1
|
Abdel-Hameed R, Abd-Elhafeez HH, Abdel-Hakeem SS, AlElaimi M, Abourashed NM, Ashmawy AM, Ali E, Huwaimel B, Alshammary F, Abou-Elhamd AS, El-Zamkan MA. Environmental bovine subclinical mastitis gram-negative pathogens: Prevalence, antimicrobial resistance with special reference to extended-spectrum β-lactamases and carbapenemase production. Res Vet Sci 2025; 192:105702. [PMID: 40424737 DOI: 10.1016/j.rvsc.2025.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/30/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025]
Abstract
This study investigates mastitis in the dairy industry, with a focus on the issue of antibiotic resistance. This study was designed to evaluate mastitis prevalence and investigate the bacteriological profiles of subclinical mastitis (SCM) milk, mastitis-free milk, and market milk. Out of 374 quarter milk samples, 26.2 % were from animals with SCM. Bacteriological examination identified 87 Gram-negative bacterial strains from subclinical mastitis milk (SCMM) (42.9 %), subclinical mastitis-free milk (SCMFM) (17.97 %), and market milk (MM) (58 %). MALDI-TOF MS identified species including E. coli, K. pneumoniae, Enterobacter cloacae, Citrobacter freundii, Serratia marcescens, and Acinetobacter baumannii, with E. coli being the most frequent. Multi-drug resistant (MDR) phenotype was found in 43.7 % of isolates, with 57.1 % from SCMM, 43.8 % from SCMFM, and 24.1 % from MM. Biofilm production was observed in 44.8 % of isolates, with a significant correlation between MDR and biofilm formation. Eight strains (9.2 %) were extended-spectrum β-lactamases (ESBLs) producers, with blaCTX-M, blaTEM, and blaSHV genes detected. A. baumannii harbored multiple resistance genes, including blaTEM, blaCTX-M, blaOXA51, blaOXA23, and blaNDM, showing both phenotypic and genotypic ESBLs and carbapenemase activity. The presence of MDR, ESBLs, and carbapenemase producing Gram-negative bacteria in SCMM, SCMFM, and MM indicates a concerning exchange of bacteria and antimicrobial resistance genes between human and animal hosts, posing risks of milk contamination and environmental hazards. A one-health approach is essential for controlling antimicrobial-resistant bacteria, emphasizing prudent antimicrobial use in human and animal healthcare, and improving farm hygiene practices.
Collapse
Affiliation(s)
- Reda Abdel-Hameed
- Basic Science Department, Preparatory Year, University of Ha'il, 81442 Hail, Saudi Arabia.
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Vet. Medicine, Assiut University, Assiut 71526, Egypt.
| | - Sara Salah Abdel-Hakeem
- Department of Zoology and Entomology Faculty of Science, Assiut University Assiut 71526, Egypt.
| | - Mahmoud AlElaimi
- Basic Science Department, Preparatory Year, University of Ha'il, 81442 Hail, Saudi Arabia
| | - Nagah M Abourashed
- Basic Science Department, Preparatory Year, University of Ha'il, 81442 Hail, Saudi Arabia
| | - Ashraf M Ashmawy
- Basic Science Department, Preparatory Year, University of Ha'il, 81442 Hail, Saudi Arabia.
| | - Eshraqa Ali
- Basic Science Department, Preparatory Year, University of Ha'il, 81442 Hail, Saudi Arabia.
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - Freah Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, University of Ha'il, 81442 Hail, Saudi Arabia.
| | - Alaa Sayed Abou-Elhamd
- Department of Nursing, Respiratory Therapy program, Faculty of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Mona Ahmed El-Zamkan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt.
| |
Collapse
|
2
|
Kang HJ, You JY, Kim SH, Moon JS, Kim HY, Kim JM, Lee YJ, Kang HM. Association with Elevated Somatic Cell Counts and Characterization of Aerococcus viridans Isolates from Bovine Mastitis Milk in South Korea. Curr Microbiol 2025; 82:325. [PMID: 40481335 PMCID: PMC12143986 DOI: 10.1007/s00284-025-04291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 05/13/2025] [Indexed: 06/11/2025]
Abstract
Aerococcus viridans, an emerging pathogen, is responsible for the recent increase in cases of bovine mastitis. However, its specific effects on mastitis remain largely unexplored. In this study, we examined the correlation between A. viridans-induced mastitis infections and somatic cell counts (SCCs), and characteristics of A. viridans isolates from bovine mastitis milk. Among 1774 mastitis milk samples collected between 2016 and 2021 in South Korea, 69 (3.9%) A. viridans isolates were obtained. Mastitis milk samples containing A. viridans exhibited significantly higher SCCs than did non-mastitis samples. Most isolates (80.5%) were associated with subclinical mastitis (200-1200 × 103 cells/mL), whereas 19.5% were associated with clinical mastitis (> 1.2 × 10⁶ cells/mL). In pulsed-field gel electrophoresis analysis, A. viridans isolates displayed substantial genetic diversity, with no dominant clones identified. Antimicrobial susceptibility testing revealed high resistance rates to ceftiofur (46.4%) and oxacillin + 2% NaCl (44.9%) among β-lactams, followed by tetracycline (36.2%) and erythromycin (10.1%), with 21.7% isolates being multidrug-resistant. Fifty-four isolates (78.3%) were able to form biofilms, with all recent isolates being biofilm-positive, in contrast to several earlier non-producers. Our findings suggest the necessity for targeted management strategies and continuous monitoring for mitigating A. viridans-induced mastitis in dairy cows.
Collapse
Affiliation(s)
- Hye Jeong Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-Ro, Gimcheon-Si, Gyeongsangbuk-Do, 39660, Republic of Korea
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, 80, Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Ju-Yeon You
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-Ro, Gimcheon-Si, Gyeongsangbuk-Do, 39660, Republic of Korea
| | - Seung Hoe Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-Ro, Gimcheon-Si, Gyeongsangbuk-Do, 39660, Republic of Korea
| | - Jin-San Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-Ro, Gimcheon-Si, Gyeongsangbuk-Do, 39660, Republic of Korea
| | - Ha-Young Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-Ro, Gimcheon-Si, Gyeongsangbuk-Do, 39660, Republic of Korea
| | - Jae-Myeong Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-Ro, Gimcheon-Si, Gyeongsangbuk-Do, 39660, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, 80, Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
| | - Hyun-Mi Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-Ro, Gimcheon-Si, Gyeongsangbuk-Do, 39660, Republic of Korea.
| |
Collapse
|
3
|
Doghri I, Jacques M, Nichols S, Roy JP, Dufour S. Visualization of Staphylococcus aureus in the bovine mammary gland by fluorescence in situ hybridization. Res Vet Sci 2025; 189:105634. [PMID: 40187296 DOI: 10.1016/j.rvsc.2025.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Bovine mastitis poses significant challenges to the dairy industry. Staphylococcus aureus is particularly problematic because of its ability to cause long-lasting infections. The aim of this study was to visualize S. aureus in infected mammary gland tissues via a specific fluorescent oligonucleotide probe and confocal microscopy. Tissue samples were obtained from cows with confirmed positive S. aureus milk cultures. Fluorescent in situ hybridization revealed the existence of large bacterial aggregates, spanning 30-50 μm in size and specifically located within the mammary parenchyma. This is the first direct visualization of S. aureus aggregates within the udder of naturally infected cows.
Collapse
Affiliation(s)
- Ibtissem Doghri
- Regroupement de Recherche Pour un lait de Qualité Optimale (Op+lait), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada
| | - Mario Jacques
- Regroupement de Recherche Pour un lait de Qualité Optimale (Op+lait), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada; Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada.
| | - Sylvain Nichols
- Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada.
| | - Jean-Philippe Roy
- Regroupement de Recherche Pour un lait de Qualité Optimale (Op+lait), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada; Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada.
| | - Simon Dufour
- Regroupement de Recherche Pour un lait de Qualité Optimale (Op+lait), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada; Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada.
| |
Collapse
|
4
|
Leite RDF, Garcia BLN, Barbosa KDS, Mitsunaga TM, Fidelis CE, Dias BJM, de Miranda RR, Zucolotto V, Good L, dos Santos MV. Polyhexamethylene Biguanide Nanoparticles Inhibit Biofilm Formation by Mastitis-Causing Staphylococcus aureus. Vet Sci 2025; 12:507. [PMID: 40431600 PMCID: PMC12115530 DOI: 10.3390/vetsci12050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Staphylococcus aureus is a mastitis pathogen that compromises cow health and causes significant economic losses in the dairy industry. High antimicrobial resistance and biofilm formation by S. aureus limit the efficacy of conventional treatments. This study evaluated the potential of polyhexamethylene biguanide nanoparticles (PHMB NPs) against mastitis-causing S. aureus. PHMB NPs showed low toxicity to bovine mammary epithelial cells (MAC-T cells) at concentrations up to four times higher than the minimum inhibitory concentration (1 µg/mL) against S. aureus. In Experiment 1, PHMB NPs significantly reduced biofilm formation by S. aureus by 50% at concentrations ≥1 µg/mL, though they showed limited efficacy against preformed biofilms. In Experiment 2, using an excised teat model, PHMB NPs reduced S. aureus concentrations by 37.57% compared to conventional disinfectants (chlorhexidine gluconate, povidone-iodine, and sodium dichloroisocyanurate), though limited by short contact time. These findings highlight the potential of PHMB NPs for the control of S. aureus growth and biofilm formation.
Collapse
Affiliation(s)
- Renata de Freitas Leite
- Qualileite Milk Quality Laboratory, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, Brazil; (R.d.F.L.); (B.L.N.G.); (K.d.S.B.); (T.M.M.); (C.E.F.)
| | - Breno Luis Nery Garcia
- Qualileite Milk Quality Laboratory, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, Brazil; (R.d.F.L.); (B.L.N.G.); (K.d.S.B.); (T.M.M.); (C.E.F.)
| | - Kristian da Silva Barbosa
- Qualileite Milk Quality Laboratory, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, Brazil; (R.d.F.L.); (B.L.N.G.); (K.d.S.B.); (T.M.M.); (C.E.F.)
| | - Thatiane Mendes Mitsunaga
- Qualileite Milk Quality Laboratory, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, Brazil; (R.d.F.L.); (B.L.N.G.); (K.d.S.B.); (T.M.M.); (C.E.F.)
| | - Carlos Eduardo Fidelis
- Qualileite Milk Quality Laboratory, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, Brazil; (R.d.F.L.); (B.L.N.G.); (K.d.S.B.); (T.M.M.); (C.E.F.)
| | - Bruna Juliana Moreira Dias
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos 13560-970, Brazil; (B.J.M.D.); (R.R.d.M.); (V.Z.)
| | - Renata Rank de Miranda
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos 13560-970, Brazil; (B.J.M.D.); (R.R.d.M.); (V.Z.)
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos 13560-970, Brazil; (B.J.M.D.); (R.R.d.M.); (V.Z.)
| | - Liam Good
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, London MW1 0TU, UK;
| | - Marcos Veiga dos Santos
- Qualileite Milk Quality Laboratory, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, Brazil; (R.d.F.L.); (B.L.N.G.); (K.d.S.B.); (T.M.M.); (C.E.F.)
| |
Collapse
|
5
|
Mues L, Kemper N, Blumenberg JA. Occurrence and diagnostic of intermittent shedding of Staphylococcus aureus in bovine mammary infection. Front Vet Sci 2025; 12:1523698. [PMID: 40007750 PMCID: PMC11850531 DOI: 10.3389/fvets.2025.1523698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Bovine mastitis is a major problem with huge economic losses in dairy farming worldwide. One of the most common pathogens is Staphylococcus aureus, which is highly contagious and often spread during milking. A sanitation of a dairy herd can be challenging particularly in terms of diagnostics, because of intermittent shedding of Staphylococcus aureus in milk. The observation of intermittent shedding of Staphylococcus aureus in longitudinal studies and applied detection methods were reviewed in this study. Categorization of detection methods is used to describe the basic influence of intermittent shedding on sensitivity of diagnostic of each category. The laboratory diagnostic methods evaluated have a wide range regarding the detection limit (40 cfu/mL-106 cfu/mL). A low detection limit is essential for the detection of even chronically infected cows with intermittent shedding of the pathogen. The literature overview shows that only a few studies (n = 6) examined occurrence of intermittent shedding of Staphylococcus aureus in milk at cow level. A detection-free period of ≤ 0.5-1 d was only observed in 3 studies.
Collapse
Affiliation(s)
- Lena Mues
- Institute of Animal Hygiene, Animal Welfare and Livestock Ethology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Kemper
- Institute of Animal Hygiene, Animal Welfare and Livestock Ethology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Julia Anna Blumenberg
- Faculty of Agricultural and Nutritional Science, Institute of Animal Breeding and Husbandry, University of Kiel, Kiel, Germany
| |
Collapse
|
6
|
Tong X, Barkema HW, Nobrega DB, Xu C, Han B, Zhang C, Yang J, Li X, Gao J. Virulence of Bacteria Causing Mastitis in Dairy Cows: A Literature Review. Microorganisms 2025; 13:167. [PMID: 39858935 PMCID: PMC11767654 DOI: 10.3390/microorganisms13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
Bovine mastitis, a prevalent disease in dairy farms, exerts a profound negative influence on both the health and productivity of dairy cattle, leading to substantial economic losses for the dairy industry. The disease is associated with different bacterial agents, primarily Gram-positive cocci (e.g., Staphylococcus spp., Streptococcus spp.) and Gram-negative bacilli (e.g., Escherichia coli, Klebsiella pneumoniae). These pathogens induce mastitis through diverse mechanisms, intricately linked to the virulence factors they carry. Despite previous research on the virulence factors of mastitis-causing bacteria in dairy cattle, there remains a significant gap in our comprehensive understanding of these factors. To bridge these gaps, this manuscript reviews and compiles research on the virulence factors of these pathogens, focusing on their roles in mammary tissue infection, immune evasion, adherence to mammary epithelial cells, and invasion and colonization of the mammary gland. These processes are analyzed in depth to provide a comprehensive framework to promote a deeper understanding of dairy pathogenic bacteria and their pathogenic mechanisms and to provide new insights into the control of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Xiaofang Tong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Diego B. Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Chenyibo Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jingyue Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Xiaoping Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| |
Collapse
|
7
|
Banar M, Kamyab H, Torkashvand N, Zahraei Salehi T, Sepehrizadeh Z, Shahverdi AR, Pourmand MR, Yazdi MH. A novel broad-spectrum bacteriophage cocktail against methicillin-resistant Staphylococcus aureus: Isolation, characterization, and therapeutic potential in a mastitis mouse model. PLoS One 2025; 20:e0316157. [PMID: 39813201 PMCID: PMC11734958 DOI: 10.1371/journal.pone.0316157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025] Open
Abstract
Bovine mastitis is a considerable challenge within the dairy industry, causing significant financial losses and threatening public health. The increased occurrence of methicillin-resistant Staphylococcus aureus (MRSA) has provoked difficulties in managing bovine mastitis. Bacteriophage therapy presents a novel treatment strategy to combat MRSA infections, emerging as a possible substitute for antibiotics. This study evaluated the therapeutic potency of a novel bacteriophage cocktail against MRSA mastitis. Two new bacteriophages (vB_SauR_SW21 and vB_SauR_SW25) with potent lytic activity against MRSA were isolated and characterized. The one-step growth curve displayed a rapid latent period (20-35 min) and substantial burst size (418 and 316 PFU/ cell). In silico analyses have confirmed the absence of antimicrobial resistance or virulence factor-encoding genes within their genomes. According to the results, combining these phages augmented their host range and virulence. The phage cocktail significantly reduced bacterial burden in a BALB/c mastitis model, demonstrating efficacy comparable to antibiotic treatment. Moreover, its administration led to decreased concentrations of IL-1β and TNF-α compared to the negative control group. The bacteriophage cocktail (SW21-SW25) exhibits a promising profile for therapeutic applications and may represent a novel substitute to antibiotics for managing MRSA bovine mastitis.
Collapse
Affiliation(s)
- Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Kamyab
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Torkashvand
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Yazdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kosaristanova L, Bytesnikova Z, Fialova T, Pekarkova J, Svec P, Ondreas F, Jemelikova V, Ridoskova A, Makovicky P, Sivak L, Dolejska M, Zouharova M, Slama P, Adam V, Smerkova K. In vivo evaluation of selenium-tellurium based nanoparticles as a novel treatment for bovine mastitis. J Anim Sci Biotechnol 2024; 15:173. [PMID: 39707565 DOI: 10.1186/s40104-024-01128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Bovine mastitis is one of the main causes of reduced production in dairy cows. The infection of the mammary gland is mainly caused by the bacterium Staphylococcus aureus, whose resistant strains make the treatment of mastitis with conventional antibiotics very difficult and result in high losses. Therefore, it is important to develop novel therapeutic agents to overcome the resistance of mastitis-causing strains. In this study, novel selenium-tellurium based nanoparticles (SeTeNPs) were synthesized and characterized. Their antibacterial activity and biocompatibility were evaluated both in vitro and in vivo using a bovine model. A total of 10 heifers were divided into experimental and control groups (5 animals each). After intramammary infection with methicillin resistant S. aureus (MRSA) and the development of clinical signs of mastitis, a dose of SeTeNPs was administered to all quarters in the experimental group. RESULTS Based on in vitro tests, the concentration of 149.70 mg/L and 263.95 mg/L of Se and Te, respectively, was used for application into the mammary gland. Three days after SeTeNPs administration, MRSA counts in the experimental group showed a significant reduction (P < 0.01) compared to the control group. The inhibitory effect observed within the in vitro experiments was thus confirmed, resulting in the suppression of infection in animals. Moreover, the superior biocompatibility of SeTeNPs in the organism was demonstrated, as the nanoparticles did not significantly alter the inflammatory response or histopathology at the site of application, i.e., mammary gland, compared to the control group (P > 0.05). Additionally, the metabolic profile of the blood plasma as well as the histology of the main organs remained unaffected, indicating that the nanoparticles had no adverse effects on the organism. CONCLUSIONS Our findings suggest that SeTeNPs can be used as a promising treatment for bovine mastitis in the presence of resistant bacteria. However, the current study is limited by its small sample size, making it primarily a proof of the concept for the efficacy of intramammary-applied SeTeNPs. Therefore, further research with a larger sample size is needed to validate these results.
Collapse
Affiliation(s)
- Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Jana Pekarkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, Brno, 616 00, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Frantisek Ondreas
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Contipro a.s., Dolní Dobrouč 401, Dolní Dobrouč, 561 02, Czech Republic
| | - Vendula Jemelikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Peter Makovicky
- Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Syllabova 9, Ostrava - Vítkovice, 700 03, Czech Republic
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovak Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno, 612 42, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno, 612 42, Czech Republic
- Department of Microbiology, Faculty of Medicine, Charles University, Alej Svobody 76, Pilsen, 323 00, Czech Republic
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
| | - Monika Zouharova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic.
| |
Collapse
|
9
|
Goetz C, Sanschagrin L, Jubinville E, Jacques M, Jean J. Recent progress in antibiofilm strategies in the dairy industry. J Dairy Sci 2024:S0022-0302(24)01335-3. [PMID: 39603496 DOI: 10.3168/jds.2024-25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Biofilm formation allows microorganisms including bacteria to persist on abiotic or biotic surfaces, to resist treatments with biocides (disinfectants and antibiotics) and to evade the immune response in animal hosts much more than they do in the planktonic form. Bacteria able to form biofilm can be troublesome in the dairy industry, both by causing clinical symptoms in livestock and by colonizing milking devices and milk processing equipment, resulting in dairy products of lower quality and sometimes raising serious food safety issues. In fact, most of the bacterial species isolated frequently in the dairy chain have the ability to form biofilm. Common examples include Staphylococcus aureus and other staphylococci that frequently infect mammary glands, but also Bacillus spp., Listeria monocytogenes and Pseudomonas spp. which cause spoilage of dairy products and sometimes foodborne illnesses. The economic losses due to biofilm formation in the dairy industry are considerable, and scientists are constantly solicited to develop new antibiofilm strategies, especially using biocides of natural origin. Although the number of studies in this subject area has exploded in recent years, the in vivo efficacy of most novel approaches remains to be explored. Used alone or to increase the efficacy of disinfectants or antibiotics, they could allow the implementation of strategies having less impact on the environment. Their use is expected to lead to less reliance on antibiotics to treat intramammary infections in dairy farms and to the use of lower concentrations of chemical disinfectants in dairy processing plants.
Collapse
Affiliation(s)
- Coralie Goetz
- INRAE, L'Institut Agro Rennes-Angers, UMR 1253 STLO, Rennes Cedex, France
| | - Laurie Sanschagrin
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Eric Jubinville
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Mario Jacques
- Regroupement de recherche pour un lait de qualité optimale (Op+lait), Faculté de médecine vétérinaire, Université de Montréal, St Hyacinthe, QC, Canada
| | - Julie Jean
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
10
|
Sindhu S, Saini T, Rawat HK, Chahar M, Grover A, Ahmad S, Mohan H. Beyond conventional antibiotics approaches: Global perspectives on alternative therapeutics including herbal prevention, and proactive management strategies in bovine mastitis. Microb Pathog 2024; 196:106989. [PMID: 39357684 DOI: 10.1016/j.micpath.2024.106989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Mastitis, an intramammary inflammation resulting from microbial infectious agents, continues to pose a significant challenge within the dairy sector, adversely affecting animal well-being and leading to substantial economic losses. These losses are attributed to decreased milk production, heightened culling rates, and the expenses related to diagnostics, veterinary care, medication, and labor. Moreover, additional costs emerge due to reduced forthcoming milk yields, compromised reproductive health, and increased susceptibility to various illnesses. Identifying the responsible agents is crucial for disease management and the implementation of antimicrobial treatments. Despite the prevalent use of antibiotic treatment, the pressing need for new therapeutic alternatives to combat bovine mastitis arises from limitations, including low cure rates, rising resistance, and the presence of antibiotic residues in milk. This review explores the potential application of herbal extracts and essential oils known for their antimicrobial properties as alternative options for managing pathogens in mastitis treatment. It examines various treatment methods and management strategies, particularly emphasizing the progress of herbal remedies and natural therapeutics in addressing mastitis, a significant concern in bovine populations and dairy herds.
Collapse
Affiliation(s)
- Sonal Sindhu
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Tarun Saini
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Harsh Kumar Rawat
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Manjeet Chahar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ankita Grover
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Sayeed Ahmad
- Department of Pharmacognosy and Phytochemistry, Jamia Hamdard University, New Delhi, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India.
| |
Collapse
|
11
|
Zhang Y, Wente N, Leimbach S, Klocke D, Tellen A, Nitz J, Nankemann F, Louton H, Krömker V. In vitro capsule or biofilm formation of Streptococcus uberis and bacteriological cure of bovine mastitis. Tierarztl Prax Ausg G Grosstiere Nutztiere 2024; 52:264-270. [PMID: 39447583 DOI: 10.1055/a-2410-1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
OBJECTIVE The relationship between the in vitro detected virulence factors biofilm and capsule formation of Streptococcus (S.) uberis isolates of clinical mastitis in dairy cows and the bacteriological cure rate after antibiotic therapy was investigated in order to better understand the importance of these virulence factors for the bacteriological cure rate. MATERIAL AND METHODS A total of 111 clinical mastitis (CM) cases were collected, in which S. uberis was bacteriologically detected. All mastitis cases were treated in accordance with the approval conditions of the antibiotic udder tubes used. Individual cow information including age, number of lactations, current lactation mastitis and antimicrobial treatment received was recorded. The microtiter plate test was used to detect biofilm formation and Anthony capsule staining was used to detect capsular capacity. Statistical analyses were performed to characterize the correlation between in vitro virulence factors and bacteriological cure (BC) rate. RESULTS 30.5% (n=29) of the S. uberis isolates of bacteriologically cured cases and 34.5% (n=10) of the isolates of bacteriologically non-cured mastitis cases were found to have the ability to produce capsules in vitro. 70.7% (n=58) of the S. uberis isolates from bacteriologically cured mastitis cases had the ability to produce biofilm in vitro, whereas 58.6% (n=17) of the isolates of non-cured mastitis cases showed ability in producing biofilm. No correlation was found between the in vitro ability of S. uberis to form capsules and biofilms and the BC rate after antibiotic treatment of bovine mastitis. CONCLUSION(S) The present work has shown that the investigated in vitro virulence factors are not associated with the BC after antibiotic therapy. Further studies on the role of S. uberis virulence factors are needed to complete the missing knowledge on the difficulties in curing S. uberis mastitis. CLINICAL RELEVANCE This study is of great clinical relevance since it enhances the understanding of the occurrence of BC in S. uberis mastitis cases. The investigated virulence factors are often addressed as possible reasons for therapy failure, although respective scientific studies are missing.
Collapse
Affiliation(s)
- Yanchao Zhang
- Faculty II, Microbiology, Hannover University of Applied Sciences and Arts, Hannover, Germany
| | - Nicole Wente
- Faculty II, Microbiology, Hannover University of Applied Sciences and Arts, Hannover, Germany
| | - Stefanie Leimbach
- Faculty II, Microbiology, Hannover University of Applied Sciences and Arts, Hannover, Germany
| | - Doris Klocke
- Faculty II, Microbiology, Hannover University of Applied Sciences and Arts, Hannover, Germany
| | - Anne Tellen
- Faculty II, Microbiology, Hannover University of Applied Sciences and Arts, Hannover, Germany
| | - Julia Nitz
- Faculty II, Microbiology, Hannover University of Applied Sciences and Arts, Hannover, Germany
| | - Franziska Nankemann
- Faculty II, Microbiology, Hannover University of Applied Sciences and Arts, Hannover, Germany
| | - Helen Louton
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Volker Krömker
- Department of Veterinary and Animal Sciences, Section for Production, Nutrition and Health, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
12
|
Liu L, Li H, Ma C, Liu J, Zhang Y, Xu D, Xiong J, He Y, Yang H, Chen H. Effect of anti-biofilm peptide CRAMP-34 on the biofilms of Acinetobacter lwoffii derived from dairy cows. Front Cell Infect Microbiol 2024; 14:1406429. [PMID: 39211795 PMCID: PMC11358070 DOI: 10.3389/fcimb.2024.1406429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Dairy mastitis is one of the most common diseases in dairy farming, and the formation of pathogenic bacteria biofilms may be an important reason why traditional antibiotic therapy fails to resolve some cases of dairy mastitis. We isolated and identified three strains of A. lwoffii were with strong biofilm forming ability from dairy cow mastitis samples from Chongqing dairy farms in China. In order to investigate the effect of novel anti-biofilm peptide CRAMP-34 on A.lwoffii biofilms, the anti-biofilm effect was evaluated by crystal violet staining, biofilms viable bacteria counting and confocal laser scanning microscopy (CLSM). In addition, transcriptome sequencing analysis, qRT-PCR and phenotypic verification were used to explore the mechanism of its action. The results showed that CRAMP-34 had a dose-dependent eradicating effect on A. lwoffii biofilms. Transcriptome sequencing analysis showed that 36 differentially expressed genes (11 up-regulated and 25 down-regulated) were detected after the intervention with the sub-inhibitory concentration of CRAMP-34. These differentially expressed genes may be related to enzyme synthesis, fimbriae, iron uptake system, capsular polysaccharide and other virulence factors through the functional analysis of differential genes. The results of subsequent bacterial motility and adhesion tests showed that the motility of A.lwoffii were enhanced after the intervention of CRAMP-34, but there was no significant change in adhesion. It was speculated that CRAMP-34 may promote the dispersion of biofilm bacteria by enhancing the motility of biofilm bacteria, thereby achieving the effect of eradicating biofilms. Therefore, these results, along with our other previous findings, suggest that CRAMP-34 holds promise as a new biofilm eradicator and deserves further research and development.
Collapse
Affiliation(s)
- Lin Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Hui Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Jingjing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Dengfeng Xu
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing, China
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
- Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Purgato GA, Píccolo MS, Moreira MAS, Pizziolo VR, Diaz-Muñoz G, Rossi CC, Diaz MAN. Isolation and identification of antimicrobial multicyclic terpenoids from the medicinal plant Salvia officinalis and development of a formulation against clinical Staphylococcus aureus strains. Lett Appl Microbiol 2024; 77:ovae077. [PMID: 39127610 DOI: 10.1093/lambio/ovae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Staphylococcus aureus, particularly multi-drug resistant strains, presents significant challenges in dairy farming due to its role in causing bovine mastitis, which leads to substantial economic losses and limited treatment options. Seeking alternative therapies, we investigated the potential of a topical formulation derived from the medicinal herb Salvia officinalis to combat S. aureus growth and biofilms associated with bovine mastitis. Through systematic extraction in different solvents and fractionation by column chromatography, we isolated and identified three key multicyclic terpenoids-ferruginol, sugiol, and sclareol-exhibiting significant antimicrobial activity. The formulation effectively inhibited biofilm formation, with minimum inhibitory concentration (MIC) values ranging from 0.09 to 0.74 mg ml-1 against clinical S. aureus strains, comparable to or lower than those of the pure compounds. Moreover, it displayed robust anti-adhesive properties, reducing biofilm formation by 20%-79% at subinhibitory concentrations. Furthermore, the formulation successfully disrupted pre-existing biofilms, achieving reductions ranging from 30% to 82%. Cytotoxicity assays confirmed the safety of the formulation on mammary epithelial cells, with cell viability maintained at 100% at MIC. Our findings underscore the therapeutic potential of Sa. officinalis-derived compounds in managing bovine mastitis caused by S. aureus, emphasizing their antimicrobial efficacy and safety profile.
Collapse
Affiliation(s)
| | - Mayra Soares Píccolo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, MG 36570-900, Brazil
| | | | - Virgínia Ramos Pizziolo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, MG 36570-900, Brazil
| | - Gaspar Diaz-Muñoz
- Departamento de Química, Universidade Federal de Minas Gerais, MG 31270-901, Brazil
| | - Ciro César Rossi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, MG 36570-900, Brazil
| | | |
Collapse
|
14
|
Martínez SR, Caverzan M, Ibarra LE, Aiassa V, Bohl L, Porporatto C, Gómez ML, Chesta CA, Palacios RE. Light-activated conjugated polymer nanoparticles to defeat pathogens associated with bovine mastitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112971. [PMID: 38955081 DOI: 10.1016/j.jphotobiol.2024.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (∼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (∼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.
Collapse
Affiliation(s)
- Sol R Martínez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Matías Caverzan
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Virginia Aiassa
- UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Luciana Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - María L Gómez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Rodrigo E Palacios
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
15
|
Son HM, Duc HM. Prevalence and Phage-Based Biocontrol of Methicillin-Resistant Staphylococcus aureus Isolated from Raw Milk of Cows with Subclinical Mastitis in Vietnam. Antibiotics (Basel) 2024; 13:638. [PMID: 39061320 PMCID: PMC11273874 DOI: 10.3390/antibiotics13070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
S. aureus, particularly methicillin-resistant S. aureus, has been recognized as a main cause of bovine mastitis and food poisoning. This study investigated the prevalence, antibiotic resistance, and phage-based biocontrol of S. aureus and methicillin-resistant S. aureus isolated from raw milk of cows with subclinical mastitis. The results showed that the prevalence of S. aureus and methicillin-resistant S. aureus was 12% (48/400) and 1.5% (6/400), respectively. The S. aureus isolates were highly resistant to penicillin (72.92%), erythromycin (43.75%), and tetracycline (39.58%). Out of 48 S. aureus isolates, 6 were identified as methicillin-resistant strains. Among them, one isolate was found to harbor the sea gene. A total of 5 phages were recovered from 50 pork and 50 chicken meat samples, 1 from pork and 4 from chicken meat samples. Phage PSA2 capable of lysing all 6 methicillin-resistant isolates was selected for characterization. The use of phage PSA2 completely inactivated methicillin-resistant S. aureus SA33 in raw milk at both 24 °C and 4 °C, indicating its potential as a promising antibacterial agent in controlling methicillin-resistant S. aureus in raw milk and treating bovine mastitis.
Collapse
Affiliation(s)
- Hoang Minh Son
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12400, Vietnam;
- Laboratory of Veterinary Microbiology, Center of Research Excellence and Innovation, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Hoang Minh Duc
- Laboratory of Veterinary Microbiology, Center of Research Excellence and Innovation, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12400, Vietnam
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| |
Collapse
|
16
|
Aguirre-Sánchez JR, Castro-Del Campo N, Medrano-Félix JA, Martínez-Torres AO, Chaidez C, Querol-Audi J, Castro-Del Campo N. Genomic insights of S. aureus associated with bovine mastitis in a high livestock activity region of Mexico. J Vet Sci 2024; 25:e42. [PMID: 38910306 PMCID: PMC11291432 DOI: 10.4142/jvs.23286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 06/25/2024] Open
Abstract
IMPORTANCE Bovine mastitis, predominantly associated with gram-positive Staphylococcus aureus, poses a significant threat to dairy cows, leading to a decline in milk quality and volume with substantial economic implications. OBJECTIVE This study investigated the incidence, virulence, and antibiotic resistance of S. aureus associated with mastitis in dairy cows. METHODS Fifty milk-productive cows underwent a subclinical mastitis diagnosis, and the S. aureus strains were isolated. Genomic DNA extraction, sequencing, and bioinformatic analysis were performed, supplemented by including 124 S. aureus genomes from cows with subclinical mastitis to enhance the overall analysis. RESULTS The results revealed a 42% prevalence of subclinical mastitis among the cows tested. Genomic analysis identified 26 sequence types (STs) for all isolates, with Mexican STs belonging primarily to CC1 and CC97. The analyzed genomes exhibited multidrug resistance to phenicol, fluoroquinolone, tetracycline, and cephalosporine, which are commonly used as the first line of treatment. Furthermore, a similar genomic virulence repertoire was observed across the genomes, encompassing the genes related to invasion, survival, pathogenesis, and iron uptake. In particular, the toxic shock syndrome toxin (tss-1) was found predominantly in the genomes isolated in this study, posing potential health risks, particularly in children. CONCLUSION AND RELEVANCE These findings underscore the broad capacity for antibiotic resistance and pathogenicity by S. aureus, compromising the integrity of milk and dairy products. The study emphasizes the need to evaluate the effectiveness of antibiotics in combating S. aureus infections.
Collapse
Affiliation(s)
- José Roberto Aguirre-Sánchez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa 80110, México
| | - Nohemí Castro-Del Campo
- Departamento de Parasitología Animal. Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma de Sinaloa (UAS), Culiacán, Sinaloa 80260, México
| | - José Andrés Medrano-Félix
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa 80110, México
| | - Alex Omar Martínez-Torres
- Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panamá City 0820, Panamá
| | - Cristóbal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa 80110, México
| | - Jordi Querol-Audi
- Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panamá City 0820, Panamá
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa 80110, México.
| |
Collapse
|
17
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
18
|
Titouche Y, Akkou M, Campaña-Burguet A, González-Azcona C, Djaoui Y, Mechoub D, Fatihi A, Bouchez P, Bouhier L, Houali K, Nia Y, Torres C, Hennekinne JA. Phenotypic and Genotypic Characterization of Staphylococcus aureus Isolated from Nasal Samples of Healthy Dairy Goats in Algeria. Pathogens 2024; 13:408. [PMID: 38787260 PMCID: PMC11124369 DOI: 10.3390/pathogens13050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The present study aimed to determine the phenotypic and genotypic characteristics of S. aureus isolates from the nasal swabs of goats. A total of 232 nasal samples (one per animal) were collected from goats on 13 farms located in two regions of Algeria and were analyzed for the presence of S. aureus. The detection of virulence factors was carried out using PCR. The antibiotic susceptibility of the recovered isolates was assessed using the disc diffusion method. The biofilm formation ability was assessed by the Congo red agar method and a microtiter plate assay, and the molecular characterization of isolates was carried out by spa-typing, and for selected isolates also by multilocus sequence typing (MLST). Overall, 36 out of 232 nasal swabs (15.5%) contained S. aureus, and 62 isolates were recovered. Regarding the virulence factors, at least one staphylococcal enterotoxin gene was detected in 30 (48.4%) isolates. The gene tst encoding the toxic shock syndrome toxin was detected in fifteen isolates (24.2%), but none of the isolates harbored the gene of Panton-Valentine leukocidin (lukF/S-PV). Nine different spa-types were identified, including the detection of a new one (t21230). The recovered isolates were assigned to three clonal complexes, with CC5 (51.8%) being the most common lineage. Two isolates were methicillin-resistant (MRSA) and belonged to ST5 (CC5) and to spa-types t450 and t688. Moreover, 27 (43.5%) of the S. aureus isolates were found to be slime producers in Congo red agar, and all of the recovered isolates could produce biofilms in the microtiter plate assay. Our study showed that the nares of healthy goats could be a reservoir of toxigenic and antibiotic-resistant strains of S. aureus isolates, including MRSA, which could have implications for public health.
Collapse
Affiliation(s)
- Yacine Titouche
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Madjid Akkou
- Institute of Veterinary Sciences, University of Saad Dahlab Blida 1, Blida 09000, Algeria;
| | - Allelen Campaña-Burguet
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (A.C.-B.); (C.G.-A.); (C.T.)
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (A.C.-B.); (C.G.-A.); (C.T.)
| | - Yasmina Djaoui
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Donia Mechoub
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Abdelhak Fatihi
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Pascal Bouchez
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Laurence Bouhier
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Karim Houali
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Yacine Nia
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (A.C.-B.); (C.G.-A.); (C.T.)
| | - Jacques-Antoine Hennekinne
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| |
Collapse
|
19
|
Fidelis CE, Orsi AM, Freu G, Gonçalves JL, dos Santos MV. Biofilm Formation and Antimicrobial Resistance of Staphylococcus aureus and Streptococcus uberis Isolates from Bovine Mastitis. Vet Sci 2024; 11:170. [PMID: 38668437 PMCID: PMC11053524 DOI: 10.3390/vetsci11040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
This study aimed to assess (a) the biofilm producer ability and antimicrobial resistance profiles of Staphylococcus (Staph.) aureus and Streptococcus (Strep.) uberis isolated from cows with clinical mastitis (CM) and subclinical mastitis (SCM), and (b) the association between biofilm producer ability and antimicrobial resistance. We isolated a total of 197 Staph. aureus strains (SCM = 111, CM = 86) and 119 Strep. uberis strains (SCM = 15, CM = 104) from milk samples obtained from 316 cows distributed in 24 dairy herds. Biofilm-forming ability was assessed using the microplate method, while antimicrobial susceptibility was determined using the disk diffusion method against 13 antimicrobials. Among the isolates examined, 57.3% of Staph. aureus and 53.8% of Strep. uberis exhibited the ability to produce biofilm, which was categorized as strong, moderate, or weak. In terms of antimicrobial susceptibility, Staph. aureus isolates displayed resistance to penicillin (92.9%), ampicillin (50.8%), and tetracycline (52.7%). Conversely, Strep. uberis isolates exhibited resistance to penicillin (80.6%), oxacillin (80.6%), and tetracycline (37.8%). However, no significant correlation was found between antimicrobial resistance patterns and biofilm formation ability among the isolates.
Collapse
Affiliation(s)
- Carlos E. Fidelis
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga 13635-900, Brazil; (C.E.F.); (A.M.O.); (G.F.)
| | - Alessandra M. Orsi
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga 13635-900, Brazil; (C.E.F.); (A.M.O.); (G.F.)
| | - Gustavo Freu
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga 13635-900, Brazil; (C.E.F.); (A.M.O.); (G.F.)
| | - Juliano L. Gonçalves
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48864, USA;
| | - Marcos V. dos Santos
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga 13635-900, Brazil; (C.E.F.); (A.M.O.); (G.F.)
| |
Collapse
|
20
|
Guo C, Liu J, Wei Y, Du W, Li S. Comparison of the gastrointestinal bacterial microbiota between dairy cows with and without mastitis. Front Microbiol 2024; 15:1332497. [PMID: 38585704 PMCID: PMC10996066 DOI: 10.3389/fmicb.2024.1332497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Mastitis causes significant losses in the global dairy industry, and the health of animals has been linked to their intestinal microbiota. To better understand the relationship between gastrointestinal microbiota and mastitis in dairy cows, we collected blood, rumen fluid, and fecal samples from 23 dairy cows, including 13 cows with mastitis and 10 healthy cows. Using ELISA kit and high-throughput sequencing, we found that cows with mastitis had higher concentrations of TNF-α, IL-1, and LPS than healthy cows (p < 0.05), but no significant differences in microbiota abundance or diversity (p > 0.05). Principal coordinate analysis (PCOA) revealed significant differences in rumen microbial structure between the two groups (p < 0.05), with Moryella as the signature for rumen in cows with mastitis. In contrast, fecal microbial structure showed no significant differences (p > 0.05), with Aeriscardovia, Lactococcus, and Bacillus as the signature for feces in healthy cows. Furthermore, the results showed distinct microbial interaction patterns in the rumen and feces of cows with mastitis compared to healthy cows. Additionally, we observed correlations between the microbiota in both the rumen and feces of cows and blood inflammatory indicators. Our study sheds new light on the prevention of mastitis in dairy cows by highlighting the relationship between gastrointestinal microbiota and mastitis.
Collapse
Affiliation(s)
- Chunyan Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Jinzhong Vocational and Technical College, Jinzhong, China
| | - Jingjing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yong Wei
- Xinjiang Agricultural University, Urumuqi, China
| | - Wen Du
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Treven P, Paveljšek D, Kostanjšek R, Golob M, Bogovič Matijašič B, Mohar Lorbeg P. In vitro model of human mammary gland microbial colonization (MAGIC) demonstrates distinctive cytokine response to imbalanced human milk microbiota. Microbiol Spectr 2024; 12:e0236923. [PMID: 38289112 PMCID: PMC10913382 DOI: 10.1128/spectrum.02369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/19/2023] [Indexed: 03/06/2024] Open
Abstract
Despite the established concept of the human mammary gland (MG) as a habitat with its own microbiota, the exact mechanism of MG colonization is still elusive and a well-characterized in vitro model would reinforce studies of the MG microbiota development. We aimed to establish and characterize an in vitro cell model for studying MAmmary Gland mIcrobial Colonization (MAGIC) model. We used the immortalized cell line MCF10A, which expresses the strong polarized phenotype similar to MG ductal epithelium when cultured on a permeable support (Transwell). We analyzed the surface properties of the MAGIC model by gene expression analysis of E-cadherin, tight junction proteins, and mucins and by scanning electron microscopy. To demonstrate the applicability of the model, we tested the adhesion capability of the whole human milk (HM) microbial community and the cellular response of the model when challenged directly with raw HM samples. MCF10A on permeable supports differentiated and formed a tight barrier, by upregulation of CLDN8, MUC1, MUC4, and MUC20 genes. The surface of the model was covered with mucins and morphologically diverse with at least two cell types and two types of microvilli. Cells in the MAGIC model withstood the challenge with heat-treated HM samples and responded differently to the imbalanced HM microbiota by distinctive cytokine response. The microbial profile of the bacteria adhered on the MAGIC model reflected the microbiological profile of the input HM samples. The well-studied MAGIC model could be useful for studies of bacterial attachment to the MG and for in vitro studies of biofilm formation and microbiota development.IMPORTANCEThe MAGIC model may be particularly useful for studies of bacterial attachment to the surface of the mammary ducts and for in vitro studies of biofilm formation and the development of the human mammary gland (MG) microbiota. The model is also useful for immunological studies of the interaction between bacteria and MG cells. We obtained pioneering information on which of the bacteria present in the raw human milk (HM) were able to attach to the epithelium treated directly with raw HM, as well as on the effects of bacteria on the MG epithelial cells. The MAGIC cell model also offers new opportunities for research in other areas of MG physiology, such as the effects of bioactive milk components on microbial colonization of the MG, mastitis prevention, and studies of probiotic development. Since resident MG bacteria may be an important factor in breast cancer development, the MAGIC in vitro tool also offers new opportunities for cancer research.
Collapse
Affiliation(s)
- Primož Treven
- Department of Animal Science, University of Ljubljana, Biotechnical Faculty, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Diana Paveljšek
- Department of Animal Science, University of Ljubljana, Biotechnical Faculty, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Rok Kostanjšek
- Department of Biology, University of Ljubljana, Biotechnical Faculty, Chair of Zoology, Ljubljana, Slovenia
| | - Majda Golob
- University of Ljubljana, Veterinary Faculty, Institute of Microbiology and Parasitology, Ljubljana, Slovenia
| | - Bojana Bogovič Matijašič
- Department of Animal Science, University of Ljubljana, Biotechnical Faculty, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Petra Mohar Lorbeg
- Department of Animal Science, University of Ljubljana, Biotechnical Faculty, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| |
Collapse
|
22
|
Sharifi A, Mahmoudi P, Sobhani K. The prevalence of adhesion and biofilm genes in Staphylococcus aureus isolates from bovine mastitis: A comprehensive meta-analysis. Vet Med Sci 2024; 10:e31378. [PMID: 38358017 PMCID: PMC10867877 DOI: 10.1002/vms3.1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Mastitis poses significant challenges to the dairy industry, resulting in economic losses and increased veterinary expenses. Staphylococcus aureus is a common cause of bovine mastitis, relying on efficient adhesion and biofilm formation for infection. OBJECTIVES This study aimed to employ meta-analysis to investigate the occurrence of adhesion and biofilm genes in S. aureus associated with bovine mastitis, as documented in previous studies. METHODS This meta-analysis was done according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses, examined 22 eligible articles and revealed varying prevalence rates of adhesion and biofilm genes in S. aureus isolates from bovine mastitis. RESULTS Among the genes, clfB showed the highest prevalence (p-estimate = 0.905), followed by fnbA (p-estimate = 0.689) and fnbB (p-estimate = 0.502). The icaA and icaD genes also showed a relatively high prevalence (p-estimate = 0.694 and 0.814, respectively). Conversely, the biofilm-associated proteins gene had the lowest prevalence (p-estimate = 0.043). Subgroup analyses based on mastitis types and publication years revealed no significant differences in gene prevalence. Insufficient data hindered the analysis of fib, sasG , eno and bbp genes. CONCLUSION This study provides valuable insights for managing S. aureus-induced bovine mastitis. Additionally, larger-scale research, particularly on less-studied genes, is necessary to comprehend the molecular roles of adhesion and biofilm genes in S. aureus-induced bovine mastitis.
Collapse
Affiliation(s)
- Aram Sharifi
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| | - Peyman Mahmoudi
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| | - Keyvan Sobhani
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| |
Collapse
|
23
|
He Z, Li W, Yuan W, He Y, Xu J, Yuan C, Zhao C, Zhang N, Fu Y, Hu X. Lactobacillus reuteri inhibits Staphylococcus aureus-induced mastitis by regulating oxytocin releasing and gut microbiota in mice. FASEB J 2024; 38:e23383. [PMID: 38197892 DOI: 10.1096/fj.202301961r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024]
Abstract
Mastitis is the most frequent disease of cows and has well-recognized detrimental effects on animal wellbeing and dairy farm profitability. With the advent of the postantibiotic era, alternative antibiotic agents, especially probiotics, have received increasing attention in the treatment of mastitis. Based on research showing that Lactobacillus reuteri (L. reuteri) has anti-inflammatory effects, this study explored the protective effects and mechanisms of L. reuteri against mastitis induced by Staphylococcus aureus (S. aureus) in mice. First, mice with S. aureus-induced mastitis were orally administered L. reuteri, and the inflammatory response in the mammary gland was observed. The results showed that L. reuteri significantly inhibited S. aureus-induced mastitis. Moreover, the concentration of oxytocin (OT) and protein expression of oxytocin receptor (OTR) were measured, and inhibition of OTR or vagotomy reversed the protective effect of L. reuteri or its culture supernatant (LCS) on S. aureus-induced mastitis. In addition, in mouse mammary epithelial cells (MMECs), OT inhibited the inflammation induced by S. aureus by inhibiting the protein expression of OTR. It was suggested that L. reuteri protected against S. aureus-induced mastitis by releasing OT. Furthermore, microbiological analysis showed that the composition of the microbiota was altered, and the relative abundance of Lactobacillus was significantly increased in gut and mammary gland after treatment with L. reuteri or LCS. In conclusion, our study found the L. reuteri inhibited the mastitis-induced by S. aureus via promoting the release of OT, and treatment with L. reuteri increased the abundance of Lactobacillus in both gut and mammary gland.
Collapse
Affiliation(s)
- Zhaoqi He
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenjia Li
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Weijie Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chongshan Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
24
|
Behera M, Singh G, Vats A, Parmanand, Roshan M, Gautam D, Rana C, Kesharwani RK, De S, Ghorai SM. Expression and characterization of novel chimeric endolysin CHAPk-SH3bk against biofilm-forming methicillin-resistant Staphylococcus aureus. Int J Biol Macromol 2024; 254:127969. [PMID: 37944719 DOI: 10.1016/j.ijbiomac.2023.127969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The continuous evolution of antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) due to the misuse of antibiotics lays out the need for the development of new antimicrobials with higher activity and lower resistance. In this study, we have expressed novel chimeric endolysin CHAPk-SH3bk derived from LysK to investigate its antibacterial activity against planktonic and biofilm-forming MRSA. The molecular docking and MD simulation results identified critical amino acids (ASP47, ASP56, ARG71, and Gly74) of CHAPk domain responsible for its catalytic activity. Chimeric endolysin CHAPk-SH3bk showed an effective binding to peptidoglycan fragment using 14 hydrogen bonds. The in-vitro antibacterial assays displayed higher activity of CHAPk against planktonic MRSA with 2-log10 reduction in 2 h. Both CHAPk and CHAPk-SH3bk displayed bactericidal activity against MRSA with ∼4log10 and ∼3.5log10 reduction in 24 h. Biofilm reduction activity displayed CHAPk-SH3bk reduced 33 % and 60 % of hospital-associated ATCC®BAA-44™ and bovine origin SA1 respectively. The CHAPk treatment reduced 47 % of the preformed biofilm formed by bovine-origin MRSA SA1. This study indicates an effective reduction of preformed MRSA biofilms of human and animal origin using novel chimeric construct CHAPk-SH3bk. Stating that the combination and shuffling of different domains of phage endolysin potentially increase its bacteriolytic effectiveness against MRSA.
Collapse
Affiliation(s)
- Manisha Behera
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India; National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India; Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Ashutosh Vats
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Parmanand
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Mayank Roshan
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Devika Gautam
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Chanchal Rana
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Rajesh Kumar Kesharwani
- Department of Computer Application, Nehru Gram Bharati (Deemed to be University), Prayagraj, India
| | - Sachinandan De
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India.
| | - Soma M Ghorai
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India.
| |
Collapse
|
25
|
Liu T, Zhai Y, Jeong KC. Advancing understanding of microbial biofilms through machine learning-powered studies. Food Sci Biotechnol 2023; 32:1653-1664. [PMID: 37780593 PMCID: PMC10533454 DOI: 10.1007/s10068-023-01415-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Microbial biofilms are prevalent in various environments and pose significant challenges to food safety and public health. The biofilms formed by pathogens can cause food spoilage, foodborne illness, and infectious diseases, which are difficult to treat due to their enhanced antimicrobial resistance. While the composition and development of biofilms have been widely studied, their profound impact on food, the food industry, and public health has not been sufficiently recapitulated. This review aims to provide a comprehensive overview of microbial biofilms in the food industry and their implication on public health. It highlights the existence of biofilms along the food-producing chains and the underlying mechanisms of biofilm-associated diseases. Furthermore, this review thoroughly summarizes the enhanced understanding of microbial biofilms achieved through machine learning approaches in biofilm research. By consolidating existing knowledge, this review intends to facilitate developing effective strategies to combat biofilm-associated infections in both the food industry and public health.
Collapse
Affiliation(s)
- Ting Liu
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| | - Yuting Zhai
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| |
Collapse
|
26
|
Sungkatavat P, Khongkhai H, Kanchana W, Saengsawarng P, Sangkanu S, Nissapatorn V, Pereira MDL, Ontong JC, Mitsuwan W. Piper betle extract and its application in bovine teat dipping solution inhibit and eliminate biofilms in bovine mastitis-inducing staphylococci. Vet World 2023; 16:2135-2142. [PMID: 38023268 PMCID: PMC10668549 DOI: 10.14202/vetworld.2023.2135-2142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Staphylococci, including Staphylococcus aureus, Staphylococcus chromogenes, and Staphylococcus haemolyticus, are significant bacteria that induce bovine mastitis, primarily because they can form biofilms in bovine teat canals. This study aimed to investigate the efficacy of Piper betle extract and a bovine teat dipping solution containing P. betle extract (BSP) against these mastitis-causing staphylococci. Materials and Methods BSP was prepared using P. betle extract as the bioactive compound. The antibacterial activity of the plant extract and BSP against the pathogens was investigated using a broth microdilution method. The activity of the extract and BSP against the pathogen biofilms was also determined. A stability test was performed to observe the pH, color, turbidity, homogeneity, precipitation, and separation of BSP stored at 4°C and 25°C for up to 4 weeks. Results The extract exhibited potent antibacterial activity against S. aureus and S. haemolyticus, with similar values for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) ranging from 0.03 mg/mL to 0.125 mg/mL. The MIC and MBC values of the extract against S. chromogenes were 0.5-1 mg/mL and 0.5-2 mg/mL, respectively. Moreover, BSP exhibited MIC and MBC values of 12.5-50 v/v against all tested staphylococci isolates. When used at 1/2 and 1/4 × MIC, the extract and BSP significantly inhibited the formation of staphylococcal biofilms (p < 0.05) in the tested strains. The results indicated that treatment with 1/2 × MIC of the extract and BSP resulted in biofilm inhibition ranging from 30%-66% and 19%-39%, respectively. Furthermore, the extract at 16 × MIC eliminated 54%-86% of established mature isolate biofilms, whereas BSP removed 41%-61% of mature biofilm viability. Storage of BSP at 4°C did not change the factors associated with stability from the 1st to 4th week. Conclusion These findings suggest that BSP may exhibit potential medicinal benefits in inhibiting the growth and biofilm formation of mastitis-inducing staphylococci in bovines.
Collapse
Affiliation(s)
- Paparwee Sungkatavat
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Haemarat Khongkhai
- Division of Biological Science, Faculty of Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Wilasinee Kanchana
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Phirabhat Saengsawarng
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team, World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team, World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Julalak Chorachoo Ontong
- Cosmetic Technology and Dietary Supplement Products Program, Faculty of Agro and Bio Industry, Thaksin University, Phatthalung, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
27
|
Ruiz-Romero RA, Vargas-Bello-Pérez E. Non-aureus staphylococci and mammaliicocci as a cause of mastitis in domestic ruminants: current knowledge, advances, biomedical applications, and future perspectives - a systematic review. Vet Res Commun 2023; 47:1067-1084. [PMID: 36964436 PMCID: PMC10038778 DOI: 10.1007/s11259-023-10090-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023]
Abstract
Non-aureus staphylococci and mammaliicocci (NASM) are one of the most common causes of subclinical mastitis in dairy animals and the extent of damage by intramammary infections (IMI) caused by NASM is still under debate. The different effects of NASM on the mammary gland may be associated with differences between bacterial species. NASM are normal and abundant colonizers of humans and animals and become pathogenic only in certain situations. The veterinary interest in NASM has been intense for the last 25 years, due to the strongly increasing rate of opportunistic infections. Therefore, the objective of this review is to provide a general background of the NASM as a cause of mastitis and the most recent advances that exist to prevent and fight the biofilm formation of this group of bacteria, introduce new biomedical applications that could be used in dairy herds to reduce the risk of chronic and recurrent infections, potentially responsible for economic losses due to reduced milk production and quality. Effective treatment of biofilm infection requires a dual approach through a combination of antibiofilm and antimicrobial agents. Even though research on the development of biofilms is mainly focused on human medicine, this technology must be developed at the same time in veterinary medicine, especially in the dairy industry where IMI are extremely common.
Collapse
Affiliation(s)
- Rocio Angélica Ruiz-Romero
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de México, 04510, México.
| | - Einar Vargas-Bello-Pérez
- School of Agriculture, Policy and Development, University of Reading, New Agriculture Building, Earley Gate, Whiteknights Road, PO Box 237, Reading, Berkshire, RG6 6EU, UK.
| |
Collapse
|
28
|
Nale JY, McEwan NR. Bacteriophage Therapy to Control Bovine Mastitis: A Review. Antibiotics (Basel) 2023; 12:1307. [PMID: 37627727 PMCID: PMC10451327 DOI: 10.3390/antibiotics12081307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Bovine mastitis is a polymicrobial disease characterised by inflammation of the udders of dairy and beef cattle. The infection has huge implications to health and welfare of animals, impacting milk and beef production and costing up to EUR 32 billion annually to the dairy industry, globally. Bacterial communities associated with the disease include representative species from Staphylococcus, Streptococcus, Enterococcus, Actinomyces, Aerococcus, Escherichia, Klebsiella and Proteus. Conventional treatment relies on antibiotics, but antimicrobial resistance, declining antibiotic innovations and biofilm production negatively impact therapeutic efficacy. Bacteriophages (phages) are viruses which effectively target and lyse bacteria with extreme specificity and can be a valuable supplement or replacement to antibiotics for bovine mastitis. In this review, we provide an overview of the etiology of bovine mastitis, the advantages of phage therapy over chemical antibiotics for the strains and research work conducted in the area in various model systems to support phage deployment in the dairy industry. We emphasise work on phage isolation procedures from samples obtained from mastitic and non-mastitic sources, characterisation and efficacy testing of single and multiple phages as standalone treatments or adjuncts to probiotics in various in vitro, ex vivo and in vivo bovine mastitis infection models. Furthermore, we highlight the areas where improvements can be made with focus on phage cocktail optimisation, formulation, and genetic engineering to improve delivery, stability, efficacy, and safety in cattle. Phage therapy is becoming more attractive in clinical medicine and agriculture and thus, could mitigate the impending catastrophe of antimicrobial resistance in the dairy sector.
Collapse
Affiliation(s)
- Janet Y. Nale
- Centre for Epidemiology and Planetary Health, Scotland’s Rural College (SRUC), Inverness IV2 5NA, Scotland, UK
| | - Neil R. McEwan
- School of Veterinary Medicine, Scotland’s Rural College (SRUC), Aberdeen AB21 9YA, Scotland, UK;
| |
Collapse
|
29
|
Gonçalves MS, Faria JP, Silva JR, Custódio DA, Ribeiro JB, Guimarães ADS, Dorneles EM, Costa GM. Flagella are an important virulence factor in the subclinical persistence of Escherichia coli in bovine mammary gland. J DAIRY RES 2023:1-6. [PMID: 37326242 DOI: 10.1017/s0022029923000353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We compared the virulence profile and REP-PCR genotypes of Escherichia coli strains isolated from subclinical and clinical mastitis cases and dairy farm environments in Minas Gerais State, Brazil, to determine virulence factors and genotypes potentially associated with subclinical persistence in the udder. The virulence profile was obtained by the search for three virulence genes: lpfA (long polar fimbriae), fliC (flagella), and escN (type III secretion system). Subclinical isolates exhibited mainly the fliC gene (33.33%) and fliC + escN genes (30.30%). Clinical isolates exhibited mainly fliC + escN genes (50%) and environmental isolates the lpfA + escN genes (58.04%). Strains isolated from subclinical mastitis showed 6.75 times more positivity to fliC than environmental isolates. Thirty-four genotypes were observed in the REP-PCR analysis, and clinical mastitis isolates indicated more genetic proximity to dairy farm environment isolates than subclinical mastitis isolates. In conclusion, the results suggested that flagella may be an important virulence factor for mammary persistent E. coli infection in cattle, however, none of the E. coli REP-PCR genotypes were associated with subclinical infection.
Collapse
Affiliation(s)
- Maysa Serpa Gonçalves
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
| | - Jamila Pj Faria
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
| | - Juliana R Silva
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
| | - Dircéia Ac Custódio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
| | - João B Ribeiro
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Gado de Leite. Av. Eugênio do Nascimento, 610, Aeroporto 36038-330, Juiz de Fora, MG, Brazil
| | - Alessandro de S Guimarães
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Gado de Leite. Av. Eugênio do Nascimento, 610, Aeroporto 36038-330, Juiz de Fora, MG, Brazil
| | - Elaine Ms Dorneles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
| | - Geraldo M Costa
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
| |
Collapse
|
30
|
Ökmen G, Giannetto D, Fazio F, Arslan K. Investigation of Pomegranate ( Punica granatum L.) Flowers' Antioxidant Properties and Antibacterial Activities against Different Staphylococcus Species Associated with Bovine Mastitis. Vet Sci 2023; 10:394. [PMID: 37368780 DOI: 10.3390/vetsci10060394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Mastitis is one of the most considerable and costly diseases for dairy herds, and Staphylococcus spp. is known to be the main causative agent. Although antibiotics are widely used in the treatment of mastitis, this can cause both antibiotic residues in milk and the risk of antibiotic resistance occurrence in bacteria. Thus, in recent years, researchers have focused on alternative treatments for this disease and plants extracts are investigated for this purpose. Pomegranate is widely used as a dye, ornament, and medicinal plants in the industry, and the species has a particularly high economic value in Turkey. This study aims to investigate in vitro the antioxidant and antibacterial properties of the pomegranate flower's extracts against different Staphylococcus species associated with bovine mastitis. To this aim, pomegranate flowers were collected from different regions in Turkey and extracts were prepared with three different solvents (methanol, ethanol, and water). The retention factor values of the ethanol extract were determined by thin-layer chromatography. The antibacterial activity tests were carried out via the disk diffusion method. In addition, the extracts were tested against the stable DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radicals for antioxidant activity. Four retention factors (0.79, 0.67, 0.58, and 0.33 points) were found for the ethanol extract. The methanol extract showed the highest inhibition zones against coagulase-negative Staphylococcus-37 (CNS-37) and S. aureus-18. The lowest MIC was 6500 μg/mL. The highest antioxidant activity was observed in methanol extracts. As a result, the extracts of pomegranate flowers showed a high antioxidant and antibacterial potential against the examined mastitis pathogens.
Collapse
Affiliation(s)
- Gülten Ökmen
- Department of Biology, Faculty of Science, Mugla Sıtkı Kocman University, Mugla 48000, Turkey
| | - Daniela Giannetto
- Department of Biology, Faculty of Science, Mugla Sıtkı Kocman University, Mugla 48000, Turkey
| | - Francesco Fazio
- Department of Veterinary Sciences, Messina University, 98166 Messina, Italy
| | - Kutbettin Arslan
- Department of Biology, Faculty of Science, Mugla Sıtkı Kocman University, Mugla 48000, Turkey
| |
Collapse
|
31
|
Oknin H, Kroupitski Y, Shemesh M, Blum S. Upregulation of ica Operon Governs Biofilm Formation by a Coagulase-Negative Staphylococcus caprae. Microorganisms 2023; 11:1533. [PMID: 37375035 DOI: 10.3390/microorganisms11061533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Staphylococcus caprae is a Gram-positive, coagulase-negative staphylococci (CoNS), which appears as commensal in the skin, as well as a prevalent mastitis pathogen of goats. Occasionally, it is also associated with infections in humans. Biofilm formation has been identified as a putative virulence factor in S. caprae. Biofilms are multicellular communities protected by a self-produced extracellular matrix (ECM), which facilitates the resistance of bacterial cells to antimicrobial treatments. The ECM is constructed by exopolysaccharides, including the major exopolysaccharide-polysaccharide intercellular adhesion (PIA), regulated by the ica operon in Staphylococcus species. The aim of this study was to characterize the expression of the ica operon in relation to biofilm formation in S. caprae. Results showed that within a few hours of growth, S. caprae could adhere to polystyrene surfaces, start to accumulate, and form biofilm. Peak biofilm biomass and maturation were reached after 48 h, followed by a reduction in biomass after 72 h. Confocal laser scanning microscopy showed the expression of matrix-associated proteins and polysaccharides at various time points. The expression dynamics of the ica operon were investigated using real-time reverse transcriptase PCR (RT)-qPCR, which showed elevated expression during the early stages of biofilm formation and subsequent downregulation throughout the biofilm aging process. In conclusion, our results show that the ica operon is essential in regulating biofilm formation in S. caprae, similar to other Staphylococcus species. Furthermore, the robustness of the observed biofilm phenotype could account for the successful intramammary colonization and may explain disease persistence caused by this pathogenic bacterium.
Collapse
Affiliation(s)
- Hilla Oknin
- Institute for Postharvest Technology and Food Sciences, Department of Food Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Bacteriology and Mycology, Kimron Veterinary Institute, Rishon LeZion 7534503, Israel
| | - Yulia Kroupitski
- Institute for Postharvest Technology and Food Sciences, Department of Food Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Moshe Shemesh
- Institute for Postharvest Technology and Food Sciences, Department of Food Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Shlomo Blum
- Department of Bacteriology and Mycology, Kimron Veterinary Institute, Rishon LeZion 7534503, Israel
| |
Collapse
|
32
|
Tomanić D, Samardžija M, Kovačević Z. Alternatives to Antimicrobial Treatment in Bovine Mastitis Therapy: A Review. Antibiotics (Basel) 2023; 12:683. [PMID: 37107045 PMCID: PMC10135164 DOI: 10.3390/antibiotics12040683] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Despite preventive and therapeutic measures, mastitis continues to be the most prevalent health problem in dairy herds. Considering the risks associated with antibiotic therapy, such as compromised effectiveness due to the emergence of resistant bacteria, food safety issues, and environmental impact, an increasing number of scientific studies have referred to the new therapeutic procedures that could serve as alternatives to conventional therapy. Therefore, the aim of this review was to provide insight into the currently available literature data in the investigation of non-antibiotic alternative approaches. In general, a vast number of in vitro and in vivo available data offer the comprehension of novel, effective, and safe agents with the potential to reduce the current use of antibiotics and increase animal productivity and environmental protection. Constant progress in this field could overcome treatment difficulties associated with bovine mastitis and considerable global pressure being applied on reducing antimicrobial therapy in animals.
Collapse
Affiliation(s)
- Dragana Tomanić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia
| | - Marko Samardžija
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia
| |
Collapse
|
33
|
Sabino YNV, Cotter PD, Mantovani HC. Anti-virulence compounds against Staphylococcus aureus associated with bovine mastitis: A new therapeutic option? Microbiol Res 2023; 271:127345. [PMID: 36889204 DOI: 10.1016/j.micres.2023.127345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Bovine mastitis represents a major economic burden faced by the dairy industry. S. aureus is an important and prevalent bovine mastitis-associated pathogen in dairy farms worldwide. The pathogenicity and persistence of S. aureus in the bovine mammary gland are associated with the expression of a range of virulence factors involved in biofilm formation and the production of several toxins. The traditional therapeutic approach to treating bovine mastitis includes the use of antibiotics, but the emergence of antibiotic-resistant strains has caused therapeutic failure. New therapeutic approaches targeting virulence factors of S. aureus rather than cell viability can have several advantages including lower selective pressure towards the development of resistance and little impact on the host commensal microbiota. This review summarizes the potential of anti-virulence therapies to control S. aureus associated with bovine mastitis focusing on anti-toxin, anti-biofilm, and anti-quorum sensing compounds. It also points to potential sources of new anti-virulence inhibitors and presents screening strategies for identifying these compounds.
Collapse
Affiliation(s)
| | | | - Hilario C Mantovani
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
34
|
Orsi H, Guimarães FF, Leite DS, Guerra ST, Joaquim SF, Pantoja JCF, Hernandes RT, Lucheis SB, Ribeiro MG, Langoni H, Rall VLM. Characterization of mammary pathogenic Escherichia coli reveals the diversity of Escherichia coli isolates associated with bovine clinical mastitis in Brazil. J Dairy Sci 2023; 106:1403-1413. [PMID: 36567244 DOI: 10.3168/jds.2022-22126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022]
Abstract
Mammary pathogenic Escherichia coli (MPEC) is one of the most common pathogens associated with clinical mastitis. We analyzed isolates obtained from milk samples of cows with clinical mastitis, collected from 10 farms in Brazil, to verify molecular and phenotypic characteristics. A total of 192 (4.5%) mammary pathogenic E. coli isolates were obtained from 4,275 milk samples analyzed, but we tested 161. We assigned most of these isolates to E. coli phylogroups B1 (52.8%) and A (36.6%), although phylogroups B2, C, D, E, and unknown also occurred. All isolates were assessed for the presence of several genes encoding virulence factors, such as adhesins (sfaDE, papC, afaBC III, ecpA, fimH, papA, and iha), toxins (hlyA, cnf1, sat, vat, and cdt), siderophores (iroN, irp2, iucD, ireA, and sitA), an invasion protein (ibeA), and serum resistance proteins (traT, KpsMTII, and ompT), and isolates from phylogroups B1, B2, and E showed up to 8 genes. Two isolates harbored the locus of enterocyte effacement (escN+) and lack the bundle-forming pilus (bfpB-) operon, which corresponds to a molecular profile of a subgroup of diarrheagenic E. coli (aEPEC), thus being classified as hybrid MPEC/aEPEC isolates. These isolates displayed a localized adherence-like pattern of adherence in HeLa cells and were able to promote F-actin polymerization underneath adherent bacteria. Based on the pulsed-field gel electrophoresis analyses, considerable genetic variability was observed. A low index of antimicrobial resistance was observed and 2 extended-spectrum β-lactamase-producing E. coli were identified, both harboring blaCTX-M15 gene, and were classified as ST10 and ST993 using multilocus sequence typing. A total of 148 (91.2%) isolates were weak biofilm producers or formed no biofilm. Because raw milk is still frequently consumed in Brazil, the occurrence of virulence factor-encoding genes from extraintestinal or diarrheagenic E. coli added to the presence of extended-spectrum β-lactamase-producing isolates can turn this veterinary medicine problem into a public health concern.
Collapse
Affiliation(s)
- Henrique Orsi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Felipe F Guimarães
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Domingos S Leite
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, SP 13083 970, Brazil
| | - Simony T Guerra
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Sâmea F Joaquim
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Jose C F Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Rodrigo T Hernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Simone B Lucheis
- Paulista Agency of Agribusiness Technology, Bauru, SP 17030 000, Brazil
| | - Márcio G Ribeiro
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Helio Langoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Vera L M Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil.
| |
Collapse
|
35
|
Breser ML, Tisera L, Orellano MS, Bohl LP, Isaac P, Bianco I, Porporatto C. Chitosan can improve antimicrobial treatment independently of bacterial lifestyle, biofilm biomass intensity and antibiotic resistance pattern in non-aureus staphylococci (NAS) isolated from bovine clinical mastitis. Front Microbiol 2023; 14:1167693. [PMID: 37152721 PMCID: PMC10162019 DOI: 10.3389/fmicb.2023.1167693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Bovine mastitis is the most frequent and costly disease that affects dairy cattle. Non-aureus staphylococci (NAS) are currently one of the main pathogens associated with difficult-to-treat intramammary infections. Biofilm is an important virulence factor that can protect bacteria against antimicrobial treatment and prevent their recognition by the host's immune system. Previously, we found that chronic mastitis isolates which were refractory to antibiotic therapy developed strong biofilm biomass. Now, we evaluated the influence of biofilm biomass intensity on the antibiotic resistance pattern in strong and weak biofilm-forming NAS isolates from clinical mastitis. We also assessed the effect of cloxacillin (Clx) and chitosan (Ch), either alone or in combination, on NAS isolates with different lifestyles and abilities to form biofilm. The antibiotic resistance pattern was not the same in strong and weak biofilm producers, and there was a significant association (p ≤ 0.01) between biofilm biomass intensity and antibiotic resistance. Bacterial viability assays showed that a similar antibiotic concentration was effective at killing both groups when they grew planktonically. In contrast, within biofilm the concentrations needed to eliminate strong producers were 16 to 128 times those needed for weak producers, and more than 1,000 times those required for planktonic cultures. Moreover, Ch alone or combined with Clx had significant antimicrobial activity, and represented an improvement over the activity of the antibiotic on its own, independently of the bacterial lifestyle, the biofilm biomass intensity or the antibiotic resistance pattern. In conclusion, the degree of protection conferred by biofilm against antibiotics appears to be associated with the intensity of its biomass, but treatment with Ch might be able to help counteract it. These findings suggest that bacterial biomass should be considered when designing new antimicrobial therapies aimed at reducing antibiotic concentrations while improving cure rates.
Collapse
Affiliation(s)
- Maria Laura Breser
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
- *Correspondence: Maria Laura Breser,
| | - Lucia Tisera
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Maria Soledad Orellano
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
- University of the Basque Country UPV/EHU. Responsive Polymer Therapeutics Group (POLYMAT), San Sebastián, Spain
| | - Luciana Paola Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Paula Isaac
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Ismael Bianco
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Ministerio de Industria, Comercio, Minería y Desarrollo Científico Tecnológico, Córdoba, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
- Carina Porporatto,
| |
Collapse
|
36
|
Kovačević Z, Mihajlović J, Mugoša S, Horvat O, Tomanić D, Kladar N, Samardžija M. Pharmacoeconomic Analysis of the Different Therapeutic Approaches in Control of Bovine Mastitis: Phytotherapy and Antimicrobial Treatment. Antibiotics (Basel) 2022; 12:antibiotics12010011. [PMID: 36671213 PMCID: PMC9854675 DOI: 10.3390/antibiotics12010011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mastitis in dairy cows is responsible for major economic losses on dairy farms worldwide as the most expensive and prevalent disease in dairy cattle. In spite of the fact that antibiotic therapy still remains the main treatment strategy for bovine mastitis, concerns about the shortcomings of this treatment approach are continuously raised. Hence, research on alternative treatments with increased effectiveness and reduced costs is needed. Therefore, we conducted a pharmacoeconomic analysis of conventional antibiotic vs. a proposed Phyto-Bomat treatment based on essential oils in bovine mastitis therapy. Treatments were compared from the farmer's perspective in the domain of costs (expressed in total, direct and indirect, cost differences) and effectiveness (expressed in daily milk yield differences). Economic calculations were based on data from a dairy farm in Serbia. The average cost of conventional antibiotic treatment was estimated at EUR 80.32 consisting of therapy costs, veterinary services and milk rejection costs at EUR 16.54, EUR 17.68 and EUR 46.10, respectively. The average cost of Phyto-Bomat treatment was estimated at EUR 76.34 with therapy costs of EUR 34.34, veterinary costs of EUR 32.00 and rejection of milk costs of only EUR 10.00. Therefore, Phyto-Bomat results in cost savings approximating EUR 4 per each mastitis episode with the highest cost reductions obtained in milk rejection costs. This estimation of Phyto-Bomat's economic benefits could be used as a starting point for the inclusion of this formulation as an alternative treatment approach with a focus on subclinical mastitis since it contributes to most of the financial losses.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia
- Correspondence:
| | - Jovan Mihajlović
- Mihajlović Health Analytics (MiHA), Omladinskih radnih akcija 54, 21000 Novi Sad, Serbia
- University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Snežana Mugoša
- Faculty of Medicine, University of Montenegro, Krusevac bb, 81000 Podgorica, Montenegro
- Institute for Medicine and Medical Devices of Montenegro, Bulevar Ivana Crnojevića 64a, 81000 Podgorica, Montenegro
| | - Olga Horvat
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dragana Tomanić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- Center for Medical and Pharmaceutical Investigations and Quality Control, Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Marko Samardžija
- Clinic for Reproduction and Obstetrics, Veterinary Faculty, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
37
|
Zhao C, Hu X, Bao L, Wu K, Zhao Y, Xiang K, Li S, Wang Y, Qiu M, Feng L, Meng X, Zhang N, Fu Y. Gut dysbiosis induces the development of mastitis through a reduction in host anti-inflammatory enzyme activity by endotoxemia. MICROBIOME 2022; 10:205. [PMID: 36451232 PMCID: PMC9714159 DOI: 10.1186/s40168-022-01402-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/24/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Mounting experimental evidence has shown that the gut microbiota plays a significant role in the pathogenesis of mastitis, and clinical investigations have found that the occurrence of mastitis is correlated with ruminal dysbiosis. However, the underlying mechanism by which the ruminal microbiota participates in the development of mastitis remains unknown. RESULTS In the present study, we found that cows with clinical mastitis had marked systemic inflammation, which was associated with significant ruminal dysbiosis, especially enriched Proteobacteria in the rumen. Ruminal microbiota transplantation from mastitis cows (M-RMT) to mice induced mastitis symptoms in recipient mice along with increased mammary proinflammatory signature activation of the TLR4-cGAS-STING-NF-κB/NLRP3 pathways. M-RMT also induced mucosal inflammation and impaired intestinal barrier integrity, leading to increased endotoxemia and systemic inflammation. Moreover, we showed that M-RMT mirrored ruminal microbiota disruption in the gut of recipient mice, as evidenced by enriched Proteobacteria and similar bacterial functions, which were correlated with most proinflammatory parameters and serum lipopolysaccharide (LPS) levels in mice. Recurrent low-grade LPS treatment mirrored gut dysbiosis-induced endotoxemia and caused severe mastitis in mice. Furthermore, we found that gut dysbiosis-derived LPS reduced host alkaline phosphatase activity by activating neuraminidase (Neu), which facilitates low-grade LPS exposure and E. coli-induced mastitis in mice. Conversely, treatment with calf intestinal alkaline phosphatase or the Neu inhibitor zanamivir alleviated low-grade LPS exposure and E. coli-induced mastitis in mice. CONCLUSIONS Our results suggest that ruminal dysbiosis-derived low-grade endotoxemia can cause mastitis and aggravate pathogen-induced mastitis by impairing host anti-inflammatory enzymes, which implies that regulating the ruminal or gut microbiota to prevent low-grade systemic inflammation is a potential strategy for mastitis intervention. Video Abstract.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Shuang Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiangyue Meng
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| |
Collapse
|
38
|
Mohammadian F, Rahmani HK, Bidarian B, Khoramian B. Isolation and evaluation of the efficacy of bacteriophages against multidrug-resistant (MDR), methicillin-resistant (MRSA) and biofilm-producing strains of Staphylococcus aureus recovered from bovine mastitis. BMC Vet Res 2022; 18:406. [PMID: 36384653 PMCID: PMC9670557 DOI: 10.1186/s12917-022-03501-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background Staphylococcus aureus (S. aureus) is one of the major causes of bovine mastitis with significant economic losses around the worldwide. The emergence of multidrug-resistant (MDR), methicillin-resistant (MRSA) and biofilm-producing strains of S. aureus challenges the treatment strategies based on the antibiotic application. Today, alternative or combinational treatment options such as bacteriophage application has received much attention. The goal of the present study was to focus on isolation and evaluation of the efficacy of bacteriophages with specific lytic activity against S. aureus strains with low cure rates (MDR, MRSA and biofilm-producing strains). Results In the present study, two phages belonging to the Podoviridae family with specific lytic activity against S. aureus were isolated from the sewage of dairy farms and designated as Staphylococcus phage M8 and Staphylococcus phage B4. Latent period and burst size for Staphylococcus phage M8 (70 min, 72 PFU/cell) and Staphylococcus phage B4 (30 min, 447 PFU/cell) were also defined. Our results revealed the susceptibility of MDR (4/20; 20%), MRSA (4/13; 30.8%) and biofilm-producing (1/10; 10%) strains to Staphylococcus phage M8. Moreover, one biofilm-producing strain (1/10; 10%) was susceptible to Staphylococcus phage B4. Furthermore, both phages kept their lytic activity in milk. They reduced the S. aureus population by about 3 logs in cultured milk after 8 h of incubation. Conclusion In conclusion, it seems that both phages had the potential to serve as biological control agents alone or in combination with other agents such as antibiotics against infections induced by S. aureus. However, further studies are needed to investigate the efficacy of these phages in vivo.
Collapse
Affiliation(s)
- Fatemeh Mohammadian
- grid.411301.60000 0001 0666 1211Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box: 9177948974, Mashhad, Khorasan Razavi Province Iran
| | - Hamideh Kalateh Rahmani
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Behnam Bidarian
- grid.411301.60000 0001 0666 1211Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box: 9177948974, Mashhad, Khorasan Razavi Province Iran
| | - Babak Khoramian
- grid.411301.60000 0001 0666 1211Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box: 9177948974, Mashhad, Khorasan Razavi Province Iran
| |
Collapse
|
39
|
Goulart DB, Mellata M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front Microbiol 2022; 13:928346. [PMID: 35875575 PMCID: PMC9301288 DOI: 10.3389/fmicb.2022.928346] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is an inflammation of the udder tissue parenchyma that causes pathological changes in the glandular tissue and abnormalities in milk leading to significant economic losses to the dairy industry across the world. Mammary pathogenic Escherichia (E.) coli (MPEC) is one of the main etiologic agents of acute clinical mastitis in dairy cattle. MPEC strains have virulence attributes to resist the host innate defenses and thrive in the mammary gland environment. The association between specific virulence factors of MPEC with the severity of mastitis in cattle is not fully understood. Furthermore, the indiscriminate use of antibiotics to treat mastitis has resulted in antimicrobial resistance to all major antibiotic classes in MPEC. A thorough understanding of MPEC’s pathogenesis and antimicrobial susceptibility pattern is required to develop better interventions to reduce mastitis incidence and prevalence in cattle and the environment. This review compiles important information on mastitis caused by MPEC (e.g., types of mastitis, host immune response, diagnosis, treatment, and control of the disease) as well as the current knowledge on MPEC virulence factors, antimicrobial resistance, and the dilemma of MPEC as a new pathotype. The information provided in this review is critical to identifying gaps in knowledge that will guide future studies to better design diagnostic, prevent, and develop therapeutic interventions for this significant dairy disease.
Collapse
Affiliation(s)
- Débora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Débora Brito Goulart,
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Melha Mellata,
| |
Collapse
|
40
|
Silva V, Correia E, Pereira JE, González-Machado C, Capita R, Alonso-Calleja C, Igrejas G, Poeta P. Biofilm Formation of Staphylococcus aureus from Pets, Livestock, and Wild Animals: Relationship with Clonal Lineages and Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060772. [PMID: 35740178 PMCID: PMC9219840 DOI: 10.3390/antibiotics11060772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to compare the biofilm formation ability of Staphylococcus aureus isolated from a wide range of animals and study the association between biofilm formation and antimicrobial resistance and genetic lineages. A total of 214 S. aureus strains isolated from pets, livestock, and wild animals were evaluated regarding their ability to form biofilms by the microtiter biofilm assay and their structure via confocal scanning laser microscopy. Statistical analysis was used to find an association between biofilm formation and antimicrobial resistance, multidrug resistance, sequence types (STs), spa and agr-types of the isolates. The antimicrobial susceptibility of 24 h-old biofilms was assessed against minimum inhibitory concentrations (MIC) and 10× MIC of amikacin and tetracycline, and the biomass reduction was measured. The metabolic activity of biofilms after antimicrobial treatment was evaluated by the XTT assay. All isolates were had the ability to form biofilms. Yet, significant differences in biofilm biomass production were detected among animal species. Multidrug resistance had a positive association with biofilm formation as well as methicillin-resistance. Significant differences were also detected among the clonal lineages of the isolates. Both tetracycline and amikacin were able to significantly reduce the biofilm mass. However, none of the antimicrobials were able to eradicate the biofilm at the maximum concentration used. Our results provide important information on the biofilm-forming capacity of animal-adapted S. aureus isolates, which may have potential implications for the development of new biofilm-targeted therapeutics.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Elisete Correia
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal;
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
41
|
Winther AR, Narvhus JA, Smistad M, da Silva Duarte V, Bombelli A, Porcellato D. Longitudinal dynamics of the bovine udder microbiota. Anim Microbiome 2022; 4:26. [PMID: 35395785 PMCID: PMC8994269 DOI: 10.1186/s42523-022-00177-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the number of studies concerning microbiota of the intramammary environment has increased rapidly due to the development of high-throughput sequencing technologies that allow mapping of microbiota without culturing. This has revealed that an environment previously thought to be sterile in fact harbours a microbial community. Since this discovery, many studies have investigated the microbiota of different parts of the udder in various conditions. However, few studies have followed the changes that occur in the udder microbiota over time. In this study, the temporal dynamics of the udder microbiota of 10 cows, five with a low somatic cell count (SCC, SCC < 100,000 cells/mL) and five with a high SCC (SCC > 100,000 cells/mL), were followed over 5 months to gather insights into this knowledge gap. RESULTS Analysis of the temporal changes in the microbial composition of milk from udders with a low SCC revealed a dynamic and diverse microbiota. When an imbalance due to one dominating genus was recorded, the dominant genus quickly vanished, and the high diversity was restored. The genera dominating in the samples with a high SCC remained the dominant genera throughout the whole sampling period. These cows generally displayed a heightened SCC or an intramammary infection in at least one quarter though-out the sampling period. CONCLUSION Our results show that the bovine udder has a diverse microbiota, and that the composition and diversity of this community affects udder health with regards to SCC. Understanding what influences the composition and stability of this community has important implications for the understanding, control, and treatment of mastitis.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway.
| | - Judith A Narvhus
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | - Marit Smistad
- Norwegian Veterinary Institute, Oslo, Norway.,TINE SA, Oslo, Norway
| | - Vinicius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | - Alberto Bombelli
- Department of Agrotechnology and Food Science, Wageningen University and Research, Wageningen, Netherlands
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
42
|
Freu G, Tomazi T, Filho AFS, Heinemann MB, dos Santos MV. Antimicrobial Resistance and Molecular Characterization of Staphylococcus aureus Recovered from Cows with Clinical Mastitis in Dairy Herds from Southeastern Brazil. Antibiotics (Basel) 2022; 11:antibiotics11040424. [PMID: 35453176 PMCID: PMC9024692 DOI: 10.3390/antibiotics11040424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus aureus is a contagious pathogen frequently associated with bovine mastitis in Brazil. Molecular characterization of Staph. aureus isolated from affected mammary quarters of cows with clinical mastitis (CM) can provide data on epidemiological behavior of this pathogen and antimicrobial susceptibility (AMS) assessment at the genotypic level. This study genotypically characterized Staph. aureus isolates recovered from cows with CM and determined the association of genotypes and AMS. A total of 84 Staph. aureus strains identified from affected mammary quarters of cows with CM in 13 dairy herds from Southeastern Brazil were submitted for susceptibility testing to 10 antimicrobials using the technique of minimal inhibitory concentration. The same isolates were also genotyped using the spa-typing methodology. Results showed a high genotypic similarity between the Staph. aureus isolates within and between herds, which were categorized as resistant to most antimicrobials, especially to β-lactam antibiotics. In addition, differences in AMS were observed among genotypic clusters, which may affect the efficacy of antimicrobials used to treat CM in different dairy herds.
Collapse
Affiliation(s)
- Gustavo Freu
- Milk Quality Research Laboratory (Qualileite), Department of Nutrition and Animal Production, University of São Paulo, Pirassununga, São Paulo 13635-900, Brazil;
| | - Tiago Tomazi
- Technical Services, Merck Animal Health, Kenilworth, NJ 07033, USA;
| | - Antonio F. S. Filho
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil; (A.F.S.F.); (M.B.H.)
| | - Marcos B. Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil; (A.F.S.F.); (M.B.H.)
| | - Marcos V. dos Santos
- Milk Quality Research Laboratory (Qualileite), Department of Nutrition and Animal Production, University of São Paulo, Pirassununga, São Paulo 13635-900, Brazil;
- Correspondence: ; Tel.: +55-19-3545-4240
| |
Collapse
|
43
|
Vitenberga-Verza Z, Pilmane M, Šerstņova K, Melderis I, Gontar Ł, Kochański M, Drutowska A, Maróti G, Prieto-Simón B. Identification of Inflammatory and Regulatory Cytokines IL-1α-, IL-4-, IL-6-, IL-12-, IL-13-, IL-17A-, TNF-α-, and IFN-γ-Producing Cells in the Milk of Dairy Cows with Subclinical and Clinical Mastitis. Pathogens 2022; 11:372. [PMID: 35335696 PMCID: PMC8954094 DOI: 10.3390/pathogens11030372] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
In naturally occurring bovine mastitis, effects of infection depend on the host inflammatory response, including the effects of secreted cytokines. Knowledge about the inflammatory and regulatory cytokines in milk cells of free-stall barn dairy cows and in naturally occurring mastitis is lacking as most studies focus on induced mastitis. Hereby, the aim of the study was to determine inflammatory and regulatory cytokines in the milk of dairy cows with subclinical and clinical mastitis. The following examinations of milk samples were performed: differential counting of somatic cells (SCC), bacteriological examination, and immunocytochemical analysis. Mean SCC increased in subclinical and clinical mastitis cases. The number of pathogenic mastitis-causing bacteria on plates increased in subclinical mastitis cases but decreased in clinical mastitis. The inflammatory and regulatory markers in the milk cells of healthy cows showed the highest mean cell numbers (%). In mastitis cases, immunoreactivity was more pronounced for IL-4, IL-6, IL-12, IL-13, IL-17A, TNF-α, and IFN-γ. Data about subclinical and clinical mastitis demonstrate inflammatory responses to intramammary infection driven by IL-1α, IL-4, and IL-17A. Moreover, the host defense response in mastitis is characterized by continuation or resolution of initial inflammation. IL-12 and INF-γ immunoreactivity was recognized to differ mastitis cases from the relative health status.
Collapse
Affiliation(s)
- Zane Vitenberga-Verza
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Māra Pilmane
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Ksenija Šerstņova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Ivars Melderis
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Łukasz Gontar
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Maksymilian Kochański
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Andżelika Drutowska
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Gergely Maróti
- Seqomics Biotechnology Ltd., 6782 Morahalom, Hungary;
- Biological Research Center, Plant Biology Institute, 6726 Szeged, Hungary
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|
44
|
Pascu C, Herman V, Iancu I, Costinar L. Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania. Antibiotics (Basel) 2022; 11:antibiotics11010057. [PMID: 35052934 PMCID: PMC8772981 DOI: 10.3390/antibiotics11010057] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
The present study aimed to determine the bacteria isolated from bovine mastitis and their antimicrobial resistance in the western part of Romania. Clinical mastitis was diagnosed based on local inflammation in the udder, changes in milk, and when present, generalized symptoms. Subclinical mastitis was assessed using a rapid test—the California Mastitis Test. The identification of bacterial strains was performed based on biochemical profiles using API system tests (API 20 E, API Staph, API 20 Strep, API Coryne, API 20 NE (bioMerieux, Marcy l’Etoile, France), and MALDI-TOF mass spectrometry (MS). The prevalent isolated bacteria were Staphylococcus spp. (50/116; 43.19%), followed by Streptococcus spp. (26/116; 22.41%), E. coli (16/116; 13.79%), Corynebacterium spp. (9/116; 7.75%), Enterococcus spp. (10/116; 8.62%), and Enterobacter spp. (5/116; 4.31%). Phenotype antimicrobial resistance profiling was performed used the disc diffusion method. Generally, Gram-positive bacteria showed low susceptibility to most of the antimicrobials tested, except cephalothin. Susceptibilities to penicillins and quinolones were fairly high in Gram-negative bacteria, whereas resistance was observed to macrolides, aminoglycosides, and tetracyclines. The highest number of isolates were multidrug resistant (MDR), the resistance pathotypes identified including the most frequently antimicrobials used in cow mastitis treatment in Romania.
Collapse
Affiliation(s)
- Corina Pascu
- Correspondence: (C.P.); (L.C.); Tel.: +40-723-277-978 (C.P.)
| | | | | | | |
Collapse
|
45
|
Review of trends in essential oils as alternatives to antibiotics in bovine mastitis treatment. ZBORNIK MATICE SRPSKE ZA PRIRODNE NAUKE 2022. [DOI: 10.2298/zmspn2242047t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bovine mastitis is an important disease in the dairy industry responsi?ble
for the welfare and significant economic losses in dairy cows. The treatment
of choice for mastitis is the administration of antibiotics. However, this
therapeutic choice has some disadvantages including presence of antibiotics
residues in the milk, low cure rate as well as rapid increase in
antibiotic-resistant pathogens. Therefore, new alternative approaches to
antibiotics were investigated by different groups of researchers in order to
find an effective approach for bovine mastitis therapy. This review was
conducted in order to analyze different publications on usage of essential
oils in relation to bovine mastitis. There are many in vitro studies for
evaluating the antimicrobial efficacy of essential oils against many
mastitis associated pathogens. In addition, numerous of tested essential
oils have shown good efficacy with a wide range of minimal inhibitory
concentrations (MICs) and minimal bactericidal concentrations (MBCs). On
the other hand, only several in vivo studies have focused on therapeutic
effects of essential oils. Moreover, recent studies indicate the possibility
of using essential oils in the fight against biofilm which could be
promising fight against bovine mastitis since unsuccessful antibiotic
treatment can be associated with the presence of biofilms.
Collapse
|
46
|
An overview on mastitis-associated Escherichia coli: Pathogenicity, host immunity and the use of alternative therapies. Microbiol Res 2021; 256:126960. [PMID: 35021119 DOI: 10.1016/j.micres.2021.126960] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
Escherichia coli is one of the leading causes of bovine mastitis; it can cause sub-clinical, and clinical mastitis characterized by systemic changes, abnormal appearance of milk, and udder inflammation. E. coli pathogenicity in the bovine udder is due to the interaction between its virulence factors and the host factors; it was also linked to the presence of a new pathotype termed mammary pathogenic E. coli (MPEC). However, the presence of this pathotype is commonly debated. Its main virulence factor is the lipopolysaccharide (LPS) that is responsible for causing an endotoxic shock, and inducing a strong immune response by binding to the toll-like receptor 4 (TLR4), and stimulating the expression of chemokines (such as IL-8, and RANTES) and pro-inflammatory cytokines (such as IL-6, and IL-1β). This strong immune response could be used to develop alternative and safe approaches to control E. coli causing bovine mastitis by targeting pro-inflammatory cytokines that can damage the host tissue. The need for alternative treatments against E. coli is due to its ability to resist many conventional antibiotics, which is a huge challenge for curing ill animals. Therefore, the aim of this review was to highlight the pathogenicity of E. coli in the mammary gland, discuss the presence of the new putative pathotype, the mammary pathogenic E. coli (MPEC) pathotype, study the host's immune response, and the alternative treatments that are used against mastitis-associated E. coli.
Collapse
|
47
|
Cáceres ME, Ledesma MM, Lombarte Serrat A, Vay C, Sordelli DO, Giacomodonato MN, Buzzola FR. Growth conditions affect biofilms of Staphylococcus aureus producing mastitis: Contribution of MALDI-TOF-MS to strain characterization. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100073. [PMID: 34841363 PMCID: PMC8610354 DOI: 10.1016/j.crmicr.2021.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022] Open
Abstract
S. aureus native strains formed in vitro high biofilm in milk. Milk whey and free iron medium significantly decreased the biofilms of S. aureus. MALDI-TOF-MS was a useful tool to categorize different levels of biofilm formation.
Bovine mastitis is a disease of dairy cattle prevalent throughout the world that causes alterations in the quality and composition of milk, compromising technological performance. Staphylococcus aureus is one of the most important pathogens that produce clinical, subclinical, and chronic mastitis. Biofilms are considered a virulence factor necessary for the survival of S. aureus in the mammary gland. Its zoonotic potential is important not only for the dairy industry sector but also for public health. This study aimed to evaluate the effect of different growing culture conditions on the biofilm formation of S. aureus isolated from mastitis and to test the MALDI-TOF-MS's ability to discriminate among different biofilm formation levels. Fluids commonly found in the dairy environment were incorporated to approach the pathogen's behavior in natural surroundings. PIA production was also evaluated. All strains were able to form high biofilms in TSB, TSBg, and milk. Milk changed the behavior of some strains which formed more biofilms in this medium than in TSBg. The free iron medium CTSBg and milk whey inhibited the biofilm formation of the most strains. MALDI-TOF-MS performance was an excellent tool to discriminate between high, moderate, and low biofilm producers strains of S. aureus in each media, confirming the results of crystal violet assay. PIA production was variable among the strains and showed a media-dependent behavior. Our data highlights the importance of considering the growing conditions that mimic the natural ones to the study of biofilm formation in vitro.
Collapse
Affiliation(s)
- María Emilia Cáceres
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Manuel Ledesma
- Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Lombarte Serrat
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Vay
- Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Oscar Sordelli
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Nancy Giacomodonato
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernanda Roxana Buzzola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
Jørgensen E, Bjarnsholt T, Jacobsen S. Biofilm and Equine Limb Wounds. Animals (Basel) 2021; 11:2825. [PMID: 34679846 PMCID: PMC8532864 DOI: 10.3390/ani11102825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
In chronic wounds in humans, biofilm formation and wound chronicity are linked, as biofilms contribute to chronic inflammation and delayed healing. Biofilms are aggregates of bacteria, and living as biofilms is the default mode of bacterial life; within these aggregates, the bacteria are protected from both antimicrobial substances and the immune response of the host. In horses, delayed healing is more commonly seen in limb wounds than body wounds. Chronic inflammation and hypoxia are the main characteristics of delayed wound healing in equine limbs, and biofilms might also contribute to this healing pattern in horses. However, biofilm formation in equine wounds has been studied to a very limited degree. Biofilms have been detected in equine traumatic wounds, and recent experimental models have shown that biofilms protract the healing of equine limb wounds. Detection of biofilms within wounds necessitates advanced techniques that are not available in routine diagnostic yet. However, infections with biofilm should be suspected in equine limb wounds not healing as expected, as they are in human wounds. Treatment should be based on repeated debridement and application of topical antimicrobial therapy.
Collapse
Affiliation(s)
- Elin Jørgensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
- Department of Clinical Microbiology, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark;
| |
Collapse
|
49
|
Toledo-Silva B, de Souza FN, Mertens K, Piepers S, Haesebrouck F, De Vliegher S. Bovine-associated non-aureus staphylococci suppress Staphylococcus aureus biofilm dispersal in vitro yet not through agr regulation. Vet Res 2021; 52:114. [PMID: 34479647 PMCID: PMC8414718 DOI: 10.1186/s13567-021-00985-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Biofilm formation is a significant virulence factor in Staphylococcus (S.) aureus strains causing subclinical mastitis in dairy cows. A role of environmental signals and communication systems in biofilm development, such as the agr system in S. aureus, is suggested. In the context of multispecies biofilm communities, the presence of non-aureus staphylococci (NAS) might influence S. aureus colonization of the bovine mammary gland, yet, such interspecies interactions have been poorly studied. We determined whether 34 S. chromogenes, 11 S. epidermidis, and 14 S. simulans isolates originating from bovine milk samples and teat apices (TA) were able to affect biofilm formation and dispersion of S. aureus, and if so, how isolate traits such as the capacity to regulate the S. aureus agr quorum sensing system are determinants in this process. The capacity of an agr-positive S. aureus strain to form biofilm was increased more in the presence of S. chromogenes than in the presence of S. simulans and S. epidermidis isolates and in the presence of NAS isolates that do not harbor biofilm related genes. On the other hand, biofilm dispersion of this particular S. aureus strain was suppressed by NAS as a group, an effect that was more pronounced by isolates from TA. Furthermore, the observed effects on biofilm formation and dispersion of the agr-positive S. aureus strain as well as of an agr-negative S. aureus strain did not depend on the capacity of NAS to repress the agr system.
Collapse
Affiliation(s)
- Bruno Toledo-Silva
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Ghent, Belgium.
| | - Fernando N de Souza
- Veterinary Clinical Immunology Research Group, Department of Clinical Science, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Prof. Orlando Marques de Paiva Av. 87, São Paulo, 05508-270, Brazil.,Postgraduate Program in Animal Science, Department of Veterinary Medicine, Federal University of Paraiba, Rodovia PB-079 12, Areia, João Pessoa, 58397-000, Brazil
| | - Kristien Mertens
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Ghent, Belgium
| | - Sofie Piepers
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Ghent, Belgium
| | - Sarne De Vliegher
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Ghent, Belgium
| |
Collapse
|