1
|
Quaade ML, Wegener KM, Otzen LWD, Rasmussen TB, Hammer ASV. Characterization of brain lesions in Danish farm mink (Neogale vison) with acute, fatal SARS-CoV-2 infection. J Comp Pathol 2025; 219:36-40. [PMID: 40315661 DOI: 10.1016/j.jcpa.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
The pathology of brain tissue from 13 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected mink (Neogale vison), 20 mink in recovery, as well as 16 uninfected mink were investigated by histology and immunohistochemistry (IHC), contributing to the limited knowledge on brain pathology in mink. IHC and histology did not reveal direct viral infection in the brain tissue, but evidence of fibrin microthrombi were frequently found in the acute fatally infected mink, without associated ischaemic injury or inflammation. This finding does not align with observations in brains of human COVID-19 patients, as the mink lacked the ischaemic and inflammatory lesions commonly associated with the cerebral microthrombi observed in human studies. Neither fibrin microthrombi nor ischaemic or inflammatory lesions were observed in the brain of recovering mink.
Collapse
Affiliation(s)
- Michelle L Quaade
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Karen M Wegener
- Department of Regulatory Toxicology & Safety Assessment, H. Lundbeck A/S, Valby, Denmark
| | - Louise W D Otzen
- Department of Regulatory Toxicology & Safety Assessment, H. Lundbeck A/S, Valby, Denmark
| | - Thomas B Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300, Copenhagen S, Denmark
| | - Anne S V Hammer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Kuroda Y, Ozaki M, Sakai Y, Uchida-Fujii E, Hanada I, Yamamoto T, Tatemoto K, Hirata Y, Sato Y, Katano H, Nagata N, Kato H, Shimada T, Suzuki T, Nakao T, Maeda K. An outbreak of SARS-CoV-2 omicron variant and deaths of three lions in a zoo. One Health 2024; 19:100870. [PMID: 39206254 PMCID: PMC11350503 DOI: 10.1016/j.onehlt.2024.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
There have been reports of the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to various mammalian species. Some infected animals show clinical signs and may even die in rare cases. Outbreaks of SARS-CoV-2 have been reported in zoos where susceptible animals are bred in high population densities. However, there have been few reports of omicron variant outbreaks in zoo animals. From late 2022 to 2023, an outbreak of the SARS-CoV-2 omicron variant occurred in one Japanese zoo. A total of 24 lions were housed in the zoo; 13 of them showed respiratory symptoms, and the three oldest lions died. Molecular and histopathological analyses revealed that the deceased lions were infected with SARS-CoV-2 omicron BF.7.15. Virus-neutralization tests showed that all 21 lions were positive for antibodies against the omicron variant, but not against the delta variant. In addition, three tigers and one bear in the same or neighboring building as the lions possessed antibodies against the omicron variant. This is a very rare report on the outbreak of a SARS-CoV-2 omicron variant infection that resulted in the death of animals. This finding demonstrates the importance of continuous countermeasures to protect non-vaccinated animals from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Miki Ozaki
- Adventure World, 2399 Katada, Shirahama-cho, Nishimuro-gun, Wakayama 649-2201, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Eri Uchida-Fujii
- Center for Field Epidemic Intelligence Research and Professional Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ikumi Hanada
- Adventure World, 2399 Katada, Shirahama-cho, Nishimuro-gun, Wakayama 649-2201, Japan
| | - Tsukasa Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hirofumi Kato
- Center for Field Epidemic Intelligence Research and Professional Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomoe Shimada
- Center for Field Epidemic Intelligence Research and Professional Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tatsuko Nakao
- Adventure World, 2399 Katada, Shirahama-cho, Nishimuro-gun, Wakayama 649-2201, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
3
|
Oltjen H, Crook E, Lanier WA, Rettler H, Oakeson KF, Young EL, Torchetti M, Van Wettere AJ. SARS-CoV-2 delta variant in African lions (Panthera leo) and humans at Utah's Hogle Zoo, USA, 2021-22. Zoonoses Public Health 2024; 71:807-816. [PMID: 38825749 PMCID: PMC11455604 DOI: 10.1111/zph.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Abstract
AIMS We conducted a One Health investigation to assess the source and transmission dynamics of SARS-CoV-2 infection in African lions (Panthera leo) at Utah's Hogle Zoo in Salt Lake City from October 2021 to February 2022. METHODS AND RESULTS Following observation of respiratory illness in the lions, zoo staff collected pooled faecal samples and individual nasal swabs from four lions. All specimens tested positive for SARS-CoV-2 by reverse transcription-polymerase chain reaction (RT-PCR). The resulting investigation included: lion observation; RT-PCR testing of lion faeces every 1-7 days; RT-PCR testing of lion respiratory specimens every 2-3 weeks; staff interviews and RT-PCR testing; whole-genome sequencing of viruses from lions and staff; and comparison with existing SARS-CoV-2 human community surveillance sequences. In addition to all five lions, three staff displayed respiratory symptoms. All lions recovered and no hospitalizations or deaths were reported among staff. Three staff reported close contact with the lions in the 10 days before lion illness onset, one of whom developed symptoms and tested positive for SARS-CoV-2 on days 3 and 4, respectively, after lion illness onset. The other two did not report symptoms or test positive. Two staff who did not have close contact with the lions were symptomatic and tested positive on days 5 and 8, respectively, after lion illness onset. We detected SARS-CoV-2 RNA in lion faeces for 33 days and in lion respiratory specimens for 14 weeks after illness onset. The viruses from lions were genetically highly related to those from staff and two contemporaneous surveillance specimens from Salt Lake County; all were delta variants (AY.44). CONCLUSIONS We did not determine the sources of these infections, although human-to-lion transmission likely occurred. The observed period of respiratory shedding was longer than in previously documented SARS-CoV-2 infections in large felids, indicating the need to further assess duration and potential implications of shedding.
Collapse
Affiliation(s)
- Heather Oltjen
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | | | - William A. Lanier
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
- Centers for Disease Control and Prevention, Office of Readiness and Response, Division of State and Local Readiness, Career Epidemiology Field Officer Program, Atlanta, Georgia, USA
- US Public Health Service, Rockville, Maryland, USA
| | - Hannah Rettler
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Kelly F. Oakeson
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Erin L. Young
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Mia Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | | |
Collapse
|
4
|
Al Noman Z, Tasnim S, Masud RI, Anika TT, Islam MS, Rahman AMMT, Rahman MT. A systematic review on reverse-zoonosis: Global impact and changes in transmission patterns. J Adv Vet Anim Res 2024; 11:601-617. [PMID: 39605779 PMCID: PMC11590586 DOI: 10.5455/javar.2024.k810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/14/2024] [Accepted: 09/07/2024] [Indexed: 11/29/2024] Open
Abstract
Reverse zoonosis or zooanthroponosis is the transfer of pathogens from humans to animals. Although less studied than zoonotic diseases, this phenomenon poses significant risks to both animal and public health. The increasing human-animal interactions driven by urbanization, globalization, and environmental changes have exacerbated the occurrence of reverse zoonosis. This review evaluated the global impact and transmission patterns of reverse zoonosis, highlighting the anthropogenic and intrinsic factors contributing to its emergence. The study performed a systematic review and included 91 scientific articles published from 2000 to 2022, covering viral, bacterial, parasitic, fungal, and protozoal reverse zoonoses. This study indicated that viral infections, particularly respiratory viruses such as severe acute respiratory syndrome coronavirus-2 and influenza, have the highest incidence of reverse zoonosis, followed by bacterial infections like tuberculosis and methicillin-resistant Staphylococcus aureus. The United States, India, and Hong Kong are among the most reported regions for reverse zoonotic events. Major risk factors identified include environmental degradation, climate change, antimicrobial resistance, and global wildlife trade. The review underscores the need for enhanced surveillance systems, interdisciplinary collaboration, and stringent regulations on wildlife trade and animal husbandry practices to mitigate the risks associated with reverse zoonosis. Understanding the dynamics of human-animal pathogen transmission is crucial for developing not only effective but also sustainable strategies to protect animal populations as well as public health from emerging infectious diseases.
Collapse
Affiliation(s)
- Zakaria Al Noman
- Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Shadia Tasnim
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rony Ibne Masud
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tasnia Tabassum Anika
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Animal Sciences, University of California - Davis, Davis, CA, USA
| | | | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
5
|
Hu Y, Villalan AK, Fan X, Zhang S, Joka FR, Wu X, Wang H, Wang X. Analysis the molecular similarity of least common amino acid sites in ACE2 receptor to predict the potential susceptible species for SARS-CoV-2. PLoS One 2024; 19:e0293441. [PMID: 38696505 PMCID: PMC11065212 DOI: 10.1371/journal.pone.0293441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/24/2024] [Indexed: 05/04/2024] Open
Abstract
SARS-CoV-2 infections in animals have been reported globally. However, the understanding of the complete spectrum of animals susceptible to SARS-CoV-2 remains limited. The virus's dynamic nature and its potential to infect a wide range of animals are crucial considerations for a One Health approach that integrates both human and animal health. This study introduces a bioinformatic approach to predict potential susceptibility to SARS-CoV-2 in both domestic and wild animals. By examining genomic sequencing, we establish phylogenetic relationships between the virus and its potential hosts. We focus on the interaction between the SARS-CoV-2 genome sequence and specific regions of the host species' ACE2 receptor. We analyzed and compared ACE2 receptor sequences from 29 species known to be infected, selecting 10 least common amino acid sites (LCAS) from key binding domains based on similarity patterns. Our analysis included 49 species across primates, carnivores, rodents, and artiodactyls, revealing complete consistency in the LCAS and identifying them as potentially susceptible. We employed the LCAS similarity pattern to predict the likelihood of SARS-CoV-2 infection in unexamined species. This method serves as a valuable screening tool for assessing infection risks in domestic and wild animals, aiding in the prevention of disease outbreaks.
Collapse
Affiliation(s)
- YeZhi Hu
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Arivizhivendhan Kannan Villalan
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Xin Fan
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Shuang Zhang
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | | | - XiaoDong Wu
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - HaoNing Wang
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang Province, China
| | - XiaoLong Wang
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| |
Collapse
|
6
|
Jahid MJ, Bowman AS, Nolting JM. SARS-CoV-2 Outbreaks on Mink Farms-A Review of Current Knowledge on Virus Infection, Spread, Spillover, and Containment. Viruses 2024; 16:81. [PMID: 38257781 PMCID: PMC10819236 DOI: 10.3390/v16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Many studies have been conducted to explore outbreaks of SARS-CoV-2 in farmed mink and their intra-/inter-species spread and spillover to provide data to the scientific community, protecting human and animal health. Studies report anthropozoonotic introduction, which was initially documented in April 2020 in the Netherlands, and subsequent inter-/intra-species spread of SARS-CoV-2 in farmed mink, likely due to SARS-CoV-2 host tropism capable of establishing efficient interactions with host ACE2 and the mink hosts' ability to enhance swift viral transmission due to their density, housing status, and occupational contacts. Despite the rigorous prevention and control measures adopted, transmission of the virus within and between animal species was efficient, resulting in the development of mink-associated strains able to jump back and forth among the mink hosts and other animal/human contacts. Current knowledge recognizes the mink as a highly susceptible animal host harboring the virus with or without clinical manifestations, furthering infection transmission as a hidden animal reservoir. A One Health approach is, thus, recommended in SARS-CoV-2 surveillance and monitoring on mink farms and of their susceptible contact animals to identify and better understand these potential animal hosts.
Collapse
Affiliation(s)
| | | | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (M.J.J.); (A.S.B.)
| |
Collapse
|
7
|
Hansen LG, Larsen LE, Rasmussen TB, Miar Y, Lassuniére R, Jørgensen CS, Ryt-Hansen P. Investigation of the SARS-CoV-2 post-vaccination antibody response in Canadian farmed mink. Vaccine 2023; 41:7387-7394. [PMID: 37932134 DOI: 10.1016/j.vaccine.2023.10.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Currently, SARS-CoV-2 have been detected in farmed mink in 13 different countries. Due to the high susceptibility and transmissibility among mink, great concerns of mink serving as a reservoir to generate novel variants with unknown virulence and antigenic properties arose. These concerns have consequently resulted in entire mink productions being culled and banned. This study investigates the post-vaccination antibody response in the Canadian farmed mink vaccinated with a commercial Index spike protein-based vaccine, approved for use in cats, and compares the antibody response to that observed post infection in Danish farmed mink. Blood samples were obtained from 50 mink at the Canadian Centre for Fur Animal Research (CCFAR), Dalhousie University (Truro, Canada). The sera were initially analyzed for antibodies by enzyme-linked immunosorbent assay (ELISA), and selected sera was subsequently tested in a virus neutralization tests. The levels of neutralizing antibodies were evaluated for an ancestral D614G strain and a recent circulating SARS-CoV-2 variant of concern (Omicron BA.4). The results revealed that the vaccine induced a strong antibody response in mink by reaching antibody titer levels of up to 1:12800 in the ELISA. Moreover, high levels of neutralizing antibodies were obtained, and despite the great level of genetic differences between the ancestral and Omicron BA.4 strains, the vaccinated mink showed high levels of cross-reacting neutralizing antibodies. Interestingly, the antibody levels towards SARS-CoV-2 in the Canadian vaccinated mink were significantly higher than observed in recently SARS-CoV-2 infected Danish mink and equal to anamnestic responses following re-infection. In conclusion, the vaccine used in the Canadian farmed mink was able to induce a strong and broad-reacting antibody response in mink, which could limit the spread of SARS-CoV-2 in farmed mink and thereby reduce the risk of mink serving as a SARS-CoV-2 reservoir for human infections.
Collapse
Affiliation(s)
- Line Gram Hansen
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark.
| | - Lars Erik Larsen
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark.
| | | | - Younes Miar
- Haley Institute of Animal Science and Aquaculture 100-A, Dalhousie University, Faculty of Agriculture, 58 Sipu Awti, Truro, NS, Canada.
| | - Ria Lassuniére
- Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | | | - Pia Ryt-Hansen
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
8
|
Heida R, Frijlink HW, Hinrichs WLJ. Inhalation of vaccines and antiviral drugs to fight respiratory virus infections: reasons to prioritize the pulmonary route of administration. mBio 2023; 14:e0129523. [PMID: 37768057 PMCID: PMC10653782 DOI: 10.1128/mbio.01295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Many of the current pandemic threats are caused by viruses that infect the respiratory tract. Remarkably though, the majority of vaccines and antiviral drugs are administered via alternative routes. In this perspective, we argue that the pulmonary route of administration deserves more attention in the search for novel therapeutic strategies against respiratory virus infections. Firstly, vaccines administered at the viral portal of entry can induce a broader immune response, employing the mucosal arm of the immune system; secondly, direct administration of antiviral drugs at the target site leads to superior bioavailability, enabling lower dosing and reducing the chance of side effects. We further elaborate on why the pulmonary route may induce a superior effect compared to the intranasal route of administration and provide reasons why dry powder formulations for inhalation have significant advantages over standard liquid formulations.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Nooruzzaman M, Diel DG. Infection Dynamics, Pathogenesis, and Immunity to SARS-CoV-2 in Naturally Susceptible Animal Species. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1195-1201. [PMID: 37782853 PMCID: PMC10558081 DOI: 10.4049/jimmunol.2300378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 10/04/2023]
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, presents a broad host range. Domestic cats and white-tailed deer (WTD) are particularly susceptible to SARS-CoV-2 with multiple variant strains being associated with infections in these species. The virus replicates in the upper respiratory tract and in associated lymphoid tissues, and it is shed through oral and nasal secretions, which leads to efficient transmission of the virus to contact animals. Robust cell-mediated and humoral immune responses are induced upon infection in domestic cats, which curb the progression of clinical disease and are associated with control of infection. In WTD, high levels of neutralizing Abs are detected early upon infection. In this review, the current understanding of the infection dynamics, pathogenesis, and immune responses to SARS-CoV-2 infection in animals, with special focus on naturally susceptible felids and WTD, are discussed.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| |
Collapse
|
10
|
Ahn H, Calderon BM, Fan X, Gao Y, Horgan NL, Jiang N, Blohm DS, Hossain J, Rayyan NWK, Osman SH, Lin X, Currier M, Steel J, Wentworth DE, Zhou B, Liang B. Structural basis of the American mink ACE2 binding by Y453F trimeric spike glycoproteins of SARS-CoV-2. J Med Virol 2023; 95:e29163. [PMID: 37842796 DOI: 10.1002/jmv.29163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2). While evolutionarily conserved, ACE2 receptors differ across various species and differential interactions with Spike (S) glycoproteins of SARS-CoV-2 viruses impact species specificity. Reverse zoonoses led to SARS-CoV-2 outbreaks on multiple American mink (Mustela vison) farms during the pandemic and gave rise to mink-associated S substitutions known for transmissibility between mink and zoonotic transmission to humans. In this study, we used bio-layer interferometry (BLI) to discern the differences in binding affinity between multiple human and mink-derived S glycoproteins of SARS-CoV-2 and their respective ACE2 receptors. Further, we conducted a structural analysis of a mink variant S glycoprotein and American mink ACE2 (mvACE2) using cryo-electron microscopy (cryo-EM), revealing four distinct conformations. We discovered a novel intermediary conformation where the mvACE2 receptor is bound to the receptor-binding domain (RBD) of the S glycoprotein in a "down" position, approximately 34° lower than previously reported "up" RBD. Finally, we compared residue interactions in the S-ACE2 complex interface of S glycoprotein conformations with varying RBD orientations. These findings provide valuable insights into the molecular mechanisms of SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Hyunjun Ahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brenda M Calderon
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xiaoyu Fan
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Natalie L Horgan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nannan Jiang
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dylan S Blohm
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jaber Hossain
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicole Wedad K Rayyan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah H Osman
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee, Georgia, USA
| | - Xudong Lin
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael Currier
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John Steel
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Wentworth
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bin Zhou
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Himsworth CG, Caleta JM, Coombe M, McGregor G, Dibernardo A, Lindsay R, Sekirov I, Prystajecky N. A comparison of sampling and testing approaches for the surveillance of SARS-CoV-2 in farmed American mink. J Vet Diagn Invest 2023; 35:528-534. [PMID: 37366157 PMCID: PMC10300625 DOI: 10.1177/10406387231183685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Surveillance for SARS-CoV-2 in American mink (Neovison vison) is a global priority because outbreaks on mink farms have potential consequences for animal and public health. Surveillance programs often focus on screening natural mortalities; however, significant knowledge gaps remain regarding sampling and testing approaches. Using 76 mink from 3 naturally infected farms in British Columbia, Canada, we compared the performance of 2 reverse-transcription real-time PCR (RT-rtPCR) targets (the envelope [E] and RNA-dependent RNA polymerase [RdRp] genes) as well as serology. We also compared RT-rtPCR and sequencing results from nasopharyngeal, oropharyngeal, skin, and rectal swabs, as well as nasopharyngeal samples collected using swabs and interdental brushes. We found that infected mink were generally RT-rtPCR-positive on all samples; however, Ct values differed significantly among sample types (nasopharyngeal < oropharyngeal < skin < rectal). There was no difference in the results of nasopharyngeal samples collected using swabs or interdental brushes. For most mink (89.4%), qualitative (i.e., positive vs. negative) serology and RT-rtPCR results were concordant. However, mink were positive on RT-rtPCR and negative on serology and vice versa, and there was no significant correlation between Ct values on RT-rtPCR and percent inhibition on serology. Both the E and RdRp targets were detectable in all sample types, albeit with a small difference in Ct values. Although SARS-CoV-2 RNA can be detected in multiple sample types, passive surveillance programs in mink should focus on multiple target RT-rtPCR testing of nasopharyngeal samples in combination with serology.
Collapse
Affiliation(s)
- Chelsea G Himsworth
- Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Jessica M Caleta
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Michelle Coombe
- Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Glenna McGregor
- Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Antonia Dibernardo
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Inna Sekirov
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Natalie Prystajecky
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Cardoso NP, Rivero C, Castillo M, Mansilla FC, Pastorino F, Piccirilli G, Alonso L, Martínez G, Lullo DD, Bentancor LV, Capozzo AV. Serological screening of SARS-CoV-2 infection in companion animals of Buenos Aires suburbs. Front Vet Sci 2023; 10:1161820. [PMID: 37323839 PMCID: PMC10266215 DOI: 10.3389/fvets.2023.1161820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) is a zoonotic disease caused by the pandemic virus SARS-CoV-2. Domestic and wild animals are susceptible to infection and are potential reservoirs for virus variants. To date, there is no information about the exposure of companion animals in Buenos Aires Suburbs, the area with the largest population in Argentina where the highest number of COVID-19 human cases occurred during the first infection wave. Here we developed a multi-species indirect ELISA to measure antibodies reactive to the SARS-CoV-2 receptor-binding domain (RBD) from several vertebrates constituting the class Mammalia, making it a valuable tool for field serosurveillance. The ELISA cut-off value was estimated by sera from dogs, cats, cattle, and pigs sampled before 2019 (n = 170), considering a 98% percentile and a grey zone to completely exclude any false positive result. Specificity was confirmed by measuring levels of neutralizing antibodies against canine coronavirus, the avidity of specific antibodies, and their capacity to impede the binding of a recombinant RBD protein to VERO cells in an In-Cell ELISA. Sera from 464 cats and dogs sampled in 2020 and 2021 ("pandemic" samples) were assessed using the RBD-ELISA. Information on COVID-19 disease in the household and the animals' lifestyles was collected. In Buenos Aires Suburbs cats were infected at a higher proportion than dogs, seroprevalence was 7.1 and 1.68%, respectively. Confirmed COVID-19 in the caregivers and outdoor lifestyle were statistically associated with seropositivity in cats. The risk of cats getting infected living indoors in COVID-19-negative households was null. The susceptibility of mammals to SARS-CoV-2, the possibility of transmission between animals themselves and humans, together with the free-roaming lifestyle typical of Buenos Aires suburban companion animals, urge pursuing responsible animal care and avoiding human interaction with animals during the disease course. The multi-species RBD-ELISA we developed can be used as a tool for serosurveillance of SARS-CoV-2 infection in mammalians (domestic and wild), guiding further targeted virological analyses to encounter susceptible species, interspecies transmission, and potential virus reservoirs in our region.
Collapse
Affiliation(s)
- Nancy Patricia Cardoso
- Instituto de Virología e Innovaciones Tecnológicas “IVIT”, CONICET-INTA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Carla Rivero
- Instituto de Estudios para el Desarrollo Productivo y la Innovación, Universidad Nacional de José Clemente Paz, Buenos Aires, Argentina
| | - Mariangeles Castillo
- Instituto de Virología e Innovaciones Tecnológicas “IVIT”, CONICET-INTA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | | | - Florencia Pastorino
- Departamento Zoonosis Urbanas, Ministerio de Salud de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Guadalupe Piccirilli
- Departamento Zoonosis Urbanas, Ministerio de Salud de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Laura Alonso
- Departamento Zoonosis Urbanas, Ministerio de Salud de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Martínez
- Departamento Zoonosis Urbanas, Ministerio de Salud de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - David Di Lullo
- Instituto Multidisciplinario de Salud, Tecnología y Desarrollo “IMSaTeD”, CONICET-UNSE, Santiago del Estero, Argentina
| | - Leticia Veronica Bentancor
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
- Instituto de Estudios para el Desarrollo Productivo y la Innovación, Universidad Nacional de José Clemente Paz, Buenos Aires, Argentina
| | - Alejandra Victoria Capozzo
- Instituto de Virología e Innovaciones Tecnológicas “IVIT”, CONICET-INTA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| |
Collapse
|
13
|
Auer A, Bortolami A, Berguido FJ, Bonfante F, Terregino C, Natale A, Fincato A, Colitti B, Rosati S, Lamien CE, Cattoli G. The Luciferase Immunoprecipitation System (LIPS) Targeting the Spike Protein of SARS-CoV-2 Is More Accurate than Nucleoprotein-Based LIPS and ELISAs for Mink Serology. Transbound Emerg Dis 2023; 2023:1318901. [PMID: 40303713 PMCID: PMC12016994 DOI: 10.1155/2023/1318901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/10/2022] [Indexed: 05/02/2025]
Abstract
Since anthropo-zoonotic outbreaks of SARS-CoV-2 have been reported in mink farms, it is important to monitor the seroprevalence within this population. To investigate the accuracy of nucleo (N) or spike (S) protein-based assays to detect anti-SARS-CoV-2 antibodies in animal serum, we compared four assays, two commercial N-based enzyme-linked immunosorbent assays (ELISA) validated for animal sera and two luciferase immunoprecipitation systems (LIPS-N and LIPS-S), to the reference standard plaque reduction neutralisation test (PRNT). Samples included in this study were derived from a naturally infected mink population. For the first time in this study, serum samples of mink were collected over a 307-day period, at different time points, thus providing an overview of performances of four different rapid serological tests over time. The assays were compared by performing a correlation analysis using R2, Spearman's rank-order correlation coefficient, and Fleiss' and Cohen's kappa for analysis of agreement to PRNT, and an UpSet chart was created to visualize the number of shared positive samples between assays. Cohen's kappa test on categorical data showed an excellent agreement between PRNT and LIPS-S, while agreements between PRNT and N-based methods decreased from fair for LIPS-N to poor agreements for the ELISA kits. In addition, LIPS-S revealed the highest number of true-positive SARS-CoV-2 samples compared to N-based methods. Despite an excellent agreement between LIPS-S and PRNT, a weak correlation was detectable between PRNT titres and relative light units. This study shows that the LIPS-S assay can be used for serological surveillance within a naturally exposed mink population, while N-based serological assays are less accurate providing a higher number of false-negative results, especially at a later stage of infection, thus indicating that N antibodies are less persistent in naturally exposed mink. Our findings provide crucial information for veterinarians and competent authorities involved in surveillance and outbreak investigation in wild and farmed minks.
Collapse
Affiliation(s)
- Agathe Auer
- Animal Production and Health Laboratory, Joint FAO and IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, A-2444, Seibersdorf, Austria
- Emergency Prevention System (EMPRES), Animal Health Service Food and Agriculture Organization of the United Nations (FAO-UN), Rome, Italy
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Padua, Italy
| | - Francisco J. Berguido
- Animal Production and Health Laboratory, Joint FAO and IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, A-2444, Seibersdorf, Austria
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Padua, Italy
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Padua, Italy
| | - Alda Natale
- Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Padua, Italy
| | - Alice Fincato
- Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Padua, Italy
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Sergio Rosati
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Charles E. Lamien
- Animal Production and Health Laboratory, Joint FAO and IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, A-2444, Seibersdorf, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO and IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, A-2444, Seibersdorf, Austria
| |
Collapse
|
14
|
Reggiani A, Rugna G, Bonilauri P. SARS-CoV-2 and animals, a long story that doesn't have to end now: What we need to learn from the emergence of the Omicron variant. Front Vet Sci 2022; 9:1085613. [PMID: 36590812 PMCID: PMC9798331 DOI: 10.3389/fvets.2022.1085613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
OIE, the world organization for animal health, recently released an update on the state of the art of knowledge regarding SARS-CoV-2 in animals. For farmed animals, ferrets and minks were found to be highly susceptible to the virus and develop symptomatic disease both in natural conditions and in experimental infections. Lagomorphs of the species Oryctolagus cuniculus are indicated as highly susceptible to the virus under experimental conditions, but show no symptoms of the disease and do not transmit the virus between conspecifics, unlike raccoon dogs (Nyctereutes procyonoides), which in addition to being highly susceptible to the virus under experimental conditions, can also transmit the virus between conspecifics. Among felines, the circulation of the virus has reached a level of cases such as sometimes suggests the experimental use of vaccines for human use or treatments with monoclonal antibodies. But even among wild animals, several species (White-tailed deer, Egyptian rousettes, and minks) have now been described as potential natural reservoirs of the virus. This proven circulation of SARS-CoV-2 among animals has not been accompanied by the development of an adequate surveillance system that allows following the evolution of the virus among its natural hosts. This will be all the more relevant as the surveillance system in humans inevitably drops and we move to surveillance by sentinels similar to the human flu virus. The lesson that we can draw from the emergence of Omicron and, more than likely, its animal origin must not be lost, and in this mini-review, we explain why.
Collapse
|
15
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
16
|
Pappas G, Vokou D, Sainis I, Halley JM. SARS-CoV-2 as a Zooanthroponotic Infection: Spillbacks, Secondary Spillovers, and Their Importance. Microorganisms 2022; 10:2166. [PMID: 36363758 PMCID: PMC9696655 DOI: 10.3390/microorganisms10112166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 10/06/2023] Open
Abstract
In the midst of a persistent pandemic of a probable zoonotic origin, one needs to constantly evaluate the interplay of SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus-2) with animal populations. Animals can get infected from humans, and certain species, including mink and white-tailed deer, exhibit considerable animal-to-animal transmission resulting in potential endemicity, mutation pressure, and possible secondary spillover to humans. We attempt a comprehensive review of the available data on animal species infected by SARS-CoV-2, as presented in the scientific literature and official reports of relevant organizations. We further evaluate the lessons humans should learn from mink outbreaks, white-tailed deer endemicity, zoo outbreaks, the threat for certain species conservation, the possible implication of rodents in the evolution of novel variants such as Omicron, and the potential role of pets as animal reservoirs of the virus. Finally, we outline the need for a broader approach to the pandemic and epidemics, in general, incorporating the principles of One Health and Planetary Health.
Collapse
Affiliation(s)
- Georgios Pappas
- Institute of Continuing Medical Education of Ioannina, 45333 Ioannina, Greece
| | - Despoina Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Sainis
- Medical School, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - John M. Halley
- Laboratory of Ecology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
17
|
Wernike K, Drewes S, Mehl C, Hesse C, Imholt C, Jacob J, Ulrich RG, Beer M. No Evidence for the Presence of SARS-CoV-2 in Bank Voles and Other Rodents in Germany, 2020–2022. Pathogens 2022; 11:pathogens11101112. [PMID: 36297169 PMCID: PMC9610409 DOI: 10.3390/pathogens11101112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Rodentia is the most speciose mammalian order, found across the globe, with some species occurring in close proximity to humans. Furthermore, rodents are known hosts for a variety of zoonotic pathogens. Among other animal species, rodents came into focus when the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spread through human populations across the globe, initially as laboratory animals to study the viral pathogenesis and to test countermeasures. Under experimental conditions, some rodent species including several cricetid species are susceptible to SARS-CoV-2 infection and a few of them can transmit the virus to conspecifics. To investigate whether SARS-CoV-2 is also spreading in wild rodent populations in Germany, we serologically tested samples of free-ranging bank voles (Myodes glareolus, n = 694), common voles (Microtus arvalis, n = 2), house mice (Mus musculus, n = 27), brown or Norway rats (Rattus norvegicus, n = 97) and Apodemus species (n = 8) for antibodies against the virus. The samples were collected from 2020 to 2022 in seven German federal states. All but one sample tested negative by a multispecies ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The remaining sample, from a common vole collected in 2021, was within the inconclusive range of the RBD-ELISA, but this result could not be confirmed by a surrogate virus neutralization test as the sample gave a negative result in this test. These results indicate that SARS-CoV-2 has not become highly prevalent in wild rodent populations in Germany.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Correspondence:
| | - Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Calvin Mehl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 17493 Greifswald-Insel Riems, Germany
| | - Christin Hesse
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Christian Imholt
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Jens Jacob
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
18
|
Manifestation of SARS-CoV-2 Infections in Mink Related to Host-, Virus- and Farm-Associated Factors, The Netherlands 2020. Viruses 2022; 14:v14081754. [PMID: 36016375 PMCID: PMC9414453 DOI: 10.3390/v14081754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.
Collapse
|
19
|
No Evidence of SARS-CoV-2 Infection in Wild Mink (Mustela lutreola and Neogale vison) from Northern Spain during the First Two Years of Pandemic. Animals (Basel) 2022; 12:ani12151971. [PMID: 35953960 PMCID: PMC9367499 DOI: 10.3390/ani12151971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing coronavirus disease-2019 (COVID-19) is a betacoronavirus (β-CoV) closely related to Severe Acute Respiratory Syndrome (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV), which have also caused severe outbreaks of disease in human populations. Human-to-animal transmission events during the COVID-19 pandemic have been documented in several countries. Different animal species have been proven to be susceptible to infection with SARS-CoV-2 both naturally and by experimental infection, including mustelids such as ferrets, otters, and American mink (Neogale vison). In this sense, infected farmed American mink develop respiratory signs associated with viral pneumonia. This study evaluates the presence of SARS-CoV-2 in European mink (Mustela lutreola) and American mink from Spain, by enzyme-linked immunosorbent assay (ELISA) using the receptor binding domain (RBD) of Spike protein antigen in serum samples and/or by RT-qPCR assays in oropharyngeal and rectal swabs. From January 2020 to February 2022, a total of 162 animals (127 European mink and 35 American mink) with no evidence of SARS-CoV-2 infection were included in the study. Of the 126 serum samples analysed by serology, anti-SARS-CoV-2 antibodies were not detected in the mink included in this study. In the same way, SARS-CoV-2 RNA has not been detected in any of the 160 swabs samples analysed by RT-qPCR. This study shows the absence of the wild mink exposure to SARS-CoV-2 in a geographic area seriously affected by COVID-19. With these results, it can be considered that the probability that the virus is circulating in wild mink is low. With this, the risk of virus transmission to humans by this route is also considered improbable. Abstract The impact of the SARS-CoV-2 pandemic on wildlife is largely unevaluated, and extended surveillance of animal species is needed to reach a consensus on the role of animals in the emergence and maintenance of SARS-CoV-2. This infection has been detected in farmed and domestic animals and wild animals, mainly in captivity. The interactions or shared resources with wildlife could represent a potential transmission pathway for the SARS-CoV-2 spill over to other wild species and could lead to health consequences or the establishment of new reservoirs in susceptible hosts. This study evaluated the presence of SARS-CoV-2 in European mink (Mustela lutreola) and American mink (Neogale vison) in Spain by enzyme-linked immunosorbent assay (ELISA) using the receptor binding domain (RBD) of Spike antigen in serum samples and/or by RT-qPCR assays in oropharyngeal and rectal swabs. From January 2020 to February 2022, a total of 162 animals (127 European mink and 35 American mink) with no evidence of SARS-CoV-2 infection were included in the study. Antibodies against the SARS-CoV-2 were not found in the serum samples analysed (n = 126), nor was the virus amplified by RT-qPCR (n = 160 swabs). Our results suggest that the potential role of wild mink and the European mink bred in captivity and released to the wild as dispersers of SARS-CoV-2 is so far low. However, wildlife surveillance for early detection of human and animal risks should be continued. In this sense, epidemiological monitoring measures, including serology and molecular analysis, are necessary.
Collapse
|