexed: 10/04/2023]
Abstract
Phenolics are vital for the adaptation of plants to terrestrial habitats and for species diversity. Phenoloxidases (catechol oxidases, COs, and laccases, LACs) are responsible for the oxidation and polymerization of phenolics. However, their origin, evolution, and differential roles during plant development and land colonization are unclear. We performed the phylogeny, domain, amino acids, compositional biases, and intron analyses to clarify the origin and evolution of COs and LACs, and analysed the structure, selective pressure, and chloroplast targeting to understand the species-dependent distribution of COs. We found that Streptophyta COs were not homologous to the Chlorophyta tyrosinases (TYRs), and might have been acquired by horizontal gene transfer from bacteria. COs expanded in bryophytes. Structural-functionality and selective pressure were partially responsible for the species-dependent retention of COs in embryophytes. LACs emerged in Zygnemaphyceae, having evolved from ascorbate oxidases (AAOs), and prevailed in the vascular plants and strongly expanded in seed plants. COs and LACs coevolved with the phenolic metabolism pathway genes. These results suggested that TYRs and AAOs were the first-stage phenoloxidases in Chlorophyta. COs might be the second key for the early land colonization. LACs were the third one (dominating in the vascular plants) and might be advantageous for diversified phenol substrates and the erect growth of plants. This work provided new insights into how phenoloxidases evolved and were devoted to plant evolution.
Collapse
Affiliation(s)
- Jugou Liao
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, Yunnan Province, 671003, China
| | - Keliang Tao
- School of Life Science, Yunnan University, Yunnan Province, Kunming 650091, China
| | - Gang Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Yunnan Province, Kunming 650091, China
| | - Jie Shu
- School of Life Science, Yunnan University, Yunnan Province, Kunming 650091, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Yunnan Province, Kunming 650091, China
| | - Gonglin Chen
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Zhuo Wei
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Meihui Fan
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Suiyun Chen
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| |
Collapse
|
19
|
Ro N, Haile M, Ko HC, Cho GT, Lee J, Kim B, Lee S, Kim SH. Genome-Wide Association Study of Phenolic Content and Antioxidant Properties in Eggplant Germplasm. Genes (Basel) 2023; 14:1315. [PMID: 37510220 PMCID: PMC10379237 DOI: 10.3390/genes14071315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The phenolic compounds in eggplant offer potential natural antioxidants for improved health. A large number of samples were examined in order to find eggplant germplasm with a high potential for health promotion. A genome-wide association study (GWAS) was conducted to identify single nucleotide polymorphisms (SNPs) associated with variations in total phenolic content (TPC) and antioxidant activity in eggplants, including ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) scavenging activity and ferric reducing antioxidant power (FRAP). TPC values varied from 14.19 to 842.90 mg gallic acid equivalent (GAE)/100 g of dry weight of eggplant fruit powder. TPC showed a strong positive correlation with both FRAP and ABTS (r = 0.89 *** and 0.77 ***, respectively). The GWAS identified 20 SNPs that were significantly associated out of 29,183 SNPs. Out of the 20 significant SNPs, 11 showed associations with TPC, 4 with ABTS activity, and 5 with FRAP. Among the SNPs associated with TPC, one SNP was found on each of Chromosomes 3, 4, 7, and 12. In contrast, Chromosome 5 comprised two SNPs associated to TPC. Furthermore, the gene encoding IRX12 laccase-4 on Chromosome 10 was found to contain five SNPs associated with TPC. Four significantly linked SNPs on Chromosomes 1 (1 SNP), 4 (2 SNPs), and 10 (1 SNP) were found to be related to ABTS activity. The identified SNPs will be further examined as markers for selecting desirable eggplant varieties and exploring the links between candidate genes, phenolic content, and antioxidant activity. The findings of this study could assist in further study and the development of eggplants with improved health advantages through targeted breeding.
Collapse
Affiliation(s)
- Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Mesfin Haile
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Ho-Cheol Ko
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jungro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Bichsaem Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sookyeong Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
20
|
Dos Santos C, Franco OL. Pathogenesis-Related Proteins (PRs) with Enzyme Activity Activating Plant Defense Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112226. [PMID: 37299204 DOI: 10.3390/plants12112226] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Throughout evolution, plants have developed a highly complex defense system against different threats, including phytopathogens. Plant defense depends on constitutive and induced factors combined as defense mechanisms. These mechanisms involve a complex signaling network linking structural and biochemical defense. Antimicrobial and pathogenesis-related (PR) proteins are examples of this mechanism, which can accumulate extra- and intracellular space after infection. However, despite their name, some PR proteins are present at low levels even in healthy plant tissues. When they face a pathogen, these PRs can increase in abundance, acting as the first line of plant defense. Thus, PRs play a key role in early defense events, which can reduce the damage and mortality caused by pathogens. In this context, the present review will discuss defense response proteins, which have been identified as PRs, with enzymatic action, including constitutive enzymes, β-1,3 glucanase, chitinase, peroxidase and ribonucleases. From the technological perspective, we discuss the advances of the last decade applied to the study of these enzymes, which are important in the early events of higher plant defense against phytopathogens.
Collapse
Affiliation(s)
- Cristiane Dos Santos
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil
| |
Collapse
|
21
|
Maslennikova D, Ivanov S, Petrova S, Burkhanova G, Maksimov I, Lastochkina O. Components of the Phenylpropanoid Pathway in the Implementation of the Protective Effect of Sodium Nitroprusside on Wheat under Salinity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2123. [PMID: 37299102 PMCID: PMC10255708 DOI: 10.3390/plants12112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO) is a multifunctional, gaseous signaling molecule implicated in both physiological and protective responses to biotic and abiotic stresses, including salinity. In this work, we studied the effects of 200 µM exogenous sodium nitroprusside (SNP, a donor of NO) on the components of the phenylpropanoid pathway, such as lignin and salicylic acid (SA), and its relationship with wheat seedling growth under normal and salinity (2% NaCl) conditions. It was established that exogenous SNP contributed to the accumulation of endogenous SA and increased the level of transcription of the pathogenesis-related protein 1 (PR1) gene. It was found that endogenous SA played an important role in the growth-stimulating effect of SNP, as evidenced by the growth parameters. In addition, under the influence of SNP, the activation of phenylalanine ammonia lyase (PAL), tyrosine ammonia lyase (TAL), and peroxidase (POD), an increase in the level of transcription of the TaPAL and TaPRX genes, and the acceleration of lignin accumulation in the cell walls of roots were revealed. Such an increase in the barrier properties of the cell walls during the period of preadaptation played an important role in protection against salinity stress. Salinity led to significant SA accumulation and lignin deposition in the roots, strong activation of TAL, PAL, and POD, and suppression of seedling growth. Pretreatment with SNP under salinity conditions resulted in additional lignification of the root cell walls, decreased stress-induced endogenous SA generation, and lower PAL, TAL, and POD activities in comparison to untreated stressed plants. Thus, the obtained data suggested that during pretreatment with SNP, phenylpropanoid metabolism was activated (i.e., lignin and SA), which contributed to reducing the negative effects of salinity stress, as evidenced by the improved plant growth parameters.
Collapse
Affiliation(s)
- Dilara Maslennikova
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Sergey Ivanov
- Ufa Institute of Chemistry UFRC RAS, 69 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Svetlana Petrova
- Ufa Institute of Chemistry UFRC RAS, 69 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Guzel Burkhanova
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Igor Maksimov
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Oksana Lastochkina
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| |
Collapse
|
22
|
Wei X, Shu J, Fahad S, Tao K, Zhang J, Chen G, Liang Y, Wang M, Chen S, Liao J. Polyphenol oxidases regulate pollen development through modulating flavonoids homeostasis in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107702. [PMID: 37099880 DOI: 10.1016/j.plaphy.2023.107702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
Pollen development is critical in plant reproduction. Polyphenol oxidases (PPOs) genes encode defense-related enzymes, but the role of PPOs in pollen development remains largely unexplored. Here, we characterized NtPPO genes, and then investigated their function in pollen via creating NtPPO9/10 double knockout mutant (cas-1), overexpression 35S::NtPPO10 (cosp) line and RNAi lines against all NtPPOs in Nicotiana tabacum. NtPPOs were abundantly expressed in the anther and pollen (especially NtPPO9/10). The pollen germination, polarity ratio and fruit weights were significantly reduced in the NtPPO-RNAi and cosp lines, while they were normal in cas-1 likely due to compensation by other NtPPO isoforms. Comparisons of metabolites and transcripts between the pollen of WT and NtPPO-RNAi, or cosp showed that decreased enzymatic activity of NtPPOs led to hyper-accumulation of flavonoids. This accumulation might reduce the content of ROS. Ca2+ and actin levels also decreased in pollen of the transgenic lines.Thus, the NtPPOs regulate pollen germination through the flavonoid homeostasis and ROS signal pathway. This finding provides novel insights into the native physiological functions of PPOs in pollen during reproduction.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China; School of Engineering, Dali University, Dali, Yunnan Province, China
| | - Jie Shu
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Keliang Tao
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Jingwen Zhang
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Gonglin Chen
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Yingchong Liang
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | | | - Suiyun Chen
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China.
| | - Jugou Liao
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China.
| |
Collapse
|
23
|
Tang MG, Zhang S, Xiong LG, Zhou JH, Huang JA, Zhao AQ, Liu ZH, Liu AL. A comprehensive review of polyphenol oxidase in tea (Camellia sinensis): Physiological characteristics, oxidation manufacturing, and biosynthesis of functional constituents. Compr Rev Food Sci Food Saf 2023; 22:2267-2291. [PMID: 37043598 DOI: 10.1111/1541-4337.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/14/2023]
Abstract
Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.
Collapse
Affiliation(s)
- Meng-Ge Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng Zhang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing-Hui Zhou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Qing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhong-Hua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Ling Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
24
|
Rahmati Ishka M. A multi-task family: Different laccase paralogs control lignin content and composition in Arabidopsis. THE PLANT CELL 2023; 35:638-639. [PMID: 36472077 PMCID: PMC9940864 DOI: 10.1093/plcell/koac350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Maryam Rahmati Ishka
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| |
Collapse
|
25
|
Blaschek L, Murozuka E, Serk H, Ménard D, Pesquet E. Different combinations of laccase paralogs nonredundantly control the amount and composition of lignin in specific cell types and cell wall layers in Arabidopsis. THE PLANT CELL 2023; 35:889-909. [PMID: 36449969 DOI: 10.1101/2022.05.04.490011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/23/2022] [Indexed: 05/26/2023]
Abstract
Vascular plants reinforce the cell walls of the different xylem cell types with lignin phenolic polymers. Distinct lignin chemistries differ between each cell wall layer and each cell type to support their specific functions. Yet the mechanisms controlling the tight spatial localization of specific lignin chemistries remain unclear. Current hypotheses focus on control by monomer biosynthesis and/or export, while cell wall polymerization is viewed as random and nonlimiting. Here, we show that combinations of multiple individual laccases (LACs) are nonredundantly and specifically required to set the lignin chemistry in different cell types and their distinct cell wall layers. We dissected the roles of Arabidopsis thaliana LAC4, 5, 10, 12, and 17 by generating quadruple and quintuple loss-of-function mutants. Loss of these LACs in different combinations led to specific changes in lignin chemistry affecting both residue ring structures and/or aliphatic tails in specific cell types and cell wall layers. Moreover, we showed that LAC-mediated lignification has distinct functions in specific cell types, waterproofing fibers, and strengthening vessels. Altogether, we propose that the spatial control of lignin chemistry depends on different combinations of LACs with nonredundant activities immobilized in specific cell types and cell wall layers.
Collapse
Affiliation(s)
- Leonard Blaschek
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Emiko Murozuka
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Delphine Ménard
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Edouard Pesquet
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
26
|
Blaschek L, Murozuka E, Serk H, Ménard D, Pesquet E. Different combinations of laccase paralogs nonredundantly control the amount and composition of lignin in specific cell types and cell wall layers in Arabidopsis. THE PLANT CELL 2023; 35:889-909. [PMID: 36449969 PMCID: PMC9940878 DOI: 10.1093/plcell/koac344] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 05/12/2023]
Abstract
Vascular plants reinforce the cell walls of the different xylem cell types with lignin phenolic polymers. Distinct lignin chemistries differ between each cell wall layer and each cell type to support their specific functions. Yet the mechanisms controlling the tight spatial localization of specific lignin chemistries remain unclear. Current hypotheses focus on control by monomer biosynthesis and/or export, while cell wall polymerization is viewed as random and nonlimiting. Here, we show that combinations of multiple individual laccases (LACs) are nonredundantly and specifically required to set the lignin chemistry in different cell types and their distinct cell wall layers. We dissected the roles of Arabidopsis thaliana LAC4, 5, 10, 12, and 17 by generating quadruple and quintuple loss-of-function mutants. Loss of these LACs in different combinations led to specific changes in lignin chemistry affecting both residue ring structures and/or aliphatic tails in specific cell types and cell wall layers. Moreover, we showed that LAC-mediated lignification has distinct functions in specific cell types, waterproofing fibers, and strengthening vessels. Altogether, we propose that the spatial control of lignin chemistry depends on different combinations of LACs with nonredundant activities immobilized in specific cell types and cell wall layers.
Collapse
Affiliation(s)
- Leonard Blaschek
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Emiko Murozuka
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Delphine Ménard
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Edouard Pesquet
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
27
|
Choi SJ, Lee Z, Kim S, Jeong E, Shim JS. Modulation of lignin biosynthesis for drought tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1116426. [PMID: 37152118 PMCID: PMC10157170 DOI: 10.3389/fpls.2023.1116426] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Lignin is a complex polymer that is embedded in plant cell walls to provide physical support and water protection. For these reasons, the production of lignin is closely linked with plant adaptation to terrestrial regions. In response to developmental cues and external environmental conditions, plants use an elaborate regulatory network to determine the timing and location of lignin biosynthesis. In this review, we summarize the canonical lignin biosynthetic pathway and transcriptional regulatory network of lignin biosynthesis, consisting of NAC and MYB transcription factors, to explain how plants regulate lignin deposition under drought stress. Moreover, we discuss how the transcriptional network can be applied to the development of drought tolerant plants.
Collapse
|
28
|
Jeong YJ, Kim YC, Lee JS, Kim DG, Lee JH. Reduced Expression of PRX2/ ATPRX1, PRX8, PRX35, and PRX73 Affects Cell Elongation, Vegetative Growth, and Vasculature Structures in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2022; 11:3353. [PMID: 36501391 PMCID: PMC9740967 DOI: 10.3390/plants11233353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Class III peroxidases (PRXs) are involved in a broad spectrum of physiological and developmental processes throughout the life cycle of plants. However, the specific function of each PRX member in the family remains largely unknown. In this study, we selected four class III peroxidase genes (PRX2/ATPRX1, PRX8, PRX35, and PRX73) from a previous genome-wide transcriptome analysis, and performed phenotypic and morphological analyses, including histochemical staining, in PRX2RNAi, PRX8RNAi, PRX35RNAi, and PRX73RNAi plants. The reduced mRNA levels of corresponding PRX genes in PRX2RNAi, PRX8RNAi, PRX35RNAi, and PRX73RNAi seedlings resulted in elongated hypocotyls and roots, and slightly faster vegetative growth. To investigate internal structural changes in the vasculature, we performed histochemical staining, which revealed alterations in cell wall structures in the main vasculature of hypocotyls, stems, and roots of each PRXRNAi plant compared to wild-type (Col-0) plants. Furthermore, we found that PRX35RNAi plants displayed the decrease in the cell wall in vascular regions, which are involved in downregulation of lignin biosynthesis and biosynthesis-regulated genes' expression. Taken together, these results indicated that the reduced expression levels of PRX2/ATPRX1, PRX8, PRX35, and PRX73 affected hypocotyl and root elongation, vegetative growth, and the vasculature structures in hypocotyl, stem, and root tissues, suggesting that the four class III PRX genes play roles in plant developmental processes.
Collapse
Affiliation(s)
- Yu Jeong Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Cheon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - June Seung Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
29
|
Nickolov K, Gauthier A, Hashimoto K, Laitinen T, Väisänen E, Paasela T, Soliymani R, Kurusu T, Himanen K, Blokhina O, Fagerstedt KV, Jokipii-Lukkari S, Tuominen H, Häggman H, Wingsle G, Teeri TH, Kuchitsu K, Kärkönen A. Regulation of PaRBOH1-mediated ROS production in Norway spruce by Ca 2+ binding and phosphorylation. FRONTIERS IN PLANT SCIENCE 2022; 13:978586. [PMID: 36311083 PMCID: PMC9608432 DOI: 10.3389/fpls.2022.978586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Plant respiratory burst oxidase homologs (RBOHs) are plasma membrane-localized NADPH oxidases that generate superoxide anion radicals, which then dismutate to H2O2, into the apoplast using cytoplasmic NADPH as an electron donor. PaRBOH1 is the most highly expressed RBOH gene in developing xylem as well as in a lignin-forming cell culture of Norway spruce (Picea abies L. Karst.). Since no previous information about regulation of gymnosperm RBOHs exist, our aim was to resolve how PaRBOH1 is regulated with a focus on phosphorylation. The N-terminal part of PaRBOH1 was found to contain several putative phosphorylation sites and a four-times repeated motif with similarities to the Botrytis-induced kinase 1 target site in Arabidopsis AtRBOHD. Phosphorylation was indicated for six of the sites in in vitro kinase assays using 15 amino-acid-long peptides for each of the predicted phosphotarget site in the presence of protein extracts of developing xylem. Serine and threonine residues showing positive response in the peptide assays were individually mutated to alanine (kinase-inactive) or to aspartate (phosphomimic), and the wild type PaRBOH1 and the mutated constructs transfected to human kidney embryogenic (HEK293T) cells with a low endogenous level of extracellular ROS production. ROS-producing assays with HEK cells showed that Ca2+ and phosphorylation synergistically activate the enzyme and identified several serine and threonine residues that are likely to be phosphorylated including a novel phosphorylation site not characterized in other plant species. These were further investigated with a phosphoproteomic study. Results of Norway spruce, the first gymnosperm species studied in relation to RBOH regulation, show that regulation of RBOH activity is conserved among seed plants.
Collapse
Affiliation(s)
- Kaloian Nickolov
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Adrien Gauthier
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- UniLaSalle, Agro-Ecology, Hydrogeochemistry, Environments & Resources, UP 2018.C101 of the Ministry in Charge of Agriculture (AGHYLE) Research Unit CS UP 2018.C101, Mont-Saint-Aignan, France
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Teresa Laitinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Enni Väisänen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Tanja Paasela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Helsinki, Finland
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Dev. Biology, University of Helsinki, Biomedicum-Helsinki, Helsinki, Finland
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Kristiina Himanen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Olga Blokhina
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kurt V. Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Soile Jokipii-Lukkari
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Hannele Tuominen
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Gunnar Wingsle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Teemu H. Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Anna Kärkönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Helsinki, Finland
| |
Collapse
|
30
|
Ménard D, Blaschek L, Kriechbaum K, Lee CC, Serk H, Zhu C, Lyubartsev A, Nuoendagula , Bacsik Z, Bergström L, Mathew A, Kajita S, Pesquet E. Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype. THE PLANT CELL 2022; 34:koac284. [PMID: 36215679 PMCID: PMC9709985 DOI: 10.1093/plcell/koac284] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/11/2022] [Indexed: 05/12/2023]
Abstract
The biopolymer lignin is deposited in the cell walls of vascular cells and is essential for long-distance water conduction and structural support in plants. Different vascular cell types contain distinct and conserved lignin chemistries, each with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry in each cell type remains unclear. Here, we investigated the roles of this lignin biochemical specificity for cellular functions by producing single cell analyses for three cell morphotypes of tracheary elements, which all allow sap conduction but differ in their morphology. We determined that specific lignin chemistries accumulate in each cell type. Moreover, lignin accumulated dynamically, increasing in quantity and changing in composition, to alter the cell wall biomechanics during cell maturation. For similar aromatic substitutions, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility of the cell wall. Modifying this lignin biochemical specificity and the sequence of its formation impaired the cell wall biomechanics of each morphotype and consequently hindered sap conduction and drought recovery. Together, our results demonstrate that each sap-conducting vascular cell type distinctly controls their lignin biochemistry to adjust their biomechanics and hydraulic properties to face developmental and environmental constraints.
Collapse
Affiliation(s)
- Delphine Ménard
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Leonard Blaschek
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Konstantin Kriechbaum
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Cheng Choo Lee
- Umeå Core Facility for Electron Microscopy (UCEM), Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Chuantao Zhu
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Alexander Lyubartsev
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Nuoendagula
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Zoltán Bacsik
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Aji Mathew
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
31
|
Balarynová J, Klčová B, Sekaninová J, Kobrlová L, Cechová MZ, Krejčí P, Leonova T, Gorbach D, Ihling C, Smržová L, Trněný O, Frolov A, Bednář P, Smýkal P. The loss of polyphenol oxidase function is associated with hilum pigmentation and has been selected during pea domestication. THE NEW PHYTOLOGIST 2022; 235:1807-1821. [PMID: 35585778 DOI: 10.1111/nph.18256] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Seed coats serve as protective tissue to the enclosed embryo. As well as mechanical there are also chemical defence functions. During domestication, the property of the seed coat was altered including the removal of the seed dormancy. We used a range of genetic, transcriptomic, proteomic and metabolomic approaches to determine the function of the pea seed polyphenol oxidase (PPO) gene. Sequencing analysis revealed one nucleotide insertion or deletion in the PPO gene, with the functional PPO allele found in all wild pea samples, while most cultivated peas have one of the three nonfunctional ppo alleles. PPO functionality cosegregates with hilum pigmentation. PPO gene and protein expression, as well as enzymatic activity, was downregulated in the seed coats of cultivated peas. The functionality of the PPO gene relates to the oxidation and polymerisation of gallocatechin in the seed coat. Additionally, imaging mass spectrometry supports the hypothesis that hilum pigmentation is conditioned by the presence of both phenolic precursors and sufficient PPO activity. Taken together these results indicate that the nonfunctional polyphenol oxidase gene has been selected during pea domestication, possibly due to better seed palatability or seed coat visual appearance.
Collapse
Affiliation(s)
- Jana Balarynová
- Department of Botany, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| | - Barbora Klčová
- Department of Botany, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| | - Jana Sekaninová
- Department of Biochemistry, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| | - Lucie Kobrlová
- Department of Botany, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| | - Monika Zajacová Cechová
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, Olomouc, 771 46, Czech Republic
| | - Petra Krejčí
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, Olomouc, 771 46, Czech Republic
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Halle (Saale), 06120, Germany
- Department of Biochemistry, St Petersburg State University, St Petersburg, 199004, Russia
| | - Daria Gorbach
- Department of Biochemistry, St Petersburg State University, St Petersburg, 199004, Russia
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University, Halle-Wittenberg, 06120, Germany
| | - Lucie Smržová
- Department of Botany, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| | - Oldřich Trněný
- Agricultural Research Ltd, Troubsko, 664 41, Czech Republic
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Halle (Saale), 06120, Germany
- Department of Biochemistry, St Petersburg State University, St Petersburg, 199004, Russia
| | - Petr Bednář
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, Olomouc, 771 46, Czech Republic
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Olomouc, 783 71, Czech Republic
| |
Collapse
|
32
|
Guo B, Chou F, Huang L, Yin F, Fang J, Wang JB, Jia Z. Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Crit Rev Food Sci Nutr 2022; 64:1312-1339. [PMID: 36037033 DOI: 10.1080/10408398.2022.2115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quercetin is the most abundant polyphenolic flavonoid (flavonol subclass) in vegetal foods and medicinal plants. This dietary chemopreventive agent has drawn significant interest for its multiple beneficial health effects ("polypharmacology") largely associated with the well-documented antioxidant properties. However, controversies exist in the literature due to its dual anti-/pro-oxidant character, poor stability/bioavailability but multifaceted bioactivities, leaving much confusion as to its exact roles in vivo. Increasing evidence indicates that a prior oxidation of quercetin to generate an array of chemical diverse products with redox-active/electrophilic moieties is emerging as a new linkage to its versatile actions. The present review aims to provide a comprehensive overview of the oxidative conversion of quercetin by systematically analyzing the current quercetin-related knowledge, with a particular focus on the complete spectrum of metabolite products, the enzymes involved in the catabolism and the underlying molecular mechanisms. Herein we review and compare the oxidation pathways, protein structures and catalytic patterns of the related metalloenzymes (phenol oxidases, heme enzymes and specially quercetinases), aiming for a deeper mechanistic understanding of the unusual biotransformation behaviors of quercetin and its seemingly controversial biological functions.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Fang Chou
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Libin Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Feifan Yin
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jing Fang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
33
|
Mourjane A, Hanine H, El Adnany EM, Ouhammou M, Hidar N, Nabil B, Boumendjel A, Bitar K, Mahrouz M. Energetic Bio-Activation of Some Organic Molecules and Their Antioxidant Activity in the Pulp of the Moroccan Argan Tree «Argania spinosa L. ». Molecules 2022; 27:3329. [PMID: 35630807 PMCID: PMC9144852 DOI: 10.3390/molecules27103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Argania spinosa L. Skeels is an emblematic tree in Morocco, known worldwide for its medicinal and nutritional value. Its fruits contain kernels used to prepare an edible oil, the leaves are used to feed livestock, and its wood is used as fuel. If the oil acquires high importance, the other components of the fruit of the argan are undervalued. Our objective is to invest the waste of the argan industry. Particularly, our study aimed to assess the effect of thermal activation of argan pulp on its therapeutic value, its phenolic profile and its functional and physicochemical properties. After heat treatment, the HPLC analysis for the average total phenolic content varied from 2% to 37%, depending on temperature. The antioxidant activity was increased with heat treatment. Higher values of antioxidant activity, polyphenol and pigment content were recorded at 70 °C. Functional properties analysis indicated that water solubility index and water absorption capacity were significantly affected by heat stress. Physicochemical analysis showed that moisture content, titratable acidity and soluble solids were affected.
Collapse
Affiliation(s)
- Ayoub Mourjane
- Laboratory of Bioprocesses and Bio Interfaces, FST Beni Mellal, University Sultan Moulay Slimane, Beni Mella 23000, Morocco; (A.M.); (H.H.)
- Laboratory of Material Sciences and Process Optimization, Faculty of Sciences Semallaia, Cadi Ayyad University, Marrakesh 40000, Morocco; (E.M.E.A.); (M.O.); (N.H.); (M.M.)
| | - Hafida Hanine
- Laboratory of Bioprocesses and Bio Interfaces, FST Beni Mellal, University Sultan Moulay Slimane, Beni Mella 23000, Morocco; (A.M.); (H.H.)
| | - El Mustapha El Adnany
- Laboratory of Material Sciences and Process Optimization, Faculty of Sciences Semallaia, Cadi Ayyad University, Marrakesh 40000, Morocco; (E.M.E.A.); (M.O.); (N.H.); (M.M.)
| | - Mourad Ouhammou
- Laboratory of Material Sciences and Process Optimization, Faculty of Sciences Semallaia, Cadi Ayyad University, Marrakesh 40000, Morocco; (E.M.E.A.); (M.O.); (N.H.); (M.M.)
| | - Nadia Hidar
- Laboratory of Material Sciences and Process Optimization, Faculty of Sciences Semallaia, Cadi Ayyad University, Marrakesh 40000, Morocco; (E.M.E.A.); (M.O.); (N.H.); (M.M.)
| | - Bouchra Nabil
- Faculty of Applied Sciences, University Sultan Moulay Slimane, Fkih Ben Saleh, Beni Mella 23000, Morocco;
| | - Ahcène Boumendjel
- Laboratoire Radiopharmaceutiques Biocliniques (LRB), INSERM U1039, Faculté de Médecine La Tronche, Université Grenoble Alpes, 38000 Grenoble, France
| | - Khalid Bitar
- IRCOS Laboratory, ZI Al-Massar, Marrakesh 40000, Morocco;
| | - Mostafa Mahrouz
- Laboratory of Material Sciences and Process Optimization, Faculty of Sciences Semallaia, Cadi Ayyad University, Marrakesh 40000, Morocco; (E.M.E.A.); (M.O.); (N.H.); (M.M.)
| |
Collapse
|
34
|
Immerzeel P, Fiskari J. Synergism of enzymes in chemical pulp bleaching from an industrial point of view‐A critical review. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter Immerzeel
- Mid Sweden University, Fibre Science and Communication Network Sundsvall Sweden
| | - Juha Fiskari
- Mid Sweden University, Fibre Science and Communication Network Sundsvall Sweden
| |
Collapse
|