1
|
R J, G G, N U, A KC. Evaluating the impact of essential amino acid-rich nutrition intervention on children with autism spectrum disorder: A randomized trial protocol. MethodsX 2025; 14:103300. [PMID: 40248463 PMCID: PMC12005888 DOI: 10.1016/j.mex.2025.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Background Emerging evidence highlights the role of essential amino acids in brain function and behavior modulation, with deficiencies observed in children with autism. Amino acid supplementation appears to be effective in the autism management. This study aims to assess the effect of plant based amino acid intervention on plasma amino acid profile and behavior aspects in children with autism spectrum disorder. Methods •The study involves parallel, randomized controlled trial that will include 68 children (age 3-6 years) with mild to moderate ASD. Children will be randomly assigned (1:1) to intervention group receiving nutritional intervention or a control group continuing standard care.•The intervention will be carried out over 16 weeks, with a dosage based on the child's weight and dietary needs.•Primary outcomes include changes in plasma amino acid concentrations Secondary outcomes include changes in Childhood Autism Rating Scale (CARS) and Autism Treatment Evaluation Checklist (ATEC) scores which would be measured pre- and post-intervention. Results Plasma amino acid levels and behavioral assessments will be compared between the groups to determine the effectiveness of the nutritional intervention in improving symptoms. Conclusion This trial seeks to establish a sustainable, non-pharmacological approach to managing autism symptoms. Findings would contribute to autism dietary management strategies and the role of essential amino acids in neurodevelopmental health.
Collapse
Affiliation(s)
- Jayashree R
- Department of Clinical Nutrition, Sri Ramachandra Faculty of Allied Health sciences, Sri Ramachandra Institute Higher Education and Research, Chennai, India
| | - Gayathri G
- Department of Clinical Nutrition, Sri Ramachandra Faculty of Allied Health sciences, Sri Ramachandra Institute Higher Education and Research, Chennai, India
| | - Udayakumar N
- Department of Paediatrics, Sri Ramachandra Institute Higher Education and Research, Chennai, India
| | - Kalpana C. A
- Department of Food Science and Nutrition, School of Home Science, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
2
|
Teke H, Balci S, Neselioglu S, Teke S, Erel O, Tamer L, Toros F. Oxidative Stress and Dynamic Thiol/Disulfide Homeostasis in Autism: A Focus on Early Childhood. J Mol Neurosci 2025; 75:62. [PMID: 40314839 PMCID: PMC12048410 DOI: 10.1007/s12031-025-02358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with multifactorial etiopathogenesis, where oxidative stress (OS) has been implicated as a key contributing factor. This study aimed to evaluate the plasma dynamic thiol/disulfide homeostasis (DTDH) parameters-a relatively novel OS biomarker-alongside classical OS biomarkers, including total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), glutathione, and glutathione peroxidase (GPx), in preschool children diagnosed with ASD. A total of 49 children with ASD and 31 age- and sex-matched typically developing children between the ages of 2 and 6 years were included. In addition to sociodemographic data collection, the Childhood Autism Rating Scale (CARS) and Clinical Global Impression-Severity Scale (CGI-S) were administered to assess autism severity. Blood samples were analyzed using automated spectrophotometric techniques to determine OS biomarkers. The results demonstrated that DTDH parameters and classical OS markers exhibited parallel changes; however, no statistically significant differences were detected between the ASD and control groups across all OS markers. Furthermore, no significant association was found between OS biomarkers and autism severity. Moreover, we intentionally restricted our sample to a younger age group to enable a focused examination of OS dynamics during early developmental stages. This study underscores the potential impact of age as a critical determinant in OS-related alterations in autism and highlights the need for further age-stratified investigations to elucidate the role of OS in ASD pathophysiology and its potential diagnostic relevance.
Collapse
Affiliation(s)
- Halenur Teke
- Department of Child and Adolescent Psychiatry, Medical Faculty, Mersin University, Ankara, Turkey.
| | - Senay Balci
- Department of Medical Biochemistry, Medical Faculty, Mersin University, Mersin, Turkey
| | - Salim Neselioglu
- Department of Biochemistry, Ankara Bilkent City Hospital, Yıldırım Beyazit University, Ankara, Turkey
| | - Selçuk Teke
- Department of Pediatrics, Medical Faculty, Mersin University, Ankara, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Ankara Bilkent City Hospital, Yıldırım Beyazit University, Ankara, Turkey
| | - Lulufer Tamer
- Department of Medical Biochemistry, Medical Faculty, Mersin University, Mersin, Turkey
| | - Fevziye Toros
- Department of Child and Adolescent Psychiatry, Medical Faculty, Mersin University, Mersin, Turkey
| |
Collapse
|
3
|
Chełchowska M, Gajewska J, Szczepanik E, Mazur J, Cychol A, Kuźniar-Pałka A, Ambroszkiewicz J. Oxidative Stress Indicated by Nuclear Transcription Factor Nrf2 and Glutathione Status in the Blood of Young Children with Autism Spectrum Disorder: Pilot Study. Antioxidants (Basel) 2025; 14:320. [PMID: 40227289 PMCID: PMC11939242 DOI: 10.3390/antiox14030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
This pilot study investigated the relationship between nuclear transcription factor Nrf2 and glutathione homeostasis in children with autism spectrum disorder (ASD), addressing the role of oxidative stress in ASD pathophysiology. Oxidative stress, characterized by an imbalance between reactive oxygen species and antioxidant defenses, has been implicated in ASD and may contribute to neuroinflammation and mitochondrial dysfunction. Nrf2, a key regulator of the antioxidant response, influences glutathione synthesis and recycling, making it critical for cellular redox balance. This study included 23 children with ASD and 21 neurotypical healthy controls, and measured levels of Nrf2, Keap1 (Kelch-like ECH-associated protein 1), reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), and peroxidase (GPx3) in blood samples. Our study reveals altered antioxidant defense in children with autism spectrum disorder, as evidenced by reduced levels of Nrf2, Keap1, GSH, and GR, along with elevated GSSG and a lower GSH/GSSG ratio. These findings indicate an increased oxidative stress burden in this population. Additionally, the observed positive correlation between Nrf2, GSH, and GR levels suggests an important role for Nrf2 in maintaining glutathione homeostasis. Our results underscore the potential involvement of oxidative stress in ASD and emphasize the need for further research into targeted therapeutic approaches to address this imbalance.
Collapse
Affiliation(s)
- Magdalena Chełchowska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (A.C.); (J.A.)
| | - Joanna Gajewska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (A.C.); (J.A.)
| | - Elżbieta Szczepanik
- Clinic of Paediatric Neurology, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (E.S.); (A.K.-P.)
| | - Joanna Mazur
- Department of Humanization in Medicine and Sexology, Collegium Medicum, University of Zielona Góra, 65-729 Zielona Góra, Poland;
| | - Agnieszka Cychol
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (A.C.); (J.A.)
| | - Aleksandra Kuźniar-Pałka
- Clinic of Paediatric Neurology, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (E.S.); (A.K.-P.)
| | - Jadwiga Ambroszkiewicz
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (A.C.); (J.A.)
| |
Collapse
|
4
|
Kuźniar-Pałka A. The Role of Oxidative Stress in Autism Spectrum Disorder Pathophysiology, Diagnosis and Treatment. Biomedicines 2025; 13:388. [PMID: 40002801 PMCID: PMC11852718 DOI: 10.3390/biomedicines13020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is a significant health problem with no known single cause. There is a vast number of evidence to suggest that oxidative stress plays an important role in this disorder. The author of this article reviewed the current literature in order to summarise the knowledge on the subject. In this paper, the role of oxidative stress is investigated in the context of its influence on pathogenesis, the use of oxidative stress biomarkers as diagnostic tools and the use of antioxidants in ASD treatment. Given the heterogeneity of ASD aetiology and inadequate treatment approaches, the search for common metabolic traits is essential to find more efficient diagnostic tools and treatment methods. There are increasing data to suggest that oxidative stress is involved in the pathogenesis of ASD, both directly and through its interplay with inflammation and mitochondrial dysfunction. Oxidative stress biomarkers appear to have good potential to be used as diagnostic tools to aid early diagnosis of ASD. The results are most promising for glutathione and its derivatives and also for isoprostanses. Probably, complex dedicated multi-parametric metabolic panels may be used in the future. Antioxidants show good potential in ASD-supportive treatment. In all described fields, the data support the importance of oxidative stress but also a need for further research, especially in the context of sample size and, preferably, with a multicentre approach.
Collapse
Affiliation(s)
- Aleksandra Kuźniar-Pałka
- Clinic of Pediatric and Adolescent Neurology, Institute of Mother and Child, 01-211 Warsaw, Poland
| |
Collapse
|
5
|
Doherty M, Foley KR, Schloss J. Complementary and Alternative Medicine for Autism - A Systematic Review. J Autism Dev Disord 2024:10.1007/s10803-024-06449-5. [PMID: 38972931 DOI: 10.1007/s10803-024-06449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Complementary and Alternative Medicine (CAM) is a therapeutic option currently used by autistic people with continued interest and uptake. There remains limited evidence regarding the efficacy of CAM use in autism. The aim of this systematic review is to comprehensively review published clinical trials to explore the efficacy of CAM in autism. A systematic literature review of available research published from June 2013 to March 2023 was conducted. Our literature search identified 1826 eligible citations, and duplications removed (n = 694) with 102 articles eligible for title/abstract screening. After full text review, 39 studies were included. The results of this systematic review identified that for autistic people, vitamin and mineral supplements may only be of benefit if there is a deficiency. The results also found that the main interventions used were dietary interventions and nutraceuticals, including targeted supplements, vitamins and minerals, omega 3 s and prebiotics, probiotics and digestive enzymes. The evidence does not support some of the most frequently utilised dietary interventions, such as a Gluten Free Casein Free (GFCF) diet, and the use of targeted nutraceutical supplements may be of benefit, but more conclusive research is still required to direct safe and effective treatment.
Collapse
Affiliation(s)
- Monica Doherty
- Faculty of Health, National Centre for Naturopathic Medicine, Southern Cross University, 1 Military Road, Lismore, NSW, 2480, Australia.
| | - Kitty-Rose Foley
- Faculty of Health, Southern Cross University, Gold Coast, Qld, 4225, Australia
| | - Janet Schloss
- Faculty of Health, National Centre for Naturopathic Medicine, Southern Cross University, 1 Military Road, Lismore, NSW, 2480, Australia
| |
Collapse
|
6
|
Jones Severino Vasconcelos QD, Silva Frederico MJ, Sousa Alves RD, Jesus Pinheiro Gomes Bandeira TD, Amaral de Moraes ME, Aragão GF. Effects of whey protein supplementation on gut microbiota of Wistar rats with valproic acid-induced autism symptoms. Future Microbiol 2024; 19:213-226. [PMID: 37934065 DOI: 10.2217/fmb-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023] Open
Abstract
Aim: To evaluate the effects of whey protein (WP) supplementation (1.24 mg/g, 24 days) in rats with autism spectrum disorder (ASD) induced by valproic acid (400 mg/kg, single dose). Materials & methods: Wistar rats (14 days old) were divided into four groups: control, ASD, ASD plus WP and WP. Results: WP increased bacterial diversity and the number of colonies. Bacteria from the Firmicutes phylum were predominantly found in the supplemented groups (p < 0.05). WP also improved the animals' memory in the Y-maze test and decreased the time that male animals spent in the 'solitary chamber' (p < 0.05). Conclusion: WP supplementation positively influenced gut microbiota, along with memory.
Collapse
Affiliation(s)
| | | | - Renata de Sousa Alves
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, 60430-160, Fortaleza, Brazil
| | | | | | - Gislei Frota Aragão
- Health Science Center, State University of Ceara, 60430-275, Fortaleza, Brazil
| |
Collapse
|
7
|
Modafferi S, Lupo G, Tomasello M, Rampulla F, Ontario M, Scuto M, Salinaro AT, Arcidiacono A, Anfuso CD, Legmouz M, Azzaoui FZ, Palmeri A, Spano' S, Biamonte F, Cammilleri G, Fritsch T, Sidenkova A, Calabrese E, Wenzel U, Calabrese V. Antioxidants, Hormetic Nutrition, and Autism. Curr Neuropharmacol 2024; 22:1156-1168. [PMID: 37592816 PMCID: PMC10964097 DOI: 10.2174/1570159x21666230817085811] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 08/19/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a heterogeneous group of complex neurodevelopmental disorders characterized by atypical behaviors with two core pathological manifestations: deficits in social interaction/communication and repetitive behaviors, which are associated with disturbed redox homeostasis. Modulation of cellular resilience mechanisms induced by low levels of stressors represents a novel approach for the development of therapeutic strategies, and in this context, neuroprotective effects of a wide range of polyphenol compounds have been demonstrated in several in vitro and in vivo studies and thoroughly reviewed. Mushrooms have been used in traditional medicine for many years and have been associated with a long list of therapeutic properties, including antitumor, immunomodulatory, antioxidant, antiviral, antibacterial, and hepatoprotective effects. Our recent studies have strikingly indicated the presence of polyphenols in nutritional mushrooms and demonstrated their protective effects in different models of neurodegenerative disorders in humans and rats. Although their therapeutic effects are exerted through multiple mechanisms, increasing attention is focusing on their capacity to induce endogenous defense systems by modulating cellular signaling processes such as nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways. Here we discuss the protective role of hormesis and its modulation by hormetic nutrients in ASD.
Collapse
Affiliation(s)
- Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Marialaura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Antonio Arcidiacono
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Maria Legmouz
- Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Fatima-Zahra Azzaoui
- Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Sestina Spano'
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Francesca Biamonte
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Gaetano Cammilleri
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi, 3 90129, Palermo, Italy
| | | | - Alena Sidenkova
- Department of Psychiatry, Ural State Medical University, Ekaterinburg, Russia
| | - Edward Calabrese
- Department of Environmental Health Sciences; Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| |
Collapse
|
8
|
Portnova GV, Proskurnina EV, Skorokhodov IV, Sokolova SV, Semirechenko AN, Varlamov AA. Salivary Oxytocin and Antioxidative Response to Robotic Touch in Adults with Autism Spectrum Disorder. Int J Mol Sci 2023; 24:12322. [PMID: 37569698 PMCID: PMC10419114 DOI: 10.3390/ijms241512322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023] Open
Abstract
Individuals with ASD are known to have a tendency to have tactile sensory processing issues that could be associated with their impairment as regards social communication. The alterations in tactile processing in autistic subjects are usually accompanied by hypersensitivity and other unpleasant emotions induced by tactile contact. In our study, we investigated the impact of the velocity and the force of a tactile stroke received impersonally by a custom-built robotic device. A total of 21 adults with ASD and 22 adults from a control group participated in our study. The participants' responses were assessed according to subjective scales, EEG changes, and the dynamics of saliva antioxidants and oxytocin. It was found that the oxytocin level was significantly lower in subjects with ASD but increased after tactile stimulation. However, contrary to expectations, the increase in the oxytocin level in the target group negatively correlated with the subjective pleasantness of tactile stimulation and was probably associated with a stress-induced effect. The basic levels of antioxidants did not differ between the TD and ASD groups; however, these had significantly increased in individuals with ASD by the end of the study. The EEG findings, which revealed enhanced antioxidant levels, contributed to the relief of the cognitive control during the study.
Collapse
Affiliation(s)
- Galina V. Portnova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 5A Butlerova Str., 117485 Moscow, Russia
- Tactile Communication Research Laboratory, Pushkin State Russian Language Institute, 6 Volgina Str., 117485 Moscow, Russia
| | - Elena V. Proskurnina
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye Str., 115522 Moscow, Russia;
| | - Ivan V. Skorokhodov
- Tactile Communication Research Laboratory, Pushkin State Russian Language Institute, 6 Volgina Str., 117485 Moscow, Russia
- Autonomous Non-Profit Organization “Our Sunny World”, 98 Nizhegorodskaya Str., 109052 Moscow, Russia
| | - Svetlana V. Sokolova
- Medical Scientific and Educational Center, Lomonosov Moscow State University, Lomonosovsky Prosp. 27-10, 119991 Moscow, Russia
| | - Alexey N. Semirechenko
- Tactile Communication Research Laboratory, Pushkin State Russian Language Institute, 6 Volgina Str., 117485 Moscow, Russia
| | - Anton A. Varlamov
- Autonomous Non-Profit Organization “Our Sunny World”, 98 Nizhegorodskaya Str., 109052 Moscow, Russia
| |
Collapse
|
9
|
Alsubaiei SRM, Alfawaz HA, Almubarak AY, Alabdali NA, Ben Bacha A, El-Ansary A. Independent and Combined Effects of Probiotics and Prebiotics as Supplements or Food-Rich Diets on a Propionic-Acid-Induced Rodent Model of Autism Spectrum Disorder. Metabolites 2022; 13:metabo13010050. [PMID: 36676975 PMCID: PMC9863040 DOI: 10.3390/metabo13010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The link between nutrition and autism spectrum disorder (ASD) as a neurodevelopmental condition, which is clinically presented as significant delays or deviations in interaction and communication, has provided a fresh point of view and signals that nutrition may play a role in the etiology of ASD, as well as playing an effective role in treatment by improving symptoms. In this study, 36 male albino rat pups were used. They were randomly divided into five groups. The control group was fed only a standard diet and water for the 30 days of the experiment. The second group, which served as a propionic acid (PPA)-induced rodent model of ASD, received orally administered PPA (250 mg/kg body weight (BW)) for 3 days, followed by feeding with a standard diet until the end of the experiment. The three other groups were given PPA (250 mg/kg body weight (BW)) for 3 days and then fed a standard diet and orally administered yogurt (3 mL/kg BW/day), artichokes (400 mL/kg BW/day), and a combination of Lacticaseibacillus rhamnosus GG at 0.2 mL daily (1 × 109 CFU; as the probiotic of yogurt) and luteolin (50 mg/kg BW/day; as the major antioxidant and anti-inflammatory ingredient of artichokes) for 27 days. Biochemical markers, including gamma-aminobutyric acid (GABA), reduced glutathione (GSH), glutathione peroxidase (GPx1), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10), were measured in brain homogenates in all groups. The data showed that while PPA demonstrated oxidative stress and neuroinflammation in the treated rats, yogurt, Lacticaseibacillus rhamnosus GG as a probiotic, and luteolin as a prebiotic ingredient in artichokes were effective in alleviating the biochemical features of ASD. In conclusion, nutritional supplementation seems to be a promising intervention strategy for ASD. A combined dietary approach using pro- and prebiotics resulted in significant amelioration of most of the measured variables, suggesting that multiple interventions might be more relevant for the improvement of biochemical autistic features, as well as psychological traits. Prospective controlled trials are needed before recommendations can be made regarding the ideal ASD diet.
Collapse
Affiliation(s)
- Sana Razhan M. Alsubaiei
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Hanan A. Alfawaz
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Correspondence: (H.A.A.); (A.E.-A.); Tel.: +00966-508462529 (A.E.-A.); Fax: +00966-4683579 (A.E.-A.)
| | - Abdullah Yaseen Almubarak
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Nouf Ahmed Alabdali
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Correspondence: (H.A.A.); (A.E.-A.); Tel.: +00966-508462529 (A.E.-A.); Fax: +00966-4683579 (A.E.-A.)
| |
Collapse
|
10
|
Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol 2022; 13:979719. [PMID: 36274722 PMCID: PMC9582773 DOI: 10.3389/fmicb.2022.979719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 19 (COVID-19) has numerous risk factors leading to severe disease with high mortality rate. Oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels seems to be a common pathway associated with the high COVID-19 mortality. GSH is a unique small but powerful molecule paramount for life. It sustains adequate redox cell signaling since a physiologic level of oxidative stress is fundamental for controlling life processes via redox signaling, but excessive oxidation causes cell and tissue damage. The water-soluble GSH tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) is present in the cytoplasm of all cells. GSH is at 1-10 mM concentrations in all mammalian tissues (highest concentration in liver) as the most abundant non-protein thiol that protects against excessive oxidative stress. Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 to regulate the expression of genes that control antioxidant, inflammatory and immune system responses, facilitating GSH activity. GSH exists in the thiol-reduced and disulfide-oxidized (GSSG) forms. Reduced GSH is the prevailing form accounting for >98% of total GSH. The concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell and its alteration is related to various human pathological processes including COVID-19. Oxidative stress plays a prominent role in SARS-CoV-2 infection following recognition of the viral S-protein by angiotensin converting enzyme-2 receptor and pattern recognition receptors like toll-like receptors 2 and 4, and activation of transcription factors like nuclear factor kappa B, that subsequently activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) expression succeeded by ROS production. GSH depletion may have a fundamental role in COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of COVID-19 disease and increasing GSH levels may prevent and subdue the disease. The life value of GSH makes for a paramount research field in biology and medicine and may be key against SARS-CoV-2 infection and COVID-19 disease.
Collapse
|
11
|
Siafis S, Çıray O, Wu H, Schneider-Thoma J, Bighelli I, Krause M, Rodolico A, Ceraso A, Deste G, Huhn M, Fraguas D, San José Cáceres A, Mavridis D, Charman T, Murphy DG, Parellada M, Arango C, Leucht S. Pharmacological and dietary-supplement treatments for autism spectrum disorder: a systematic review and network meta-analysis. Mol Autism 2022; 13:10. [PMID: 35246237 PMCID: PMC8896153 DOI: 10.1186/s13229-022-00488-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/02/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND There is still no approved medication for the core symptoms of autism spectrum disorder (ASD). This network meta-analysis investigated pharmacological and dietary-supplement treatments for ASD. METHODS We searched for randomized-controlled-trials (RCTs) with a minimum duration of seven days in ClinicalTrials.gov, EMBASE, MEDLINE, PsycINFO, WHO-ICTRP (from inception up to July 8, 2018), CENTRAL and PubMed (up to November 3, 2021). The co-primary outcomes were core symptoms (social-communication difficulties-SCD, repetitive behaviors-RB, overall core symptoms-OCS) measured by validated scales and standardized-mean-differences (SMDs). Associated symptoms, e.g., irritability/aggression and attention-deficit/hyperactivity disorder (ADHD) symptoms, dropouts and important side-effects, were investigated as secondary outcomes. Studies in children/adolescents and adults were analyzed separately in random-effects pairwise and network meta-analyses. RESULTS We analyzed data for 41 drugs and 17 dietary-supplements, from 125 RCTs (n = 7450 participants) in children/adolescents and 18 RCTs (n = 1104) in adults. The following medications could improve at least one core symptom domain in comparison with placebo: aripiprazole (k = 6 studies in analysis, SCD: SMD = 0.27 95% CI [0.09, 0.44], RB: 0.48 [0.26, 0.70]), atomoxetine (k = 3, RB:0.49 [0.18, 0.80]), bumetanide (k = 4, RB: 0.35 [0.09, 0.62], OCS: 0.61 [0.31, 0.91]), and risperidone (k = 4, SCM: 0.31 [0.06, 0.55], RB: 0.60 [0.29, 0.90]; k = 3, OCS: 1.18 [0.75, 1.61]) in children/adolescents; fluoxetine (k = 1, RB: 1.20 [0.45, 1.96]), fluvoxamine (k = 1, RB: 1.04 [0.27, 1.81]), oxytocin (k = 6, RB:0.41 [0.16, 0.66]) and risperidone (k = 1, RB: 0.97 [0.21,1.74]) in adults. There were some indications of improvement by carnosine, haloperidol, folinic acid, guanfacine, omega-3-fatty-acids, probiotics, sulforaphane, tideglusib and valproate, yet imprecise and not robust. Confidence in these estimates was very low or low, except moderate for oxytocin. Medications differed substantially in improving associated symptoms, and in their side-effect profiles. LIMITATIONS Most of the studies were inadequately powered (sample sizes of 20-80 participants), with short duration (8-13 weeks), and about a third focused on associated symptoms. Networks were mainly star-shaped, and there were indications of reporting bias. There was no optimal rating scale measuring change in core symptoms. CONCLUSIONS Some medications could improve core symptoms, although this could be likely secondary to the improvement of associated symptoms. Evidence on their efficacy and safety is preliminary; therefore, routine prescription of medications for the core symptoms cannot be recommended. Trial registration PROSPERO-ID CRD42019125317.
Collapse
Affiliation(s)
- Spyridon Siafis
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany.
| | - Oğulcan Çıray
- Department of Child and Adolescent Psychiatry, Mardin State Hospital, Artuklu, Mardin, Turkey
| | - Hui Wu
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Johannes Schneider-Thoma
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Irene Bighelli
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Marc Krause
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alessandro Rodolico
- Department of Experimental and Clinical Medicine, Psychiatric Clinic University Hospital 'Gaspare Rodolico', University of Catania, Catania, Italy
| | - Anna Ceraso
- Department of Psychiatry, Spedali Civili Hospital, Brescia, Italy
| | - Giacomo Deste
- Department of Psychiatry, Spedali Civili Hospital, Brescia, Italy
| | - Maximilian Huhn
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Social Foundation Bamberg, Teaching Hospital of the University of Erlangen, Bamberg, Germany
| | - David Fraguas
- Institute of Psychiatry and Mental Health, Hospital Clínico San Carlos, IdISSC CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Antonia San José Cáceres
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - Dimitris Mavridis
- Department of Primary Education, University of Ioannina, Ioannina, Greece
- Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Declan G Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mara Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| |
Collapse
|