1
|
Buczek W, Buczek A, Asman M, Borzęcka-Sapko A, Minciel E, Grzeszczak J, Bartosik K. Occurrence of Ticks and Tick-Borne Pathogens During Warm Winter-A Snapshot from Central Europe. Pathogens 2025; 14:326. [PMID: 40333118 PMCID: PMC12030481 DOI: 10.3390/pathogens14040326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Climate warming and anthropogenic environmental changes impact the spread of ticks and tick-borne pathogens (TBPs). This study investigated the occurrence of ticks and the risk of TBPs infection in urban and rural recreational areas in Eastern Poland at record-high temperatures in winter. METHODS Ticks were collected from vegetation using the flagging method. Various types of polymerase chain reactions were applied to detect Borrelia burgdorferi s.l., Anaplasma phagocytophilum, Rickettsia spp., and Babesia spp. in the studied ticks. RESULTS 268 ticks were sampled in the four urban/suburban and one rural sites, including 78 Ixodes ricinus specimens and 190 Dermacentor reticulatus ticks. Of the ticks, 49.19% were infected by at least one TBP, including 41.03% of I. ricinus and 63.04% of D. reticulatus specimens. Co-infections with TBPs that involved only I. ricinus were recorded in 6.41% of these ticks. CONCLUSIONS The study indicates that hosts are exposed to tick attacks and TBPs infection in Central Europe at high temperatures in winter. The high activity of ticks may increase the incidence of tick-borne diseases in humans and companion animals. The record's importance indicates that practical preventive measures against TBPs should be taken due to weather conditions rather than the season.
Collapse
Affiliation(s)
- Weronika Buczek
- Department of Biology and Parasitology, Chair of Pharmacology and Biology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland;
| | - Alicja Buczek
- Department of Biology and Parasitology, Chair of Pharmacology and Biology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland;
| | - Marek Asman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19 St., 41-808 Zabrze, Poland;
| | | | - Ewelina Minciel
- Department of Medical Chemistry, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (E.M.); (J.G.)
| | - Jadwiga Grzeszczak
- Department of Medical Chemistry, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (E.M.); (J.G.)
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Chair of Pharmacology and Biology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland;
| |
Collapse
|
2
|
Heyse LMI, Król N, Rentería-Solís Z, Langner T, Reinhardt NP, Pfeffer M, Birka S, Sebastian PS, Obiegala A. Tick-borne pathogens in raccoons (Procyon lotor) from Germany. Ticks Tick Borne Dis 2025; 16:102457. [PMID: 39951944 DOI: 10.1016/j.ttbdis.2025.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Germany is harbouring the majority of Europe's raccoon population, which are considered as invasive neozoa. Many zoonotic pathogens are found in wild raccoons worldwide, but there is a lack of eco-epidemiological data for most of Germany's raccoon populations concerning tick-borne pathogens (TBPs). This is why tissue samples of 485 free-ranging raccoons originating from ten federal states of Germany between the years of 2017 and 2021 were examined for the presence of five TBPs (Borrelia burgdorferi sensu lato, Rickettsia spp., Bartonella spp., Babesia spp. and Neoehrlichia mikurensis) with zoonotic relevance using molecular methods. Borrelia burgdorferi sensu lato was detected in 21 (6.3 %) raccoons, Rickettsia spp. were found in 26 (7.8 %) and Bartonella spp. in 3 (0.6 %) raccoons. Babesia spp. and Neoehrlichia mikurensis were not detected.
Collapse
Affiliation(s)
- Lara M I Heyse
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany.
| | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany.
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany
| | - Torsten Langner
- Institute of Food Hygiene, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Nico P Reinhardt
- Wildlife Research Institute, State Agency for Nature, Environment and Consumer Protection North Rhine-Westphalia, Pützchens Chaussee 228, 53229, Bonn, Germany.
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany.
| | - Stefan Birka
- Institute of Food Hygiene, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany.
| | - Patrick S Sebastian
- Dairy Chain Research Institute (IdICaL; CONICET-INTA), 2300, Rafaela, Santa Fe, Argentina.
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany.
| |
Collapse
|
3
|
Probst J, Springer A, Strube C. Attachment sites of Ixodes ricinus, Ixodes hexagonus/Ixodes canisuga and Dermacentor reticulatus ticks and risk factors of infestation intensity and engorgement duration in dogs and cats. BMC Vet Res 2025; 21:83. [PMID: 39987085 PMCID: PMC11846248 DOI: 10.1186/s12917-025-04535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Over the last decades, climatic and environmental changes have led to an expanding seasonal activity pattern and increasing distribution of ticks across Europe. In particular, Dermacentor reticulatus is now commonly found on dogs in central Europe. The present study compared attachment sites between Ixodes spp. and Dermacentor reticulatus ticks collected by veterinarians from dogs and cats, and investigated risk factors associated with tick infestation intensity and engorgement duration. RESULTS The dataset comprised 6,335 dogs harbouring 10,287 ticks (8,095 Ixodes ricinus, 1,860 D. reticulatus, 218 Ixodes hexagonus/Ixodes canisuga, 114 of other tick species) respectively 4,248 cats harbouring 8,005 ticks (7,344 I. ricinus, 56 D. reticulatus, 505 I. hexagonus/I. canisuga, 100 of other tick species). Differing sites of tick attachment were not only found between the different host and tick species, but also between the tick developmental stages. Regarding the risk of infestation with multiple ticks, dogs and cats living in rural areas harboured significantly more often multiple than single specimens. Further, a long coat in cats was associated with a higher probability of multiple infestation, while this was not observed in dogs. However, there was a tendency towards a potential influence of the density of the undercoat (p = 0.051). In dogs, a tall to very tall body size as well as folded ears increased the risk of multiple infestation, while in cats, increasing age and increasing body size were negatively associated with multiple infestations. Ticks with an engorgement duration of > 48 h were found significantly more often on senior dogs and cats than on younger individuals, as well as on working/utility dog breeds, while engorgement duration was negatively correlated with infestation intensity in dogs. In cats, female gender and a rural residence were significantly associated with longer attachment duration. CONCLUSIONS Individual as well as breed specific characteristics can lead to a higher tick infestation intensity or longer engorgement duration. The knowledge of tick attachment sites and specific risk factors can help to raise awareness among owners concerning the importance of tick control with licensed acaricides, as recommended e.g. by the European Scientific Counsel Companion Animal Parasites (ESCCAP), and may aid in early tick removal to decrease the risk of pathogen transmission to dogs and cats whose owners nonetheless refuse acaricidal drugs.
Collapse
Affiliation(s)
- Julia Probst
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
4
|
Axt CW, Springer A, von Luckner J, Naucke TJ, Müller E, Strube C, Schäfer I. [Equine piroplasmosis: Case descriptions and overview of the epidemiological situation in Europe with focus on Germany]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2025; 53:49-58. [PMID: 39631762 PMCID: PMC11835481 DOI: 10.1055/a-2457-5516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Equine piroplasmosis (EP) is caused by Babesia (B.) caballi and Theileria (T.) equi and is transmitted by hard ticks. Predominantly, the Mediterranean region is known as being endemic for both pathogens in Europe. However, autochthonous infections in central European countries such as Germany can no longer be ruled out due to individual case reports in horses without any stays abroad as well as the geographical expansion of the habitats of different tick species. The case reports presented underline the risk of infection for horses travelling to endemic areas and in horses imported from such areas to non-endemic countries. Clinical signs are often unspecific and include fever, icterus, lethargy, inappetence, weight loss, and reduced performance. Mild to severe anemia is the most common hematologic abnormality, but thrombocytopenia has also been described. Direct (polymerase chain reaction, microscopical analysis of blood smears) and indirect detection methods (detection of antibodies) are available for the diagnosis of pathogen contact and/or infection. Imidocarb-dipropionate is recommended as treatment of choice against EP. Infections with B. caballi can be cleared, while infections with T. equi often result in a life-long carrier status despite treatment. Prevention is limited to controlling or avoiding tick contact. Aside from potentially severe and life-threatening clinical signs, equine piroplasmosis has a significant economic impact on the international trade of horses worldwide. EP is classified as a notifiable disease according to WOAH guidelines, which recommend serological screening for B. caballi and T. equi according to the respective national guidelines when travelling across borders. To date, EP is not classified as a notifiable nor reportable disease in Germany.
Collapse
Affiliation(s)
| | - Andrea Springer
- Institut für Parasitologie, Zentrum für Infektionsmedizin, Stiftung
Tierärztliche Hochschule Hannover
| | | | | | | | - Christina Strube
- Institut für Parasitologie, Zentrum für Infektionsmedizin, Stiftung
Tierärztliche Hochschule Hannover
| | | |
Collapse
|
5
|
Krüger A, Berweiler S, Wolff J, Klinger A, Schummel T, Hagen RM, Scheid PL. Flagging records of Ixodes frontalis (Panzer, 1798) and dermacentor marginatus (Sulzer, 1776) (Acari: Ixodidae), and their first reporting from Coblenz region, Western Germany. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 94:13. [PMID: 39680224 DOI: 10.1007/s10493-024-00986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Contrawise to mosquitoes, there is no country-wide long-term surveillance of ticks in Germany, leading to large gaps in coverage for distribution data. Here we report on results from two consecutive tick studies in northern Rhineland-Palatinate, western Germany, conducted in 2022 and 2023. In 2022, a new focus of the ornate sheep tick Dermacentor marginatus was detected at a military training area east of Coblenz ("Schmidtenhöhe") which is partially managed as a nature reserve where old races of cattle and horses are grazing. Two unexpected further foci were discovered north and west of the city in 2024. In 2023, repeated flagging in a small area of a forest southwest of Coblenz ("Stadtwald") revealed four nymphs of the passerine bird tick Ixodes frontalis. However, over 99% of all flagged ticks turned out to belong to the species Ixodes ricinus (Linnaeus, 1758).
Collapse
Affiliation(s)
- Andreas Krüger
- Department for Microbiology, Bundeswehr Central Hospital, Coblenz, Germany.
| | - Svenja Berweiler
- Department for Microbiology, Bundeswehr Central Hospital, Coblenz, Germany
- Working Group Parasitology and Infection Biology, Faculty of Sciences, Biology, University of Koblenz, Koblenz, Germany
| | - Jessica Wolff
- Department for Microbiology, Bundeswehr Central Hospital, Coblenz, Germany
- Working Group Parasitology and Infection Biology, Faculty of Sciences, Biology, University of Koblenz, Koblenz, Germany
| | - Anne Klinger
- Department for Microbiology, Bundeswehr Central Hospital, Coblenz, Germany
- Working Group Parasitology and Infection Biology, Faculty of Sciences, Biology, University of Koblenz, Koblenz, Germany
| | - Timo Schummel
- Department for Microbiology, Bundeswehr Central Hospital, Coblenz, Germany
| | - Ralf M Hagen
- Department for Microbiology, Bundeswehr Central Hospital, Coblenz, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Patrick L Scheid
- Department for Microbiology, Bundeswehr Central Hospital, Coblenz, Germany
- Working Group Parasitology and Infection Biology, Faculty of Sciences, Biology, University of Koblenz, Koblenz, Germany
| |
Collapse
|
6
|
Estrada-Peña A, de la Fuente J. Machine learning algorithms for the evaluation of risk by tick-borne pathogens in Europe. Ann Med 2024; 56:2405074. [PMID: 39348264 PMCID: PMC11443563 DOI: 10.1080/07853890.2024.2405074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Tick-borne pathogens pose a major threat to human health worldwide. Understanding the epidemiology of tick-borne diseases to reduce their impact on human health requires models covering large geographic areas and considering both the abiotic traits that affect tick presence, as well as the vertebrates used as hosts, vegetation, and land use. Herein, we integrated the public information available for Europe regarding the variables that may affect habitat suitability for ticks and hosts and tested five machine learning algorithms (MLA) for predicting the distribution of four prominent tick species across Europe. MATERIALS AND METHODS A grid of cells 20 km in diameter was prepared to cover the entire territory, containing data on vegetation, points of water, habitat fragmentation, forest density, grass extension, or imperviousness, with information on temperature and water deficit. The distribution of the hosts (162 species) was modelled and included in the dataset. We used five MLA, namely, Random Forest, Neural Networks, Naive Bayes, Gradient Boosting, and AdaBoost, trained with reliable coordinates for Ixodes ricinus, Dermacentor reticulatus, Dermacentor marginatus, and Hyalomma marginatum in Europe. RESULTS Both Random Forest and Gradient Boosting best predicted ticks and host environmental niches. Our results demonstrate that MLA can identify trait-matching combinations of environmental niches. The inclusion of land cover and land use variables has a superior capacity for predicting areas suitable for ticks, compared to classic methods based on the use of climate data alone. CONCLUSIONS Flexible MLA-driven models may offer several advantages over traditional models. We anticipate that these results may be extrapolated to other regions and combinations of tick-vertebrates. These results highlight the potential of MLA for inference in ecology and provide a background for the evolution of a completely automatized tool to calculate the seasonality of ticks for early warning systems aimed at preventing tick-borne diseases.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - José de la Fuente
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
7
|
Springer A, Lindau A, Probst J, Fachet K, Schäfer I, Dobler G, Mackenstedt U, Strube C. Germany-wide citizen science study reveals spread of Babesia canis-infected Dermacentor reticulatus ticks by dogs travelling within the country. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100187. [PMID: 39027085 PMCID: PMC11253222 DOI: 10.1016/j.crpvbd.2024.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
The ornate dog tick Dermacentor reticulatus, vector of Babesia canis, has shown a considerable range expansion in several European countries. Previously, only few areas in Germany were recognised as endemic for B. canis, but a marked increase in autochthonous canine babesiosis cases and spread to new areas has been noted recently. To better assess the current risk for dogs, the present study screened 5913 specimens of D. reticulatus from all over Germany, collected in the frame of a Citizen Science study during 2019-2023. Moreover, 343 Dermacentor marginatus ticks were also included. Babesia detection was achieved by quantitative real-time PCR (qPCR). Positive samples were confirmed by sequencing. Moreover, a MGB-probe-based triplex qPCR was established to detect and distinguish between the canine Babesia spp. relevant in Europe, i.e. B. canis, Babesia vogeli and Babesia gibsoni. Overall, B. canis DNA was detected in five D. reticulatus specimens (0.08%). Two of the B. canis-positive ticks originated from areas previously known as endemic for canine babesiosis, namely from the area of Freiburg im Breisgau, federal state of Baden-Wuerttemberg, and from the district St. Wendel, federal state of Saarland. Three further B. canis-positive ticks were detected in districts not yet recognised as endemic, one each in the district of Mansfeld-Suedharz, federal state of Saxony-Anhalt, the district of Ravensburg, federal state of Baden-Wuerttemberg and in the city of Fürth, federal state of Bavaria. However, the tick in Fürth was found on a dog who had returned from a trip to the Breisgau region on the previous day, indicating translocation of the specimen out of this well-known endemic focus. The geographical distribution of the positive samples shows that B. canis is currently spreading in Germany, particularly via dogs travelling within the country, increasing the infection risk throughout the country. Important measures to contain a further spread of the pathogen include comprehensive year-round tick prophylaxis with licensed acaricides, not only to protect the individual pet, but also the entire dog population. Moreover, screening of dogs entering Germany from B. canis-endemic countries is required and any treatment should aim at pathogen elimination by use of appropriate imidocarb dosages.
Collapse
Affiliation(s)
- Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Alexander Lindau
- Institute of Biology, Department of Parasitology, University of Hohenheim, Emil-Wolff-Straße 34, 70599, Stuttgart, Germany
| | - Julia Probst
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Katrin Fachet
- Institute of Biology, Department of Parasitology, University of Hohenheim, Emil-Wolff-Straße 34, 70599, Stuttgart, Germany
| | - Ingo Schäfer
- LABOKLIN GmbH and Co. KG, Bad Kissingen, Steubenstraße 4, 97688, Bad Kissingen, Germany
| | - Gerhard Dobler
- Institute of Biology, Department of Parasitology, University of Hohenheim, Emil-Wolff-Straße 34, 70599, Stuttgart, Germany
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Ute Mackenstedt
- Institute of Biology, Department of Parasitology, University of Hohenheim, Emil-Wolff-Straße 34, 70599, Stuttgart, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| |
Collapse
|
8
|
Goletić T, Klarić Soldo D, Kapo N, Goletić Š, Koro-Spahić A, Alispahić A, Softić A, Škapur V, Omeragić J. Tick-Borne Pathogens in Dermacentor reticulatus Ticks from Bosnia and Herzegovina. Pathogens 2024; 13:421. [PMID: 38787273 PMCID: PMC11123776 DOI: 10.3390/pathogens13050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Dermacentor (D.) reticulatus ticks carry and transmit a wide range of pathogens to vertebrate hosts. Limited information is available about the existence of emerging tick-borne pathogens and the distribution of D. reticulatus in Bosnia and Herzegovina. The study aimed to investigate the occurrence and distribution of D. reticulatus and to detect the presence of Anaplasma spp., Borrelia (B.) burgdorferi s.l., Rickettsia spp., and Babesia spp. in samples originating from questing ticks and ticks collected from domestic animals in various regions of Bosnia and Herzegovina. A total of 402 collected D. reticulatus ticks were widely distributed throughout the country. Of the 41 pools consisting of 205 individual D. reticulatus ticks, 21 (51.2%) indicated the presence of Rickettsia spp., 17 (41.4%) of Babesia spp., 2 (4.8%) of Anaplasma spp., and 1 (2.4%) of B. burgdorferi s.l. after real-time PCR screening. Our study indicates that D. reticulatus has significantly expanded its distribution and host range in Bosnia and Herzegovina. Moreover, our results represent the first detection of Babesia spp. in D. reticulatus in Bosnia and Herzegovina. Given the demonstrated presence of emerging pathogens in questing and feeding ticks, there is an urge to establish a surveillance system for ticks and tick-borne pathogens in Bosnia and Herzegovina.
Collapse
Affiliation(s)
- Teufik Goletić
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (D.K.S.); (N.K.); (Š.G.); (A.K.-S.); (A.A.); (A.S.); (J.O.)
| | - Darinka Klarić Soldo
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (D.K.S.); (N.K.); (Š.G.); (A.K.-S.); (A.A.); (A.S.); (J.O.)
| | - Naida Kapo
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (D.K.S.); (N.K.); (Š.G.); (A.K.-S.); (A.A.); (A.S.); (J.O.)
| | - Šejla Goletić
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (D.K.S.); (N.K.); (Š.G.); (A.K.-S.); (A.A.); (A.S.); (J.O.)
| | - Amira Koro-Spahić
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (D.K.S.); (N.K.); (Š.G.); (A.K.-S.); (A.A.); (A.S.); (J.O.)
| | - Amra Alispahić
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (D.K.S.); (N.K.); (Š.G.); (A.K.-S.); (A.A.); (A.S.); (J.O.)
| | - Adis Softić
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (D.K.S.); (N.K.); (Š.G.); (A.K.-S.); (A.A.); (A.S.); (J.O.)
| | - Vedad Škapur
- University of Sarajevo—Faculty of Agriculture and Food Science, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Jasmin Omeragić
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (D.K.S.); (N.K.); (Š.G.); (A.K.-S.); (A.A.); (A.S.); (J.O.)
| |
Collapse
|
9
|
Zając Z, Kulisz J, Woźniak A, Obregón D, Foucault-Simonin A, Bartosik K, Moutailler S, Cabezas-Cruz A. Spatial Distribution and Pathogen Profile of Dermacentor reticulatus Ticks in Southeastern Poland: A Genetic and Environmental Analysis. Transbound Emerg Dis 2024; 2024:5458278. [PMID: 40303098 PMCID: PMC12017008 DOI: 10.1155/2024/5458278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2025]
Abstract
In recent years, significant changes have been observed in the distribution and abundance of local Dermacentor reticulatus populations. However, changes in D. reticulatus dynamics have not been studied in southeastern Poland. Our objective was to enhance our understanding of the environmental factors influencing the occurrence and density of D. reticulatus in this area. Additionally, we sought to investigate the genetic diversity of the tick population and the prevalence of tick-borne pathogens (TBPs). To this end, we established 45 study sites in the Subcarpathian province. Ticks were collected during their peak activity in both spring and autumn. A subset of randomly selected specimens underwent molecular analysis for TBPs screening, using high-throughput microfluidic real-time PCR. Positive amplicons were then sequenced, and phylogenetic analyses were conducted. Our findings confirmed the presence of D. reticulatus ticks in 24 surveyed sites, primarily concentrated in the northern and eastern parts of the region. The mean density of D. reticulatus ticks in their compact range was 5.8 ± 6.4 specimens/100 m2. Notably, air temperature and altitude emerged as significant factors influencing the species' activity. We also identified a high prevalence of Rickettsia raoultii infections in adult D. reticulatus, reaching up to 84.21%. Additionally, 9.52% of ticks were found to be infected with R. helvetica and 4.76% with Anaplasma phagocytophilum. Furthermore, our genetic analyses confirmed the identity of D. reticulatus in the Subcarpathian region, aligning with haplotypes found in other regions of Poland, Czechia, Croatia, and Portugal. In conclusion, our study suggests that the surveyed region represents the current boundary of the compact range of D. reticulatus in Poland in which this tick species exhibits low genetic diversity and a narrow spectrum of detected TBPs.
Collapse
Affiliation(s)
- Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| |
Collapse
|
10
|
Axt CW, Springer A, Strube C, Jung C, Naucke TJ, Müller E, Schäfer I. Molecular and Serological Detection of Vector-Borne Pathogens Responsible for Equine Piroplasmosis in Europe between 2008 and 2021. Microorganisms 2024; 12:816. [PMID: 38674760 PMCID: PMC11051957 DOI: 10.3390/microorganisms12040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Equine piroplasmosis (EP) is caused by Theileria (T.) equi and/or Babesia (B.) caballi. The aim was to assess the percentage of positive test results for EP in horses in Europe and to identify risk factors for pathogen contact/infection. This study included results from PCR and competitive enzyme-linked immunosorbent assay testing requested by European veterinarians between 2008 and 2021. Binary bivariate logistic regression was used to analyze risk factors. A total of 4060 horses were included. PCR testing was positive in 9.7% (154/1589), serology for T. equi in 15.2% (393/2591) and for B. caballi in 6.8% (175/2578). The odds of positive serology increased by 6.8% (B. caballi, p = 0.008) and 9.5% (T. equi, p < 0.001) each year. Regionality had a statistically significant impact on PCR (Eastern p = 0.047/OR = 1.605; Southern p = 0.029/OR = 1.451; Central p = 0.007/OR = 0.617) and serological testing for T. equi (Southern p < 0.001/OR = 2.521; Central p < 0.001/OR = 0.537; Northern p = 0.003/OR = 0.462), as well as breeds on seroprevalence of B. caballi (heavy horses: p = 0.016/OR = 2.239) and T. equi (ponies: p = 0.007/OR = 0.340; warmbloods: p = 0.025/OR = 1.602). In conclusion, there was a significant geographical impact on the results of PCR and serology, consistent with known vector habitats. The rising numbers of horses tested serologically positive highlights the importance of surveillance.
Collapse
Affiliation(s)
- Carla Wiebke Axt
- LABOKLIN GmbH and Co. KG, Steubenstraße 4, 97688 Bad Kissingen, Germany; (C.W.A.); (E.M.)
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Clarissa Jung
- LABOKLIN GmbH and Co. KG, Steubenstraße 4, 97688 Bad Kissingen, Germany; (C.W.A.); (E.M.)
| | - Torsten J. Naucke
- LABOKLIN GmbH and Co. KG, Steubenstraße 4, 97688 Bad Kissingen, Germany; (C.W.A.); (E.M.)
| | - Elisabeth Müller
- LABOKLIN GmbH and Co. KG, Steubenstraße 4, 97688 Bad Kissingen, Germany; (C.W.A.); (E.M.)
| | - Ingo Schäfer
- LABOKLIN GmbH and Co. KG, Steubenstraße 4, 97688 Bad Kissingen, Germany; (C.W.A.); (E.M.)
| |
Collapse
|
11
|
Kubiak K, Szymańska H, Dziekońska-Rynko J, Tylkowska A, Dmitryjuk M, Dzika E. Tick-borne pathogens in questing adults Dermacentor reticulatus from the Eastern European population (north-eastern Poland). Sci Rep 2024; 14:698. [PMID: 38184725 PMCID: PMC10771447 DOI: 10.1038/s41598-024-51299-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024] Open
Abstract
Dermacentor reticulatus is tick species with an expanding geographical range in Europe, which creates the possibility of spreading microorganisms of significant veterinary and medical importance. The study aimed to investigate the prevalence and genetic diversity of Rickettsia spp., Babesia spp., Borrelia spp. and Anaplasma phagocytophilum in adult D. reticulatus ticks from the Eastern European population in the urban and the natural biotopes of north-eastern Poland. Microorganisms were detected by PCR and identified by DNA sequencing. The overall infection rate of at least one of the pathogens was 29.6%. The predominantly was Rickettsia spp. (27.1%) (with R. raoultii-9.1%) followed by Babesia spp. (2.4%) with B. canis (1.5%) as the most frequent. Based on 18S rRNA gene sequence, three B. canis genotypes were revealed. The prevalence of R. raoultii and B. canis was significantly higher in ticks from natural biotopes. The infection rates of B. afzelii and A. phagocytophilum were determined at 0.9% and 0.3%, respectively. Co-infections were detected in 3.8% of infected ticks. In diagnosing tick-borne diseases in humans, tick-borne lymphadenopathy should not be excluded. The prevalence of different genotypes of B. canis suggests differences in the clinical picture of canine babesiosis in the area.
Collapse
Affiliation(s)
- Katarzyna Kubiak
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-561, Olsztyn, Poland.
| | - Hanna Szymańska
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-561, Olsztyn, Poland
| | - Janina Dziekońska-Rynko
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-957, Olsztyn, Poland
| | - Agnieszka Tylkowska
- Department of Biology of Animal Environment, Institute of Animal Science, Warsaw University of Life Sciences, 02-786, Warsaw, Poland
| | - Małgorzata Dmitryjuk
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Ewa Dzika
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-561, Olsztyn, Poland
| |
Collapse
|
12
|
Wymazał A, Nowak S, Mysłajek RW, Bajer A, Welc-Falęciak R, Szewczyk M, Kwiatkowska I, Stępniak KM, Figura M, Kloch A. Tick-borne infections in wolves from an expanding population in Eastern Europe. Ticks Tick Borne Dis 2024; 15:102272. [PMID: 37890206 DOI: 10.1016/j.ttbdis.2023.102272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
In Central and Eastern Europe, wolf populations have been increasing over the last two decades, recolonizing areas from which the species had been previously exterminated. As wolves are still recovering after years of persecution by humans, recognizing pathogens infecting this species, including tick-borne infections, is crucial for its conservation. On the other hand the high mobility of wolves and their frequent contacts with humans, dogs, and other domestic species make them a potentially important zoonotic reservoir. In this paper, we used molecular methods to determine the prevalence of tick-borne pathogens in the following genera: Anaplasma, Babesia, Bartonella, Borrelia, and Rickettsia in 50 free-ranging wolves from Poland. We detected Babesia canis in the blood of nine individuals (prevalence 9/50=18 %). The obtained sequence showed the highest similarity to B. canis isolated from dogs and ticks, and all infected individuals originated from regions endemic to the ornate tick, Dermacentor reticulatus. Anaplasma phagocytophilum was found in tissue from one individual (1/50=2 %), and the sequence was assigned to the zoonotic ecotype I.
Collapse
Affiliation(s)
- Aleksander Wymazał
- Faculty of Biology, Department of Ecology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Sabina Nowak
- Faculty of Biology, Department of Ecology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Robert W Mysłajek
- Faculty of Biology, Department of Ecology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Anna Bajer
- Faculty of Biology, Department of Eco-Epidemiology of Parasitic Diseases, University of Warsaw, Miecznikowa 1, Warszawa 02-096, Poland
| | - Renata Welc-Falęciak
- Faculty of Biology, Department of Parasitology, University of Warsaw, Miecznikowa 1, Warszawa 02-096, Poland
| | - Maciej Szewczyk
- Faculty of Biology, Department of Vertebrate Ecology and Zoology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland
| | - Iga Kwiatkowska
- Faculty of Biology, Department of Ecology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Kinga M Stępniak
- Faculty of Biology, Department of Ecology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Michał Figura
- Faculty of Biology, Department of Ecology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland; Association for Nature "Wolf", Cynkowa 4, Twardorzeczka 34-324, Poland
| | - Agnieszka Kloch
- Faculty of Biology, Department of Ecology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland.
| |
Collapse
|
13
|
Probst J, Springer A, Topp AK, Bröker M, Williams H, Dautel H, Kahl O, Strube C. Winter activity of questing ticks (Ixodes ricinus and Dermacentor reticulatus) in Germany - Evidence from quasi-natural tick plots, field studies and a tick submission study. Ticks Tick Borne Dis 2023; 14:102225. [PMID: 37399628 DOI: 10.1016/j.ttbdis.2023.102225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Changing climatic conditions and other anthropogenic influences have altered tick distribution, abundance and seasonal activity over the last decades. In Germany, the two most important tick species are Ixodes ricinus and Dermacentor reticulatus, the latter of which has expanded its range across the country during the past three decades. While I. ricinus was rarely found during the colder months in the past, D. reticulatus is known to be active at lower temperatures. To quantify tick appearance during winter, specimens were monitored in quasi-natural tick plots three times a week. Additionally, the questing activities of these two tick species were observed throughout the year at nine field collection sites that were regularly sampled by the flagging method from April 2020 to April 2022. Furthermore, tick winter activity in terms of host infestation was analysed as part of a nationwide submission study from March 2020 to October 2021, in which veterinarians sent in ticks mainly collected from dogs and cats. All three study approaches showed a year-round activity of I. ricinus and D. reticulatus in Germany. During the winter months (December to February), on average 1.1% of the inserted I. ricinus specimens were observed at the tops of rods in the tick plots. The average questing activity of I. ricinus amounted to 2 ticks/100 m² (range: 1-17) in the flagging study, and 32.4% (211/651) of ticks found infesting dogs and cats during winter 2020/21 were I. ricinus. On average 14.7-20.0% of the inserted D. reticulatus specimens were observed at the tops of rods in the tick plots, while the average winter questing activity in the field study amounted to 23 specimens/100 m² (range: 0-62), and 49.8% (324/651) of all ticks collected from dogs and cats during winter 2020/21 were D. reticulatus. Additionally, the hedgehog tick Ixodes hexagonus was found to infest dogs and cats quite frequently during the winter months, accounting for 13.2% (86/651) of the collected ticks. A generalized linear mixed model identified significant correlations of D. reticulatus winter activity in quasi-natural plots with climatic variables. The combined study approaches confirmed a complementary main activity pattern of I. ricinus and D. reticulatus with climate change-driven winter activity of both species. Milder winters and a decrease of snowfall, and consequently high winter activity of D. reticulatus, among other factors, may have contributed to the rapid spread of this tick species throughout the country. Therefore, an effective year-round tick control is strongly recommended to not only efficiently protect dogs and cats with outdoor access from ticks and tick-borne pathogens (TBPs), but also to limit the further geographical spread of ticks and TBPs to so far non-endemic regions. Further measures, including information of the public, are necessary to protect both, humans and animals, in a One Health approach.
Collapse
Affiliation(s)
- Julia Probst
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Anna-Katharina Topp
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Michael Bröker
- Global Health Press, Pappelweg 30, 35041 Marburg, Germany
| | - Heike Williams
- Research Antiparasitics, MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim an der Selz, Germany
| | - Hans Dautel
- IS Insect Services GmbH, Motzener Straße 6, 12277 Berlin, Germany
| | - Olaf Kahl
- tick-radar GmbH, Jagowstraße 4, 10555 Berlin, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany.
| |
Collapse
|
14
|
Topp AK, Springer A, Mischke R, Rieder J, Feige K, Ganter M, Nagel-Kohl U, Nordhoff M, Boelke M, Becker S, Pachnicke S, Schunack B, Dobler G, Strube C. Seroprevalence of tick-borne encephalitis virus in wild and domestic animals in northern Germany. Ticks Tick Borne Dis 2023; 14:102220. [PMID: 37356181 DOI: 10.1016/j.ttbdis.2023.102220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Tick-borne encephalitis virus (TBEV) is a tick-transmitted flavivirus, which can infect humans and animals, sometimes even with a fatal outcome. Since many decades, TBEV is endemic in southern Germany, while only sporadic occurrence has been noted in northern parts of the country so far. Nevertheless, autochthonous human clinical cases are increasing in the federal state of Lower Saxony in north-western Germany, and several natural foci of TBEV transmission have recently been detected in this federal state. In order to shed more light on the current distribution of TBEV in Lower Saxony, the present study examined blood samples from wild and domestic animals for antibodies against TBEV. Overall, samples from 4,085 animals were tested by ELISA, including wild boar (N = 1,208), roe deer (N = 149), red deer (N = 61), fallow deer (N = 18), red foxes (N = 9), nutria (N = 9), raccoon dogs (N = 3), raccoons (N = 3), badgers (N = 1), European pine martens (N = 1), horses (N = 574), sheep (N = 266), goats (N = 67), dogs (N = 1,317) and cats (N = 399). Samples with an ELISA result of ≥60 Vienna units (VIEU)/ml were subjected to confirmatory serum neutralization tests (SNT). In total, 343 of 4,085 (8.4%) animals tested positive for anti-TBEV-IgG by ELISA, of which 60 samples were confirmed by SNT. Samples of 89 animals showed a cytotoxic effect in the SNT and were excluded from seroprevalence calculation, resulting in an overall seroprevalence of 1.5% (60/3,996). Seroprevalence was higher among wild animals (wild boar: 2.9% [34/1,190], roe deer: 2.7% [4/149], red deer: 1.7% [1/60], fallow deer: 5.6% [1/18]) than among domestic animals (dogs: 1.1% [15/1,317], horses: 0.8% [4/505], sheep: 0.4% [1/266]). No anti-TBEV-antibodies were detected in the other wild animal species as well as goats and cats. A notable clustering of positive samples was observed in districts where TBEV transmission foci have been described. Further clusters in other districts suggest the existence of so far undetected transmission foci, underlining the fact that both wild and domestic animals are useful sentinels for monitoring the spread of TBEV.
Collapse
Affiliation(s)
- Anna-Katharina Topp
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | - Reinhard Mischke
- Clinic for Small Animals, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Johanna Rieder
- Clinic for Small Animals, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Hannover 30173, Germany
| | - Uschi Nagel-Kohl
- Lower Saxony State Office for Consumer Protection and Food Safety, Veterinary Institute Hannover, Hannover 30173, Germany
| | - Marcel Nordhoff
- Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Oldenburg, Oldenburg 26133, Germany
| | - Matthias Boelke
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | - Stefanie Becker
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | | | - Bettina Schunack
- Elanco Animal Health, Bayer Animal Health GmbH, Monheim 40789, Germany
| | - Gerhard Dobler
- National Reference Laboratory for TBEV, Bundeswehr Institute of Microbiology, Munich 80937, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany.
| |
Collapse
|
15
|
Worku DA. Tick-Borne Encephalitis (TBE): From Tick to Pathology. J Clin Med 2023; 12:6859. [PMID: 37959323 PMCID: PMC10650904 DOI: 10.3390/jcm12216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral arthropod infection, endemic to large parts of Europe and Asia, and is characterised by neurological involvement, which can range from mild to severe, and in 33-60% of cases, it leads to a post-encephalitis syndrome and long-term morbidity. While TBE virus, now identified as Orthoflavivirus encephalitidis, was originally isolated in 1937, the pathogenesis of TBE is not fully appreciated with the mode of transmission (blood, tick, alimentary), viral strain, host immune response, and age, likely helping to shape the disease phenotype that we explore in this review. Importantly, the incidence of TBE is increasing, and due to global warming, its epidemiology is evolving, with new foci of transmission reported across Europe and in the UK. As such, a better understanding of the symptomatology, diagnostics, treatment, and prevention of TBE is required to inform healthcare professionals going forward, which this review addresses in detail. To this end, the need for robust national surveillance data and randomised control trial data regarding the use of various antivirals (e.g., Galidesivir and 7-deaza-2'-CMA), monoclonal antibodies, and glucocorticoids is required to improve the management and outcomes of TBE.
Collapse
Affiliation(s)
- Dominic Adam Worku
- Infectious Diseases, Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea SA6 6NL, UK;
- Public Health Wales, 2 Capital Quarter, Cardiff CF10 4BZ, UK
| |
Collapse
|
16
|
Koczwarska J, Pawełczyk A, Dunaj-Małyszko J, Polaczyk J, Welc-Falęciak R. Rickettsia species in Dermacentor reticulatus ticks feeding on human skin and clinical manifestations of tick-borne infections after tick bite. Sci Rep 2023; 13:9930. [PMID: 37336983 DOI: 10.1038/s41598-023-37059-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
Dermacentor reticulatus ticks are sporadically removed from human skin and therefore the medical consequences of their feeding are neglected compared to Ixodes ricinus. We investigated the prevalence of pathogens in D. reticulatus removed from human skin and possible clinical manifestations suggestive of tick-borne diseases after a tick bite. A total of 2153 ticks were studied and of these only 34 were D. reticulatus. The mean prevalence of Rickettsia in D. reticulatus was 50.0% and R. raoultii was identified in 82.4% of infected D. reticulatus ticks. We confirmed the first case of R. aeschlimannii infection in D. reticulatus ticks. Among participants bitten by D. reticulatus, 13.3% reported reddening around the tick bite site and flu-like symptoms, including lymphadenopathy and 3.3% reported eschar on the tick site bite. All of the participants with flu-like symptoms after tick removal were bitten by ticks infected with R. raoultii. The results of this study indicate that even though D. reticulatus ticks bite humans sporadically, pathogenic Rickettsia have a remarkably high prevalence in this tick species. We can expect that the incidence of tick-borne lymphadenopathy might increase with the reported expansion of the D. reticulatus into new areas and its growing abundance in Central Europe.
Collapse
Affiliation(s)
- Julia Koczwarska
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Agnieszka Pawełczyk
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Justyna Dunaj-Małyszko
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Justyna Polaczyk
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
17
|
Cuervo PF, Artigas P, Lorenzo-Morales J, Bargues MD, Mas-Coma S. Ecological Niche Modelling Approaches: Challenges and Applications in Vector-Borne Diseases. Trop Med Infect Dis 2023; 8:tropicalmed8040187. [PMID: 37104313 PMCID: PMC10141209 DOI: 10.3390/tropicalmed8040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Vector-borne diseases (VBDs) pose a major threat to human and animal health, with more than 80% of the global population being at risk of acquiring at least one major VBD. Being profoundly affected by the ongoing climate change and anthropogenic disturbances, modelling approaches become an essential tool to assess and compare multiple scenarios (past, present and future), and further the geographic risk of transmission of VBDs. Ecological niche modelling (ENM) is rapidly becoming the gold-standard method for this task. The purpose of this overview is to provide an insight of the use of ENM to assess the geographic risk of transmission of VBDs. We have summarised some fundamental concepts and common approaches to ENM of VBDS, and then focused with a critical view on a number of crucial issues which are often disregarded when modelling the niches of VBDs. Furthermore, we have briefly presented what we consider the most relevant uses of ENM when dealing with VBDs. Niche modelling of VBDs is far from being simple, and there is still a long way to improve. Therefore, this overview is expected to be a useful benchmark for niche modelling of VBDs in future research.
Collapse
Affiliation(s)
- Pablo Fernando Cuervo
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
- Correspondence:
| | - Patricio Artigas
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
| | - Jacob Lorenzo-Morales
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Canary Islands, Spain
| | - María Dolores Bargues
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
| | - Santiago Mas-Coma
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
| |
Collapse
|
18
|
Saegerman C, Humblet MF, Leandri M, Gonzalez G, Heyman P, Sprong H, L’Hostis M, Moutailler S, Bonnet SI, Haddad N, Boulanger N, Leib SL, Hoch T, Thiry E, Bournez L, Kerlik J, Velay A, Jore S, Jourdain E, Gilot-Fromont E, Brugger K, Geller J, Studahl M, Knap N, Avšič-Županc T, Růžek D, Zomer TP, Bødker R, Berger TFH, Martin-Latil S, De Regge N, Raffetin A, Lacour SA, Klein M, Lernout T, Quillery E, Hubálek Z, Ruiz-Fons F, Estrada-Peña A, Fravalo P, Kooh P, Etore F, Gossner CM, Purse B. First Expert Elicitation of Knowledge on Possible Drivers of Observed Increasing Human Cases of Tick-Borne Encephalitis in Europe. Viruses 2023; 15:v15030791. [PMID: 36992499 PMCID: PMC10054665 DOI: 10.3390/v15030791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral disease endemic in Eurasia. The virus is mainly transmitted to humans via ticks and occasionally via the consumption of unpasteurized milk products. The European Centre for Disease Prevention and Control reported an increase in TBE incidence over the past years in Europe as well as the emergence of the disease in new areas. To better understand this phenomenon, we investigated the drivers of TBE emergence and increase in incidence in humans through an expert knowledge elicitation. We listed 59 possible drivers grouped in eight domains and elicited forty European experts to: (i) allocate a score per driver, (ii) weight this score within each domain, and (iii) weight the different domains and attribute an uncertainty level per domain. An overall weighted score per driver was calculated, and drivers with comparable scores were grouped into three terminal nodes using a regression tree analysis. The drivers with the highest scores were: (i) changes in human behavior/activities; (ii) changes in eating habits or consumer demand; (iii) changes in the landscape; (iv) influence of humidity on the survival and transmission of the pathogen; (v) difficulty to control reservoir(s) and/or vector(s); (vi) influence of temperature on virus survival and transmission; (vii) number of wildlife compartments/groups acting as reservoirs or amplifying hosts; (viii) increase of autochthonous wild mammals; and (ix) number of tick species vectors and their distribution. Our results support researchers in prioritizing studies targeting the most relevant drivers of emergence and increasing TBE incidence.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, 4000 Liege, Belgium
- Correspondence:
| | - Marie-France Humblet
- Department for Occupational Protection and Hygiene, Unit Biosafety, Biosecurity and Environmental Licences, University of Liege, 4000 Liege, Belgium
| | - Marc Leandri
- UMI SOURCE, Université Paris-Saclay—UVSQ, 78000 Versailles, France
| | - Gaëlle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | | | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 MA Bilthoven, The Netherlands
| | - Monique L’Hostis
- Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation Nantes-Atlantique, Oniris, 44307 Nantes, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Sarah I. Bonnet
- UMR 2000 Institut Pasteur-CNRS-Université Paris-Cité, Ecology and Emergence of Arthropod-borne Pathogens, 75015 Paris, France
- Animal Health Department, INRAE, 37380 Nouzilly, France
| | - Nadia Haddad
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Nathalie Boulanger
- UR7290: VBP: Borrelia Group, France and French Reference Centre on Lyme Borreliosis, CHRU, Unversity of Strasbourg, 67000 Strasbourg, France
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | | | - Etienne Thiry
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, 4000 Liege, Belgium
| | - Laure Bournez
- ANSES, Nancy Laboratory for Rabies and Wildlife, 54220 Malzéville, France
| | - Jana Kerlik
- Department of Epidemiology, Regional Authority of Public Health in Banská Bystrica, 497556 Banská Bystrica, Slovakia
| | - Aurélie Velay
- Unité Mixte de Recherché Immunorhumathologie Moléculaire (UMR IRM_S) 1109, Université de Strasbourg, INSERM, 67000 Strasbourg, France
| | - Solveig Jore
- Zoonotic, Water and Foodborne Infections, The Norwegian Institute for Public Health (NIPH), 0213 Oslo, Norway
| | - Elsa Jourdain
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Route de Theix, 63122 Saint-Genès-Champanelle, France
| | | | - Katharina Brugger
- Competence Center Climate and Health, Austrian National Institute of Public Health, 1010 Vienna, Austria
| | - Julia Geller
- Department of Virology and Immunology, National Institute for Health Development, 11619 Tallinn, Estonia
| | - Marie Studahl
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, 41685 Gothenburg, Sweden
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Tizza P. Zomer
- Lyme Center Apeldoorn, Gelre Hospital, 7300 DS Apeldoorn, The Netherlands
| | - René Bødker
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Thomas F. H. Berger
- Agroscope, Risk Evaluation and Risk Mitigation, Schwarzenburgstrasse, 3003 Bern-Liebefeld, Switzerland
| | - Sandra Martin-Latil
- Laboratory for Food Safety, ANSES, University of Paris-EST, 94700 Maisons-Alfort, France
| | - Nick De Regge
- Operational Direction Infectious Diseases in Animals, Unit of Exotic and Vector-borne Diseases, Sciensano, 1180 Brussels, Belgium
| | - Alice Raffetin
- Reference Centre for Tick-Borne Diseases, Paris and Northern Region, Department of Infectious Diseases, General Hospital of Villeneuve-Saint-Georges, 94100 Villeneuve-Saint-Georges, France
| | - Sandrine A. Lacour
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Matthias Klein
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, LMU München, Marchioninistraße 15, 81377 München, Germany
| | - Tinne Lernout
- Scientific Directorate of Epidemiology and Public Health, Sciensano, 1180 Brussels, Belgium
| | - Elsa Quillery
- ANSES, Risk Assessment Department, 94700 Maisons-Alfort, France
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365 Brno, Czech Republic
| | - Francisco Ruiz-Fons
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain
| | - Agustín Estrada-Peña
- Deptartment of Animal Health, Faculty of Veterinary Medicine, 50013 Zaragoza, Spain
| | - Philippe Fravalo
- Pôle Agroalimentaire, Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - Pauline Kooh
- ANSES, Risk Assessment Department, 94700 Maisons-Alfort, France
| | - Florence Etore
- ANSES, Risk Assessment Department, 94700 Maisons-Alfort, France
| | - Céline M. Gossner
- European Centre for Disease Prevention and Control (ECDC), 17183 Solna, Sweden
| | - Bethan Purse
- UK Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Oxfordshire OX10 8BB, UK
| |
Collapse
|
19
|
Probst J, Springer A, Strube C. Year-round tick exposure of dogs and cats in Germany and Austria: results from a tick collection study. Parasit Vectors 2023; 16:70. [PMID: 36797779 PMCID: PMC9933410 DOI: 10.1186/s13071-023-05693-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Ticks and tick-borne diseases play a major role in companion animal health. Additionally, the European tick fauna is changing, for instance due to the spread of Dermacentor reticulatus, displaying a higher likelihood of winter activity than Ixodes ricinus. Therefore, we investigated current tick infestations in dogs and cats in Germany and in parts of Austria and the seasonal infestation risk. METHODS Overall, 219 veterinary practices were invited to collect ticks from cats and dogs on a monthly basis. Ticks were morphologically identified and female I. ricinus specimens were measured to estimate attachment duration. RESULTS In total, 19,514 ticks, 17,789 (91.2%) from Germany and 1506 (7.7%) from Austria, were received between March 2020 and October 2021, with 10,287 specimens (52.7%) detached from dogs, 8005 from cats (41.0%) and 1222 from other species (6.3%). In Germany, the most common tick species collected from dogs were I. ricinus (78.0%) and D. reticulatus (18.8%), while cats mainly harboured I. ricinus (91.3%) and I. hexagonus (5.5%) and only few D. reticulatus (0.6%). In Austria, collected I. ricinus reached similar proportions in dogs (90.4%) and cats (95.3%), followed by D. reticulatus in both dogs (5.2%) and cats (1.5%), with I. hexagonus (0.9%) collected only marginally from cats. The average infestation intensity amounted to 1.62 ticks/dog and 1.88 ticks/cat. The single to multiple infestation ratio was 79.1% to 20.9% in dogs and 69.0% to 31.0% in cats, with cats being significantly more often multiple infested than dogs, while the proportion of mixed-species infestations was 2.0% for both dogs and cats. The average attachment duration of female I. ricinus specimens amounted to 78.76 h for dogs and 82.73 h for cats. Furthermore, year-round tick exposure was confirmed, with 108 D. reticulatus and 70 I. ricinus received on average per month during December 2020 to February 2021. CONCLUSIONS The study shows a year-round tick infestation risk, with activity of both D. reticulatus and I. ricinus during winter, and confirms the widespread occurrence of D. reticulatus in Germany. Additionally, long average attachment durations and frequent multiple infestations underline the need for adequate year-round tick control, even during the winter months.
Collapse
Affiliation(s)
- Julia Probst
- grid.412970.90000 0001 0126 6191Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Andrea Springer
- grid.412970.90000 0001 0126 6191Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
20
|
Rubel F, Zaenker S, Weigand A, Weber D, Chitimia-Dobler L, Kahl O. Atlas of ticks (Acari: Argasidae, Ixodidae) in Germany: 1st data update. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:251-274. [PMID: 36928533 PMCID: PMC10020077 DOI: 10.1007/s10493-023-00784-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 05/25/2023]
Abstract
The first data update of the atlas of ticks in Germany published in 2021 is presented here. This atlas provides maps based on georeferenced tick locations of 21 species endemic in Germany as well as three tick species that are regularly imported to Germany. The data update includes the following numbers of newly georeferenced tick locations: 17 Argas reflexus, 79 Carios vespertilionis, 2 Dermacentor marginatus, 43 Dermacentor reticulatus, 4 Haemaphysalis concinna, 3 Haemaphysalis punctata, 3 Hyalomma rufipes, 3 Ixodes apronophorus, 9 Ixodes arboricola, 1 Ixodes ariadnae, 30 Ixodes canisuga, 3 Ixodes frontalis, 80 Ixodes hexagonus, 3 Ixodes lividus, 497 Ixodes ricinus/inopinatus, 1 Ixodes rugicollis, 17 Ixodes trianguliceps, 14 Ixodes vespertilionis, and 45 Rhipicephalus sanguineus sensu lato. Old and new tick findings were mapped, such as the northernmost occurrence of D. marginatus in Germany observed in 2021, but also the historical records from the first descriptions of I. apronophorus and I. arboricola, which were georeferenced here for the first time. The digital dataset of tick locations available for Germany is supplemented by 854 new tick locations. These records increase the number of tick species mapped in the federal states Bavaria, Brandenburg and Mecklenburg Western Pomerania by five each, those in Berlin and Schleswig-Holstein by four each, those in Hamburg by three, those in Baden-Wuerttemberg, Bremen, Lower Saxony, Northrhine-Westphalia, Rhineland Palatinate and Thuringia by two each, and those in Hesse, Saxony and Saxony-Anhalt by one each. Thus, the first data update of the tick atlas in Germany and the underlying digital dataset significantly improve our knowledge of the distribution of these tick species and helps to investigate the effects of climate change and habitat changes on them.
Collapse
Affiliation(s)
- Franz Rubel
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Stefan Zaenker
- Hesse Federation for Cave and Karst Research, Fulda, Germany
| | - Alexander Weigand
- National Museum of Natural History Luxembourg, Luxembourg City, Luxembourg
- Fondation Faune-Flore, Musée National d'Histoire Naturelle, Luxembourg City, Luxembourg
| | - Dieter Weber
- National Museum of Natural History Luxembourg, Luxembourg City, Luxembourg
- Fondation Faune-Flore, Musée National d'Histoire Naturelle, Luxembourg City, Luxembourg
| | | | | |
Collapse
|