1
|
Zeb MT, Dumont E, Khan MT, Shehzadi A, Ahmad I. Multi-Epitopic Peptide Vaccine Against Newcastle Disease Virus: Molecular Dynamics Simulation and Experimental Validation. Vaccines (Basel) 2024; 12:1250. [PMID: 39591153 PMCID: PMC11598688 DOI: 10.3390/vaccines12111250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Newcastle disease virus (NDV) is a highly contagious and economically devastating pathogen affecting poultry worldwide, leading to significant losses in the poultry industry. Despite existing vaccines, outbreaks continue to occur, highlighting the need for more effective vaccination strategies. Developing a multi-epitopic peptide vaccine offers a promising approach to enhance protection against NDV. OBJECTIVES Here, we aimed to design and evaluate a multi-epitopic vaccine against NDV using molecular dynamics (MD) simulation. METHODOLOGY We retrieved NDV sequences for the fusion (F) protein and hemagglutinin-neuraminidase (HN) protein. Subsequently, B-cell and T-cell epitopes were predicted. The top potential epitopes were utilized to design the vaccine construct, which was subsequently docked against chicken TLR4 and MHC1 receptors to assess the immunological response. The resulting docked complex underwent a 1 microsecond (1000 ns) MD simulation. For experimental evaluation, the vaccine's efficacy was assessed in mice and chickens using a controlled study design, where animals were randomly divided into groups receiving either a local ND vaccine or the peptide vaccine or a control treatment. RESULTS The 40 amino acid peptide vaccine demonstrated strong binding affinity and stability within the TLR4 and MHC1 receptor-peptide complexes. The root mean square deviation of peptide vaccine and TLR4 receptor showed rapid stabilization after an initial repositioning. The root mean square fluctuation revealed relatively low fluctuations (below 3 Å) for the TLR4 receptor, while the peptide exhibited higher fluctuations. The overall binding energy of the peptide vaccine with TLR4 and MHC1 receptors amounted to -15.7 kcal·mol-1 and -36.8 kcal·mol-1, respectively. For experimental evaluations in mice and chicken, the peptide vaccine was synthesized using services of GeneScript Biotech® (Singapore) PTE Limited. Experimental evaluations showed a significant immune response in both mice and chickens, with the vaccine eliciting robust antibody production, as evidenced by increasing HI titers over time. Statistical analysis was performed using an independent t-test with Type-II error to compare the groups, calculating the p-values to determine the significance of the immune response between different groups. CONCLUSIONS Multi-epitopic peptide vaccine has demonstrated a good immunological response in natural hosts.
Collapse
Affiliation(s)
- Muhammad Tariq Zeb
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Phase-V, Hayatabad Peshawar, Peshawar 25100, Pakistan;
- Genomic Laboratory, Veterinary Research Institute, Bacha Khan Chowk, Charsadda Road, Peshawar 25100, Pakistan
| | - Elise Dumont
- Institut de Chimie de Nice, Université Côte d’Azur, CNRS, UMR 7272, 06108 Nice, France;
- Institut Universitaire de France, 5 Rue Descartes, 75005 Paris, France
| | - Muhammad Tahir Khan
- Institute of Molecular Biology & Biotechnology (IMBB), The University of Lahore, KM Defence Road, Lahore 54000, Pakistan;
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Clinical Laboratory, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou 510180, China
- Qihe Laboratory, Qishui Guang East, Qibin District, Hebi 458030, China
| | - Aroosa Shehzadi
- Institute of Molecular Biology & Biotechnology (IMBB), The University of Lahore, KM Defence Road, Lahore 54000, Pakistan;
| | - Irshad Ahmad
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Phase-V, Hayatabad Peshawar, Peshawar 25100, Pakistan;
| |
Collapse
|
2
|
Shalaby S, Awadin W, Manzoor R, Karam R, Mohamadin M, Salem S, El-Shaieb A. Pathological and phylogenetic characteristics of fowl AOAV-1 and H5 isolated from naturally infected Meleagris Gallopavo. BMC Vet Res 2024; 20:216. [PMID: 38773480 PMCID: PMC11107055 DOI: 10.1186/s12917-024-04029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND In this study, we investigated the prevalence of respiratory viruses in four Hybrid Converter Turkey (Meleagris gallopavo) farms in Egypt. The infected birds displayed severe respiratory signs, accompanied by high mortality rates, suggesting viral infections. Five representative samples from each farm were pooled and tested for H5 & H9 subtypes of avian influenza viruses (AIVs), Avian Orthoavulavirus-1 (AOAV-1), and turkey rhinotracheitis (TRT) using real-time RT-PCR and conventional RT-PCR. Representative tissue samples from positive cases were subjected to histopathology and immunohistochemistry (IHC). RESULTS The PCR techniques confirmed the presence of AOAV-1 and H5 AIV genes, while none of the tested samples were positive for H9 or TRT. Microscopic examination of tissue samples revealed congestion and hemorrhage in the lungs, liver, and intestines with leukocytic infiltration. IHC revealed viral antigens in the lungs, liver, and intestines. Phylogenetic analysis revealed that H5 HA belonged to 2.3.4.4b H5 sublineage and AOAV-1 belonged to VII 1.1 genotype. CONCLUSIONS The study highlights the need for proper monitoring of hybrid converter breeds for viral diseases, and the importance of vaccination programs to prevent unnecessary losses. To our knowledge, this is the first study that reports the isolation of AOAV-1 and H5Nx viruses from Hybrid Converter Turkeys in Egypt.
Collapse
Affiliation(s)
- Shady Shalaby
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt.
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt.
| | - Rashid Manzoor
- Veterinary Science Program, Faculty of Health Sciences, Higher Colleges of Technology, P.O. Box 7946, Sharjah City, UAE.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt
| | - Mahmoud Mohamadin
- Veterinary Science Program, Faculty of Health Sciences, Higher Colleges of Technology, P.O. Box 7946, Sharjah City, UAE
| | - Sanaa Salem
- Department of Pathology, Zagazig Branch, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), P.O. Box 44516, Zagazig City, Egypt
| | - Ahmed El-Shaieb
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt
- Faculty of Veterinary Medicine, Egyptian Chinese University, Ain Shams City, 4541312, Egypt
| |
Collapse
|
3
|
Amoia CF, Hakizimana JN, Chengula AA, Munir M, Misinzo G, Weger-Lucarelli J. Genomic Diversity and Geographic Distribution of Newcastle Disease Virus Genotypes in Africa: Implications for Diagnosis, Vaccination, and Regional Collaboration. Viruses 2024; 16:795. [PMID: 38793675 PMCID: PMC11125703 DOI: 10.3390/v16050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The emergence of new virulent genotypes and the continued genetic drift of Newcastle disease virus (NDV) implies that distinct genotypes of NDV are simultaneously evolving in different geographic locations across the globe, including throughout Africa, where NDV is an important veterinary pathogen. Expanding the genomic diversity of NDV increases the possibility of diagnostic and vaccine failures. In this review, we systematically analyzed the genetic diversity of NDV genotypes in Africa using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Information published between 1999 and 2022 were used to obtain the genetic background of different genotypes of NDV and their geographic distributions in Africa. The following genotypes were reported in Africa: I, II, III, IV, V, VI, VII, VIII, XI, XIII, XIV, XVII, XVIII, XX, and XXI. A new putative genotype has been detected in the Democratic Republic of the Congo. However, of 54 African countries, only 26 countries regularly report information on NDV outbreaks, suggesting that this number may be vastly underestimated. With eight different genotypes, Nigeria is the country with the greatest genotypic diversity of NDV among African countries. Genotype VII is the most prevalent group of NDV in Africa, which was reported in 15 countries. A phylogeographic analysis of NDV sequences revealed transboundary transmission of the virus in Eastern Africa, Western and Central Africa, and in Southern Africa. A regional and continental collaboration is recommended for improved NDV risk management in Africa.
Collapse
Affiliation(s)
- Charlie F. Amoia
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro 67125, Tanzania;
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania
| | - Jean N. Hakizimana
- OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania;
| | - Augustino A. Chengula
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro 67125, Tanzania;
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK;
| | - Gerald Misinzo
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro 67125, Tanzania;
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania
- OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania;
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
4
|
Al-Mubarak AIA, Al-Kubati AAG, Sheikh A, Abdelaziz AM, Hussen J, Kandeel M, Falemban B, Hemida MG. Detection of Avian Orthoavulavirus-1 genotypes VI.2.1 and VII.1.1 with neuro-viscerotropic tropism in some backyard pigeons (Columbidae) in Eastern Saudi Arabia. Front Vet Sci 2024; 11:1352636. [PMID: 38500603 PMCID: PMC10947193 DOI: 10.3389/fvets.2024.1352636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Avian orthoavulavirus-1 (AOAV1) has a wide host range, including domestic and wild birds. The present study aimed to identify the currently circulating AOAV1 strains from some outbreaks in some backyard pigeons in the eastern region of Saudi Arabia (ERSA). Methods Tracheal/cloacal swabs and tissue specimens were collected from eight backyards in Al-Ahsa, ERSA, between January 2021 and March 2023. Samples were tested for the presence of AOAV1 using commercial real-time RT-PCR. Part of the fusion gene was also amplified by gel-based RT-PCR, and the obtained amplicons were sequenced. Results and discussion AOAV1 was detected in samples from the eight flocks. The retrieved sequences from samples of 6/8 pigeon backyards are reported. Phylogenetic analysis based on the obtained sequences from these backyard pigeons showed the segregation of the obtained sequences in AOAV1 genotypes VI.2.1 and VII.1.1. Clinically, nervous manifestations were dominant in pigeons infected with both genotypes. Respiratory manifestations and significantly higher overall mortality rate were induced by genotype VI.2.1. The deduced amino acid sequences of the fusion protein cleavage site (FPCS) showed that all the detected isolates belong to velogenic strains. Differences in clinical profiles induced by the natural infection of pigeons with AOAV1 genotypes VI.2.1 and VII.1.1 were reported. The present findings highlight the potential roles of some backyard pigeons in the long-distance spread and cross-species transmission of the reported AOAVI genotypes. Further research is required to perform biotyping and pathotyping of the reported strains.
Collapse
Affiliation(s)
- Abdullah I. A. Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Anwar A. G. Al-Kubati
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, Al Hofuf, Saudi Arabia
| | - Adel M. Abdelaziz
- Faculty of Veterinary Medicine, Veterinary Educational Hospital, Zagazig University, Zagazig, Egypt
- Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Ahsa, Saudi Arabia.
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Baraa Falemban
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| |
Collapse
|
5
|
Lebdah MA, Abdallah A, Hamouda EE, Elseddawy NM, ElBakrey RM. Protective effectiveness of two vaccination schemes against the prevalent Egyptian strain of Newcastle disease virus genotype VII. Open Vet J 2024; 14:32-45. [PMID: 38633185 PMCID: PMC11018437 DOI: 10.5455/ovj.2024.v14.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Despite the strict preventive immunization used in Egypt, Newcastle disease remained a prospective risk to the commercial and backyard chicken industries. The severe economic losses caused by the Newcastle disease virus (NDV) highlight the importance of the trials for the improvement and development of vaccines and vaccination programs. Aim In the present study, we evaluated the effectiveness of two vaccination schemes for protection against the velogenic NDV (vNDV) challenge. Methods Four groups (A-D) of commercial broiler chickens were used. Two groups (G-A and G-B) were vaccinated with priming live HB1 GII simultaneously with inactivated GVII vaccines at 5 days of age, then boosted with live LaSota GII vaccine in group A and live recombinant NDV GVII vaccine in group B on day 16. Groups A to C were challenged with NDV/Chicken/Egypt/ALEX/ZU-NM99/2019 strain (106 Embryo infective dose 50/0.1 ml) at 28 days of age. Results Two vaccination schemes achieved 93.3% clinical protection against NDV with body gain enhancement; whereas, 80% of the unvaccinated-challenged birds died. On day 28, the mean HI antibody titers were 4.3 ± 0.33 and 5.3 ± 0.33 log2 in groups A and B, respectively. As well as both programs remarkably reduced virus shedding. The two vaccination schemes displayed close protection efficacy against the vNDV challenge. Conclusion Therefore, using the combination of a live attenuated vaccine with an inactivated genetically matched strain vaccine and then boosting it with one of the available live vaccines could be considered one of the most effective programs against current field vNDV infection in Egypt.
Collapse
Affiliation(s)
- Mohamed A. Lebdah
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Esraa E. Hamouda
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nora M. Elseddawy
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham M. ElBakrey
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Fortin A, Laconi A, Monne I, Zohari S, Andersson K, Grund C, Cecchinato M, Crimaudo M, Valastro V, D'Amico V, Bortolami A, Gastaldelli M, Varotto M, Terregino C, Panzarin V. A novel array of real-time RT-PCR assays for the rapid pathotyping of type I avian paramyxovirus (APMV-1). J Virol Methods 2023; 322:114813. [PMID: 37722509 DOI: 10.1016/j.jviromet.2023.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Newcastle disease (ND) caused by virulent avian paramyxovirus type I (APMV-1) is a WOAH and EU listed disease affecting poultry worldwide. ND exhibits different clinical manifestations that may either be neurological, respiratory and/or gastrointestinal, accompanied by high mortality. In contrast, mild or subclinical forms are generally caused by lentogenic APMV-1 and are not subject to notification. The rapid discrimination of virulent and avirulent viruses is paramount to limit the spread of virulent APMV-1. The appropriateness of molecular methods for APMV-1 pathotyping is often hampered by the high genetic variability of these viruses that affects sensitivity and inclusivity. This work presents a new array of real-time RT-PCR (RT-qPCR) assays that enable the identification of virulent and avirulent viruses in dual mode, i.e., through pathotype-specific probes and subsequent Sanger sequencing of the amplification product. Validation was performed according to the WOAH recommendations. Performance indicators on sensitivity, specificity, repeatability and reproducibility yielded favourable results. Reproducibility highlighted the need for assays optimization whenever major changes are made to the procedure. Overall, the new RT-qPCRs showed its ability to detect and pathotype all tested APMV-1 genotypes and its suitability for routine use in clinical samples.
Collapse
Affiliation(s)
- Andrea Fortin
- EU/WOAH/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; Department of Animal Medicine, Production and Health, University of Padua (Unipd), 35020 Legnaro, Italy
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua (Unipd), 35020 Legnaro, Italy
| | - Isabella Monne
- EU/WOAH/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy
| | - Siamak Zohari
- Department of Microbiology, Swedish National Veterinary Institute (SVA), SE751 89 Uppsala, Sweden
| | - Kristofer Andersson
- Department of Microbiology, Swedish National Veterinary Institute (SVA), SE751 89 Uppsala, Sweden
| | - Christian Grund
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua (Unipd), 35020 Legnaro, Italy
| | - Marika Crimaudo
- EU/WOAH/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy
| | - Viviana Valastro
- EU/WOAH/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy
| | - Valeria D'Amico
- EU/WOAH/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy
| | - Alessio Bortolami
- EU/WOAH/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy
| | - Michele Gastaldelli
- EU/WOAH/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy
| | - Maria Varotto
- EU/WOAH/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy
| | - Calogero Terregino
- EU/WOAH/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy
| | - Valentina Panzarin
- EU/WOAH/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy.
| |
Collapse
|
7
|
Adam FEA, Zhao X, Guan Z, Chang Z, Thrusfield M, Lu K, El Tigani-Asil ETA, Terab AMA, Ismael M, Tong L, Prince-Theodore DW, Luo C, Xiao S, Wang X, Liu H, Yang Z. Simultaneous Expression of Chicken Granulocyte Monocyte Colony-Stimulating Factor and the Hemagglutinin-Neuraminidase Epitope of the Virulent Newcastle Disease Virus Genotype VII C22 Strain in a Functional Synthetic Recombinant Adenovirus as a Genotype-Matched Vaccine with Potential Antiviral Activity. Microbiol Spectr 2023; 11:e0402422. [PMID: 37036344 PMCID: PMC10269747 DOI: 10.1128/spectrum.04024-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/18/2023] [Indexed: 04/11/2023] Open
Abstract
When it comes to the prevention of clinical signs and mortality associated with infection of the Newcastle disease virus (NDV), vaccination has been very effective. However, recent evidence has proven that more highly virulent strains are emerging that bypass existing immune protection and pose a serious threat to the global poultry industry. Here, a novel rescued adenovirus 5-coexpressed chicken granulocyte monocyte colony-stimulating factor (ChGM-CSF) bio-adjuvant and C22-hemagglutinin-neuraminidase (HN) boosted chickens' immunological genetic resistance and thus improved the immunological effectiveness of the critical new-generation vaccine in vitro and in vivo. Accordingly, the hemagglutination inhibition (HI) titers (log2) of the recombinant adenovirus (rAdv)-ChGM-CSF-HN-immunized chickens had greater, more persistent, and longer-lasting NDV-specific antibodies than the La Sota and rAdv-HN-inoculated birds. Moreover, humoral and adaptive immunological conditions were shown to be in harmony after rAdv-ChGM-CSF-HN inoculation and uniformly enhanced the expression of alpha interferon (IFN-α), IFN-β, IFN-γ, interleukin-1β (IL-1β), IL-2, IL-16, IL-18, and IL-22. Postchallenge, the control challenge (CC), wild-type adenovirus (wtAdv), and rAdv-ChGM-CSF groups developed unique NDV clinical manifestations, significant viral shedding, high tissue viral loads, gross and microscopic lesions, and 100% mortality within 7 days. The La Sota, rAdv-HN, and rAdv-ChGM-CSF-HN groups were healthy and had 100% survival rates. The rAdv-ChGM-CSF-HN group swiftly regulated and stopped viral shedding and had lower tissue viral loads than all groups at 5 days postchallenge (dpc). Thus, the antiviral activity of ChGM-CSF offered robust immune protection in the face of challenge and reduced viral replication convincingly. Our advance innovation concepts, combining ChGM-CSF with a field-circulating strain epitope, could lead to the development of a safe, genotype-matched, universal transgenic vaccine that could eradicate the disease globally, reducing poverty and food insecurity. IMPORTANCE We studied the biological characterization of the developed functional synthetic recombinant adenoviruses, which showed a high degree of safety, thermostability, and genetic stability for up to 20 passages. It was demonstrated through both in vitro and in vivo testing that the immunogenicity of the proposed vaccine, which uses the T2A peptide from the Thosea asigna virus capsid protein supported by glycine and serine, helps with efficiency to generate a multicistronic vector, enables expression of two functional proteins in rAdv-ChGM-CSF-HN, and is superior to that of comparable vaccines. Additionally, adenovirus can be used to produce vaccines matching the virulent field-circulating strain epitope. Because there is no preexisting human adenoviral immunity detected in animals, the potency of adenoviral vaccines looks promising. Also, it ensures that the living vector does not carry the resistance gene that codes for the kanamycin antibiotic. Accordingly, a human recombinant adenoviral vaccine that has undergone biological improvements is beneficial and important.
Collapse
Affiliation(s)
- Fathalrhman Eisa Addoma Adam
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Department of Preventive Medicine and Public Health, Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Xueliang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhao Guan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhengwu Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Michael Thrusfield
- Veterinary Clinical Sciences Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - El Tigani Ahmed El Tigani-Asil
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Abdelnasir Mohammed Adam Terab
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Mohamedelfateh Ismael
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Lina Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | | | - Chen Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Elbasuni SS, Bahgat H, Nada MO, Abugomaa A, Hamam H, Elbadawy M. Efficacy of Olea europaea leaves and propolis extracts in the control of experimentally induced infectious bronchitis in broiler chickens. GERMAN JOURNAL OF VETERINARY RESEARCH 2023; 3:1-10. [DOI: 10.51585/gjvr.2023.2.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Infectious bronchitis (IB) is a viral disease that causes serious economic losses in the
broiler industry. This study evaluated the effectiveness of Olea europaea leaves and propolis extracts (OLP) mixture at a rate of 400 μg and 100 mg/mL, respectively, in
curing IB in broiler chickens. One-day-old Ross broiler chicks were randomized into four
groups (G) of twenty-one chicks; G1 (control negative; no infection and treatment); G2
(no infection, treatment only), G3 (control positive; infection only and no treatment)
and G4 (infection and treatment) that infected with IBv (106 EID50/ml) at 21 days old.
The OLP treatment was applied for birds in G2 and G4 at a dose of 0.5 mL/liter drinking water for three successive days. The growth performance, clinical and pathological
examinations and viral shedding were evaluated. The use of the OLP resulted in protection from IB infection through the significant improvement of performance parameters such as weight gain and feed conversion ratio, decrease in mortality rate, lowering disease severity, and rapid recovery from the observed clinical signs (mainly respiratory signs), gross and microscopic lesions in the trachea, lung, and kidneys as compared to those in the positive control (G3). Moreover, the viral shedding in the OLP-treated chicks (G4) was significantly decreased in tracheal and cloacal swabs to a rate less than 3×103 IBv genome copy number and became not detectable at 14-days post-infection (dpi) in their cloacal swabs. In conclusion, OLP can potentially display an antiviral effect against IB in broiler chickens. Therefore, adding OLP to the chicken drinking water is recommended to prevent and control IB.
Collapse
|
9
|
Pham HM, Do TT. Detection and assessment of risk factors associated with Newcastle disease virus infection in birds in backyard poultry in Laichau province of Vietnam. Avian Pathol 2023; 52:144-152. [PMID: 36533298 DOI: 10.1080/03079457.2022.2160697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Newcastle disease (ND) is a highly pathogenic and contagious viral infectious disease of poultry that causes a very serious problem for poultry production and economic loss worldwide. ND has been an epizootic disease in Vietnam. Information about the risk factors that are associated with virus transmission in backyard chickens in Vietnam is limited. To provide more epidemiological information about ND in Vietnam, this study was performed to estimate NDV prevalence and identify the risk factors for ND virus (NDV) infection in birds at the backyard flock level. Choanal swabs were taken from 400 randomly selected birds from 100 apparently healthy flocks from May to July 2020. Based on RT-PCR analysis, 43 of 400 swab samples (10.75%; 95% CI 8-14.17) and 21 of 100 flocks (21%; 95% CI 14.17-29.98) were positive for the fusion (F) gene of NDV. The management practice risks were: backyard flocks contacting wild birds (OR = 3.89; P = 0.030), mixed flocks with different types and species of birds (OR = 5.46; P = 0.004), and infrequency of cleaning and disinfecting poultry houses (OR (odds ratio) = 4.43; P = 0.034). The second and third risks (above) showed a positive interaction on the risk of NDV infection in birds (OR = 39.38; P = 0.001), and the first risk showed a negative interaction. Further studies on NDV surveillance in domestic waterfowl, longitudinal studies, a well-optimized RT-qPCR assay, and genetic characterization are needed. The development of handbooks, flyers, or lessons for educating poultry keepers are also needed.RESEARCH HIGHLIGHT RT-PCR was used to detect the F gene of NDV in choanal swabs.Risk factors associated with NDV-positive samples were determined.The evidence for NDV circulation in backyard healthy birds was observed.Contact with wild birds, mixed flocks, and poor hygiene were major risk factors.
Collapse
Affiliation(s)
- Hang Minh Pham
- Epidemiology and Pathology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Trang Thu Do
- Epidemiology and Pathology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| |
Collapse
|
10
|
Eid AAM, Hussein A, Hassanin O, Elbakrey RM, Daines R, Sadeyen JR, Abdien HMF, Chrzastek K, Iqbal M. Newcastle Disease Genotype VII Prevalence in Poultry and Wild Birds in Egypt. Viruses 2022; 14:v14102244. [PMID: 36298799 PMCID: PMC9607356 DOI: 10.3390/v14102244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Newcastle Disease Virus (NDV) genotype VII is a highly pathogenic Orthoavulavirus that has caused multiple outbreaks among poultry in Egypt since 2011. This study aimed to observe the prevalence and genetic diversity of NDV prevailing in domestic and wild birds in Egyptian governorates. A total of 37 oropharyngeal swabs from wild birds and 101 swabs from domestic bird flocks including chickens, ducks, turkeys, and pelicans, were collected from different geographic regions within 13 governorates during 2019–2020. Virus isolation and propagation via embryonated eggs revealed 91 swab samples produced allantoic fluid containing haemagglutination activity, suggestive of virus presence. The use of RT-PCR targeted to the F gene successfully detected NDV in 85 samples. The geographical prevalence of NDV was isolated in 12 governorates in domestic birds, migratory, and non-migratory wild birds. Following whole genome sequencing, we assembled six NDV genome sequences (70–99% of genome coverage), including five full F gene sequences. All NDV strains carried high virulence, with phylogenetic analysis revealing that the strains belonged to class II within genotype VII.1.1. The genetically similar yet geographically distinct virulent NDV isolates in poultry and a wild bird may allude to an external role contributing to the dissemination of NDV in poultry populations across Egypt. One such contribution may be the migratory behaviour of wild birds; however further investigation must be implemented to support the findings of this study. Additionally, continued genomic surveillance in both wild birds and poultry would be necessary for monitoring NDV dissemination and genetic diversification across Egypt, with the aim of controlling the disease and protecting poultry production.
Collapse
Affiliation(s)
- Amal A. M. Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ashraf Hussein
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ola Hassanin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Reham M. Elbakrey
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rebecca Daines
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | | | - Hanan M. F. Abdien
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41622, Egypt
| | | | - Munir Iqbal
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
- Correspondence:
| |
Collapse
|
11
|
Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front Vet Sci 2022; 9:933274. [PMID: 35937298 PMCID: PMC9353128 DOI: 10.3389/fvets.2022.933274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of poultry farming has enabled higher spread of infectious diseases and their pathogens among different kinds of birds, such as avian infectious bronchitis virus (IBV) and avian influenza virus (AIV). IBV and AIV are a potential source of poultry mortality and economic losses. Furthermore, some pathogens have the ability to cause zoonotic diseases and impart human health problems. Antiviral treatments that are used often lead to virus resistance along with the problems of side effects, recurrence, and latency of viruses. Though target hosts are being vaccinated, the constant emergence and re-emergence of strains of these viruses cause disease outbreaks. The pharmaceutical industry is gradually focusing on plant extracts to develop novel herbal drugs to have proper antiviral capabilities. Natural therapeutic agents developed from herbs, essential oils (EO), and distillation processes deliver a rich source of amalgams to discover and produce new antiviral drugs. The mechanisms involved have elaborated how these natural therapeutics agents play a major role during virus entry and replication in the host and cause inhibition of viral pathogenesis. Nanotechnology is one of the advanced techniques that can be very useful in diagnosing and controlling infectious diseases in poultry. In general, this review covers the issue of the poultry industry situation, current infectious diseases, mainly IB and AI control measures and, in addition, the setup of novel therapeutics using plant extracts and the use of nanotechnology information that may help to control these diseases.
Collapse
|
12
|
Dewidar AAA, Kilany WH, El-Sawah AA, Shany SAS, Dahshan AHM, Hisham I, Elkady MF, Ali A. Genotype VII.1.1-Based Newcastle Disease Virus Vaccines Afford Better Protection against Field Isolates in Commercial Broiler Chickens. Animals (Basel) 2022; 12:ani12131696. [PMID: 35804597 PMCID: PMC9265022 DOI: 10.3390/ani12131696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Controlling genotype VII Newcastle disease virus (NDV) is challenging, especially in endemic countries. Genetic engineering was used to develop recombinant vaccines against NDV (rNDV). The close genetic relationship with circulating viruses can better protect against field NDV challenges. This study evaluated two commercial rNDV genotype VII.1.1 vaccines based on the LaSota strain backbone or VG/GA strain backbone compared to conventional genotype II vaccines. Both vaccines induced a protective immune response; however, GII-based vaccines failed to prevent virus shedding efficiently. Additionally, the noticeable superior performance of the rNDV vaccine based on the VG/GA strain backbone may be attributed to the enterotropic nature of the VG/GA strain, which makes it replicate more efficiently in both the respiratory and intestinal tracts of chickens. Future research needs to evaluate the cell-mediated immune response induced by the rNDV GVII vaccines to understand their mechanism better mediating the mucosal immunity. Abstract This study evaluated the efficacy of live and inactivated conventional GII LaSota and recombinant GVII Newcastle disease vaccines in commercial broilers. The experimental groups (G2–G7) were vaccinated on day 7 and day 21 of age with live vaccines from the same vaccine type “GII LaSota, GVII vaccine (A), GVII vaccine (B)” via eye drop; however, G3, G5, and G7 received a single dose from inactivated counterpart vaccines subcutaneously on day 7 of age. Vaccine efficacy was evaluated based on elicited humoral immunity, clinical protection, and reduction in virus shedding after challenge with virulent GVII 1.1. strain. Results demonstrated that live and inactivated recombinant GVII vaccine based on VG/GA strain backbone elicited superior protection parameters (100% protection). Although the conventional GII LaSota live and inactivated vaccination regime protected 93.3% of vaccinated birds, the virus shedding continued until 10 DPC. The post-vaccination serological monitoring was consistent with protection results. The study concludes that conventional GII ND vaccines alone are probably insufficient due to the current epidemiology of the GVII 1.1 NDV strains. Our findings further support that protection induced by recombinant GVII 1.1. ND vaccines are superior. Interestingly, the efficacy of recombinant ND vaccines seemed to be influenced by the backbone virus since the VG/GA backbone-based vaccine provided better protection and reduced virus shedding.
Collapse
Affiliation(s)
- Abdelmonem A. A. Dewidar
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.A.D.); (A.A.E.-S.); (S.A.S.S.); (A.-H.M.D.); (M.F.E.)
| | - Walid H. Kilany
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Agriculture Research Center, Animal Health Research Institute, Giza 12618, Egypt; (W.H.K.); (I.H.)
| | - Azza A. El-Sawah
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.A.D.); (A.A.E.-S.); (S.A.S.S.); (A.-H.M.D.); (M.F.E.)
| | - Salama A. S. Shany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.A.D.); (A.A.E.-S.); (S.A.S.S.); (A.-H.M.D.); (M.F.E.)
| | - Al-Hussien M. Dahshan
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.A.D.); (A.A.E.-S.); (S.A.S.S.); (A.-H.M.D.); (M.F.E.)
| | - Islam Hisham
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Agriculture Research Center, Animal Health Research Institute, Giza 12618, Egypt; (W.H.K.); (I.H.)
| | - Magdy F. Elkady
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.A.D.); (A.A.E.-S.); (S.A.S.S.); (A.-H.M.D.); (M.F.E.)
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.A.D.); (A.A.E.-S.); (S.A.S.S.); (A.-H.M.D.); (M.F.E.)
- Correspondence:
| |
Collapse
|