1
|
Andersen-Ranberg E, Nymo IH, Jokelainen P, Emelyanova A, Jore S, Laird B, Davidson RK, Ostertag S, Bouchard E, Fagerholm F, Skinner K, Acquarone M, Tryland M, Dietz R, Abass K, Rautio A, Hammer S, Evengård B, Thierfelder T, Stimmelmayr R, Jenkins E, Sonne C. Environmental stressors and zoonoses in the Arctic: Learning from the past to prepare for the future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:176869. [PMID: 39423885 DOI: 10.1016/j.scitotenv.2024.176869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The risk of zoonotic disease transmission from animals to humans is elevated for people in close contact with domestic and wild animals. About three-quarters of all known human infectious diseases are zoonotic, and potential health impacts of these diseases are higher where infectious disease surveillance and access to health care and public health services are limited. This is especially the case for remote circumarctic regions, where drivers for endemic, emerging, and re-emerging zoonotic diseases include anthropogenic influences, such as pollution by long-range transport of industrial chemicals, climate change, loss of biodiversity and ecosystem alterations. In addition to these, indirect effects including natural changes in food web dynamics, appearance of invasive species and thawing permafrost also affect the risk of zoonotic disease spill-over. In other words, the Arctic represents a changing world where pollution, loss of biodiversity and habitat, and maritime activity are likely driving forward occurrence of infectious diseases. As a broad international consortium with a wide range of expertise, we here describe a selection of case studies highlighting the importance of a One Health approach to zoonoses in the circumarctic, encompassing human health, animal health, and environmental health aspects. The cases highlight critical gaps in monitoring and current knowledge, focusing on environmental stressors and lifestyle factors, and they are examples of current occurrences in the Arctic that inform on critically needed actions to prepare us for the future. Through these presentations, we recommend measures to enhance awareness and management of existing and emerging zoonoses with epidemic and pandemic potential while also focusing on the impacts of various environmental stressors and lifestyle factors on zoonoses in the Arctic.
Collapse
Affiliation(s)
- Emilie Andersen-Ranberg
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical Sciences, Dyrlægevej 16, 1870 Frederiksberg, Denmark.
| | - Ingebjørg H Nymo
- Norwegian Veterinary Institute, Holtveien 66, 9016 Tromsø, Norway; Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Framstredet 39, Breivika, 9019 Tromsø, Norway
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Anastasia Emelyanova
- Thule Institute, University of Oulu, Paavo Havaksen tie 3, 90570 Oulu, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland
| | - Solveig Jore
- Department of Zoonotic, Food & Waterborne Infections, Norwegian Institute of Public Health, Postbox 222 Skøyen, 0213 Oslo, Norway
| | - Brian Laird
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | | | - Sonja Ostertag
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Emilie Bouchard
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, St Hyacinthe J2T 1B3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Freja Fagerholm
- Department of Clinical Microbiology and the Arctic Center, Umeå University, Johan Bures Väg 5, 90187 Umeå, Sweden
| | - Kelly Skinner
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Mario Acquarone
- Arctic Monitoring and Assessment Programme, Hjalmar Johansens gate 14, 9007 Tromsø, Norway
| | - Morten Tryland
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Anne Evenstads Veg 80, 2480 Koppang, Norway
| | - Rune Dietz
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Khaled Abass
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland; Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, postbox 27272, United Arab Emirates
| | - Arja Rautio
- Thule Institute, University of Oulu, Paavo Havaksen tie 3, 90570 Oulu, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland
| | - Sjúrður Hammer
- Faroese Environment Agency, Traðagøta 38, 165 Argir, Faroe Islands; University of the Faroe Islands, Vestara Bryggja 15, 100 Tórshavn, Faroe Islands
| | - Birgitta Evengård
- Department of Clinical Microbiology and the Arctic Center, Umeå University, Johan Bures Väg 5, 90187 Umeå, Sweden
| | - Tomas Thierfelder
- Department of Energy and Technology, Swedish University of Agricultural Sciences, postbox 75651, Uppsala, Sweden
| | - Raphaela Stimmelmayr
- Department of Wildlife management, North Slope Borough, postbox 69, 99723 Utqiagvik, AK, USA
| | - Emily Jenkins
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
2
|
Xie J, Kou M, Wang Y, Su X, Gao H, Miao H. Retrospective research: identifying and conducting phylogenetic analyses on four Orf virus strains isolated in Yunnan province between 2021 and 2023-revealing their significance and characteristic features. Front Vet Sci 2024; 11:1481809. [PMID: 39691377 PMCID: PMC11650017 DOI: 10.3389/fvets.2024.1481809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Contagious Eczema (CE), caused by ORFV, impacts sheep and goats globally, with severe symptoms and economic losses. The ORFV situation in Yunnan, China, was unclear before 2021-2023 study. Eleven scab samples from goats on small farms in three Yunnan municipalities were collected. Four ORFV strains were isolated and characterized using scanning electron microscopy, cytopathic effect observation, and PCR. Phylogenetic analyses of ORFV011 and ORFV059 genes showed significant results. For ORFV011, the nucleotide similarity of the four strains to D1701 strain was 98.4-99%. For ORFV059, it was 97.2-97.9% with OV-SA00 strain. These findings suggest gene rearrangements and interactions among strains during Yunnan's ORFV outbreak, forming a unique evolutionary lineage. Our study is the first comprehensive one on Yunnan's ORFV prevalence with in-depth phylogenetic analysis. It has important implications. In vaccine development, understanding genetic variances helps create better vaccines. For disease control, customized strategies like targeted quarantine and disinfection can be designed based on strain characteristics. From a public health aspect, as CE is zoonotic, closely monitoring ORFV in goats aids in predicting and preventing human infections, thus being significant for protecting goats against CE in Yunnan.
Collapse
Affiliation(s)
| | | | | | | | - Huafeng Gao
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming, Yunnan, China
| | - Haisheng Miao
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming, Yunnan, China
| |
Collapse
|
3
|
Graf A, Rziha HJ, Krebs S, Wolf E, Blum H, Büttner M. Parapoxvirus species revisited by whole genome sequencing: A retrospective analysis of bovine virus isolates. Virus Res 2024; 346:199404. [PMID: 38782262 PMCID: PMC11152744 DOI: 10.1016/j.virusres.2024.199404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Parapoxviruses (PPV) of animals are spread worldwide. While the Orf virus (ORFV) species is a molecularly well-characterized prototype pathogen of small ruminants, the genomes of virus species affecting large ruminants, namely Bovine papular stomatitis virus (BPSV) and Pseudocowpox virus (PCPV), are less well known. Using Nanopore sequencing we retrospectively show the whole genome sequences (WGS) of six BPSV, three PCPV isolates and an attenuated ORFV strain, originating from different geographic locations. A phylogenetic tree shows that the de novo assembled genomes belong to PPV species including WGS of reference PPV. Remarkably, Nanopore sequencing allowed the molecular resolution of inverted terminal repeats (ITR) and the hairpin loop within the de novo assembled WGS. Additionally, peculiarities regarding map location of two genes and the heterogeneity of a genomic region were noted. Details for the molecular variability of an interferon response modulatory gene (ORF116) and the PCPV specificity of gene 073.5 are reported. In summary, WGS gained by Nanopore sequencing allowed analysis of complete PPV genomes and confident virus species attribution within a phylogenetic tree avoiding uncertainty of limited gene-based diagnostics. Nanopore-based WGS provides robust comparison of PPV genomes and reliable identity determination of new Poxviruses.
Collapse
Affiliation(s)
- Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Hanns-Joachim Rziha
- Institute of Immunology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Mathias Büttner
- Institute of Immunology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Coradduzza E, Scarpa F, Rocchigiani AM, Cacciotto C, Lostia G, Fiori MS, Rodriguez Valera Y, De Pascali AM, Brandolini M, Azzena I, Locci C, Casu M, Bechere R, Pintus D, Ligios C, Scagliarini A, Sanna D, Puggioni G. The Global Evolutionary History of Orf Virus in Sheep and Goats Revealed by Whole Genomes Data. Viruses 2024; 16:158. [PMID: 38275968 PMCID: PMC10820850 DOI: 10.3390/v16010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Orf virus (ORFV) belongs to the genus Parapoxvirus (Poxviridae family). It is the causative agent of contagious ecthyma (CE) that is an economically detrimental disease affecting small ruminants globally. Contagious ecthyma outbreaks are usually reported in intensive breeding of sheep and goats but they have also been reported in wildlife species. Notably, ORFV can infect humans, leading to a zoonotic disease. This study aims to elucidate the global evolutionary history of ORFV genomes in sheep and goats, including the first genomes from Central America in the analyses. In comparison to the last study on ORFV whole genomes, the database now includes 11 more sheep and goat genomes, representing an increase of 42%. The analysis of such a broader database made it possible to obtain a fine molecular dating of the coalescent time for ORFV S and G genomes, further highlighting the genetic structuring between sheep and goat genomes and corroborating their emergence in the latter half of 20th century.
Collapse
Affiliation(s)
- Elisabetta Coradduzza
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Fabio Scarpa
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
| | - Angela Maria Rocchigiani
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Carla Cacciotto
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy; (C.C.); (M.C.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Giada Lostia
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Mariangela Stefania Fiori
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | | | - Alessandra Mistral De Pascali
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (A.M.D.P.); (M.B.); (A.S.)
| | - Martina Brandolini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (A.M.D.P.); (M.B.); (A.S.)
| | - Ilenia Azzena
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
| | - Chiara Locci
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy; (C.C.); (M.C.)
| | - Marco Casu
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy; (C.C.); (M.C.)
| | - Roberto Bechere
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Alessandra Scagliarini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (A.M.D.P.); (M.B.); (A.S.)
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| |
Collapse
|
5
|
Mungmunpuntipantip R, Wiwanitkit V. Orf, a Human Parapoxvirus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:171-181. [PMID: 38801578 DOI: 10.1007/978-3-031-57165-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite being common worldwide, parapoxvirus infections are regarded as neglected zoonoses because their incidence is either unknown or grossly overestimated. In ruminants all throughout the world, parapoxvirus produces oral lesions and infectious pustular dermatitis. The pathogen is typically spread directly via items contaminated with parapoxvirus and indirectly via a near contact with dermatological lesions that contain the virus on affected animals. Animals infected with the parapoxvirus typically exhibit no clinical symptoms, and the mode of parapoxvirus transmission is occasionally unclear. For accurate etiological diagnosis and appropriate therapy of patients affected by zoonotic infections, the significance of adopting a "One Health" approach and cross-sector collaboration between human and veterinary medicine should be emphasized. The causative pathogen of ecthyma contagiosum in general people is the orf virus, which mostly infects various animals, either pets or wildlife species. The illness primarily affects minute wild ruminants, sheep, cattle, deer, and goats, and it can spread to people through contact with infected animals or contaminated meats anywhere in the world. Taxonomically speaking, the virus belongs to the parapoxvirus genus. Thus pathogen can be detected from crusts for a very long period (several months to several years), and the virus is found to be resistant to inactivation with a hot or dry atmosphere. In immunocompetent individuals, the lesions often go away on their own with a period as long 2 months. Nevertheless, it necessitates the applying of diverse strategies, such as antiviral, immunological modulator, or modest surgical excisions in immunosuppressed patients. The interaction of the virus with various host populations aids in the development of a defense mechanism against the immune system. The parapoxvirus illness in humans is covered in this chapter. The orf illness, a significant known human parapoxvirus infection, is given specific attention.
Collapse
|
6
|
Li S, Jing T, Zhu F, Chen Y, Yao X, Tang X, Zuo C, Liu M, Xie Y, Jiang Y, Wang Y, Li D, Li L, Gao S, Chen D, Zhao H, Ma W. Genetic Analysis of Orf Virus (ORFV) Strains Isolated from Goats in China: Insights into Epidemiological Characteristics and Evolutionary Patterns. Virus Res 2023; 334:199160. [PMID: 37402415 PMCID: PMC10410590 DOI: 10.1016/j.virusres.2023.199160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Contagious ecthyma (CE) is an acute infectious zoonosis caused by orf virus (ORFV) that mainly infects sheep and goats and causes obvious lesions and low market value of livestock, resulting in huge economic losses for farmers. In this study, two strains of ORFV were isolated from Shaanxi Province and Yunnan Province in China, named FX and LX. The two ORFVs were located in the major clades of domestic strains respectively, and exhibited distinct sequence homology. We analyzed the genetic data of core genes (B2L, F1L, VIR, ORF109) and variable genes (GIF, ORF125 and vIL-10) of ORFV to investigate its epidemiological and evolutionary characteristics. The sequences from 2007 to 2018 constituted the majority of the viral population, predominantly concentrated in India and China. Most genes were clustered into SA00-like type and IA82-like type, and the hotspots in East and South Asia were identified in the ORFV transmission trajectories. For these genes, VIR had the highest substitution rate of 4.85 × 10-4, both VIR and vIL-10 suffered the positive selection pressure during ORFV evolution. Many motifs associated with viral survival were distributed among ORFVs. In addition, some possible viral epitopes have been predicted, which still require validation in vivo and in vitro. This work gives more insight into the prevalence and phylogenetic relationships of existing orf viruses and facilitate better vaccine design.
Collapse
Affiliation(s)
- Shaofei Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Tian Jing
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Fang Zhu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yiming Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Xiaoting Yao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Xidian Tang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Chenxiang Zuo
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Mingjie Liu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yanfei Xie
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yuecai Jiang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yunpeng Wang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Dengliang Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Lulu Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Shikong Gao
- Shenmu Animal Husbandry Development Center, Shenmu, Shaanxi Province 719399, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China.
| | - Huiying Zhao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China.
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
7
|
Pfaff F, Kramer K, King J, Franzke K, Rosenberger T, Höper D, König P, Hoffmann D, Beer M. Detection of Novel Poxvirus from Gray Seal (Halichoerus grypus), Germany. Emerg Infect Dis 2023; 29:1202-1205. [PMID: 37209672 DOI: 10.3201/eid2906.221817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
We detected a novel poxvirus from a gray seal (Halichoerus grypus) from the North Sea, Germany. The juvenile animal showed pox-like lesions and deteriorating overall health condition and was finally euthanized. Histology, electron microscopy, sequencing, and PCR confirmed a previously undescribed poxvirus of the Chordopoxvirinae subfamily, tentatively named Wadden Sea poxvirus.
Collapse
|
8
|
Duignan P. Aquatic Mammals. PATHOLOGY AND EPIDEMIOLOGY OF AQUATIC ANIMAL DISEASES FOR PRACTITIONERS 2023:214-350. [DOI: 10.1002/9781119839729.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|