1
|
Seth G, Singh S, Sharma G, Suvedi D, Kumar D, Nagraik R, Sharma A. Harnessing the power of stem cell-derived exosomes: a rejuvenating therapeutic for skin and regenerative medicine. 3 Biotech 2025; 15:184. [PMID: 40417660 PMCID: PMC12102458 DOI: 10.1007/s13205-025-04345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/04/2025] [Indexed: 05/27/2025] Open
Abstract
Exosomes are small extracellular vesicles produced by most cell types and contain proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, and DNA) that can be released by donor cells to influence the function of recipient cells. Skin photoaging is the premature aging of skin structures caused by prolonged exposure to ultraviolet (UV), as demonstrated by depigmentation, roughness, rhytides, elastosis, and precancerous alterations. Exosomes are associated with aging processes such as oxidative damage, inflammation, and senescence. Exosomes' anti-aging properties have been linked to various in vitro and preclinical investigations. There are still several unanswered questions about the use of MSC exosomes for skin rejuvenation, despite encouraging results. Uncertainty surrounds the precise processes by which exosomes stimulate the creation of collagen, skin tissue via a variety of mechanisms, including reduced matrix metalloproteinase (MMP) expression, increased collagen and elastin production, and modulation of intracellular signaling pathways and intercellular communication. These findings suggest the therapeutic potential of exosomes in skin aging. This review provides information on the molecular mechanisms and consequences of exosome anti-aging.
Collapse
Affiliation(s)
- Gracy Seth
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Siddharth Singh
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Geetansh Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Divyesh Suvedi
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002 India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002 India
| |
Collapse
|
2
|
Matar DY, Kang CJ, Panayi AC, Orgill DP, Kao HK. An Adipose-Derived Stem Cell Exosome Sheet Promotes Oral Mucosal Wound Healing. Adv Wound Care (New Rochelle) 2025. [PMID: 40333367 DOI: 10.1089/wound.2024.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Objective: Oral mucosal wound healing is not completely understood, and effective therapies are lacking. This study explores the potential of an adipose-derived stem cell (ADSC) exosome sheet in enhancing intraoral wound healing in rats. Approach: An ADSC exosome sheet derived from Tisseel and rat adipose tissue (ADSC-exo) was applied to 16 rats with 6 mm full-thickness mucosal hard palate wounds. Eight wounds received ADSC-exo with a superficial occlusive dressing (ADSC-exo group), and eight received only an occlusive dressing (control group). Wound closure was monitored on days 0, 2, 4, 7, and 10, with dressings changed every 2 days. On day 10, rats were sacrificed, and wounds (n = 8 per group) were collected for immunohistochemical analysis. In vitro, four ADSC-exosome concentrations (0, 4.5 × 1011, 9 × 1011, and 18 × 1011 exosomes/mL; n = 4 per group) were applied to rat oral mucosal fibroblasts to assess migration speed. Results: ADSC-exo accelerated wound closure (18% ± 5% vs. 35% ± 9% of initial wound area; p = 0.002) and fibroblast migration (for 18 × 1011 exosomes/mL at 24 h: 29.7% ± 3% vs. 62.2% ± 4% of initial gap area; p < 0.0001) compared with the control. ADSC-exo promoted reepithelialization (87% ± 14% vs. 21% ± 6%; p < 0.0001), proliferation (34 ± 12 vs. 18 ± 7 Ki67+/high-power field [HPF]; p = 0.004), and neovascularization (28 ± 9 vs. 11 ± 5 CD31+/HPF; p = 0.0002) while reducing inflammation (4 ± 1 vs. 13 ± 9 CD68+/HPF; p < 0.0001) and increasing M2 macrophages (9.2 ± 2 vs. 4.2 ± 3 CD163+/HPF; p = 0.0008). ADSC-exo increased Transforming Growth Factor beta 1 (TGF-β1) (1.3 ± 0.3 vs. 0.9 ± 0.2; p = 0.006), Smad3 (0.9 ± 0.02 vs. 0.7 ± 0.1; p = 0.006), and collagen I (1.5 ± 0.9 vs. 0.5 ± 0.3; p = 0.005) while downregulating caspase-3 (0.7 ± 0.3 vs. 1.1 ± 0.2; p = 0.003) and Bax (0.9 ± 0.2 vs. 1.4 ± 0.1; p < 0.0001). Innovation: This is the first study to demonstrate the pro-wound healing effects of an ADSC exosome sheet on intraoral wounds. This paves the way for future research and clinical applications of ADSC exosomes in mucosal wound healing. Conclusions: Application of an ADSC-exo to rat mucosal wounds significantly improved wound healing. Mechanistically, these effects may be linked to upregulated activity of the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Dany Y Matar
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital & Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chung-Jan Kang
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital & Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Adriana C Panayi
- Department of Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dennis P Orgill
- Division of Plastic Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital & Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
3
|
Wang X, Huang S, Li X, Cheng H. The Transfer of USP25 by Exosomes of Adipose Tissue-Derived Mesenchymal Stem Cells Ameliorates Diabetic Nephropathy Through Stabilizing SMAD7 Expression. Chem Biol Drug Des 2025; 105:e70118. [PMID: 40317686 DOI: 10.1111/cbdd.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) are identified to be potential therapeutic candidates for diabetic nephropathy (DN) through secreting exosomes (Exos). Ubiquitin-specific protease 25 (USP25) has been reported to be involved in DN-induced renal injury. Herein, this study aimed to investigate whether ADSCs affected DN progression by Exo transfer of USP25. High glucose (HG)-induced mouse podocytes were used to mimic DN-induced injury for in vitro viability, inflammation, and apoptosis analyses. The db/db mice of DN were established for renal injury and function analysis in vivo. The deubiquitination effect of USP25 was analyzed by cellular ubiquitination and immunoprecipitation assays. ADSCs reversed HG-induced apoptosis and inflammation in podocytes, and these effects were achieved by Exo-mediated transfer of USP25. Mechanistically, USP25 interacted with SMAD7 protein and elevated its expression in podocytes via inducing SMAD7 deubiquitination. USP25 transferred via ADSC-Exos abolished HG-induced apoptosis and inflammation in podocytes by elevating SMAD7 protein levels. In vivo assay also confirmed that ADSC-Exo attenuated Type 2 Diabetes Mellitus-induced kidney injury and podocyte apoptosis and inflammation by releasing USP25. ADSCs attenuated T2DM-induced kidney injury, podocyte apoptosis, and inflammation via elevating SMAD7 stabilization through exosome transfer of USP25.
Collapse
Affiliation(s)
- Xinjie Wang
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Siyue Huang
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiaoqin Li
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huan Cheng
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
4
|
Yadav A, Sharma A, Moulick M, Ghatak S. Nanomanaging Chronic Wounds with Targeted Exosome Therapeutics. Pharmaceutics 2025; 17:366. [PMID: 40143030 PMCID: PMC11945274 DOI: 10.3390/pharmaceutics17030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic wounds pose a significant healthcare challenge, impacting millions of patients worldwide and burdening healthcare systems substantially. These wounds often occur as comorbidities and are prone to infections. Such infections hinder the healing process, complicating clinical management and proving recalcitrant to therapy. The environment within the wound itself poses challenges such as lack of oxygen, restricted blood flow, oxidative stress, ongoing inflammation, and bacterial presence. Traditional systemic treatment for such chronic peripheral wounds may not be effective due to inadequate blood supply, resulting in unintended side effects. Furthermore, topical applications are often impervious to persistent biofilm infections. A growing clinical concern is the lack of effective therapeutic modalities for treating chronic wounds. Additionally, the chemically harsh wound microenvironment can reduce the effectiveness of treatments, highlighting the need for drug delivery systems that can deliver therapies precisely where needed with optimal dosages. Compared to cell-based therapies, exosome-based therapies offer distinct advantages as a cell-free approach for chronic wound treatment. Exosomes are of endosomal origin and enable cell-to-cell communications, and they possess benefits, including biocompatibility and decreased immunogenicity, making them ideal vehicles for efficient targeting and minimizing off-target damage. However, exosomes are rapidly cleared from the body, making it difficult to maintain optimal therapeutic concentrations at wound sites. The hydrogel-based approach and development of biocompatible scaffolds for exosome-based therapies can be beneficial for sustained release and prolong the presence of these therapeutic exosomes at chronic wound sites. Engineered exosomes have been shown to possess stability and effectiveness in promoting wound healing compared to their unmodified counterparts. Significant progress has been made in this field, but further research is essential to unlock their clinical potential. This review seeks to explore the benefits and opportunities of exosome-based therapies in chronic wounds, ensuring sustained efficacy and precise delivery despite the obstacles posed by the wound environment.
Collapse
Affiliation(s)
| | | | | | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.Y.); (A.S.); (M.M.)
| |
Collapse
|
5
|
Zhang Y, Yan W, Wu L, Yu Z, Quan Y, Xie X. Different exosomes are loaded in hydrogels for the application in the field of tissue repair. Front Bioeng Biotechnol 2025; 13:1545636. [PMID: 40099037 PMCID: PMC11911322 DOI: 10.3389/fbioe.2025.1545636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Exosomes are double-membrane vesicular nanoparticles in the category of extracellular vesicles, ranging in size from 30 to 150 nm, and are released from cells through a specific multi-step exocytosis process. Exosomes have emerged as promising tools for tissue repair due to their ability to transfer bioactive molecules that promote cell proliferation, differentiation, and tissue regeneration. However, the therapeutic application of exosomes is hindered by their rapid clearance from the body and limited retention at the injury site. To overcome these challenges, hydrogels, known for their high biocompatibility and porous structure, have been explored as carriers for exosomes. Hydrogels can provide a controlled release mechanism, prolonging the retention time of exosomes at targeted tissues, thus enhancing their therapeutic efficacy. This review focuses on the combination of different exosomes with hydrogels in the context of tissue repair. We first introduce the sources and functions of exosomes, particularly those from mesenchymal stem cells, and their roles in regenerative medicine. We then examine various types of hydrogels, highlighting their ability to load and release exosomes. Several strategies for encapsulating exosomes in hydrogels are discussed, including the impact of hydrogel composition and structure on exosome delivery efficiency. Finally, we review the applications of exosomes-loaded hydrogels in the repair of different tissues, such as skin, bone, cartilage, and nerve, and explore the challenges and future directions in this field. The combination of exosomes with hydrogels offers significant promise for advancing tissue repair strategies and regenerative therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Xie
- College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
6
|
Liang W, Wu H, Tan L, Meng X, Dang W, Han M, Zhen Y, Chen H, Bi H, An Y. Porcine pericardial decellularized matrix bilayer patch containing adipose stem cell-derived exosomes for the treatment of diabetic wounds. Mater Today Bio 2025; 30:101398. [PMID: 39790485 PMCID: PMC11713506 DOI: 10.1016/j.mtbio.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Chronic hard-to-heal wounds pose a significant threat to patients' health and quality of life, and their clinical management remains a challenge. Adipose-derived stem cell exosomes (ADSC-exos) have shown promising results in promoting diabetic wound healing. However, effectively enhancing the retention of exosomes in wounds for treatment remains a key issue that needs to be addressed. There is a pressing need to develop new materials or methods to improve the bioavailability of exosomes. Porcine pericardium, an extracellular matrix-rich tissue, is easily obtainable and widely available. Decellularized porcine pericardium removes cellular components while retaining an extracellular matrix that supports cellular growth, making it an ideal raw material for preparing wound dressings. In this study, we developed porcine pericardial decellularized matrix bilayer patches loaded with ADSC-exos, which were transplanted into diabetic mouse skin wounds. Histological and immunohistochemical analyses revealed that these bilayer matrix patches accelerate wound healing by promoting granulation tissue formation, re-epithelialization, stimulating vascularization, and enhancing collagen production. In terms of the underlying biological mechanism, we found that decellularized extracellular matrix bilayer patches loaded with ADSC-exos enhanced the proliferation and migration of human dermal fibroblasts (HDFs) and HaCaT cells in vitro, and promoted tube formation in human umbilical vein endothelial cells (HUVECs). This research demonstrated that the porcine pericardial decellularized matrix is well-suited for exosome delivery and that these bilayer patches hold great potential in promoting diabetic wound healing, providing evidence to support the future clinical application of ADSC-exos.
Collapse
Affiliation(s)
- Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lindan Tan
- Department of Biomedical Engineering, College of Future Technology, Peking University, 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Xiaoyu Meng
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Wanwen Dang
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Meng Han
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
7
|
Pandey K, Srivastava P, Pandey SK, Johari S, Bhatnagar P, Sonane M, Mishra A. Stem Cells as a Novel Source for Regenerative Medicinal Applications in Alzheimer's Disease: An Update. Curr Mol Med 2025; 25:146-166. [PMID: 39318206 DOI: 10.2174/0115665240334785240913071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by loss of the neurons, excessive accumulation of misfolded Aβ and Tau proteins, and degeneration of neural synapses, primarily occurring in the neocortex and the hippocampus regions of the brain. AD Progression is marked by cognitive deterioration, memory decline, disorientation, and loss of problem-solving skills, as well as language. Due to limited comprehension of the factors contributing to AD and its severity due to neuronal loss, even today, the medications approved by the U.S. Food and Drug Administration (FDA) are not precisely efficient and curative. Stem cells possess great potential in aiding AD due to their self-renewal, proliferation, and differentiation properties. Stem cell therapy can aid by replacing the lost neurons, enhancing neurogenesis, and providing an enriched environment to the pre-existing neural cells. Stem cell therapy has provided us with promising results in regard to the animal AD models, and even pre-clinical studies have shown rather positive results. Cell replacement therapies are potential curative means to treat AD, and there are a number of undergoing human clinical trials to make Stem Cell therapy accessible for AD patients. In this review, we aim to discuss the AD pathophysiology and varied stem cell types and their application.
Collapse
Affiliation(s)
- Kratika Pandey
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Srivastava
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Surabhi Johari
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Bhatnagar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, Delhi, 110029, India
| | - Madhavi Sonane
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| |
Collapse
|
8
|
Karimi N, Dinçsoy AB. The Role of Mesenchymal Stem Cell-Derived Exosomes in Skin Regeneration, Tissue Repair, and the Regulation of Hair Follicle Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:1-17. [PMID: 39841379 DOI: 10.1007/5584_2024_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes. Exosomes, emerging as a promising cell-free therapy in tissue engineering, hold substantial potential due to their ability to influence various biological functions. This review explores the mechanisms by which MSC-derived exosomes facilitate skin regeneration and repair, and hair growth, their therapeutic applications, and the future research directions in this emerging field.
Collapse
Affiliation(s)
- Nazli Karimi
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Adnan Berk Dinçsoy
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
9
|
Moro LG, Guarnier LP, Azevedo MF, Fracasso JAR, Lucio MA, de Castro MV, Dias ML, Lívero FADR, Ribeiro-Paes JT. A Brief History of Cell Culture: From Harrison to Organs-on-a-Chip. Cells 2024; 13:2068. [PMID: 39768159 PMCID: PMC11674496 DOI: 10.3390/cells13242068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 01/11/2025] Open
Abstract
This comprehensive overview of the historical milestones in cell culture underscores key breakthroughs that have shaped the field over time. It begins with Wilhelm Roux's seminal experiments in the 1880s, followed by the pioneering efforts of Ross Granville Harrison, who initiated groundbreaking experiments that fundamentally shaped the landscape of cell culture in the early 20th century. Carrel's influential contributions, notably the immortalization of chicken heart cells, have marked a significant advancement in cell culture techniques. Subsequently, Johannes Holtfreter, Aron Moscona, and Joseph Leighton introduced methodological innovations in three-dimensional (3D) cell culture, initiated by Alexis Carrel, laying the groundwork for future consolidation and expansion of the use of 3D cell culture in different areas of biomedical sciences. The advent of induced pluripotent stem cells by Takahashi and Yamanaka in 2006 was revolutionary, enabling the reprogramming of differentiated cells into a pluripotent state. Since then, recent innovations have included spheroids, organoids, and organ-on-a-chip technologies, aiming to mimic the structure and function of tissues and organs in vitro, pushing the boundaries of biological modeling and disease understanding. In this review, we overview the history of cell culture shedding light on the main discoveries, pitfalls and hurdles that were overcome during the transition from 2D to 3D cell culture techniques. Finally, we discussed the future directions for cell culture research that may accelerate the development of more effective and personalized treatments.
Collapse
Affiliation(s)
- Lincoln Gozzi Moro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Lucas Pires Guarnier
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
| | | | | | - Marco Aurélio Lucio
- Graduate Program in Environment and Regional Development, University of Western São Paulo, Presidente Prudente 19050-920, Brazil;
| | - Mateus Vidigal de Castro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Marlon Lemos Dias
- Precision Medicine Research Center, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro—UFRJ, Rio de Janeiro 21941-630, Brazil;
| | | | - João Tadeu Ribeiro-Paes
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
- Laboratory of Genetics and Cell Therapy (GenTe Cel), Department of Biotechnology, São Paulo State University—UNESP, Assis 19806-900, Brazil
| |
Collapse
|
10
|
Xiang H, Ding P, Qian J, Lu E, Sun Y, Lee S, Zhao Z, Sun Z, Zhao Z. Exosomes derived from minor salivary gland mesenchymal stem cells: a promising novel exosome exhibiting pro-angiogenic and wound healing effects similar to those of adipose-derived stem cell exosomes. Stem Cell Res Ther 2024; 15:462. [PMID: 39627883 PMCID: PMC11616330 DOI: 10.1186/s13287-024-04069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUNDS Minor salivary gland mesenchymal stem cells (MSGMSCs) can be easily extracted and have a broad range of sources. Applying exosomes to wounds is a highly promising method for promoting wound healing. Exosomes derived from different stem cell types have been proven to enhance wound healing, with adipose-derived stem cell (ADSC)-derived exosomes being the most extensively researched. Considering that MSGMSCs have advantages such as easier extraction compared to ADSCs, MSGMSCs should also be a very promising type of stem cell in exosome therapy. However, whether MSGMSC-derived exosomes (MSGMSC-exos) can promote wound healing and how they compare to ADSC-derived exosomes (ADSC-exos) in the wound healing process remain unclear. MATERIALS The effects of MSGMSC-exos and ADSC-exos on angiogenesis in wound healing were investigated in vitro using CCK-8, scratch assays, and tube formation assays. Subsequently, the promotion of wound healing by MSGMSC-exos and ADSC-exos was evaluated in vivo using a full-thickness wound defect model in mice. Immunohistochemistry was used to verify the effects of MSGMSC-exos and ADSC-exos on promoting collagen deposition, angiogenesis, and cell proliferation in the wound. Immunofluorescence staining was performed to investigate the role of MSGMSC-exos and ADSC-exos in modulating the inflammatory response in the wound. Furthermore, proteomic sequencing was conducted to investigate the functional similarities and differences between the proteomes of MSGMSC-exos and ADSC-exos, with key protein contents verified by ELISA. RESULTS MSGMSC-exos exhibited similar effects as ADSC-exos in promoting the migration, proliferation, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro, with a comparable dose-dependent effect. In vivo experiments confirmed that MSGMSC-exos have similar wound healing-promoting functions as ADSC-exos. MSGMSC-exos promoted the neovascularization and maturation of blood vessels in vivo at a level comparable to ADSC-exos. Despite MSGMSC-exos showing less collagen deposition than ADSC-exos, they exhibited stronger anti-scar formation and anti-inflammatory effects. Proteomic analysis revealed that the proteins promoting wound healing in both MSGMSC-exos and ADSC-exos were relatively conserved, with ITGB1 identified as a critical protein for angiogenesis. Further differential analysis revealed that the functions specifically enriched in MSGMSC-exos and ADSC-exos reflected the functions of their source tissue. CONCLUSIONS Our study confirms that MSGMSC-exos exhibit highly similar wound healing and angiogenesis-promoting functions compared to ADSC-exos, and the proteins involved in promoting wound healing in both are relatively conserved. Moreover, MSGMSC-exos show stronger anti-scar formation and anti-inflammatory effects than ADSC-exos. This suggests that MSGMSCs are a promising stem cell source with broad applications in wound healing treatment.
Collapse
Affiliation(s)
- Haibo Xiang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Jiaying Qian
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Enhang Lu
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yimou Sun
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Seyeon Lee
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Zhenkun Zhao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhixuan Sun
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
11
|
He Y, Li R, Yu Y, Xu Z, Gao J, Wang C, Huang C, Qi Z. HucMSC extracellular vesicles increasing SATB 1 to activate the Wnt/β-catenin pathway in 6-OHDA-induced Parkinson's disease model. IUBMB Life 2024; 76:1154-1174. [PMID: 39082886 DOI: 10.1002/iub.2893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 11/22/2024]
Abstract
Parkinson's disease (PD) is a degenerative disorder of the nervous system characterized by the loss of dopaminergic neurons and damage of neurons in the substantia nigra (SN) and striatum, resulting in impaired motor functions. This study aims to investigate how extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HucMSC) regulate Special AT-rich sequence-binding protein-1 (SATB 1) and influence Wnt/β-catenin pathway and autophagy in PD model. The PD model was induced by damaging SH-SY5Y cells and mice using 6-OHDA. According to the study, administering EVs every other day for 14 days improved the motor behavior of 6-OHDA-induced PD mice and reduced neuronal damage, including dopaminergic neurons. Treatment with EVs for 12 hours increased the viability of 6-OHDA-induced SH-SY5Y cells. The upregulation of SATB 1 expression with EV treatment resulted in the activation of the Wnt/β-catenin pathway in PD model and led to overexpression of β-catenin. Meanwhile, the expression of LC3 II was decreased, indicating alterations in autophagy. In conclusion, EVs could mitigate neuronal damage in the 6-OHDA-induced PD model by upregulating SATB 1 and activating Wnt/β-catenin pathway while also regulating autophagy. Further studies on the potential therapeutic applications of EVs for PD could offer new insights and strategies.
Collapse
Affiliation(s)
- Ying He
- Medical College, Guangxi University, Nanning, China
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Ruicheng Li
- Medical College, Guangxi University, Nanning, China
| | - Yuxi Yu
- Medical College, Guangxi University, Nanning, China
| | - Zhiran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaxin Gao
- Medical College, Guangxi University, Nanning, China
| | - Cancan Wang
- Medical College, Guangxi University, Nanning, China
| | - Chusheng Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Esmaeili A, Noorkhajavi G, Soleimani M, Farsinezhad H, Bagheri-Mohammadi S, Keshel SH. Application of exosomes for the regeneration of skin wounds: Principles, recent applications and limitations. Tissue Cell 2024; 91:102611. [PMID: 39550901 DOI: 10.1016/j.tice.2024.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
In the medical field, wound healing poses significant challenges due to its complexity and time-consuming nature. Cell-free wound repair, notably the utilization of exosomes (EXOs), has made significant progress in recent years. Urine, saliva, umbilical cord, blood, mesenchymal stem cells and breast milk cells can be used to extract and purify EXOs, which are Nano-sized lipid bilayer vesicles. Besides their relatively little toxicity, non-specific immunogenicity and excellent biocompatibility, EXOs also contain bioactive molecules such as proteins, lipids, microRNAs (miRNAs), and messenger RNAs (mRNAs). Their bioactive compounds have anti-inflammatory properties and can speed up wound healing. Various medicinal agents can also be contained within the EXOs. This review briefly provides new information on the different aspects of EXOs and evaluate the application of EXOs as a promising therapy in the regeneration of skin wounds in recent pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Noorkhajavi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hana Farsinezhad
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Sankaranarayanan J, Lee SC, Kim HK, Kang JY, Kuppa SS, Seon JK. Exosomes Reshape the Osteoarthritic Defect: Emerging Potential in Regenerative Medicine-A Review. Int J Stem Cells 2024; 17:381-396. [PMID: 38246659 PMCID: PMC11612219 DOI: 10.15283/ijsc23108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Osteoarthritis (OA) is a joint disorder caused by wear and tear of the cartilage that cushions the joints. It is a progressive condition that can cause significant pain and disability. Currently, there is no cure for OA, though there are treatments available to manage symptoms and slow the progression of the disease. A chondral defect is a common and devastating lesion that is challenging to treat due to its avascular and aneural nature. However, there are conventional therapies available, ranging from microfracture to cell-based therapy. Anyhow, its efficiency in cartilage defects is limited due to unclear cell viability. Exosomes have emerged as a potent therapeutic tool for chondral defects because they are a complicated complex containing cargo of proteins, DNA, and RNA as well as the ability to target cells due to their phospholipidic composition and the altering exosomal contents that boost regeneration potential. Exosomes are used in a variety of applications, including tissue healing and anti-inflammatory therapy. As in recent years, biomaterials-based bio fabrication has gained popularity among the many printable polymer-based hydrogels, tissue-specific decellularized extracellular matrix might boost the effects rather than an extracellular matrix imitating environment, a short note has been discussed. Exosomes are believed to be the greatest alternative option for current cell-based therapy, and future progress in exosome-based therapy could have a greater influence in the field of orthopaedics. The review focuses extensively on the insights of exosome use and scientific breakthroughs centered OA.
Collapse
Affiliation(s)
- Jaishree Sankaranarayanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Seok Cheol Lee
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hyung Keun Kim
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Ju Yeon Kang
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
14
|
Ahmad N, Anker A, Klein S, Dean J, Knoedler L, Remy K, Pagani A, Kempa S, Terhaag A, Prantl L. Autologous Fat Grafting-A Panacea for Scar Tissue Therapy? Cells 2024; 13:1384. [PMID: 39195271 PMCID: PMC11352477 DOI: 10.3390/cells13161384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Scars may represent more than a cosmetic concern for patients; they may impose functional limitations and are frequently associated with the sensation of itching or pain, thus impacting both psychological and physical well-being. From an aesthetic perspective, scars display variances in color, thickness, texture, contour, and their homogeneity, while the functional aspect encompasses considerations of functionality, pliability, and sensory perception. Scars located in critical anatomic areas have the potential to induce profound impairments, including contracture-related mobility restrictions, thereby significantly impacting daily functioning and the quality of life. Conventional approaches to scar management may suffice to a certain extent, yet there are cases where tailored interventions are warranted. Autologous fat grafting emerges as a promising therapeutic avenue in such instances. Fundamental mechanisms underlying scar formation include chronic inflammation, fibrogenesis and dysregulated wound healing, among other contributing factors. These mechanisms can potentially be alleviated through the application of adipose-derived stem cells, which represent the principal cellular component utilized in the process of lipofilling. Adipose-derived stem cells possess the capacity to secrete proangiogenic factors such as fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor, as well as neurotrophic factors, such as brain-derived neurotrophic factors. Moreover, they exhibit multipotency, remodel the extracellular matrix, act in a paracrine manner, and exert immunomodulatory effects through cytokine secretion. These molecular processes contribute to neoangiogenesis, the alleviation of chronic inflammation, and the promotion of a conducive milieu for wound healing. Beyond the obvious benefit in restoring volume, the adipose-derived stem cells and their regenerative capacities facilitate a reduction in pain, pruritus, and fibrosis. This review elucidates the regenerative potential of autologous fat grafting and its beneficial and promising effects on both functional and aesthetic outcomes when applied to scar tissue.
Collapse
Affiliation(s)
- Nura Ahmad
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Alexandra Anker
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Silvan Klein
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Katya Remy
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Sally Kempa
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Amraj Terhaag
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| |
Collapse
|
15
|
Yang X, Zhang S, Chen K, Shen D, Yang Y, Shen A, Liang J, Xu M, Yang Y, Zhao Y, Li H, Tong X. Hypoxic Preconditioned ADSC Exosomes Enhance Vaginal Wound Healing via Accelerated Keratinocyte Proliferation and Migration Through AKT/HIF‑1α Axis Activation. Cell Mol Bioeng 2024; 17:295-303. [PMID: 39372552 PMCID: PMC11450125 DOI: 10.1007/s12195-024-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Accelerating wound healing is a main consideration in surgery. The three stages of wound healing are inflammatory response, tissue repair and cell proliferation. Much research has focused on epidermal cell proliferation and migration because this is an essential step in wound healing. Methods and Results The current study discovered that exosomes from Adipose-derived stem cell (ADSC) following hypoxic preconditioning (HExo) have a greater promotional effect on vaginal wound healing. Protein kinase B (AKT)/hypoxia-inducible factor 1-alpha (HIF-1α) play an important role in HExo-mediated HaCaT cell migration and proliferation. The promotional effect of HExo on rat wound healing was reversed by both, HIF‑1α and AKT inhibition. Phosphorylation of AKT (p-AKT) or HIF‑1α suppression reversed the protective effect of HExo on vaginal wound healing. Conclusion Taken together, our study found that hypoxic preconditioning of adipose MSC exosomes enhances vaginal wound healing via accelerated keratinocyte proliferation and migration through AKT/HIF‑1α axis activation.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Shasha Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Kewei Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Aiqun Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Junhua Liang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Mengjiao Xu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yanhong Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| |
Collapse
|
16
|
Yu F, Zhao X, Wang Q, Fang PH, Liu L, Du X, Li W, He D, Zhang T, Bai Y, Liu L, Li S, Yuan J. Engineered Mesenchymal Stromal Cell Exosomes-Loaded Microneedles Improve Corneal Healing after Chemical Injury. ACS NANO 2024. [PMID: 39047084 DOI: 10.1021/acsnano.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Corneal alkali burns represent a prevalent ophthalmic emergency with the potential to induce blindness. The main contributing mechanisms include excessive inflammation and delayed wound healing. Existing clinical therapies have limitations, promoting the exploration of alternative methods that offer improved efficacy and reduced side effects. Adipose-derived stem cell-exosome (ADSC-Exo) has the potential to sustain immune homeostasis and facilitate tissue regeneration. Nevertheless, natural ADSC-Exo lacks disease specificity and exhibits limited bioavailability on the ocular surface. In this study, we conjugated antitumor necrosis factor-α antibodies (aT) to the surface of ADSC-Exo using matrix metalloproteinase-cleavable peptide chains to create engineered aT-Exo with synergistic effects. In both in vivo and in vitro assessments, aT-Exo demonstrated superior efficacy in mitigating corneal injuries compared to aT alone, unmodified exosomes, or aT simply mixed with exosomes. The cleavable conjugation of aT-Exo notably enhanced wound healing and alleviated inflammation more effectively. Simultaneously, we developed poly(vinyl alcohol) microneedles (MNs) for precise and sustained exosome delivery. The in vivo results showcased the superior therapeutic efficiency of MNs compared with conventional topical administration and subconjunctival injection. Therefore, the bioactive nanodrugs-loaded MNs treatment presents a promising strategy for addressing ocular surface diseases.
Collapse
Affiliation(s)
- Fei Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Qian Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Po-Han Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Liu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Tingting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| |
Collapse
|
17
|
Lin Z, Lin D, Lin D. The Mechanisms of Adipose Stem Cell-Derived Exosomes Promote Wound Healing and Regeneration. Aesthetic Plast Surg 2024; 48:2730-2737. [PMID: 38438760 DOI: 10.1007/s00266-024-03871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
Chronic wound healing is a class of diseases influenced by multiple complex factors, causing severe psychological and physiological impact on patients. It is an intractable clinical challenge and its possible mechanisms are not yet clear. It has been proven that adipose stem cell-derived exosomes (ADSC-Exos) can promote wound healing and inhibit scar formation by regulating inflammation, promoting cell proliferation, migration, and angiogenesis, regulating matrix remodeling, which provides a new approach for wound healing through biological treatment. This review focuses on the mechanism, treatment, and administration methods of ADSC-Exos in wound healing, providing a comprehensive understanding the mechanisms of ADSC-Exos on wound healing. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Zhengjie Lin
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Danyi Lin
- Department of Pathology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China.
| | - Dane Lin
- Neonatal Intensive Care Unit, Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, China.
| |
Collapse
|
18
|
Wang K, Yang Z, Zhang B, Gong S, Wu Y. Adipose-Derived Stem Cell Exosomes Facilitate Diabetic Wound Healing: Mechanisms and Potential Applications. Int J Nanomedicine 2024; 19:6015-6033. [PMID: 38911504 PMCID: PMC11192296 DOI: 10.2147/ijn.s466034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024] Open
Abstract
Wound healing in diabetic patients is frequently hampered. Adipose-derived stem cell exosomes (ADSC-eoxs), serving as a crucial mode of intercellular communication, exhibit promising therapeutic roles in facilitating wound healing. This review aims to comprehensively outline the molecular mechanisms through which ADSC-eoxs enhance diabetic wound healing. We emphasize the biologically active molecules released by these exosomes and their involvement in signaling pathways associated with inflammation modulation, cellular proliferation, vascular neogenesis, and other pertinent processes. Additionally, the clinical application prospects of the reported ADSC-eoxs are also deliberated. A thorough understanding of these molecular mechanisms and potential applications is anticipated to furnish a theoretical groundwork for combating diabetic wound healing.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zihui Yang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
19
|
Liao HJ, Yang YP, Liu YH, Tseng HC, Huo TI, Chiou SH, Chang CH. Harnessing the potential of mesenchymal stem cells-derived exosomes in degenerative diseases. Regen Ther 2024; 26:599-610. [PMID: 39253597 PMCID: PMC11382214 DOI: 10.1016/j.reth.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have gained attention as a promising therapeutic approach in both preclinical and clinical osteoarthritis (OA) settings. Various joint cell types, such as chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and release extracellular vesicles (EVs), which subsequently influence the biological activities of recipient cells. Recently, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown the potential to modulate various physiological and pathological processes through the modulation of cellular differentiation, immune responses, and tissue repair. This review explores the roles and therapeutic potential of MSC-EVs in OA and rheumatoid arthritis, cardiovascular disease, age-related macular degeneration, Alzheimer's disease, and other degenerative diseases. Notably, we provide a comprehensive summary of exosome biogenesis, microRNA composition, mechanisms of intercellular transfer, and their evolving role in the highlight of exosome-based treatments in both preclinical and clinical avenues.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Huan-Chin Tseng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Teh-Ia Huo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
| |
Collapse
|
20
|
Papadopoulos KS, Piperi C, Korkolopoulou P. Clinical Applications of Adipose-Derived Stem Cell (ADSC) Exosomes in Tissue Regeneration. Int J Mol Sci 2024; 25:5916. [PMID: 38892103 PMCID: PMC11172884 DOI: 10.3390/ijms25115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are mesenchymal stem cells with a great potential for self-renewal and differentiation. Exosomes derived from ADSCs (ADSC-exos) can imitate their functions, carrying cargoes of bioactive molecules that may affect specific cellular targets and signaling processes. Recent evidence has shown that ADSC-exos can mediate tissue regeneration through the regulation of the inflammatory response, enhancement of cell proliferation, and induction of angiogenesis. At the same time, they may promote wound healing as well as the remodeling of the extracellular matrix. In combination with scaffolds, they present the future of cell-free therapies and promising adjuncts to reconstructive surgery with diverse tissue-specific functions and minimal adverse effects. In this review, we address the main characteristics and functional properties of ADSC-exos in tissue regeneration and explore their most recent clinical application in wound healing, musculoskeletal regeneration, dermatology, and plastic surgery as well as in tissue engineering.
Collapse
Affiliation(s)
- Konstantinos S. Papadopoulos
- Department of Plastic and Reconstructive Surgery, 401 General Military Hospital of Athens, 11525 Athens, Greece;
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
21
|
Mohammadi M, Mansouri K, Mohammadi P, Pournazari M, Najafi H. Exosomes in renal cell carcinoma: challenges and opportunities. Mol Biol Rep 2024; 51:443. [PMID: 38520545 DOI: 10.1007/s11033-024-09384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer that accounts for approximately 2-3% of adult malignancies. Among the primary treatment methods for this type of cancer are surgery and targeted treatment. Still, due to less than optimal effectiveness, there are problems such as advanced distant metastasis, delayed diagnosis, and drug resistance that continue to plague patients. In recent years, therapeutic advances have increased life expectancy and effective treatment in renal cell carcinoma patients. One of these methods is the use of stem cells. Although the therapeutic effects of stem cells, especially mesenchymal stem cells, are still impressive, today, extracellular vesicles (EVs) as carrying molecules and various mediators in intercellular communications, having a central role in tumorigenesis, metastasis, immune evasion, and drug response, and on the other hand, due to its low immunogenicity and strong regulatory properties of the immune system, has received much attention from researchers and doctors. Despite the increasing interest in exosomes as the most versatile type of EVs, the heterogeneity of their efficacy presents challenges and, on the other hand, exciting opportunities for diagnostic and clinical interventions.In the upcoming article, we will review the various aspects of exosomes' effects in the prevention, treatment, and progress of renal cell carcinoma and also ways to optimize them to strengthen their positive sides.
Collapse
Affiliation(s)
- Mahan Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
22
|
Yang C, Zhang H, Zeng C, Tian C, Liu W, Chen Y, Jia M, Wang R, Wang K, Li Y. Exosomes from adipose-derived stem cells restore fibroblast function and accelerate diabetic wound healing. Heliyon 2024; 10:e22802. [PMID: 38163237 PMCID: PMC10755272 DOI: 10.1016/j.heliyon.2023.e22802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Diabetes is common yet challenging chronic disease, that affects a wide range of people around the world. Complex cellular environments around diabetic wounds tend to damage the function of effector cells, including vascular endothelial cells (VECs), fibroblasts and epithelial cells. This study aims to analyze the differences between diabetic wounds and normal skin as well as whether adipose-derived stem cell (ADSC) exosome could promote healing of diabetic wound. Methods Human diabetic wounds and normal skin were collected and stained with HE, Masson, CD31 and 8-hydroxy-2 deoxyguanosine immunohistochemical staining. RNA-seq data were collected for further bioinformatics analysis. ADSC exosomes were isolated and identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting. The effect of ADSC exosomes on diabetic wound healing was assessed on full thickness wounds in mice. To further verify the regulative impact of ADSCs exosomes in high glucose treated fibroblasts, we isolated fibroblasts from normal skin tissue and measured the cell viability, apoptosis rate, proliferation and migration of fibroblasts. In addition, collagen formation and fibrosis-related molecules were also detected. To further disclose the mechanism of ADSC exosomes on the function of high glucose treated fibroblasts, we detected the expression of apoptosis related molecules including BCL2, Bax, and cleaved caspase-3. Results Histological observation indicated that perilesional skin tissues from diabetic patients showed structural disorder, less collagen disposition and increased injury compared with normal skin. Bioinformatics analysis showed that the levels of inflammatory and collagen synthesis related molecules, as well as oxidative stress and apoptosis related molecules, were significantly changed. Furthermore, we found that ADSC exosomes could not only speed up diabetic wound healing, but could also improve healing quality. ADSC exosomes restored high glucose induced damage to cell viability, migration and proliferation activity, as well as fibrosis-related molecules such as SMA, collagen 1 and collagen 3. In addition, we verified that ADSC exosomes downregulated high glucose induced increased apoptosis rate in fibroblast and the protein expression of Bax as well as cleaved caspases 3. Conclusions This study indicated that ADSC exosomes alleviated high glucose induced damage to fibroblasts and accelerate diabetic wound healing by inhibiting Bax/caspase 3.
Collapse
Affiliation(s)
- Chen Yang
- The First Affiliated Hospital of Xi’an Medical University, Fenghao West Road #48, Xi’an, Shaanxi, 710077, China
| | - Hao Zhang
- Western Theater General Hospital of the Chinese People’s Liberation Army, Chengdu, Sichuan, 610083, China
| | - Chen Zeng
- Western Theater General Hospital of the Chinese People’s Liberation Army, Chengdu, Sichuan, 610083, China
| | - Chenyang Tian
- Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Wenjun Liu
- Western Theater General Hospital of the Chinese People’s Liberation Army, Chengdu, Sichuan, 610083, China
| | - Yuxi Chen
- Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Meiqi Jia
- Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Ruizhi Wang
- Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Kejia Wang
- Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Yu Li
- Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710032, China
| |
Collapse
|
23
|
De Francesco F, Zingaretti N, Parodi PC, Riccio M. The Evolution of Current Concept of the Reconstructive Ladder in Plastic Surgery: The Emerging Role of Translational Medicine. Cells 2023; 12:2567. [PMID: 37947645 PMCID: PMC10649097 DOI: 10.3390/cells12212567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Plastic surgeons have used the reconstructive ladder for many decades as a standard directory for complex trauma reconstruction with the goal of repairing body structures and restoring functionality. This consists of different surgical maneuvers, such as secondary intention and direct tissue closure, as well as more complex methods such as local tissue transfer and free flap. The reconstructive ladder represents widely known options achievable for tissue reconstruction and wound closure that puts at the bottom rung the simplest methods of reconstruction and strengthens the complexity by moving upward. Regenerative medicine and surgery constitute a quickly spreading area of translational research that can be employed by minimally invasive surgical strategies, with the aim of regenerating cells and tissues in vivo in order to reestablish normal function through the intrinsic potential of cells, in combination with biomaterials and appropriate biochemical stimuli. These translational procedures have the aim of creating an appropriate microenvironment capable of supporting the physiological cellular function to generate the desired cells or tissues and to generate parenchymal, stromal, and vascular components on demand, and above all to produce intelligent materials capable of determining the fate of cells. Smart technologies have been grown that give extra "rungs" on the classic reconstructive ladder to integrate a more holistic, patient-based approach with improved outcomes. This commentary presents the evolution of the traditional concept of the reconstructive ladder in the field of plastic surgery into a new course with the aim of achieving excellent results for soft tissue reconstruction by applying innovative technologies and biologically active molecules for a wide range of surgical diseases.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti di Ancona), Via Conca 71, Torrette di Ancona, 60123 Ancona, Italy;
| | - Nicola Zingaretti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (P.C.P.)
| | - Pier Camillo Parodi
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (P.C.P.)
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti di Ancona), Via Conca 71, Torrette di Ancona, 60123 Ancona, Italy;
| |
Collapse
|
24
|
Caruntu C, Ilie MA, Neagu M. Looking into the Skin in Health and Disease: From Microscopy Imaging Techniques to Molecular Analysis. Int J Mol Sci 2023; 24:13737. [PMID: 37762038 PMCID: PMC10531494 DOI: 10.3390/ijms241813737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The skin is a complex organ that includes a wide variety of tissue types with different embryological origins [...].
Collapse
Affiliation(s)
- Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | | | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| |
Collapse
|
25
|
Theodorakopoulou E, McCarthy AD, Almpanis Z, Aguilera SB. Birt-Hogg-Dubé Syndrome: A Rare Genodermatosis Presenting as Skin Papillomas. Aesthet Surg J Open Forum 2023; 5:ojad064. [PMID: 37520842 PMCID: PMC10373902 DOI: 10.1093/asjof/ojad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
The authors present a rare case of Birt-Hogg-Dubé (BHD) syndrome that presented primarily as an aesthetic case. Previous providers failed to accurately diagnose BHD, despite the patient's history of pneumothoraces. This female patient complained of numerous recurrent, small skin-colored growths on the face and neck and patchy hypopigmentation from the multiple treatments she had to undergo for her "bumpy skin." She also suffered 4 spontaneous pneumothoraces. Following histopathologic and genetic testing, the patient was diagnosed with BHD. Computed tomography and ultrasound scans revealed multiple cysts in both lungs and an angiomyolipoma in both kidneys. This patient had undergone a variety of treatments to aesthetically remove and heal her skin bumps from several healthcare providers, all of whom had misdiagnosed her condition. Level of Evidence 5
Collapse
Affiliation(s)
| | - Alec D McCarthy
- Corresponding Author: Dr Alec D. McCarthy, 6501 Six Forks Rd, Raleigh, NC 27615-6515, USA. E-mail:
| | | | | |
Collapse
|
26
|
Ren H, Liu M, Jihu Y, Zeng H, Yao C, Yan H. Hypoxia activates the PI3K/AKT/HIF-1α pathway to promote the anti-inflammatory effect of adipose mesenchymal stem cells. Acta Histochem 2023; 125:152042. [PMID: 37137202 DOI: 10.1016/j.acthis.2023.152042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
This study aimed to investigate the effect of hypoxia on the anti-inflammatory effect of adipose-derived mesenchymal stem cells (AMSCs) in vitro and its possible mechanism. AMSCs were cultured in vitro in a hypoxic environment with 3% O2, and a normoxic (21% O2) environment was used as the control. The cells were identified by in vitro adipogenic and osteogenic differentiation and cell surface antigen detection, and the cell viability were detected. The effect of hypoxic AMSCs on macrophage inflammation was analyzed by co-culture. The results showed that under hypoxia, AMSCs had better viability, significantly downregulated the expression of inflammatory factors, alleviated macrophage inflammation, and activated the PI3K/AKT/HIF-1α pathway.
Collapse
Affiliation(s)
- Hongjing Ren
- Southwest Medical University, NO.1 Section 1, Xianglin Road, Luzhou City, Sichuan Province 646000, China
| | - Mengchang Liu
- Southwest Medical University, NO.1 Section 1, Xianglin Road, Luzhou City, Sichuan Province 646000, China
| | - Yueda Jihu
- Southwest Medical University, NO.1 Section 1, Xianglin Road, Luzhou City, Sichuan Province 646000, China
| | - Huizhen Zeng
- Southwest Medical University, NO.1 Section 1, Xianglin Road, Luzhou City, Sichuan Province 646000, China
| | - Chong Yao
- Southwest Medical University, NO.1 Section 1, Xianglin Road, Luzhou City, Sichuan Province 646000, China
| | - Hong Yan
- Department of Plastic and Burn Surgery, Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, NO.25 Taiping Street, Jiangyang District, Luzhou 646000 Sichuan Province, China.
| |
Collapse
|
27
|
Jayathilaka EHTT, Edirisinghe SL, Oh C, Nikapitiya C, De Zoysa M. Exosomes from bacteria (Streptococcus parauberis) challenged olive flounder (Paralichthys olivaceus): Isolation, molecular characterization, wound healing, and regeneration activities. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108777. [PMID: 37105423 DOI: 10.1016/j.fsi.2023.108777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Exosomes are a group of extracellular vesicles carrying membrane proteins, lipids, RNAs, and, cytosolic proteins, which play key role in intercellular communication and homeostasis. This study describes the isolation, physicochemical, morphological and molecular characterization, toxicity, wound healing, and regeneration properties of plasma derived exosomes from naive (phosphate-buffered saline [PBS]-injected; PBS-Exo) and Streptococcus parauberis-challenged (Sp-Exo) olive flounder (Paralichthys olivaceus). The average diameters of PBS-Exo and Sp-Exo were 120.5 ± 6.1 and 113.1 ± 9.3 nm, respectively, and they presented unique cup shape morphologies. Both exosomes exhibited classical tetraspanin surface markers (CD81, CD9, and CD63) and were enriched with acetylcholinesterase. High-throughput miRNA profiling revealed differentially expressed miRNAs (log2 fold change ≥1; P < 0.05), including 14 known and 22 novel miRNAs, in Sp-Exo. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the target genes of the miRNAs contribute towards various physiological and immunological functions, including wound healing and fin regeneration. Sp-Exo exhibited a rapid wound healing (cell migration) capacity in human fibroblast cells, and its mRNA and protein expression patterns corroborated its activity. Higher larval fin regeneration was more prevalent in Sp-Exo than in PBS-Exo, which further confirmed its functional significance. Our study provides the first basic physiochemical, morphometric, molecular (miRNA profiling), and wound healing evidences of Sp-Exo in olive flounder and highlights important miRNA cargoes in exosomes that may be potential therapeutic candidates in wound healing.
Collapse
Affiliation(s)
- E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - S L Edirisinghe
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chulhong Oh
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Gujwa-eup, Jeju Special Self-Governing Province 63349, Republic of Korea; Department of Ocean Science, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
28
|
Obesity and Wound Healing: Focus on Mesenchymal Stem Cells. Life (Basel) 2023; 13:life13030717. [PMID: 36983872 PMCID: PMC10059997 DOI: 10.3390/life13030717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Chronic wounds represent nowadays a major challenge for both clinicians and researchers in the regenerative setting. Obesity represents one of the major comorbidities in patients affected by chronic ulcers and therefore diverse studies aimed at assessing possible links between these two morbid conditions are currently ongoing. In particular, adipose tissue has recently been described as having metabolic and endocrine functions rather than serving as a mere fat storage deposit. In this setting, adipose-derived stem cells, a peculiar subset of mesenchymal stromal/stem cells (MSCs) located in adipose tissue, have been demonstrated to possess regenerative and immunological functions with a key role in regulating both adipocyte function and skin regeneration. The aim of the present review is to give an overview of the most recent findings on wound healing, with a special focus on adipose tissue biology and obesity.
Collapse
|
29
|
Xing N, Huo R, Wang HT, Yang JC, Chen J, Peng L, Liu XW. [Research advances of adipose stem cell matrix gel in promoting wound healing]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:81-84. [PMID: 36740431 DOI: 10.3760/cma.j.cn501120-20211204-00404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, with the problem of aging population in China being prominant, the number of patients with chronic wounds such as diabetic foot, pressure ulcer, and vascular ulcer is increasing. Those diseases seriously affect the life quality of patients and increase the economy and care burden of the patients' family, which have been one of the most urgent clinical problems. Many researches have confirmed that adipose stem cells can effectively promote wound healing, while exogenous protease is needed, and there are ethical and many other problems, which limit the clinical application of adipose stem cells. Adipose stem cell matrix gel is a gel-like mixture of biologically active extracellular matrix and stromal vascular fragment obtained from adipose tissue by the principle of fluid whirlpool and flocculation precipitation. It contains rich adipose stem cells, hematopoietic stem cells, endothelial progenitor cells, and macrophages, etc. The preparation method of adipose stem cell matrix gel is simple and the preparation time is short, which is convenient for clinical application. Many studies at home and abroad showed that adipose stem cell matrix gel can effectively promote wound healing by regulating inflammatory reaction, promoting microvascular reconstruction and collagen synthesis. Therefore, this paper summarized the preparation of adipose stem cell matrix gel, the mechanism and problems of the matrix gel in promoting wound repair, in order to provide new methods and ideas for the treatment of chronic refractory wounds in clinic.
Collapse
Affiliation(s)
- N Xing
- Department of Burn and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai 264200, China
| | - R Huo
- Department of Plastic and Cosmetic Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - H T Wang
- Department of Burn and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai 264200, China
| | - J C Yang
- Department of Burn and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai 264200, China
| | - J Chen
- Department of Burn and Skin Repair Surgery, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - L Peng
- Department of Burn and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai 264200, China
| | - X W Liu
- Department of Burn and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai 264200, China
| |
Collapse
|