1
|
Dalla Costa V, Piovan A, Brun P, Filippini R. Morus alba L. Cell Cultures as Sources of Antioxidant and Anti-Inflammatory Stilbenoids for Food Supplement Development. Molecules 2025; 30:2073. [PMID: 40363879 PMCID: PMC12073631 DOI: 10.3390/molecules30092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
Morus alba L. (Moraceae), white mulberry, is an ancient, well-known source of several compounds with potent biological activities and beneficial effects on human health. In this study, the juices of three stabilised undifferentiated cell lines, calli maintained in light and dark conditions, and suspensions maintained in dark condition of M. alba were investigated for their phytochemical content and biological activity. The results highlighted the main presence of oxyresveratrol and resveratrol-backbone glucosides, together with benzofuran derivatives. Oxyresveratrol triglucoside was found for the first time in M. alba in vitro cultures, where it represents the main compound, accounting for almost 90 µg/mL in all the juices. The total stilbenoid content resulted significantly higher in calli juices during the logarithmic phase of the growth cycle, and cell suspension juice exhibited the statistically highest total content (313.21 µg/mL of juice). Only cell suspension juice showed ROS reduction in Caco-2 cells, whereas all the juices reduced IL-1β and TNF-α levels in Caco-2 cells stimulated with LPS. These results lay the groundwork for the future exploitation of M. alba dedifferentiated cultures as sustainable resources of stilbenoid compounds to be used in the nutraceutical, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Vanessa Dalla Costa
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padua, Italy; (A.P.); (R.F.)
| | - Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padua, Italy; (A.P.); (R.F.)
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy;
| | - Raffaella Filippini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padua, Italy; (A.P.); (R.F.)
| |
Collapse
|
2
|
Kavi Kishor PB, Thaddi BN, Guddimalli R, Nikam TD, Sambasiva Rao KRS, Mukhopadhyay R, Singam P. The Occurrence, Uses, Biosynthetic Pathway, and Biotechnological Production of Plumbagin, a Potent Antitumor Naphthoquinone. Molecules 2025; 30:1618. [PMID: 40286222 PMCID: PMC11990497 DOI: 10.3390/molecules30071618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Plumbagin is an important naphthoquinone with potent anticancer properties besides multitudinous uses in healthcare. It is produced in a limited number of species and families but mostly in the roots of Plumbaginaceae family members. The biosynthetic pathway and the genes that regulate plumbagin synthesis are not completely known, but details of these are being revealed. Several species, including Plumbago, Drosera, and others, are being uprooted for the extraction of plumbagin by pharmaceutical industries, leading to the destruction of natural habitats. The pharmaceutical industry is therefore facing an acute shortage of plant material. This necessitates enhancing the accumulation of plumbagin using suspensions and hairy roots to meet market demands. Many factors, such as the aggregate size of the inoculum, stability of the culture, and the sequential effects of elicitors, immobilization, and permeabilization, have been demonstrated to act synergistically and markedly augment plumbagin accumulation. Hairy root cultures can be used for the large-scale production, growth, and plumbagin accumulation, and the exploration of their efficacy is now imperative. The secretion of compounds into the spent medium and their in situ adsorption via resin has remarkable potential, but this has not been thoroughly exploited. Improvements in the quality of biomass, selection of cell lines, and production of plumbagin in bioreactors have thus far been sporadic, and these parameters need to be further exploited. In this review, we report the advances made relating to the importance of stable cell line selection for the accumulation of compounds in long-term cultures, hairy root cultures for the accumulation of plumbagin, and its semicontinuous production via total cell recycling in different types of bioreactors. Such advances might pave the way for industrial exploitation. The steps in the biosynthetic pathway that are currently understood might also aid us in isolating the relevant genes in order to examine the effects of their overexpression or heterologous downregulation or to edit the genome using CRISPR-Cas9 technology in order to enhance the accumulation of plumbagin. Its potential as an anticancer molecule and its mode of action have been amply demonstrated, but plumbagin has not been exploited in clinics due to its insolubility in water and its highly lipophilic nature. Plumbagin-loaded nanoemulsions, plumbagin-silver, or albumin nanoparticle formulations can overcome these problems relating to its solubility and are currently being tried to improve its bioavailability and antiproliferative activities, as discussed in the current paper.
Collapse
Affiliation(s)
| | - Bangaru Naidu Thaddi
- Department of Life Sciences, Aditya Degree & P.G. College (Autonomous), Kakinada 533003, India;
| | | | | | | | - Rupasree Mukhopadhyay
- Department of Genetics & Biotechnology, Veeranari Chakali Ilamma Women’s University, Hyderabad 500095, India;
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad 500007, India; (R.G.); (P.S.)
| |
Collapse
|
3
|
Manickavasagam VM, Anupindi K, Bhatt N, Srivastava S. Characterizing the effect of impeller design in plant cell fermentations using CFD modeling. Sci Rep 2025; 15:9322. [PMID: 40102461 PMCID: PMC11920266 DOI: 10.1038/s41598-025-92385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Cultivation of plant cell cultures in conventional bioreactors designed for microbial cells often results in decrease of biomass productivity as compared to that in shake flasks, presumably due to the imbalance between the mass transfer requirements and compromise with cell viability. Hit and trial methods for bioreactor design are generally performed to achieve high biomass productivity in the bioreactor. In this study, a rational approach has been adopted to choose a suitable impeller for Viola odorata cell suspension culture using computational fluid dynamics (CFD). A two-phase CFD model was employed to characterize the non-Newtonian fluid dynamics of the plant cell suspension in a stirred tank reactor using different impeller designs, a setric, Rushton and marine impeller. The simulations were performed adopting Euler-Euler approach for the two-phase flow and dispersed [Formula: see text] turbulence model. The numerical model was validated with good agreement with experimental determination of volumetric mass transfer coefficient. The impact of impeller design was then investigated on critical process parameters like mixing, oxygen mass transfer and shear. The developed CFD model demonstrated that setric impeller is a suitable choice for V. odorata cell cultivation among the three impellers offering low-shear environment at equivalent velocity magnitudes at reactor bottom with higher cell-lift capabilities which is preferable in high cell-density plant cell cultivations.
Collapse
Affiliation(s)
- Vidya Muthulakshmi Manickavasagam
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India
| | - Kameswararao Anupindi
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India
| | - Nirav Bhatt
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India.
- Department of Data Science and Artificial Intelligence, Wadhwani School of Data Science and Artificial Intelligence, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India.
| | - Smita Srivastava
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India.
| |
Collapse
|
4
|
Xu J, PerezSanchez P, Sadravi S. Unlocking the full potential of plant cell-based production for valuable proteins: Challenges and innovative strategies. Biotechnol Adv 2025; 79:108526. [PMID: 39914685 PMCID: PMC11845290 DOI: 10.1016/j.biotechadv.2025.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Plant cell-based bioproduction systems offer a promising platform for the sustainable production of valuable proteins as they provide distinctive advantages over mammalian cell culture and whole plant cultivation. However, significant technical challenges remain, including low productivity, altered efficacy of plant-derived proteins, along with issues in culture process development, such as cell clumping, genetic instability, and difficulties with cryopreservation. To date, the full production potential of this platform remains largely untapped. This review addresses these critical challenges and proposes innovative strategies to unlock the full potential of the production platform. Rather than simply revisiting past advancements or summarizing current progress, it proposes forward-thinking solutions with a particular emphasis on cellular engineering. Key strategies include designing novel protein partners to enhance recombinant protein accumulation and functionality, employing precise gene integration techniques in genome to enhance transgene transcription, implementing cutting-edge methods for screening and maintaining elite cell lines to mitigate genetic instability, and leveraging genome editing tools for cellular engineering to develop new plant cell lines optimized for bioproduction. A key focus is on cell wall engineering to develop cellulose- or pectin-deficient cell lines, facilitating modifications to the morphology of existing plant cell lines. By exploring these innovative approaches, this review aims to foster innovative thinking and inspire future research in plant cell-based bioproduction.
Collapse
Affiliation(s)
- Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA; College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA.
| | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Shekoofeh Sadravi
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA; Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
5
|
Gharat SA, Tamhane VA, Giri AP, Aharoni A. Navigating the challenges of engineering composite specialized metabolite pathways in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70100. [PMID: 40089911 PMCID: PMC11910955 DOI: 10.1111/tpj.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Plants are a valuable source of diverse specialized metabolites with numerous applications. However, these compounds are often produced in limited quantities, particularly under unfavorable ecological conditions. To achieve sufficient levels of target metabolites, alternative strategies such as pathway engineering in heterologous systems like microbes (e.g., bacteria and fungi) or cell-free systems can be employed. Another approach is plant engineering, which aims to either enhance the native production in the original plant or reconstruct the target pathway in a model plant system. Although increasing metabolite production in the native plant is a promising strategy, these source plants are often exotic and pose significant challenges for genetic manipulation. Effective pathway engineering requires comprehensive prior knowledge of the genes and enzymes involved, as well as the precursor, intermediate, branching, and final metabolites. Thus, a thorough elucidation of the biosynthetic pathway is closely linked to successful metabolic engineering in host or model systems. In this review, we highlight recent advances in strategies for biosynthetic pathway elucidation and metabolic engineering. We focus on efforts to engineer complex, multi-step pathways that require the expression of at least eight genes for transient and three genes for stable transformation. Reports on the engineering of complex pathways in stably transformed plants remain relatively scarce. We discuss the major hurdles in pathway elucidation and strategies for overcoming them, followed by an overview of achievements, challenges, and solutions in pathway reconstitution through metabolic engineering. Recent advances including computer-based predictions offer valuable platforms for the sustainable production of specialized metabolites in plants.
Collapse
Affiliation(s)
- Sachin A. Gharat
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| | - Vaijayanti A. Tamhane
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
- Department of Biotechnology (Merged With Institute of Bioinformatics and Biotechnology)Savitribai Phule Pune UniversityPuneMaharashtra411007India
| | - Ashok P. Giri
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
- Biochemical Sciences DivisionCSIR‐National Chemical LaboratoryPune411008India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| | - Asaph Aharoni
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
6
|
Dalla Costa V, Piovan A, Varfaj I, Marcotullio MC, Brun P, Filippini R. From "Maraschino" to Cell Cultures: A Deep Study on Prunus cerasus L. Cell Culture Juices. Molecules 2025; 30:1089. [PMID: 40076313 PMCID: PMC11901658 DOI: 10.3390/molecules30051089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Prunus cerasus var. Marasca (Rosaceae) is an important Croatian cultivar, known wordwide for the production of Luxardo maraschino liqueur, which occurs in the eastern Po Valley of Italy. Besides liqueur, Marasca is attractive for its beneficial effects on human health and well-being. The undifferentiated in vitro cell cultures of Marasca were investigated as a source of healthy products. The in vitro conditions for obtaining callus and suspension cultures under photoperiod were defined. The cell lines were evaluated for growth rate, total phenol and proanthocyanidin contents, and antioxidant activities via colorimetric assays. The best cell lines were also subcultured in darkness, studying the importance of the light parameter in the possible industrial scaling-up. The juices extracted from the obtained biomasses were analyzed by LC-DAD-MS and six flavanone derivatives, among which naringenin and its glucoside were identified. The quantitative analysis, pursued during the cell growth cycle, revealed that the flavanone content was higher at the end of the growth cycle (28th day) and that the total content of identified flavanone compounds varied from 17.22 to 79.22 μg/mL of juice. The results of the antioxidant and anti-inflammatory activities on Caco-2 cells support the potential applications of this material in human health.
Collapse
Affiliation(s)
- Vanessa Dalla Costa
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padua, Italy; (A.P.); (R.F.)
| | - Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padua, Italy; (A.P.); (R.F.)
| | - Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (I.V.); (M.C.M.)
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (I.V.); (M.C.M.)
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy;
| | - Raffaella Filippini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padua, Italy; (A.P.); (R.F.)
| |
Collapse
|
7
|
Alqarzaee F, Al Bari MA, Razzak SA, Uddin S. Biomass-based hydrogen production towards renewable energy sources: an advance study. EMERGENT MATERIALS 2024. [DOI: 10.1007/s42247-024-00931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/06/2024] [Indexed: 01/03/2025]
|
8
|
Rempfer C, Hoernstein SN, van Gessel N, Graf AW, Spiegelhalder RP, Bertolini A, Bohlender LL, Parsons J, Decker EL, Reski R. Differential prolyl hydroxylation by six Physcomitrella prolyl-4 hydroxylases. Comput Struct Biotechnol J 2024; 23:2580-2594. [PMID: 39021582 PMCID: PMC11252719 DOI: 10.1016/j.csbj.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Hydroxylation of prolines to 4-trans-hydroxyproline (Hyp) is mediated by prolyl-4 hydroxylases (P4Hs). In plants, Hyps occur in Hydroxyproline-rich glycoproteins (HRGPs), and are frequently O-glycosylated. While both modifications are important, e.g. for cell wall stability, they are undesired in plant-made pharmaceuticals. Sequence motifs for prolyl-hydroxylation were proposed but did not include data from mosses, such as Physcomitrella. We identified six moss P4Hs by phylogenetic reconstruction. Our analysis of 73 Hyps in 24 secretory proteins from multiple mass spectrometry datasets revealed that prolines near other prolines, alanine, serine, threonine and valine were preferentially hydroxylated. About 95 % of Hyps were predictable with combined established methods. In our data, AOV was the most frequent pattern. A combination of 443 AlphaFold models and MS data with 3000 prolines found Hyps mainly on protein surfaces in disordered regions. Moss-produced human erythropoietin (EPO) exhibited O-glycosylation with arabinose chains on two Hyps. This modification was significantly reduced in a p4h1 knock-out (KO) Physcomitrella mutant. Quantitative proteomics with different p4h mutants revealed specific changes in protein amounts, and a modified prolyl-hydroxylation pattern, suggesting a differential function of the Physcomitrella P4Hs. Quantitative RT-PCR revealed a differential effect of single p4h KOs on the expression of the other five p4h genes, suggesting a partial compensation of the mutation. AlphaFold-Multimer models for Physcomitrella P4H1 and its target EPO peptide superposed with the crystal structure of Chlamydomonas P4H1 suggested significant amino acids in the active centre of the enzyme and revealed differences between P4H1 and the other Physcomitrella P4Hs.
Collapse
Affiliation(s)
- Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
| | - Sebastian N.W. Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Andreas W. Graf
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Roxane P. Spiegelhalder
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Anne Bertolini
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Lennard L. Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104, Germany
| |
Collapse
|
9
|
Zaini PA, Haddad KR, Feinberg NG, Ophir Y, Nandi S, McDonald KA, Dandekar AM. Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites. BIOTECH 2024; 13:50. [PMID: 39584907 PMCID: PMC11586998 DOI: 10.3390/biotech13040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Biomanufacturing enables novel sources of compounds with constant demand, such as food coloring and preservatives, as well as new compounds with peak demand, such as diagnostics and vaccines. The COVID-19 pandemic has highlighted the need for alternative sources of research materials, thrusting research on diversification of biomanufacturing platforms. Here, we show initial results exploring the walnut somatic embryogenic system expressing the recombinant receptor binding domain (RBD) and ectodomain of the spike protein (Spike) from the SARS-CoV-2 virus. Stably transformed walnut embryo lines were selected and propagated in vitro. Both recombinant proteins were detected at 3-14 µg/g dry weight of tissue culture material. Although higher yields of recombinant protein have been obtained using more conventional biomanufacturing platforms, we also report on the production of the red pigment betanin in somatic embryos, reaching yields of 650 mg/g, even higher than red beet Beta vulgaris. This first iteration shows the potential of biomanufacturing using somatic walnut embryos that can now be further optimized for different applications sourcing specialized proteins and metabolites.
Collapse
Affiliation(s)
- Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.)
| | - Katherine R. Haddad
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.R.H.); (Y.O.); (S.N.); (K.A.M.)
| | - Noah G. Feinberg
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.)
| | - Yakir Ophir
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.R.H.); (Y.O.); (S.N.); (K.A.M.)
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.R.H.); (Y.O.); (S.N.); (K.A.M.)
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.R.H.); (Y.O.); (S.N.); (K.A.M.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.)
| |
Collapse
|
10
|
Kao MR, Karmarkar Saldivar R, Hsieh YSY. Production of therapeutic glycoproteins in glycoengineered plant: old farm for new crops. Curr Opin Biotechnol 2024; 87:103145. [PMID: 38781701 DOI: 10.1016/j.copbio.2024.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Plant-based expression systems have emerged as promising avenues for the production of recombinant N-linked glycoproteins. This review offers insights into the evolution and progress of plant glycoengineering. It delves into the distinctive features of plant-derived N-glycans, the diverse range of plant hosts employed for glycoprotein synthesis, and the advancements in glycoengineering strategies aimed at generating glycoproteins with N-glycan structures akin to those produced in mammalian cell lines. Furthermore, alternative strategies for augmenting glycoengineering efforts and the current spectrum of applications for plant-produced N-glycan recombinant proteins are examined, underscoring their potential significance in biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Mu-Rong Kao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Rebecka Karmarkar Saldivar
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden.
| |
Collapse
|
11
|
Titova M, Popova E, Nosov A. Bioreactor Systems for Plant Cell Cultivation at the Institute of Plant Physiology of the Russian Academy of Sciences: 50 Years of Technology Evolution from Laboratory to Industrial Implications. PLANTS (BASEL, SWITZERLAND) 2024; 13:430. [PMID: 38337964 PMCID: PMC10857215 DOI: 10.3390/plants13030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The cultivation of plant cells in large-scale bioreactor systems has long been considered a promising alternative for the overexploitation of wild plants as a source of bioactive phytochemicals. This idea, however, faced multiple constraints upon realization, resulting in very few examples of technologically feasible and economically effective biotechnological companies. The bioreactor cultivation of plant cells is challenging. Even well-growing and highly biosynthetically potent cell lines require a thorough optimization of cultivation parameters when upscaling the cultivation process from laboratory to industrial volumes. The optimization includes, but is not limited to, the bioreactor's shape and design, cultivation regime (batch, fed-batch, continuous, semi-continuous), aeration, homogenization, anti-foaming measures, etc., while maintaining a high biomass and metabolite production. Based on the literature data and our experience, the cell cultures often demonstrate cell line- or species-specific responses to parameter changes, with the dissolved oxygen concentration (pO2) and shear stress caused by stirring being frequent growth-limiting factors. The mass transfer coefficient also plays a vital role in upscaling the cultivation process from smaller to larger volumes. The Experimental Biotechnological Facility at the K.A. Timiryazev Institute of Plant Physiology has operated since the 1970s and currently hosts a cascade of bioreactors from the laboratory (20 L) to the pilot (75 L) and a semi-industrial volume (630 L) adapted for the cultivation of plant cells. In this review, we discuss the most appealing cases of the cell cultivation process's adaptation to bioreactor conditions featuring the cell cultures of medicinal plants Dioscorea deltoidea Wall. ex Griseb., Taxus wallichiana Zucc., Stephania glabra (Roxb.) Miers, Panax japonicus (T. Nees) C.A.Mey., Polyscias filicifolia (C. Moore ex E. Fourn.) L.H. Bailey, and P. fruticosa L. Harms. The results of cell cultivation in bioreactors of different types and designs using various cultivation regimes are covered and compared with the literature data. We also discuss the role of the critical factors affecting cell behavior in bioreactors with large volumes.
Collapse
Affiliation(s)
- Maria Titova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.P.); (A.N.)
| | - Elena Popova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.P.); (A.N.)
| | - Alexander Nosov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.P.); (A.N.)
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|