1
|
Wu T, Wang Y, Jin J, Zhao B, Wu S, Jia B, Sun X, Zhang D, Sun M. Soybean RING-type E3 ligase GmCHYR16 ubiquitinates the GmERF71 transcription factor for degradation to negatively regulate bicarbonate stress tolerance. THE NEW PHYTOLOGIST 2025; 246:1128-1146. [PMID: 40079647 DOI: 10.1111/nph.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/11/2025] [Indexed: 03/15/2025]
Abstract
Plant AP2/ERF (APETALA2/ethylene response factor) transcription factors are key regulators of environmental stress tolerance. We previously characterized that the wild soybean ERF71 transcription factor conferred bicarbonate stress tolerance; however, the underlying mechanism still remains elusive. Here, multiple approaches were used to identify the E3 ubiquitin ligase GmCHYR16 as an interactor of GmERF71. Ubiquitination and protein degradation of GmERF71 mediated by GmCHYR16 were then analyzed. Overexpression transgenic lines were generated to evaluate the function of GmCHYR16 and GmERF71 in bicarbonate stress response. GmCHYR16 interacts with GmERF71. GmERF71 proteins undergo ubiquitination and 26S proteasome-mediated degradation, and GmCHYR16 mediates the ubiquitination of GmERF71 for degradation. The GmCHYR16-mediated ubiquitination and proteasome-dependent degradation of GmERF71 are reduced under bicarbonate stress. GmCHYR16 expression in transgenic Arabidopsis, soybean hairy roots, and stable transgenic soybean reduces bicarbonate stress tolerance. GmERF71 degradation is decreased in the protein extracts of atchyr1/7 mutants, and atchyr1/7 mutants display higher bicarbonate tolerance. Overexpression of GmERF71 in transgenic soybean obviously increases bicarbonate tolerance, and GmCHYR16 reduces the bicarbonate tolerance of transgenic hairy root composite soybean plants by repressing GmERF71. Our results demonstrate that GmCHYR16 directly ubiquitinates GmERF71 for degradation and negatively regulates bicarbonate stress tolerance.
Collapse
Affiliation(s)
- Tong Wu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jun Jin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bingqian Zhao
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Shengyang Wu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Dajian Zhang
- College of Agriculture, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
2
|
Zhou J, Fang S, Liu X, Luo L, Liu Y, Zhang H. OsERF2 Acts as a Direct Downstream Target of OsEIL1 to Negatively Regulate Salt Tolerance in Rice. RICE (NEW YORK, N.Y.) 2025; 18:29. [PMID: 40272638 DOI: 10.1186/s12284-025-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/04/2025] [Indexed: 04/27/2025]
Abstract
Salinity is a significant limiting factor that adversely affects plant growth, distribution and crop yield. Ethylene responsive factors play crucial roles in plant responses to and tolerance of various abiotic stresses. Recently, we revealed that OsERF2 is involved in root growth by transcriptionally regulating hormone and sugar signaling in rice. Here, we report that OsERF2 is a direct target gene of OsEIL1 and negatively regulates salt tolerance in rice. Compared to the wild type, the gain-of-function mutant of OsERF2 (nsf2857) and the knockdown of OsERF2 via an artificial microRNA (Ami-ERF2) exhibited decreased and increased salt tolerance, respectively. The enhanced salt tolerance observed in Ami-OsERF2 lines was associated with lower accumulations of malondialdehyde and reactive oxygen species (ROS) under salt stress, while the opposite was true for nsf2857 plants, which exhibited decreased salt tolerance. At the transcriptional level, several stress-related genes encoding ROS and NAD(P)H-related oxidoreductases were downregulated in nsf2857 plants but upregulated in Ami-ERF2 plants. Furthermore, yeast one-hybrid and ChIP assays revealed that OsEIL1 can bind to the of EBS cis element present in the promoter of OsERF2 (-bp), suggesting that OsEIL1 may directly regulate the expression of OsERF2. Collectively, our findings indicate that OsERF2 is a direct downstream factor involved in the regulation of salt tolerance in rice, highlighting its potential application in the genetic improvement of tolerance to abiotic stresses in this crop.
Collapse
Affiliation(s)
- Jiahao Zhou
- College of Life Science, Hengyang Normal University, Hengyang, 421000, China.
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, 421000, China.
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shengliang Fang
- Rice Research Institute, Hengyang Academy of Agricultural Sciences, Hengyang, 421000, China
| | - Xinjie Liu
- College of Life Science, Hengyang Normal University, Hengyang, 421000, China
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, 421000, China
| | - Lei Luo
- College of Life Science, Hengyang Normal University, Hengyang, 421000, China
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, 421000, China
| | - Yuhua Liu
- College of Life Science, Hengyang Normal University, Hengyang, 421000, China.
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, 421000, China.
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Zhou H, Hou Y, Tan L, Li Q, Li W, Kafle S, Xu M, Kiselev KV, Meng L, Xin H. VaEIN3.1-VaERF057-VaFBA1 Module Positively Regulates Cold Tolerance by Accumulating Soluble Sugar in Grapevine. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40195697 DOI: 10.1111/pce.15522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025]
Abstract
Ethylene-responsive transcription factors (ERFs) were widely found to participate in cold response in plants. But the underlying regulatory mechanism of each cold-induced ERFs remains to be elucidated. Previously, we identified VaERF057 as a cold-induced gene in Vitis amurensis, a cold-hardy wild Vitis species. Here we found that overexpression of VaERF057 (VaERF057-OE) enhanced the freezing tolerance of V. amurensis roots. While VaERF057 knockdown tissues show decreased cold tolerance than control. DAP-seq combined with transcriptome data (VaERF057-OE roots) allowed to identify VaFBA1 (fructose-1,6-bisphosphate aldolase) as a downstream target of VaERF057. VaERF057 can bind to the VaFBA1 promoters and activate its expression. VaERF057-OE roots show increased expression of VaFBA1 and high content of soluble sugar than the control, whereas VaERF057 knockdown tissues showed opposite changes. Results from OE and knockdown material also support the role of VaFBA1 in regulating soluble sugar content and cold tolerance in grapevines. Furthermore, cold-induced expression of VaERF057 was found to be regulated by ethylene-insensitive3-1 (VaEIN3.1). Overexpression of VaEIN3.1 enhanced the transcription of VaERF057 and VaFBA1, the content of soluble sugar and cold tolerance in grapevine. VaEIN3.1 knockdown tissues show opposite trends when compared to VaEIN3.1-OE lines. Together, these results suggested a positive contribution of VaEIN3.1-VaERF057-VaFBA1 module in response to cold stress in grapevine.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujun Hou
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lisha Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Qingyun Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Subash Kafle
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meilong Xu
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, China
| | - Konstantin V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, Russia
| | - Lin Meng
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Haiping Xin
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
4
|
Xiang G, Fan Z, Lan S, Wei D, Gao Y, Kang H, Yao Y. Ethylene increases the NaHCO 3 stress tolerance of grapevines partially via the VvERF1B-VvMYC2-VvPMA10 pathway. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1076-1090. [PMID: 39777954 PMCID: PMC11933843 DOI: 10.1111/pbi.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Here, we evaluated the role of ethylene in regulating the NaHCO3 stress tolerance of grapevines and clarified the mechanism by which VvERF1B regulates the response to NaHCO3 stress. The exogenous application of ACC and VvACS3 overexpression in grapevines and grape calli revealed that ethylene increased NaHCO3 stress tolerance, and this was accompanied by increased plasma membrane H+-ATPase (PMA) activity. The expression of VvERF1B was strongly induced by ACC, and overexpression of this gene in grapevines conferred increased NaHCO3 stress tolerance and enhanced PMA activity and H+ and oxalate secretion. Additionally, the function of VvERF1B was also verified using mutant transgenic grape calli and overexpression in Arabidopsis plants. The expression of VvPMA10 was strongly induced following the overexpression of VvERF1B in grapevine roots, and VvPMA10 was shown to regulate PMA activity, oxalate and H+ secretion, and NaHCO3 stress tolerance via its overexpression and mutation in grapevine roots, calli, and/or Arabidopsis. However, VvPMA10 was not a direct target gene of VvERF1B but was directly transactivated by VvMYC2. The function of VvMYC2 was shown to be similar to that of VvPMA10 via its overexpression and mutation in grape calli. Additional experiments revealed that the interaction of VvERF1B with VvMYC2 increased its ability to activate VvPMA10 expression and that VvMYC2 played a role in the VvERF1B-mediated pathway. Overall, the VvERF1B-VvMYC2-VvPMA pathway played a role in regulating ethylene-induced NaHCO3 stress tolerance in grapevines, and this process contributed to increases in PMA activity and H+ and oxalate secretion.
Collapse
Affiliation(s)
- Guangqing Xiang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Zongbao Fan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Shuxia Lan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Dezheng Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Yazhe Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Hui Kang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Yuxin Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandDongyingChina
| |
Collapse
|
5
|
Shi Y, Liao G, Li A, Li X, Xiao D, Wang A, He L, Zhan J. A Novel Ah-miR2916-AhERF13-AhSUC3 Module Regulates Al Tolerance via Ethylene-Mediated Signaling in Peanut (Arachis hypogea L.). PLANT, CELL & ENVIRONMENT 2025; 48:2009-2023. [PMID: 39535456 DOI: 10.1111/pce.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Aluminum (Al) toxicity in acidic soils leads to a considerable reduction in crop yields. MicroRNAs play essential roles in abiotic stress responses, but little is known of their role in the response of peanut (Arachis hypogea L.) to Al stress. In this study, a novel Ah-miR2916 (miR2916)-AhERF13-AhSUC3 module was found to be involved in the Al-stress response via ethylene-mediated signaling in peanut. Overexpression of miR2916 in Arabidopsis resulted in reduced Al tolerance by downregulating ethylene biosynthesis, while knockdown miR2916 in peanut enhanced Al tolerance. Notably, the APETALA2/ethylene-responsive factor (ERF), AhERF13, was identified as a potential target of miR2916. AhERF13 expression was increased in miR2916 knockdown peanut lines and displayed an opposing pattern to that of miR2916 under Al stress. Consistently, knockdown AhERF13 peanut lines indicated that AhERF13 positively regulates Al tolerance by upregulating ethylene biosynthesis. AhERF13 was shown capable of binding to an ERF motif in the promoter region of sucrose transport protein 3 (AhSUC3) and positively regulate its expression. Consequently, AhSUC3 improved Al tolerance by upregulating ethylene biosynthesis. These results provide further insights into the molecular mechanisms operating during peanut response to Al stress, and suggests targets for manipulation in breeding programs for improved Al tolerance.
Collapse
Affiliation(s)
- Yusun Shi
- College of Agriculture, Guangxi University, Nanning, China
| | - Guoting Liao
- College of Agriculture, Guangxi University, Nanning, China
| | - Ailing Li
- College of Agriculture, Guangxi University, Nanning, China
| | - Xinyue Li
- College of Agriculture, Guangxi University, Nanning, China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Xu Y, Liu Y, Yue L, Zhang S, Wei J, Zhang Y, Huang Y, Zhao R, Zou W, Feng H, Li H. MsERF17 Promotes Ethylene-Induced Anthocyanin Biosynthesis Under Drought Conditions in Malus spectabilis Leaves. PLANT, CELL & ENVIRONMENT 2025; 48:1890-1902. [PMID: 39511953 DOI: 10.1111/pce.15271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Drought is an important factor that affects plant anthocyanin biosynthesis. However, the underlying molecular mechanisms remain elusive. Ethylene response factors (ERFs) are pivotal regulators in plant growth and environmental responses, particularly in anthocyanin biosynthesis. This study investigated the leaf colour transition from green to red in Malus spectabilis under drought conditions. This transition was primarily attributed to the accumulation of anthocyanins, specifically cyanidin-3,5-diglucoside and cyanidin-3-O-galactoside. Our findings elucidate the pivotal role of MsERF17 in drought-induced anthocyanin biosynthesis. Biochemical and molecular analyses showed that MsERF17 positively regulates anthocyanin synthesis by binding to promoters of MsbHLH3 and MsF3' H, thereby activating their expression. Moreover, transient overexpression and virus-induced gene silencing of MsERF17 in fruit peel and leaves, respectively, regulated anthocyanin synthesis. The stable transformation of calli further corroborated the positive regulatory function of MsERF17 in anthocyanin biosynthesis. Our results provide novel insights into the mechanism by which MsERF17, induced by ethylene, promotes anthocyanin accumulation through the positive regulation of MsbHLH3 and MsF3'H expression under drought conditions in M. spectabilis leaves.
Collapse
Affiliation(s)
- Yaping Xu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yixin Liu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Lu Yue
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Shuangyu Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Jun Wei
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yuqin Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yuanxing Huang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Ruiqing Zhao
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Wenting Zou
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Hui Feng
- Beijing Key Lab of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Nevosád L, Klodová B, Rudolf J, Raček T, Přerovská T, Kusová A, Svobodová R, Honys D, Procházková Schrumpfová P. GOLEM: A tool for visualizing the distribution of Gene regulatOry eLEMents within the plant promoters with a focus on male gametophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70037. [PMID: 40025784 PMCID: PMC11873679 DOI: 10.1111/tpj.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 03/04/2025]
Abstract
Gene expression regulation during tissue development is extremely complex. A key mechanism of gene regulation is the recognition of regulatory motifs, also known as cis-regulatory elements (CREs), by various proteins in gene promoter regions. Localization of these motifs near the transcription start site (TSS) or translation start site (ATG) is crucial for transcription initiation and rate. Transcription levels of individual genes, regulated by these motifs, can vary significantly across tissues and developmental stages, especially in processes like sexual reproduction. However, the precise localization and visualization of these motifs in relation to gene expression in specific tissues can be challenging. Here, we introduce a freely available tool called GOLEM (Gene regulatOry eLEMents; https://golem.ncbr.muni.cz), which enables users to precisely locate any motif of interest with respect to TSS or ATG within the relevant plant genomes across the plant Tree of Life (Chara, Marchantia, Physcomitrium, Azolla, Ceratopteris, Amborella, Oryza, Zea, Solanum and Arabidopsis). The visualization of the motifs is performed with respect to the transcript levels of particular genes in leaves and male reproductive tissues and can be compared with genome-wide distribution regardless of the transcription level. Additionally, genes with specific CREs at defined positions and high expression in selected tissues can be exported for further analysis. GOLEM's functionality is illustrated by its application to conserved motifs (e.g. TATA-box, ABRE, I-box, and TC-element), hormone-responsive elements (GCC-box, ARR10_binding motif), as well as to male gametophyte-related motifs (e.g., LAT52, MEF2, and DOF_core).
Collapse
Affiliation(s)
- Lukáš Nevosád
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| | - Božena Klodová
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263165 02PragueCzech Republic
| | - Jiří Rudolf
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Tomáš Raček
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Tereza Přerovská
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Alžbeta Kusová
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Radka Svobodová
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263165 02PragueCzech Republic
| | - Petra Procházková Schrumpfová
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| |
Collapse
|
8
|
Li GZ, Liu J, Li NY, Zhang DD, Fan P, Liu HT, Chen Y, Seth CS, Ge Q, Guo TC, Kang GZ. TaERFL1a enhances drought resilience through DHAR-mediated ASA-GSH biosynthesis in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109587. [PMID: 39908933 DOI: 10.1016/j.plaphy.2025.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Wheat is one of the important cereal crops around the world, but it often suffers from abiotic stresses, which threaten food security. Thus, it is critical to identify the genes that determine drought tolerance in wheat. AP2/ERFs are known to regulate drought stress in various crops. In this study, TaERFL1a-overexpressing wheat transgenic lines (TaERFL1a-OEs) were used to determine drought resilience mechanism. After 12 d without watering, the growth phenotype of TaERFL1a-OEs was better than that of the wild type (WT), whose activities of superoxide dismutase and catalase, and contents of ascorbate acid (ASA) and glutathione (GSH) were significantly increased, while malondialdehyde content was significantly decreased. Transcriptome analysis revealed that 28,520 genes were differentially expressed between TaERFL1a-OEs and WT under drought condition. Further analysis found that these DEGs were involved in multiple stress-response processes, especially in the ASA-GSH pathway. qPCR revealed that the expression levels of GPX, DHAR, and MDHAR, which are suggested to be participated in ASA-GSH biosynthesis, were significantly up-regulated in TaERFL1a-OEs under drought stress, especially the DHAR gene. Moreover, dual-luciferase and luciferase complementation imaging revealed that TaERFL1a was more promoted DHAR transcription to a greater extent than other genes. Furthermore, yeast one-hybrid, electrophoretic mobility shift assay, and chromatin immunoprecipitation combined with qPCR revealed that TaERFL1a regulates DHAR expression by binding to the cis-element ERF in DHAR promoter and promotes the transcription of later in vivo and in vitro. Overall, our results provided molecular regulatory evidence for TaERFL1a in wheat drought stress and suggested candidate genes for improving drought-tolerant wheat breeding.
Collapse
Affiliation(s)
- Ge-Zi Li
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China; Henan Technological Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jin Liu
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Na-Ying Li
- Henan Technological Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dan-Dan Zhang
- Henan Technological Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Peng Fan
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hai-Tao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | | | - Qiang Ge
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tian-Cai Guo
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China; Henan Technological Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guo-Zhang Kang
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China; Henan Technological Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
9
|
Zhang X, Zhang S, Wang S, Ma W, Zhai T, Gao J, Lai C, Zhang Z, Chen Y, Lai Z, Lin Y. The ETHYLENE RESPONSE FACTOR6-GRETCHEN HAGEN3.5 module regulates rooting and heat tolerance in Dimocarpus longan. PLANT PHYSIOLOGY 2025; 197:kiaf096. [PMID: 40106655 PMCID: PMC11950727 DOI: 10.1093/plphys/kiaf096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 03/22/2025]
Abstract
Heat stress can seriously affect plant growth and development. Ethylene response factors (ERFs) play important roles in plant development and physiological responses. Here, we identified DlERF6, an ERF family transcription factor that promotes heat tolerance in Dimocarpus longan. DlERF6 was strongly induced by heat stress and IAA treatment in longan roots. Overexpression of DlERF6 generated abundant, fast-growing hairy roots and enhanced longan heat stress tolerance by promoting IAA biosynthesis and reactive oxygen species (ROS) scavenging. Additional assays indicated that DlERF6 directly binds to the DlGH3.5 promoter and represses its expression. Overexpressing DlGH3.5 reduced hairy root number, root length, and heat tolerance, concomitant with a reduction in IAA content and ROS scavenging. Collectively, these results reveal the molecular mechanism through which the DlERF6-DlGH3.5 module regulates root growth and heat stress tolerance, providing a gene network that can be used for the genetic improvement of longan.
Collapse
Affiliation(s)
- Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuangjie Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wentao Ma
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tingkai Zhai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Gao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
10
|
Li W, Zhang W, Li H, Yao A, Ma Z, Kang R, Guo Y, Li X, Yu W, Han D. Overexpression of a Fragaria × ananassa AP2/ERF Transcription Factor Gene ( FaTINY2) Increases Cold and Salt Tolerance in Arabidopsis thaliana. Int J Mol Sci 2025; 26:2109. [PMID: 40076731 PMCID: PMC11900429 DOI: 10.3390/ijms26052109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The AP2/ERF family of transcription factors is one of the most conserved and important transcription factor families, and it is ubiquitous in plants. It plays an essential role in plant morphogenesis, molecular mechanisms of stress responses, hormone signaling pathways, and synthesis of secondary metabolites. FaTINY2 was cloned from the octaploid strawberry Fragaria × ananassa for this investigation. Bioinformatics revealed that the protein possesses a conserved AP2 domain and is localized in the nucleus. When FaTINY2 was expressed in plants, quantitative analysis revealed that the gene was tissue-specific. There are lower contents of reactive oxygen species (ROS) and malondialdehyde (MDA), higher contents of proline, chlorophyll, and higher activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in transgenic Arabidopsis thaliana than wild type (WT) and unload line (UL) plants under cold and salt stress. FaTINY2 plays a role in enhancing stress tolerance by regulating a few genes linked to the stress response. The findings of this study were that FaTINY2 transgenic Arabidopsis thaliana plants were more tolerant to salt and cold than WT and UL plants. In addition to offering a theoretical reference for strawberry production under stress, this research established a groundwork for exploration into the molecular mechanisms in which strawberries respond to cold and high salt stress.
Collapse
Affiliation(s)
- Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (W.Z.); (H.L.); (A.Y.); (Z.M.); (R.K.); (Y.G.); (X.L.)
| | - Wenhao Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (W.Z.); (H.L.); (A.Y.); (Z.M.); (R.K.); (Y.G.); (X.L.)
| | - Huiwen Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (W.Z.); (H.L.); (A.Y.); (Z.M.); (R.K.); (Y.G.); (X.L.)
| | - Anqi Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (W.Z.); (H.L.); (A.Y.); (Z.M.); (R.K.); (Y.G.); (X.L.)
| | - Zhongyong Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (W.Z.); (H.L.); (A.Y.); (Z.M.); (R.K.); (Y.G.); (X.L.)
| | - Rui Kang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (W.Z.); (H.L.); (A.Y.); (Z.M.); (R.K.); (Y.G.); (X.L.)
| | - Yanbo Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (W.Z.); (H.L.); (A.Y.); (Z.M.); (R.K.); (Y.G.); (X.L.)
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (W.Z.); (H.L.); (A.Y.); (Z.M.); (R.K.); (Y.G.); (X.L.)
| | - Wenquan Yu
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157041, China
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (W.Z.); (H.L.); (A.Y.); (Z.M.); (R.K.); (Y.G.); (X.L.)
| |
Collapse
|
11
|
Zhu H, Chen R, Xu Y, Gong W, Miao M, Sun Y, Mei J. An ERF Gene DcERF3 of Dendrobium catenatum Improves Salt Tolerance in Arabidopsis. Mol Biotechnol 2025:10.1007/s12033-025-01414-8. [PMID: 40014256 DOI: 10.1007/s12033-025-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
The ethylene-responsive transcription factors (ERFs) perform pivotal regulatory functions in plant growth, development, and stress responses. Nonetheless, there is limited research on the functional characterization of ERFs in the medicinal orchid, Dendrobium catenatum. Here, we identified a salt-induced ERF gene DcERF3 from a D. catenatum cultivar Tiepi. DcERF3 comprises 186 amino acids and has a confirmed molecular weight of 21 kDa. It possesses a conserved AP2/ERF domain and displays a strong affiliation with the evolutionary lineage of other characterized ERFs. Analysis of expression patterns indicated that DcERF3 exhibits predominant expression in stems and roots, with considerably higher levels than in other tissues, and it demonstrated significant upregulation in response to treatments involving salt, ETH, PEG, and SA. The DcERF3-YFP protein localizes to the nucleus, and DcERF3 displays distinct transcriptional activation characteristics. Overexpressing DcERF3 led to an increased lateral root formation and enhanced tolerance to salt stress in Arabidopsis. Furthermore, the activities of antioxidant enzymes, along with the stress-responsive genes, were significantly induced in transgenic plants when subjected to salt stress. This study aims to investigate the function and role of DcERF3 in D. catenatum to establish a foundation for examining its involvement in lateral root formation and response to salt stress.
Collapse
Affiliation(s)
- Huimin Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruoxi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yemin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wumeng Gong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Meng Miao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuqiang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jun Mei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
12
|
Zhang L, Wei A, Chen J, Wu L, Li T, Qiao L. Identification of Ethylene Response Factors in Wheat Reveals That TaERF16-B Contributes to Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2025; 14:621. [PMID: 40006880 PMCID: PMC11859885 DOI: 10.3390/plants14040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Soil salinization is a major abiotic stressor that significantly reduces wheat yield. Identifying novel salt-tolerance genes and integrating them into wheat breeding programs can enhance wheat productivity in saline soils. Ethylene response factor (ERF) plays an important role in plant response to salt stress, and thus far, four wheat ERF genes have been identified to be involved in salt stress response. To systematically identify salt tolerance-related ERF genes in wheat, in this study, 213 ERF sequences were isolated from the whole genome of common wheat and classified into 54 members based on subgenome homology, named TaERF1 to TaERF54. Transcriptome sequencing results showed different expression patterns of TaERF members in leaves after 1, 6, 24, and 48 h of NaCl treatment. Based on association analysis, nine TaERF genes were correlated with the leaf salt injury index. Among them, five SNPs of TaERF16-B formed two haplotypes: Hap1 and Hap2. RT-qPCR results showed that the expression level of TaERF16-B was significantly higher in Hap2-typed germplasms than that in Hap1-typed germplasms after 1 and 6 h of NaCl treatment. A Kompetitive Allele-Specific PCR marker K52 was developed for genotyping TaERF16-B haplotypes, which further confirmed the significant correlation between TaERF16-B and salt tolerance-related phenotypes in mapping population and wheat germplasms. This study provides new genes and molecular markers for improving salt tolerance in wheat.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China; (L.Z.)
| | - Aili Wei
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China; (L.Z.)
| | - Jiating Chen
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Lijuan Wu
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Tian Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China
| | - Linyi Qiao
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
13
|
Lyu MJA, Du H, Yao H, Zhang Z, Chen G, Huang Y, Ni X, Chen F, Zhao YY, Tang Q, Miao F, Wang Y, Zhao Y, Lu H, Fang L, Gao Q, Qi Y, Zhang Q, Zhang J, Yang T, Cui X, Liang C, Lu T, Zhu XG. A dominant role of transcriptional regulation during the evolution of C 4 photosynthesis in Flaveria species. Nat Commun 2025; 16:1643. [PMID: 39952962 PMCID: PMC11828953 DOI: 10.1038/s41467-025-56901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025] Open
Abstract
C4 photosynthesis exemplifies convergent evolution of complex traits. Herein, we construct chromosome-scale genome assemblies and perform multi-omics analysis for five Flaveria species, which represent evolutionary stages from C3 to C4 photosynthesis. Chromosome-scale genome sequence analyses reveal a gradual increase in genome size during the evolution of C4 photosynthesis attributed to the expansion of transposable elements. Systematic annotation of genes encoding C4 enzymes and transporters identify additional copies of three C4 enzyme genes through retrotranspositions in C4 species. C4 genes exhibit elevated mRNA and protein abundances, reduced protein-to-RNA ratios, and comparable translation efficiencies in C4 species, highlighting a critical role of transcriptional regulation in C4 evolution. Furthermore, we observe an increased abundance of ethylene response factor (ERF) transcription factors and cognate cis-regulatory elements associated with C4 genes regulation. Altogether, our study provides valuable genomic resources for the Flaveria genus and sheds lights on evolutionary and regulatory mechanisms underlying C4 photosynthesis.
Collapse
Affiliation(s)
- Ming-Ju Amy Lyu
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Hongyan Yao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhiguo Zhang
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Genyun Chen
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuhui Huang
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoxiang Ni
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Faming Chen
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yong-Yao Zhao
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiming Tang
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fenfen Miao
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanjie Wang
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuhui Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Lu Fang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yiying Qi
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Yang
- China National GeneBank, Shenzhen, 518120, China
| | - Xuean Cui
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Xin-Guang Zhu
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
14
|
Nobles A, Wendel JF, Yoo MJ. Comparative Analysis of Floral Transcriptomes in Gossypium hirsutum (Malvaceae). PLANTS (BASEL, SWITZERLAND) 2025; 14:502. [PMID: 40006762 PMCID: PMC11859044 DOI: 10.3390/plants14040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Organ-specific transcriptomes provide valuable insight into the genes involved in organ identity and developmental control. This study investigated transcriptomes of floral organs and subtending bracts in wild and domesticated Gossypium hirsutum, focusing on MADS-box genes critical for floral development. The expression profiles of A, B, C, D, and E class genes were analyzed, confirming their roles in floral organ differentiation. Hierarchical clustering revealed similar expression patterns between bracts and sepals, as well as between petals and stamens, while carpels clustered with developing cotton fibers, reflecting their shared characteristics. Beyond MADS-box genes, other transcription factors were analyzed to explore the genetic basis of floral development. While wild and domesticated cotton showed similar expression patterns for key genes, domesticated cotton exhibited significantly higher expression in carpels compared to wild cotton, which aligns with the increased number of ovules in the carpels of domesticated cotton. Functional enrichment analysis highlighted organ-specific roles: genes upregulated in bracts were enriched for photosynthesis-related GO terms, while diverse functions were enriched in floral organs, supporting their respective functions. Notably, A class genes were not significantly expressed in petals, deviating from the ABCDE model, which warrants further analysis. Lastly, the ABCDE class genes exhibited differential homoeolog expression bias toward each subgenome between two accessions, suggesting that the domestication process has influenced homoeolog utilization despite functional constraints in floral organogenesis.
Collapse
Affiliation(s)
- Alexander Nobles
- Chemistry & Biomolecular Science Department, Clarkson University, Potsdam, NY 13699, USA;
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA;
| | - Mi-Jeong Yoo
- Biology Department, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
15
|
Al-Sayed WM, El-Shazly HH, El-Nahas AI, Omran AAA. Cytogenetic impact of gamma radiation and its effects on growth, yield and drought tolerance of maize (Zea mays L.). BMC PLANT BIOLOGY 2025; 25:141. [PMID: 39901075 PMCID: PMC11789335 DOI: 10.1186/s12870-025-06111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025]
Abstract
Maize is the third most important grain crop worldwide after wheat and rice; it is a vital global crop, serving as a key source of food, animal feed, and industrial products, making it essential for food security and economic stability in many countries. Drought stress adversely affects water uptake and can stunt growth, reducing the overall productivity of maize. So, this study was carried out to investigate the cytogenetic effects of gamma radiation and drought stress on maize SC131 genotype, focusing on chromosomal aberrations in seedling root meristems induced by varying doses of gamma irradiation (50, 100, 150, 200, and 250 Gray) and drought stress imposed by 10% polyethylene glycol (PEG). The present study also aims to evaluate the impact of these treatments on growth parameters under a controlled pot experiment. Additionally, molecular polymorphism induced by both gamma irradiation and drought stress was analyzed using Real-Time quantitative PCR techniques for DREB2, ERF, and EF transcription factors. Also, under a field condition experiment, maize plants were subjected to the same gamma irradiation doses and drought stress by reducing the number of irrigations, with subsequent evaluations of yield attributes to assess the overall impact of treatments on plant performance. The study also investigates the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) banding patterns of proteins in grains yielded under the influence of gamma radiation and drought treatments. Findings of the current investigation indicate that the low dose of gamma radiation (50 Gray) not only induces cytogenetic changes but also enhances drought tolerance and improves yield characteristics, suggesting that targeted gamma irradiation could serve as a viable strategy to bolster maize resilience in challenging environmental conditions.
Collapse
Affiliation(s)
- Walaa M Al-Sayed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Hanaa H El-Shazly
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Awatif I El-Nahas
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Ahmed A A Omran
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
16
|
Islam MSU, Akter N, Zohra FT, Rashid SB, Hasan N, Rahman SM, Sarkar MAR. Genome-wide identification and characterization of cation-proton antiporter (CPA) gene family in rice (Oryza sativa L.) and their expression profiles in response to phytohormones. PLoS One 2025; 20:e0317008. [PMID: 39854520 PMCID: PMC11761165 DOI: 10.1371/journal.pone.0317008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated. In this study, we use rice public data and information techniques, 29 OsCPA candidate genes were identified in the rice japonica variety (referred to as OsCPA) and phylogenetically categorized into K+ efflux antiporter (KEA), Na+/H+ exchanger (NHX), and cation/H+ exchanger (CHX) groups containing 4, 7, and 18 OsCPA genes. The OsCPA proteins were predominantly localized in the plasma membrane and unevenly scattered on 11 chromosomes. The structural analysis of OsCPA proteins revealed higher similarities within groups. Prediction of selection pressure, collinearity, and synteny analysis indicated that all duplicated OsCPA genes had undergone strong purifying selection throughout their evolution. The cis-acting regulatory elements (CAREs) analysis identified 56 CARE motifs responsive to light, tissue, hormones, and stresses. Additionally, 124 miRNA families were identified in the gene promoters, and OsNHX7 was targeted by the highest number of miRNAs (43 miRNAs). Gene Ontology analysis demonstrated the numerous functions of OsCPA genes associated with biological processes (57.14%), cellular components (7.94%), and molecular functions (34.92%). A total of 12 transcription factor families (TFFs), including 40 TFs were identified in gene promoters, with the highest numbers of TFFs (5TFFs) linked to OsCHX13, and OsCHX15. Protein-protein interaction analysis suggested maximum functional similarities between rice and Arabidopsis CPA proteins. Based on expression analysis, OsKEA1, OsKEA2, OsNHX3, and OsNHX7 were frequently expressed in rice tissues. Furthermore, OsNHX3, OsNHX4, OsNHX6, OsNHX7, OsCHX8, and OsCHX17 in abscisic acid, OsKEA1, OsNHX3, and OsCHX8 in gibberellic acid, OsKEA1, OsKEA3, OsNHX1, and OsNHX3 in indole-3-acetic acid treatment were demonstrated as potential candidates in response to hormone. These findings highlight potential candidates for further characterization of OsCPA genes, which may aid in the development of rice varieties.
Collapse
Affiliation(s)
- Md. Shohel Ul Islam
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Nasrin Akter
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shuraya Beente Rashid
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Naimul Hasan
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shaikh Mizanur Rahman
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
17
|
Liu J, Xiao Y, Zhao X, Du J, Hu J, Jin W, Li G. Integrated Transcriptome and Metabolome Analysis Reveals Mechanism of Flavonoid Synthesis During Low-Temperature Storage of Sweet Corn Kernels. Foods 2024; 13:4025. [PMID: 39766968 PMCID: PMC11727310 DOI: 10.3390/foods13244025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Sweet corn is a globally important food source and vegetable renowned for its rich nutritional content. However, post-harvest quality deterioration remains a significant challenge due to sweet corn's high sensitivity to environmental factors. Currently, low-temperature storage is the primary method for preserving sweet corn; however, the molecular mechanisms involved in this process remain unclear. In this study, kernels stored at different temperatures (28 °C and 4 °C) for 1, 3, and 5 days after harvest were collected for physiological and transcriptomic analysis. Low temperature storage significantly improved the PPO and SOD activity in sweet corn kernels compared to storage at a normal temperature. A total of 1993 common differentially expressed genes (DEGs) were identified in kernels stored at low temperatures across all three time points. Integrated analysis of transcriptomic and previous metabolomic data revealed that low temperature storage significantly affected flavonoid biosynthesis. Furthermore, 11 genes involved in flavonoid biosynthesis exhibited differential expression across the three storage periods, including CHI, HCT, ANS, F3'H, F3'5'H, FLS, and NOMT, with Eriodictyol, Myricetin, and Hesperetin-7-O-glucoside among the key flavonoids. Correlation analysis revealed three AP2/ERF-ERF transcription factors (EREB14, EREB182, and EREB200) as potential regulators of flavonoid biosynthesis during low temperature treatment. These results enhance our understanding of the mechanisms of flavonoid synthesis in sweet corn kernels during low-temperature storage.
Collapse
Affiliation(s)
- Jingyan Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China; (J.L.); (X.Z.); (J.D.)
| | - Yingni Xiao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, China; (Y.X.); (J.H.)
| | - Xu Zhao
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China; (J.L.); (X.Z.); (J.D.)
| | - Jin Du
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China; (J.L.); (X.Z.); (J.D.)
| | - Jianguang Hu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, China; (Y.X.); (J.H.)
| | - Weiwei Jin
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China; (J.L.); (X.Z.); (J.D.)
| | - Gaoke Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, China; (Y.X.); (J.H.)
| |
Collapse
|
18
|
Tang Q, Wei S, Zheng X, Tu P, Tao F. APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Crit Rev Biotechnol 2024; 44:1533-1551. [PMID: 38267262 DOI: 10.1080/07388551.2023.2299769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.
Collapse
Affiliation(s)
- Qiong Tang
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sishan Wei
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Pengcheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
19
|
Fan G, Gao Y, Wu X, Yu Y, Yao W, Jiang J, Liu H, Jiang T. Functional analysis of PagERF021 gene in salt stress tolerance in Populus alba × P. glandulosa. THE PLANT GENOME 2024; 17:e20521. [PMID: 39414577 PMCID: PMC11628909 DOI: 10.1002/tpg2.20521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Poplar trees are crucial for timber and greening, but high levels of salt in the soil have severely limited the yield of poplar. Ethylene response factor (ERF) transcription factors play an important role in growth, development, and stress response in eukaryotes. Our study focused on the PagERF021 gene from Populus alba × P. glandulosa, which was significantly upregulated in various tissues under salt stress [Correction added on October 4, 2024, after first online publication: "ETS2 reporter factor" is changed to "Ethylene response factor".]. Both the tissue-specific expression pattern and β-glucuronidase (GUS) staining of proPagERF021-GUS plants indicated that this gene was predominantly expressed in the roots and stems. The subcellular localization showed that the protein was only localized in the nucleus. The yeast assay demonstrated that this protein had transcriptional activation activity at its C-terminal and could specifically binding to the MYB-core cis-element. The overexpression of PagERF021 gene could scavenge the accumulation of reactive oxygen species and reduce the degree of cellular membrane damage, indicating that this gene enhanced the salt tolerance of poplars. This finding will provide a feasible insight for future research into the regulatory mechanisms of ERF genes in resisting to abiotic stress and the development of new stress-resistant varieties in plants.
Collapse
Affiliation(s)
- Gaofeng Fan
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yuan Gao
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Xinyue Wu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yingying Yu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Co‐Innovation Center for Sustainable Forestry in Southern China/Bamboo Research InstituteNanjing Forestry UniversityNanjingChina
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Huanzhen Liu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| |
Collapse
|
20
|
Bakhtari B, Razi H, Alemzadeh A, Dadkhodaie A, Moghadam A. Identification and characterization of the Quinoa AP2/ERF gene family and their expression patterns in response to salt stress. Sci Rep 2024; 14:29529. [PMID: 39604476 PMCID: PMC11603269 DOI: 10.1038/s41598-024-81046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
The APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play crucial roles in plant growth, development, and responses to biotic and abiotic stresses. This study was performed to comprehensively identify and characterize the AP2/ERF gene family in quinoa (Chenopodium quinoa Willd.), a highly resilient pseudocereal crop known for its salinity tolerance. A total of 150 CqAP2/ERF genes were identified in the quinoa genome; these genes were unevenly distributed across the chromosomes. Phylogenetic analysis divided the CqAP2/ERFs into five subfamilies: 71 ERF, 49 DREB, 23 AP2, 3 RAV, and 4 Soloist. Additionally, the DREB and ERF subfamilies were subdivided into four and seven subgroups, respectively. The exon-intron structure of the putative CqAP2/ERF genes and the conserved motifs of their encoded proteins were also identified, showing general conservation within the phylogenetic subgroups. Promoter analysis revealed many cis-regulatory elements associated with light, hormones, and response mechanisms within the promoter regions of CqAP2/ERF genes. Synteny analysis revealed that segmental duplication under purifying selection pressure was the major evolutionary driver behind the expansion of the CqAP2/ERF gene family. The protein-protein interaction network predicted the pivotal CqAP2/ERF proteins and their interactions involved in the regulation of various biological processes including stress response mechanisms. The expression profiles obtained from RNA-seq and qRT-PCR data detected several salt-responsive CqAP2/ERF genes, particularly from the ERF, DREB, and RAV subfamilies, with varying up- and downregulation patterns, indicating their potential roles in salt stress responses in quinoa. Overall, this study provides insights into the structural and evolutionary features of the AP2/ERF gene family in quinoa, offering candidate genes for further analysis of their roles in salt tolerance and molecular breeding.
Collapse
Affiliation(s)
- Bahlanes Bakhtari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hooman Razi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Abbas Alemzadeh
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
21
|
Lin M, Gao Z, Wang X, Mao J, Pan L, Gong X, Yao D, Zhong H, Huo H. Identification of two postharvest ripening regulatory models in kiwifruit: based on plant hormones, physiology, and transcriptome analysis. BMC PLANT BIOLOGY 2024; 24:1121. [PMID: 39587476 PMCID: PMC11590241 DOI: 10.1186/s12870-024-05817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Kiwifruit (Actinidia spp.), celebrated for its unique flavor and rich nutritional content, is a globally popular fruit. This fruit requires post-harvest ripening before consumption. However, the unpredictable ripening pace significantly impacts consumer acceptance and sales, thereby hindering the commercial growth of kiwifruit. To address this, understanding the key molecular mechanisms and metabolites governing postharvest ripening and senescence could offer valuable insights for developing storage strategies and breeding techniques in yellow-fleshed kiwifruits. We constructed two models that integrated these findings with existing theories. The first model suggests that, unlike the T6P-sucrose regulatory mechanism observed in plant leaves, the separation of harvested kiwifruit from the mother plant leads to an insufficient supply of T6P, which activates the SnRK1 kinase. This, in turn, inhibits the TOR kinase signaling pathway, regulating starch metabolism. The T6P-SnRK1-TOR-starch metabolism pathway plays a regulatory role during postharvest ripening, limiting excessive starch degradation that could accelerate aging and decay in yellow-fleshed kiwifruit. The second model highlights the role of abscisic acid (ABA), cytokinins (CKs), and ethylene in regulating the process, inducing the activation of ERFs and cell wall-degrading enzymes, promoting fruit postharvest softening. These findings indicate that at least two models, the T6P-SnRK1-TOR-starch metabolism model and the ABA-CKs-ethylene-cell wall degradation model, regulate postharvest fruit ripening, offering new insights into the artificial regulation of yellow-fleshed kiwifruit ripening speed.
Collapse
Affiliation(s)
- Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Zhu Gao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Xiaoling Wang
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China.
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China.
| | - Jipeng Mao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Liuyi Pan
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Xuchen Gong
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Dongliang Yao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Huiqi Zhong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Heqiang Huo
- Florida Research & Education Center, IFAS, University of Florida, Apopka, FL, 32703, USA
| |
Collapse
|
22
|
Xu Y, Jiang J, Zeng L, Liu H, Jin Q, Zhou P, Wang Y. Genome-wide identification and analysis of ERF transcription factors related to abiotic stress responses in Nelumbo nucifera. BMC PLANT BIOLOGY 2024; 24:1057. [PMID: 39516727 PMCID: PMC11545801 DOI: 10.1186/s12870-024-05772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ethylene-responsive factor (ERF) transcription factors belong to the APETALA2/ERF (AP2/ERF) superfamily, and play crucial roles in plant development process and stress responses. However, the function of ERF proteins (especially for their role in response to abiotic stresses) remains scarce in Nelumbo nucifera, which is an important aquatic plant with high ornamental, economic, and ecological values. RESULTS A total of 107 ERF genes were identified from the N. nucifera genome, and phylogenetic analysis classified these genes into 11 groups. The NnERF genes in the same group exhibited similar gene structure and conserved motifs, and they were unevenly distributed across the 8 chromosomes, with three pairs of tandem duplications and 21 pairs of segmental duplications. Synteny analysis revealed 44 and 39 of NnERF genes were orthologous to those in Arabidopsis thaliana and Oryza sativa, respectively. Tissue-specific expression patterns analysis of NnERF showed that 26 NnERF genes were expressed in all tested tissues, in which five genes exhibited high expression levels. Furthermore, 16 NnERF genes were selected for exploring their responses to different abiotic stresses, including cold, salt, drought, and Cd stresses. qRT-PCR analysis revealed that all these 16 investigated genes were regulated by at least one stress treatment, and 12 genes responded to all the stress treatments with different expression patterns or levels, suggesting their potential roles in diverse abiotic stress tolerance of N. nucifera. Additionally, two representative stress-related NnERFs (Nn3g19628 and Nn1g06033) were confirmed to be nuclear-localized proteins and displayed transcriptional activation. CONCLUSIONS In this study, we conducted a genome-wide identification and analysis of NnERF gene family related to abiotic stress responses in N. nucifera, which provides valuable information for further functional validation of these genes in stress responses, and forms a foundation for stress tolerance breeding in N. nucifera and other aquatic ornamental plants.
Collapse
Affiliation(s)
- Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland, Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Junnan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland, Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Lihong Zeng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland, Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Huan Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland, Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland, Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Ping Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland, Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland, Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China.
| |
Collapse
|
23
|
Wang YH, Zhao BY, Ye X, Du J, Song JL, Wang WJ, Huang XL, Ouyang KX, Zhang XQ, Liao FX, Zhong TX. Genome-wide analysis of the AP2/ERF gene family in Pennisetum glaucum and the negative role of PgRAV_01 in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109112. [PMID: 39265240 DOI: 10.1016/j.plaphy.2024.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
APETALA2/ethylene-responsive (AP2/ERF) plays crucial roles in resisting diverse stresses and in regulating plant growth and development. However, little is known regarding the structure and function of the AP2/ERF genes in pearl millet (Pennisetum glaucum). The AP2/ERF gene family may be involved in the development and maintenance of P. glaucum resilience to abiotic stresses, central to its role as a vital forage and cereal crop. In this study, PgAP2/ERF family members were identified and comprehensive bioinformatics analyses were performed, including determination of phylogenetic relationships, gene structures, conserved motifs, chromosomal localization, gene duplication, expression pattern, protein interaction network, and functional characterization of PgRAV_01 (Related to ABI3/VP1). In total, 78 PgAP2/ERF members were identified in the P. glaucum genome and classified into five subfamilies: AP2, ERF, DREB, RAV, and soloist. Members within the same clade of the PgAP2/ERF family showed similar gene structures and motif compositions. Six duplication events were identified in the PgAP2/ERF family; calculation of Ka/Ks values showed that purification selection dominated the evolution of PgAP2/ERFs. Subsequently, a potential interaction network of PgAP2/ERFs was generated to predict the interaction relationships. Additionally, abiotic stress expression analysis showed that most PgAP2/ERFs were induced in response to drought and heat stresses. Furthermore, overexpression of PgRAV_01 negatively regulated drought tolerance in Nicotiana benthamiana by reducing its antioxidant capacity and osmotic adjustment. Taken together, these results provide valuable insights into the characteristics and functions of PgAP2/ERF genes, with implications for abiotic stress tolerance, and will ultimately contribute to the genetic improvement of cereal crop breeding.
Collapse
Affiliation(s)
- Yin-Hua Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Bi-Yao Zhao
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Xing Ye
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Juan Du
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Jian-Ling Song
- College of biology and chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, China
| | - Wen-Jing Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ling Huang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Kun-Xi Ouyang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiang-Qian Zhang
- College of Food Science and Engineering, Foshan University, Foshan, 528000, China
| | - Fei-Xiong Liao
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Tian-Xiu Zhong
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
25
|
Feng L, Teng F, Li N, Zhang JC, Zhang BJ, Tsai SN, Yue XL, Gu LF, Meng GH, Deng TQ, Tong SW, Wang CM, Li Y, Shi W, Zeng YL, Jiang YM, Yu W, Ngai SM, An LZ, Lam HM, He JX. A reference-grade genome of the xerophyte Ammopiptanthus mongolicus sheds light on its evolution history in legumes and drought-tolerance mechanisms. PLANT COMMUNICATIONS 2024; 5:100891. [PMID: 38561965 PMCID: PMC11287142 DOI: 10.1016/j.xplc.2024.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.
Collapse
Affiliation(s)
- Lei Feng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China; Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Fei Teng
- BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Na Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Jia-Cheng Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Bian-Jiang Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Sau-Na Tsai
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Xiu-Le Yue
- School of Life Sciences and Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730030, China
| | - Li-Fei Gu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Guang-Hua Meng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Tian-Quan Deng
- BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Suk-Wah Tong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Chun-Ming Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Wei Shi
- BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yong-Lun Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yue-Ming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weichang Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Sai-Ming Ngai
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Li-Zhe An
- School of Life Sciences and Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730030, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Hon-Ming Lam
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China.
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China.
| |
Collapse
|
26
|
Wu M, Xu Q, Tang T, Li X, Pan Y. Integrative physiological, transcriptomic, and metabolomic analysis of Abelmoschus manihot in response to Cd toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1389207. [PMID: 38916029 PMCID: PMC11194374 DOI: 10.3389/fpls.2024.1389207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Rapid industrialization and urbanization have caused severe soil contamination with cadmium (Cd) necessitating effective remediation strategies. Phytoremediation is a widely adopted technology for remediating Cd-contaminated soil. Previous studies have shown that Abelmoschus manihot has a high Cd accumulation capacity and tolerance indicating its potential for Cd soil remediation. However, the mechanisms underlying its response to Cd stress remain unclear. In this study, physiological, transcriptomic, and metabolomic analyses were conducted to explore the response of A. manihot roots to Cd stress at different time points. The results revealed that Cd stress significantly increased malondialdehyde (MDA) levels in A. manihot, which simultaneously activated its antioxidant defense system, enhancing the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) by 19.73%-50%, 22.87%-38.89%, and 32.31%-45.40% at 12 h, 36 h, 72 h, and 7 days, respectively, compared with those in the control (CK). Moreover, transcriptomic and metabolomic analyses revealed 245, 5,708, 9,834, and 2,323 differentially expressed genes (DEGs), along with 66, 62, 156, and 90 differentially expressed metabolites (DEMs) at 12 h, 36 h, 72 h, and 7 days, respectively. Through weighted gene coexpression network analysis (WGCNA) of physiological indicators and transcript expression, eight hub genes involved in phenylpropanoid biosynthesis, signal transduction, and metal transport were identified. In addition, integrative analyses of metabolomic and transcriptomic data highlighted the activation of lipid metabolism and phenylpropanoid biosynthesis pathways under Cd stress suggesting that these pathways play crucial roles in the detoxification process and in enhancing Cd tolerance in A. manihot. This comprehensive study provides detailed insights into the response mechanisms of A. manihot to Cd toxicity.
Collapse
Affiliation(s)
- Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qian Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Tingting Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xia Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanzhi Pan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Bungala LTDC, Park C, Dique JEL, Sathasivam R, Shin SY, Park SU. Ethylene: A Modulator of the Phytohormone-Mediated Insect Herbivory Network in Plants. INSECTS 2024; 15:404. [PMID: 38921119 PMCID: PMC11203721 DOI: 10.3390/insects15060404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Plants have evolved to establish insect herbivory defences by modulating their metabolism, growth, and development. Precise networks of phytohormones are essential to induce those herbivory defences. Gaseous phytohormone ET plays an important role in forming herbivory defences. Its role in insect herbivory is not fully understood, but previous studies have shown that it can both positively and negatively regulate herbivory. This review presents recent findings on crosstalk between ET and other phytohormones in herbivory responses. Additionally, the use of exogenous ETH treatment to induce ET in response to herbivory is discussed.
Collapse
Affiliation(s)
- Leonel Tarcisio da Cristina Bungala
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (L.T.d.C.B.); (C.P.); (R.S.)
- Mozambique Agricultural Research Institute, Central Regional Center, Highway N° 6, Chimoio P.O. Box 42, Mozambique;
| | - Chanung Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (L.T.d.C.B.); (C.P.); (R.S.)
| | - José Eulário Lampi Dique
- Mozambique Agricultural Research Institute, Central Regional Center, Highway N° 6, Chimoio P.O. Box 42, Mozambique;
- Department of Biology, Natural Science Institute, Federal University of Lavras, Lavras 37203-202, Brazil
| | - Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (L.T.d.C.B.); (C.P.); (R.S.)
| | - Su Young Shin
- Using Technology Development Department, Bio-Resources Research Division, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (L.T.d.C.B.); (C.P.); (R.S.)
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
28
|
Monterisi S, Zhang L, Garcia-Perez P, Alzate Zuluaga MY, Ciriello M, El-Nakhel C, Buffagni V, Cardarelli M, Colla G, Rouphael Y, Cesco S, Lucini L, Pii Y. Integrated multi-omic approach reveals the effect of a Graminaceae-derived biostimulant and its lighter fraction on salt-stressed lettuce plants. Sci Rep 2024; 14:10710. [PMID: 38729985 PMCID: PMC11087557 DOI: 10.1038/s41598-024-61576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
Plant biostimulants are widely applied in agriculture for their ability to improve plant fitness. In the present work, the impact of Graminaceae-derived protein hydrolysate (P) and its lighter molecular fraction F3 (< 1 kDa) on lettuce plants, subjected to either no salt or high salt conditions, was investigated through the combination of metabolomics and transcriptomics. The results showed that both treatments significantly modulated the transcriptome and metabolome of plants under salinity stress, highlighting an induction of the hormonal response. Nevertheless, P and F3 also displayed several peculiarities. F3 specifically modulated the response to ethylene and MAPK signaling pathway, whereas P treatment induced a down-accumulation of secondary metabolites, albeit genes controlling the biosynthesis of osmoprotectants and antioxidants were up-regulated. Moreover, according with the auxin response modulation, P promoted cell wall biogenesis and plasticity in salt-stressed plants. Notably, our data also outlined an epigenetic control of gene expression induced by P treatment. Contrarily, experimental data are just partially in agreement when not stressed plants, treated with P or F3, were considered. Indeed, the reduced accumulation of secondary metabolites and the analyses of hormone pathways modulation would suggest a preferential allocation of resources towards growth, that is not coherent with the down-regulation of the photosynthetic machinery, the CO2 assimilation rate and leaves biomass. In conclusion, our data demonstrate that, although they might activate different mechanisms, both the P and F3 can result in similar benefits, as far as the accumulation of protective osmolytes and the enhanced tolerance to oxidative stress are concerned. Notably, the F3 fraction exhibits slightly greater growth promotion effects under high salt conditions. Most importantly, this research further corroborates that biostimulants' mode of action is dependent on plants' physiological status and their composition, underscoring the importance of investigating the bioactivity of the different molecular components to design tailored applications for the agricultural practice.
Collapse
Affiliation(s)
- Sonia Monterisi
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, 39100, Bolzano, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pascual Garcia-Perez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Valentina Buffagni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, 39100, Bolzano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youry Pii
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, 39100, Bolzano, Italy.
| |
Collapse
|
29
|
Domínguez-Figueroa J, Gómez-Rojas A, Escobar C. Functional studies of plant transcription factors and their relevance in the plant root-knot nematode interaction. FRONTIERS IN PLANT SCIENCE 2024; 15:1370532. [PMID: 38784063 PMCID: PMC11113014 DOI: 10.3389/fpls.2024.1370532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Root-knot nematodes are polyphagous parasitic nematodes that cause severe losses in the agriculture worldwide. They enter the root in the elongation zone and subtly migrate to the root meristem where they reach the vascular cylinder and establish a feeding site called gall. Inside the galls they induce a group of transfer cells that serve to nurture them along their parasitic stage, the giant cells. Galls and giant cells develop through a process of post-embryogenic organogenesis that involves manipulating different genetic regulatory networks within the cells, some of them through hijacking some molecular transducers of established plant developmental processes, such as lateral root formation or root regeneration. Galls/giant cells formation involves different mechanisms orchestrated by the nematode´s effectors that generate diverse plant responses in different plant tissues, some of them include sophisticated mechanisms to overcome plant defenses. Yet, the plant-nematode interaction is normally accompanied to dramatic transcriptomic changes within the galls and giant cells. It is therefore expected a key regulatory role of plant-transcription factors, coordinating both, the new organogenesis process induced by the RKNs and the plant response against the nematode. Knowing the role of plant-transcription factors participating in this process becomes essential for a clear understanding of the plant-RKNs interaction and provides an opportunity for the future development and design of directed control strategies. In this review, we present the existing knowledge of the TFs with a functional role in the plant-RKN interaction through a comprehensive analysis of current scientific literature and available transcriptomic data.
Collapse
Affiliation(s)
- Jose Domínguez-Figueroa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Centro de Biotecnologia y Genomica de Plantas (CBGP), Universidad Politecnica de Madrid and Instituto de Investigacion y Tecnologia Agraria y Alimentaria-Consejo Superior de investigaciones Cientificas (UPM-INIA/CSIC), Madrid, Spain
| | - Almudena Gómez-Rojas
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
30
|
Madhu, Kaur A, Singh K, Upadhyay SK. Ascorbate oxidases in bread wheat: gene regulatory network, transcripts profiling, and interaction analyses provide insight into their role in plant development and stress response. PLANT GROWTH REGULATION 2024; 103:209-224. [DOI: 10.1007/s10725-023-01103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/24/2023] [Indexed: 10/09/2024]
|
31
|
Yu H, Liu B, Yang Q, Yang Q, Li W, Fu F. Maize ZmLAZ1-3 gene negatively regulates drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2024; 24:246. [PMID: 38575869 PMCID: PMC10996212 DOI: 10.1186/s12870-024-04923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Molecular mechanisms in response to drought stress are important for the genetic improvement of maize. In our previous study, nine ZmLAZ1 members were identified in the maize genome, but the function of ZmLAZ1 was largely unknown. RESULTS The ZmLAZ1-3 gene was cloned from B73, and its drought-tolerant function was elucidated by expression analysis in transgenic Arabidopsis. The expression of ZmLAZ1-3 was upregulated by drought stress in different maize inbred lines. The driving activity of the ZmLAZ1-3 promoter was induced by drought stress and related to the abiotic stress-responsive elements such as MYB, MBS, and MYC. The results of subcellular localization indicated that the ZmLAZ1-3 protein localized on the plasma membrane and chloroplast. The ectopic expression of the ZmLAZ1-3 gene in Arabidopsis significantly reduced germination ratio and root length, decreased biomass, and relative water content, but increased relative electrical conductivity and malondialdehyde content under drought stress. Moreover, transcriptomics analysis showed that the differentially expressed genes between the transgenic lines and wild-type were mainly associated with response to abiotic stress and biotic stimulus, and related to pathways of hormone signal transduction, phenylpropanoid biosynthesis, mitogen-activated protein kinase signaling, and plant-pathogen interaction. CONCLUSION The study suggests that the ZmLAZ1-3 gene is a negative regulator in regulating drought tolerance and can be used to improve maize drought tolerance via its silencing or knockout.
Collapse
Affiliation(s)
- Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Bingliang Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Qinyu Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Qingqing Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
32
|
Deng H, Pei Y, Xu X, Du X, Xue Q, Gao Z, Shu P, Wu Y, Liu Z, Jian Y, Wu M, Wang Y, Li Z, Pirrello J, Bouzayen M, Deng W, Hong Y, Liu M. Ethylene-MPK8-ERF.C1-PR module confers resistance against Botrytis cinerea in tomato fruit without compromising ripening. THE NEW PHYTOLOGIST 2024; 242:592-609. [PMID: 38402567 DOI: 10.1111/nph.19632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
The plant hormone ethylene plays a critical role in fruit defense against Botrytis cinerea attack, but the underlying mechanisms remain poorly understood. Here, we showed that ethylene response factor SlERF.C1 acts as a key regulator to trigger the ethylene-mediated defense against B. cinerea in tomato fruits without compromising ripening. Knockout of SlERF.C1 increased fruit susceptibility to B. cinerea with no effect on ripening process, while overexpression enhanced resistance. RNA-Seq, transactivation assays, EMSA and ChIP-qPCR results indicated that SlERF.C1 activated the transcription of PR genes by binding to their promoters. Moreover, SlERF.C1 interacted with the mitogen-activated protein kinase SlMPK8 which allowed SlMPK8 to phosphorylate SlERF.C1 at the Ser174 residue and increases its transcriptional activity. Knocking out of SlMPK8 increased fruit susceptibility to B. cinerea, whereas overexpression enhanced resistance without affecting ripening. Furthermore, genetic crosses between SlMPK8-KO and SlERF.C1-OE lines reduced the resistance to B. cinerea attack in SlERF.C1-OE fruits. In addition, B. cinerea infection induced ethylene production which in turn triggered SlMPK8 transcription and enhanced the phosphorylation of SlERF.C1. Overall, our findings reveal the regulatory mechanism of the 'Ethylene-MPK8-ERF.C1-PR' module in resistance against B. cinerea and provide new insight into the manipulation of gray mold disease in fruits.
Collapse
Affiliation(s)
- Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yangang Pei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xiaofei Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qihan Xue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhuo Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhaoqiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Science, Nanning, 530007, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
33
|
Yang F, Sun X, Wu G, He X, Liu W, Wang Y, Sun Q, Zhao Y, Xu D, Dai X, Ma W, Zeng J. Genome-Wide Identification and Expression Profiling of the ABF Transcription Factor Family in Wheat ( Triticum aestivum L.). Int J Mol Sci 2024; 25:3783. [PMID: 38612594 PMCID: PMC11011718 DOI: 10.3390/ijms25073783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Members of the abscisic acid (ABA)-responsive element (ABRE) binding factor (ABF) and ABA-responsive element binding protein (AREB) families play essential roles in the regulation of ABA signaling pathway activity and shape the ability of plants to adapt to a range of stressful environmental conditions. To date, however, systematic genome-wide analyses focused on the ABF/AREB gene family in wheat are lacking. Here, we identified 35 ABF/AREB genes in the wheat genome, designated TaABF1-TaABF35 according to their chromosomal distribution. These genes were further classified, based on their phylogenetic relationships, into three groups (A-C), with the TaABF genes in a given group exhibiting similar motifs and similar numbers of introns/exons. Cis-element analyses of the promoter regions upstream of these TaABFs revealed large numbers of ABREs, with the other predominant elements that were identified differing across these three groups. Patterns of TaABF gene expansion were primarily characterized by allopolyploidization and fragment duplication, with purifying selection having played a significant role in the evolution of this gene family. Further expression profiling indicated that the majority of the TaABF genes from groups A and B were highly expressed in various tissues and upregulated following abiotic stress exposure such as drought, low temperature, low nitrogen, etc., while some of the TaABF genes in group C were specifically expressed in grain tissues. Regulatory network analyses revealed that four of the group A TaABFs (TaABF2, TaABF7, TaABF13, and TaABF19) were centrally located in protein-protein interaction networks, with 13 of these TaABF genes being regulated by 11 known miRNAs, which play important roles in abiotic stress resistance such as drought and salt stress. The two primary upstream transcription factor types found to regulate TaABF gene expression were BBR/BPC and ERF, which have previously been reported to be important in the context of plant abiotic stress responses. Together, these results offer insight into the role that the ABF/AREB genes play in the responses of wheat to abiotic stressors, providing a robust foundation for future functional studies of these genes.
Collapse
Affiliation(s)
- Fuhui Yang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuelian Sun
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Gang Wu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyan He
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongmei Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingyi Sun
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Zhao
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Dengan Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuehuan Dai
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Wujun Ma
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257347, China
| | - Jianbin Zeng
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257347, China
| |
Collapse
|
34
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
35
|
Wang X, Jia C, An L, Zeng J, Ren A, Han X, Wang Y, Wu S. Genome-wide identification and expression characterization of the GH3 gene family of tea plant (Camellia sinensis). BMC Genomics 2024; 25:120. [PMID: 38280985 PMCID: PMC10822178 DOI: 10.1186/s12864-024-10004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024] Open
Abstract
To comprehensively understand the characteristics of the GH3 gene family in tea plants (Camellia sinensis), we identified 17 CsGH3 genes and analyzed their physicochemical properties, phylogenetic relationships, gene structures, promoters, and expression patterns in different tissues. The study showed that the 17 CsGH3 genes are distributed on 9 chromosomes, and based on evolutionary analysis, the CsGH3 members were divided into three subgroups. Gene duplication analysis revealed that segmental duplications have a significant impact on the amplification of CsGH3 genes. In addition, we identified and classified cis-elements in the CsGH3 gene promoters and detected elements related to plant hormone responses and non-biotic stress responses. Through expression pattern analysis, we observed tissue-specific expression of CsGH3.3 and CsGH3.10 in flower buds and roots. Moreover, based on predictive analysis of upstream regulatory transcription factors of CsGH3, we identified the potential transcriptional regulatory role of gibberellin response factor CsDELLA in CsGH3.14 and CsGH3.15. In this study, we found that CsGH3 genes are involved in a wide range of activities, such as growth and development, stress response, and transcription. This is the first report on CsGH3 genes and their potential roles in tea plants. In conclusion, these results provide a theoretical basis for elucidating the role of GH3 genes in the development of perennial woody plants and offer new insights into the synergistic effects of multiple hormones on plant growth and development in tea plants.
Collapse
Affiliation(s)
- Xinge Wang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Chunyu Jia
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Lishuang An
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Jiangyan Zeng
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Aixia Ren
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Xin Han
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Yiqing Wang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Shuang Wu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
36
|
Zhang J, Zhao H, Chen L, Lin J, Wang Z, Pan J, Yang F, Ni X, Wang Y, Wang Y, Li R, Pi E, Wang S. Multifaceted roles of WRKY transcription factors in abiotic stress and flavonoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303667. [PMID: 38169626 PMCID: PMC10758500 DOI: 10.3389/fpls.2023.1303667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Increasing biotic and abiotic stresses are seriously impeding the growth and yield of staple crops and threatening global food security. As one of the largest classes of regulators in vascular plants, WRKY transcription factors play critical roles governing flavonoid biosynthesis during stress responses. By binding major W-box cis-elements (TGACCA/T) in target promoters, WRKYs modulate diverse signaling pathways. In this review, we optimized existing WRKY phylogenetic trees by incorporating additional plant species with WRKY proteins implicated in stress tolerance and flavonoid regulation. Based on the improved frameworks and documented results, we aim to deduce unifying themes of distinct WRKY subfamilies governing specific stress responses and flavonoid metabolism. These analyses will generate experimentally testable hypotheses regarding the putative functions of uncharacterized WRKY homologs in tuning flavonoid accumulation to enhance stress resilience.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
37
|
Park S, Shi A, Meinhardt LW, Mou B. Genome-wide characterization and evolutionary analysis of the AP2/ERF gene family in lettuce (Lactuca sativa). Sci Rep 2023; 13:21990. [PMID: 38081919 PMCID: PMC10713603 DOI: 10.1038/s41598-023-49245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) gene family plays vital roles in plants, serving as a key regulator in responses to abiotic stresses. Despite its significance, a comprehensive understanding of this family in lettuce remains incomplete. In this study, we performed a genome-wide search for the AP2/ERF family in lettuce and identified a total of 224 members. The duplication patterns provided evidence that both tandem and segmental duplications contributed to the expansion of this family. Ka/Ks ratio analysis demonstrated that, following duplication events, the genes have been subjected to purifying selection pressure, leading to selective constraints on their protein sequence. This selective pressure provides a dosage benefit against stresses in plants. Additionally, a transcriptome analysis indicated that some duplicated genes gained novel functions, emphasizing the contribution of both dosage effect and functional divergence to the family functionalities. Furthermore, an orthologous relationship study showed that 60% of genes descended from a common ancestor of Rosid and Asterid lineages, 28% from the Asterid ancestor, and 12% evolved in the lettuce lineage, suggesting lineage-specific roles in adaptive evolution. These results provide valuable insights into the evolutionary mechanisms of the AP2/ERF gene family in lettuce, with implications for enhancing abiotic stress tolerance, ultimately contributing to the genetic improvement of lettuce crop production.
Collapse
Affiliation(s)
- Sunchung Park
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Ainong Shi
- Horticulture Department, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lyndel W Meinhardt
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Beiquan Mou
- US Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA
| |
Collapse
|
38
|
Hu X, Liang J, Wang W, Cai C, Ye S, Wang N, Han F, Wu Y, Zhu Q. Comprehensive genome-wide analysis of the DREB gene family in Moso bamboo (Phyllostachys edulis): evidence for the role of PeDREB28 in plant abiotic stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1248-1270. [PMID: 37566437 DOI: 10.1111/tpj.16420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Dehydration response element binding (DREB) proteins are vital for plant abiotic stress responses, but the understanding of DREBs in bamboo, an important sustainable non-timber forest product, is limited. Here we conducted a comprehensive genome-wide analysis of the DREB gene family in Moso bamboo, representing the most important running bamboo species in Asia. In total, 44 PeDREBs were identified, and information on their gene structures, protein motifs, phylogenetic relationships, and stress-related cis-regulatory elements (CREs) was provided. Based on the bioinformatical analysis, we further analyzed PeDREBs from the A5 group and found that four of five PeDREB transcripts were induced by salt, drought, and cold stresses, and their proteins could bind to stress-related CREs. Among these, PeDREB28 was selected as a promising candidate for further functional characterization. PeDREB28 is localized in nucleus, has transcriptional activation activity, and could bind to the DRE- and coupling element 1- (CE1) CREs. Overexpression of PeDREB28 in Arabidopsis and bamboo improved plant abiotic stress tolerance. Transcriptomic analysis showed that broad changes due to the overexpression of PeDREB28. Furthermore, 628 genes that may act as the direct PeDREB28 downstream genes were identified by combining DAP-seq and RNA-seq analysis. Moreover, we confirmed that PeDREB28 could bind to the promoter of pyrabactin-resistance-like gene (DlaPYL3), which is a homolog of abscisic acid receptor in Arabidopsis, and activates its expression. In summary, our study provides important insights into the DREB gene family in Moso bamboo, and contributes to their functional verification and genetic engineering applications in the future.
Collapse
Affiliation(s)
- Xin Hu
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Jianxiang Liang
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Wenjia Wang
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Changyang Cai
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Shanwen Ye
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Nannan Wang
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Fangying Han
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Yuxin Wu
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| |
Collapse
|
39
|
Caccialupi G, Milc J, Caradonia F, Nasar MF, Francia E. The Triticeae CBF Gene Cluster-To Frost Resistance and Beyond. Cells 2023; 12:2606. [PMID: 37998341 PMCID: PMC10670769 DOI: 10.3390/cells12222606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The pivotal role of CBF/DREB1 transcriptional factors in Triticeae crops involved in the abiotic stress response has been highlighted. The CBFs represent an important hub in the ICE-CBF-COR pathway, which is one of the most relevant mechanisms capable of activating the adaptive response to cold and drought in wheat, barley, and rye. Understanding the intricate mechanisms and regulation of the cluster of CBF genes harbored by the homoeologous chromosome group 5 entails significant potential for the genetic improvement of small grain cereals. Triticeae crops seem to share common mechanisms characterized, however, by some peculiar aspects of the response to stress, highlighting a combined landscape of single-nucleotide variants and copy number variation involving CBF members of subgroup IV. Moreover, while chromosome 5 ploidy appears to confer species-specific levels of resistance, an important involvement of the ICE factor might explain the greater tolerance of rye. By unraveling the genetic basis of abiotic stress tolerance, researchers can develop resilient varieties better equipped to withstand extreme environmental conditions. Hence, advancing our knowledge of CBFs and their interactions represents a promising avenue for improving crop resilience and food security.
Collapse
Affiliation(s)
- Giovanni Caccialupi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; (J.M.); (F.C.); (M.F.N.); (E.F.)
| | | | | | | | | |
Collapse
|
40
|
Wang Z, Song G, Zhang F, Shu X, Wang N. Functional Characterization of AP2/ERF Transcription Factors during Flower Development and Anthocyanin Biosynthesis Related Candidate Genes in Lycoris. Int J Mol Sci 2023; 24:14464. [PMID: 37833913 PMCID: PMC10572147 DOI: 10.3390/ijms241914464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The APETALA2/ethylene-responsive transcription factor (AP2/ERF) family has been extensively investigated because of its significant involvement in plant development, growth, fruit ripening, metabolism, and plant stress responses. To date, there has been little investigation into how the AP2/ERF genes influence flower formation and anthocyanin biosynthesis in Lycoris. Herein, 80 putative LrAP2/ERF transcription factors (TFs) with complete open reading frames (ORFs) were retrieved from the Lycoris transcriptome sequence data, which could be divided into five subfamilies dependent on their complete protein sequences. Furthermore, our findings demonstrated that genes belonging to the same subfamily had structural similarities and conserved motifs. LrAP2/ERF genes were analyzed for playing an important role in plant growth, water deprivation, and flower formation by means of gene ontology (GO) enrichment analysis. The expression pattern of the LrAP2/ERF genes differed across tissues and might be important for Lycoris growth and flower development. In response to methyl jasmonate (MeJA) exposure and drought stress, the expression of each LrAP2/ERF gene varied across tissues and time. Moreover, a total of 20 anthocyanin components were characterized using ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis, and pelargonidin-3-O-glucoside-5-O-arabinoside was identified as the major anthocyanin aglycone responsible for the coloration of the red petals in Lycoris. In addition, we mapped the relationships between genes and metabolites and found that LrAP2/ERF16 is strongly linked to pelargonidin accumulation in Lycoris petals. These findings provide the basic conceptual groundwork for future research into the molecular underpinnings and regulation mechanisms of AP2/ERF TFs in anthocyanin accumulation and Lycoris floral development.
Collapse
Affiliation(s)
- Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guowei Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
Wang Z, Yang J, Gao Q, He S, Xu Y, Luo Z, Liu P, Wu M, Xu X, Ma L, Zhang Z, Yang Y, Yang J. The transcription factor NtERF13a enhances abiotic stress tolerance and phenylpropanoid compounds biosynthesis in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111772. [PMID: 37331634 DOI: 10.1016/j.plantsci.2023.111772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
The AP2/ERF (APETALA2/ETHYLENE RESPONSE FACTOR) transcription factors play multiple roles in modulating the biosynthesis of diverse specialized metabolites in response to various environmental stresses. ERF13 has been shown to participate in plant resistance to biotic stress as well as in repressing the synthesis of fatty acid. However, its full roles in regulating plant metabolism and stress resistance still remains to be further studied. In this study, we identified two NtERF genes from N. tabacum genome that belong to Ⅸa subgroup of ERF family. Over-expression and knock-out of NtERF13a showed that NtERF13a could enhance plant resistance to salt and drought stresses, as well as promoted the biosynthesis of chlorogenic acid (CGA), flavonoids, and lignin in tobacco. Transcriptome analysis between WT and NtERF13a-OE plants revealed 6 differentially expressed genes (DEGs) that encode enzymes catalyzing the key steps of phenylpropanoid pathway. Chromatin immunoprecipitation, Y1H, and Dual-Luc assays further clarified that NtERF13a could directly bind to the fragments containing GCC box or DRE element in the promoters of NtHCT, NtF3'H, and NtANS genes to induce the transcription of these genes. Knock-out of NtHCT, NtF3'H, or NtANS in the NtERF13a-OE background significantly repressed the increase of phenylpropanoid compound contents caused by over-expression of NtERF13a, indicating that the promotion of NtERF13a on the phenylpropanoid compound contents depends on the activity of NtHCT, NtF3'H, and NtANS. Our study demonstrated new roles of NtERF13a in promoting plant resistance to abiotic stresses, and provided a promising target for modulating the biosynthesis of phenylpropanoid compounds in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Qian Gao
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming 650202, China
| | - Shun He
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Yongming Xu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Lanxin Ma
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| |
Collapse
|
42
|
Li L, Zhu Z, Liu J, Zhang Y, Lu Y, Zhao J, Xing H, Guo N. Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:3007. [PMID: 37631217 PMCID: PMC10459988 DOI: 10.3390/plants12163007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The Ethylene Response Factor (ERF) transcription factors form a subfamily of the AP2/ERF family that is instrumental in mediating plant responses to diverse abiotic stressors. Herein, we present the isolation and characterization of the GmERF105 gene from Williams 82 (W82), which is rapidly induced by salt, drought, and abscisic acid (ABA) treatments in soybean. The GmERF105 protein contains an AP2 domain and localizes to the nucleus. GmERF105 was selectively bound to GCC-box by gel migration experiments. Under salt stress, overexpression of GmERF105 in Arabidopsis significantly reduced seed germination rate, fresh weight, and antioxidant enzyme activity; meanwhile, sodium ion content, malonic dialdehyde (MDA) content, and reactive oxygen species (ROS) levels were markedly elevated compared to the wild type. It was further found that the transcription levels of CSD1 and CDS2 of two SOD genes were reduced in OE lines. Furthermore, the GmERF105 transgenic plants displayed suppressed expression of stress response marker genes, including KIN1, LEA14, NCED3, RD29A, and COR15A/B, under salt treatment. Our findings suggest that GmERF105 can act as a negative regulator in plant salt tolerance pathways by affecting ROS scavenging systems and the transcription of stress response marker genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinming Zhao
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| | - Han Xing
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| | - Na Guo
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| |
Collapse
|
43
|
Charfeddine M, Chiab N, Charfeddine S, Ferjani A, Gargouri-Bouzid R. Heat, drought, and combined stress effect on transgenic potato plants overexpressing the StERF94 transcription factor. JOURNAL OF PLANT RESEARCH 2023; 136:549-562. [PMID: 36988761 DOI: 10.1007/s10265-023-01454-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/17/2023] [Indexed: 06/09/2023]
Abstract
Despite their economic importance worldwide, potato plants are sensitive to various abiotic constraints, such as drought and high temperatures, which cause significant losses in yields and tuber quality. Moreover, because of the climate change phenomenon, plants are frequently subjected to combined stresses, mainly high temperatures and drought. In this context, breeding for tolerant varieties should consider not only plant response to drought or high temperature but also to combined stresses. In the current study, we studied transgenic potato plants overexpressing an ethylene response transcription factor (TF; StERF94) involved in abiotic stress response signaling pathways. Our previous results showed that these transgenic plants display tolerance to salt stress more than wildtype (WT). In this work, we aimed to investigate the effects of drought, heat, and combined stresses on transgenic potato plants overexpressing StERF94 TF under in vitro culture conditions. The obtained results revealed that StERF94 overexpression improved the tolerance of the transgenic plants to drought, heat, and combined stresses through better control of the leaf water and chlorophyll contents, activation of antioxidant enzymes, and an accumulation of proline, especially in the leaves. Indeed, the expression level of antioxidant enzyme-encoding genes (CuZnSOD, FeSOD, CAT1, and CAT2) was significantly induced by the different stress conditions in the transgenic potato plants compared with the WT plants. This study further confirms that StERF94 TF may be implicated in regulating the expression of target genes encoding antioxidant enzymes.
Collapse
Affiliation(s)
- Mariam Charfeddine
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Nour Chiab
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia.
| | - Safa Charfeddine
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Aziza Ferjani
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| |
Collapse
|
44
|
Fang S, Zhang C, Qiu S, Xiao Y, Chen K, Lv Z, Chen W. SbWRKY75- and SbWRKY41-mediated jasmonic acid signaling regulates baicalin biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1213662. [PMID: 37416887 PMCID: PMC10320291 DOI: 10.3389/fpls.2023.1213662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Introduction Scutellaria baicalensis Georgi is a traditional Chinese medicinal plant with broad pharmacological activities whose main active ingredient is the flavonoid baicalin. Given its medicinal value and increasing market demand, it is essential to improve the plant's baicalin content. Flavonoid biosynthesis is regulated by several phytohormones, primarily jasmonic acid (JA). Methods In this study, we conducted transcriptome deep sequencing analysis of S. baicalensis roots treated with methyl jasmonate for different durations (1, 3, or 7 hours). Leveraging weighted gene co-expression network analysis and transcriptome data, we identified candidate transcription factor genes involved in the regulation of baicalin biosynthesis. To validate the regulatory interactions, we performed functional assays such as yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays. Results Our findings demonstrated that SbWRKY75 directly regulates the expression of the flavonoid biosynthetic gene SbCLL-7, whereas SbWRKY41 directly regulates the expression of two other flavonoid biosynthetic genes, SbF6H and SbUGT, thus regulating baicalin biosynthesis. We also obtained transgenic S.baicalensis plants by somatic embryo induction and determined that overexpressing SbWRKY75 increased baicalin content by 14%, while RNAi reduced it by 22%. Notably, SbWRKY41 indirectly regulated baicalin biosynthesis by modulating the expression of SbMYC2.1, SbJAZ3 and SbWRKY75. Discussion This study provides valuable insights into the molecular mechanisms underlying JA-mediated baicalin biosynthesis in S. baicalensis. Our results highlight the specific roles of transcription factors, namely SbWRKY75 and SbWRKY41, in the regulation of key biosynthetic genes. Understanding these regulatory mechanisms holds significant potential for developing targeted strategies to enhance baicalin content in S. baicalensis through genetic interventions.
Collapse
Affiliation(s)
- Shiyuan Fang
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Qiu
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixian Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongyou Lv
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
45
|
Wang L, Zheng X, Ye Z, Su M, Zhang X, Du J, Li X, Zhou H, Huan C. Transcriptome Co-Expression Network Analysis of Peach Fruit with Different Sugar Concentrations Reveals Key Regulators in Sugar Metabolism Involved in Cold Tolerance. Foods 2023; 12:foods12112244. [PMID: 37297487 DOI: 10.3390/foods12112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Peach fruits are known to be highly susceptible to chilling injury (CI) during low-temperature storage, which has been linked to the level of sugar concentration in the fruit. In order to better understand the relationship between sugar metabolism and CI, we conducted a study examining the concentration of sucrose, fructose, and glucose in peach fruit with different sugar concentrations and examined their relationship with CI. Through transcriptome sequencing, we screened the functional genes and transcription factors (TFs) involved in the sugar metabolism pathway that may cause CI in peach fruit. Our results identified five key functional genes (PpSS, PpINV, PpMGAM, PpFRK, and PpHXK) and eight TFs (PpMYB1/3, PpMYB-related1, PpWRKY4, PpbZIP1/2/3, and PpbHLH2) that are associated with sugar metabolism and CI development. The analysis of co-expression network mapping and binding site prediction identified the most likely associations between these TFs and functional genes. This study provides insights into the metabolic and molecular mechanisms regulating sugar changes in peach fruit with different sugar concentrations and presents potential targets for breeding high-sugar and cold-tolerant peach varieties.
Collapse
Affiliation(s)
- Lufan Wang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhengwen Ye
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210000, China
| | - Mingshen Su
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xianan Zhang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jihong Du
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiongwei Li
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huijuan Zhou
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210000, China
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210000, China
| |
Collapse
|