1
|
Mani B, Kaur I, Dhingra Y, Saxena V, Krishna GK, Kumar R, Chinnusamy V, Agarwal M, Katiyar-Agarwal S. Tetraspanin 5 orchestrates resilience to salt stress through the regulation of ion and reactive oxygen species homeostasis in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:51-71. [PMID: 39356169 DOI: 10.1111/pbi.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024]
Abstract
Tetraspanins (TETs) are integral membrane proteins, characterized by four transmembrane domains and a unique signature motif in their large extracellular loop. They form dynamic supramolecular complexes called tetraspanin-enriched microdomains (TEMs), through interactions with partner proteins. In plants, TETs are involved in development, reproduction and immune responses, but their role in defining abiotic stress responses is largely underexplored. We focused on OsTET5, which is differentially expressed under various abiotic stresses and localizes to both plasma membrane and endoplasmic reticulum. Using overexpression and underexpression transgenic lines we demonstrate that OsTET5 contributes to salinity and drought stress tolerance in rice. OsTET5 can interact with itself in yeast, suggesting homomer formation. Immunoblotting of native PAGE of microsomal fraction enriched from OsTET5-Myc transgenic rice lines revealed multimeric complexes containing OsTET5, suggesting the potential formation of TEM complexes. Transcriptome analysis, coupled with quantitative PCR-based validation, of OsTET5-altered transgenic lines unveiled the differential expression patterns of several stress-responsive genes, as well as those coding for transporters under salt stress. Notably, OsTET5 plays a crucial role in maintaining the ionic equilibrium during salinity stress, particularly by preserving an elevated potassium-to-sodium (K+/Na+) ratio. OsTET5 also regulates reactive oxygen species homeostasis, primarily by modulating the gene expression and activities of antioxidant pathway enzymes and proline accumulation. Our comprehensive investigation underscores the multifaceted role of OsTET5 in rice, accentuating its significance in developmental processes and abiotic stress tolerance. These findings open new avenues for potential strategies aimed at enhancing stress resilience and making valuable contributions to global food security.
Collapse
Affiliation(s)
- Balaji Mani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Inderjit Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Yashika Dhingra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Vidisha Saxena
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - G K Krishna
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, India
| | | |
Collapse
|
2
|
Zimmerman JA, Verboonen B, Harrison Hanson AP, Arballo LR, Brusslan JA. Arabidopsis apoplast TET8 positively correlates to leaf senescence, and tet3tet8 double mutants are delayed in leaf senescence. PLANT DIRECT 2024; 8:e70006. [PMID: 39323734 PMCID: PMC11422175 DOI: 10.1002/pld3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound exosomes secreted into the apoplast. Two distinct populations of EVs have been described in Arabidopsis: PEN1-associated and TET8-associated. We previously noted early leaf senescence in the pen1 single and pen1pen3 double mutant. Both PEN1 and PEN3 are abundant in EV proteomes suggesting that EVs might regulate leaf senescence in soil-grown plants. We observed that TET8 is more abundant in the apoplast of early senescing pen1 and pen1pen3 mutant rosettes and in older wild-type (WT) rosettes. The increase in apoplast TET8 in the pen1 mutant did not correspond to increased TET8 mRNA levels. In addition, apoplast TET8 was more abundant in the early leaf senescence myb59 mutant, meaning the increase in apoplast TET8 protein during leaf senescence is not dependent on pen1 or pen3. Genetic analysis showed a significant delay in leaf senescence in tet3tet8 double mutants after 6 weeks of growth suggesting that these two tetraspanin paralogs operate additively and are positive regulators of leaf senescence. This is opposite of the effect of pen1 and pen1pen3 mutants that show early senescence and suggest PEN1 to be a negative regulator of leaf senescence. Our work provides initial support that apoplast-localized TET8 in combination with TET3 positively regulates age-related leaf senescence in soil-grown Arabidopsis plants.
Collapse
Affiliation(s)
- Jayde A. Zimmerman
- Southern California Coastal Water Research ProjectCosta MesaCaliforniaUSA
| | | | | | - Luis R. Arballo
- California State University, Long BeachLong BeachCaliforniaUSA
| | - Judy A. Brusslan
- Department of Biological SciencesCalifornia State University, Long BeachLong BeachCaliforniaUSA
| |
Collapse
|
3
|
Zimmerman JA, Verboonen B, Harrison Hanson AP, Brusslan JA. Arabidopsis Apoplast TET8 Positively Correlates to Leaf Senescence and tet3tet8 Double Mutants are Delayed in Leaf Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593620. [PMID: 38798530 PMCID: PMC11118556 DOI: 10.1101/2024.05.10.593620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound exosomes secreted into the apoplast. Two distinct populations of EVs have been described in Arabidopsis: PEN1-associated and TET8-associated. We previously noted early leaf senescence in the pen1 single and pen1pen3 double mutant. Both PEN1 and PEN3 are abundant in EV proteomes suggesting EVs might regulate leaf senescence in soil-grown plants. We observed that TET8 is more abundant in the apoplast of early senescing pen1 and pen1pen3 mutant rosettes and in older WT rosettes. The increase in apoplast TET8 in the pen1 mutant did not correspond to increased TET8 mRNA levels. In addition, apoplast TET8 was more abundant in the early leaf senescence myb59 mutant, meaning the increase in apoplast TET8 protein during leaf senescence is not dependent on pen1 or pen3 . Genetic analysis showed a significant delay in leaf senescence in tet3tet8 double mutants after six weeks of growth suggesting that these two tetraspanin paralogs operate additively and are positive regulators of leaf senescence. This is opposite of the effect of pen1 and pen1pen3 mutants that show early senescence and suggest PEN1 to be a negative regulator of leaf senescence. Our work provides initial support that PEN1-associated EVs and TET8-associated EVs may have opposite effects on soil-grown plants undergoing age-related leaf senescence.
Collapse
|
4
|
Qin S, Li W, Zeng J, Huang Y, Cai Q. Rice tetraspanins express in specific domains of diverse tissues and regulate plant architecture and root growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:892-908. [PMID: 37955978 DOI: 10.1111/tpj.16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Tetraspanins (TETs) are small transmembrane scaffold proteins that distribute proteins into highly organized microdomains, consisting of adaptors and signaling proteins, which play important roles in various biological events. In plants, understanding of tetraspanin is limited to the Arabidopsis TET genes' expression pattern and their function in leaf and root growth. Here, we comprehensively analyzed all rice tetraspanin (OsTET) family members, including their gene expression pattern, protein topology, and subcellular localization. We found that the core domain of OsTETs is conserved and shares a similar topology of four membrane-spanning domains with animal and plant TETs. OsTET genes are partially overlapping expressed in diverse tissue domains in vegetative and reproductive organs. OsTET proteins preferentially targeted the endoplasmic reticulum. Mutation analysis showed that OsTET5, OsTET6, OsTET9, and OsTET10 regulated plant height and tillering, and that OsTET13 controlled root growth in association with the jasmonic acid pathway. In summary, our work provides systematic new insights into the function of OsTETs in rice growth and development, and the data provides valuable resources for future research.
Collapse
Affiliation(s)
- Shanshan Qin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wei Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Jiayue Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yifan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| |
Collapse
|
5
|
Konstantinova N, Mor E, Verhelst E, Nolf J, Vereecken K, Wang F, Van Damme D, De Rybel B, Glanc M. A precise balance of TETRASPANIN1/TORNADO2 activity is required for vascular proliferation and ground tissue patterning in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14182. [PMID: 38618986 DOI: 10.1111/ppl.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 04/16/2024]
Abstract
The molecular mechanisms guiding oriented cell divisions in the root vascular tissues of Arabidopsis thaliana are still poorly characterised. By overlapping bulk and single-cell transcriptomic datasets, we unveiled TETRASPANIN1 (TET1) as a putative regulator in this process. TET1 is expressed in root vascular cells, and loss-of-function mutants contain fewer vascular cell files. We further generated and characterised a CRISPR deletion mutant and showed, unlike previously described mutants, that the full knock out is additionally missing endodermal cells in a stochastic way. Finally, we show that HA-tagged versions of TET1 are functional in contrast to fluorescent TET1 translational fusions. Immunostaining using HA-TET1 lines complementing the mutant phenotype suggested a dual plasma membrane and intracellular localisation in the root vasculature and a polar membrane localisation in the young cortex, endodermal and initial cells. Taken together, we show that TET1 is involved in both vascular proliferation and ground tissue patterning. Our initial results pave the way for future work to decipher its precise mode of action.
Collapse
Affiliation(s)
- Nataliia Konstantinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Eliana Mor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Eline Verhelst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Kenzo Vereecken
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Feng Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Matouš Glanc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
6
|
Zhang H, Hu Q. TOM1 family conservation within the plant kingdom for tobacco mosaic virus accumulation. MOLECULAR PLANT PATHOLOGY 2023; 24:1385-1399. [PMID: 37443447 PMCID: PMC10576174 DOI: 10.1111/mpp.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/03/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The susceptibility factor TOBAMOVIRUS MULTIPLICATION 1 (TOM1) is required for efficient multiplication of tobacco mosaic virus (TMV). Although some phylogenetic and functional analyses of the TOM1 family members have been conducted, a comprehensive analysis of the TOM1 homologues based on phylogeny from the most ancient to the youngest representatives within the plant kingdom, analysis of support for tobamovirus accumulation and interaction with other host and viral proteins has not been reported. In this study, using Nicotiana benthamiana and TMV as a model system, we functionally characterized the TOM1 homologues from N. benthamiana and other plant species from different plant lineages. We modified a multiplex genome editing tool and generated a sextuple mutant in which TMV multiplication was dramatically inhibited. We showed that TOM1 homologues from N. benthamiana exhibited variable capacities to support TMV multiplication. Evolutionary analysis revealed that the TOM1 family is restricted to the plant kingdom and probably originated in the Chlorophyta division, suggesting an ancient origin of the TOM1 family. We found that the TOM1 family acquired the ability to promote TMV multiplication after the divergence of moss and spikemoss. Moreover, the capacity of TOM1 orthologues from different plant species to promote TMV multiplication and the interactions between TOM1 and TOM2A and between TOM1 and TMV-encoded replication proteins are highly conserved, suggesting a conserved nature of the TOM2A-TOM1-TMV Hel module in promoting TMV multiplication. Our study not only revealed a conserved nature of a gene module to promote tobamovirus multiplication, but also provides a valuable strategy for TMV-resistant crop development.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Qun Hu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
7
|
Zhang G, Zhang Z, Wan Q, Zhou H, Jiao M, Zheng H, Lu Y, Rao S, Wu G, Chen J, Yan F, Peng J, Wu J. Selection and Validation of Reference Genes for RT-qPCR Analysis of Gene Expression in Nicotiana benthamiana upon Single Infections by 11 Positive-Sense Single-Stranded RNA Viruses from Four Genera. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040857. [PMID: 36840204 PMCID: PMC9964245 DOI: 10.3390/plants12040857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 05/17/2023]
Abstract
Quantitative real-time PCR (RT-qPCR) is a widely used method for studying alterations in gene expression upon infections caused by diverse pathogens such as viruses. Positive-sense single-stranded (ss(+)) RNA viruses form a major part of all known plant viruses, and some of them are damaging pathogens of agriculturally important crops. Analysis of gene expression following infection by ss(+) RNA viruses is crucial for the identification of potential anti-viral factors. However, viral infections are known to globally affect gene expression and therefore selection and validation of reference genes for RT-qPCR is particularly important. In this study, the expression of commonly used reference genes for RT-qPCR was studied in Nicotiana benthamiana following single infection by 11 ss(+) RNA viruses, including five tobamoviruses, four potyviruses, one potexvirus and one polerovirus. Stability of gene expression was analyzed in parallel by four commonly used algorithms: geNorm, NormFinder, BestKeeper, and Delta CT, and RefFinder was finally used to summarize all the data. The most stably expressed reference genes differed significantly among the viruses, even when those viruses were from the same genus. Our study highlights the importance of the selection and validation of reference genes upon different viral infections.
Collapse
Affiliation(s)
- Ge Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Qionglian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Huijie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mengting Jiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (J.P.); (J.W.)
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (J.P.); (J.W.)
| |
Collapse
|
8
|
Aknadibossian V, Huguet-Tapia JC, Golyaev V, Pooggin MM, Folimonova SY. Transcriptomic alterations in the sweet orange vasculature correlate with growth repression induced by a variant of citrus tristeza virus. Front Microbiol 2023; 14:1162613. [PMID: 37138615 PMCID: PMC10150063 DOI: 10.3389/fmicb.2023.1162613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Citrus tristeza virus (CTV, family Closteroviridae) is an economically important pathogen of citrus. CTV resides in the phloem of the infected plants and induces a range of disease phenotypes, including stem pitting and quick decline as well as a number of other deleterious syndromes. To uncover the biological processes underlying the poorly understood damaging symptoms of CTV, we profiled the transcriptome of sweet orange (Citrus sinensis) phloem-rich bark tissues of non-infected, mock-inoculated trees and trees singly infected with two distinct variants of CTV, T36 or T68-1. The T36 and T68-1 variants accumulated in the infected plants at similar titers. With that, young trees infected with T68-1 were markedly repressed in growth, while the growth rate of the trees infected with T36 was comparable to the mock-inoculated trees. Only a small number of differentially expressed genes (DEGs) were identified in the nearly asymptomatic T36-infected trees, whereas almost fourfold the number of DEGs were identified with the growth-restricting T68-1 infection. DEGs were validated using quantitative reverse transcription-PCR. While T36 did not induce many noteworthy changes, T68-1 altered the expression of numerous host mRNAs encoding proteins within significant biological pathways, including immunity and stress response proteins, papain-like cysteine proteases (PLCPs), cell-wall modifying enzymes, vascular development proteins and others. The transcriptomic alterations in the T68-1-infected trees, in particular, the strong and persistent increase in the expression levels of PLCPs, appear to contribute to the observed stem growth repression. On the other hand, analysis of the viral small interfering RNAs revealed that the host RNA silencing-based response to the infection by T36 and that by T68-1 was comparable, and thus, the induction of this antiviral mechanism may not contribute to the difference in the observed symptoms. The DEGs identified in this study promote our understanding of the underlying mechanisms of the yet unexplained growth repression induced by severe CTV isolates in sweet orange trees.
Collapse
Affiliation(s)
- Vicken Aknadibossian
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jose C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Svetlana Y. Folimonova,
| |
Collapse
|