1
|
Zhu Y, Song M, Pan Y, Zhao Y, Liu H. Evaluation and Application of the MIRA-qPCR Method for Rapid Detection of Norovirus Genogroup II in Shellfish. Microorganisms 2025; 13:712. [PMID: 40284551 PMCID: PMC12029516 DOI: 10.3390/microorganisms13040712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Globally, norovirus has become the primary cause of outbreaks of acute gastroenteritis, and an increasing number of norovirus GII infections have been associated with shellfish. This highlights the urgent need to establish sensitive and rapid detection platforms for timely screening of contaminated shellfish to reduce the risk of virus transmission. To address this challenge, we developed a novel detection method combining multienzyme isothermal rapid amplification (MIRA) with qPCR, referred to as MIRA-qPCR, specifically targeting norovirus GII. It exhibited robust specificity, demonstrating no cross-reactivity with sapovirus, rotavirus, hepatitis A virus, Escherichia coli, Listeria monocytogenes, or Vibrio parahaemolyticus, and exhibited high sensitivity, detecting as low as 1.62 copies/μL for recombinant plasmid standards. Furthermore, MIRA-qPCR showed good linearity in the 1.62 × 101 to 1.62 × 107 copies/μL range, with an R2 > 0.90. MIRA-qPCR and qPCR assays were performed on 125 fresh shellfish samples; there was good consistency in the detection results, and the Kappa value was 0.90 (p < 0.001). The sensitivity and specificity of the MIRA-qPCR detection were 100.00% and 97.25%, respectively. The MIRA-qPCR technique provides a viable alternative for the rapid screening of norovirus GII-contaminated shellfish to guarantee food safety.
Collapse
Affiliation(s)
- Yanting Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengyuan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Liu Q, Niu X, Jiang L, Zhang G, Wang P, Zhang S, Gao W, Guo H, Wang Y, Li Y. Establishment of an indirect ELISA method for detecting bovine coronavirus antibodies based on N protein. Front Vet Sci 2025; 12:1530870. [PMID: 39974155 PMCID: PMC11835881 DOI: 10.3389/fvets.2025.1530870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Bovine Coronavirus (BCoV) is a significant pathogen responsible for neonatal calf diarrhea, winter dysentery in adult cattle, and bovine respiratory diseases. Infection with the virus can result in hemorrhagic diarrhea, decreased milk production, and potentially fatal outcomes in cattle, leading to considerable economic repercussions for the cattle industry. Efficient management of BCoV relies on swift and precise detection techniques. CHO cells were utilized to express a secreted recombinant nucleocapsid protein (N), whereby rabbit polyclonal antibodies (pAb) were generated through immunization. An indirect enzyme-linked immunosorbent assay (iELISA) based on N protein was established for the detection of BCoV antibodies. Reaction conditions were optimized using a checkerboard approach, with the optimal antigen concentration at 1.25 μg/mL and the optimal antibody dilution at 1:200, the cutoff value distinguishing negative and positive serum samples was 0.986. The sensitivity test indicated that this rabbit pAb had a maximum dilution of 218 within the assay range, did not cross-react with BHV-1, BVDV, BRV, and BRSV positive serum samples, and shown great specificity. The developed iELISA method and commercial kit were used to test 58 bovine serum samples, and the concordance rate was 94.83%. In summary, we have developed a cost-efficient and precise iELISA method based on N protein that serves as a useful diagnostic tool for BCoV in clinical samples and epidemiological research.
Collapse
Affiliation(s)
- Qiang Liu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Xiaoxia Niu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Lingling Jiang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Gang Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Pu Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Sinong Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Weifeng Gao
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Huichen Guo
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yujiong Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Yong Li
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| |
Collapse
|
3
|
Ji J, Mu X, Pan S, Xu X, Zhang S, Huang H, Li Y, Bi Y, Yao L. Visible and rapid detection of feline chaphamaparvovirus using multienzyme isothermal rapid amplification and lateral flow dipstick assay. Front Cell Infect Microbiol 2025; 15:1490948. [PMID: 39917634 PMCID: PMC11794484 DOI: 10.3389/fcimb.2025.1490948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Feline chaphamaparvovirus (FeChPV) is a novel parvovirus previously reported in Canadian cats and Chinese dogs with diarrhea in 2019 and 2020, respectively. Herein, we aimed to establish a simple detection method for FeChPV in field clinics. The primers and probes for the multienzyme isothermal rapid amplification and lateral flow dipstick (MIRA-LFD) assay were designed to target the conserved regions of the FeChPV genome and determine the optimal reaction temperature and time. Without relying on precision instruments, FeChPV detection using the MIRA-LFD assay was completed within 20 min at 37°C, without any cross-reaction with other reference viruses. The newly established MIRA-LFD assay had a detection limit of 32.3 copies/μL, which was 10-fold lower than that of the nested polymerase chain reaction (PCR) assay. Furthermore, the MIRA-LFD assay detected 29 FeChPV-positive samples among 417 cats with diarrhea, providing a slightly higher positivity rate than the nested PCR assay. These results indicate that the newly developed MIRA-LFD assay for FeChPV detection is an efficient, economical, reliable, and simple method that can help in the early prevention and control of FeChPV infection.
Collapse
Affiliation(s)
- Jun Ji
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Xinhao Mu
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Shunshun Pan
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Xin Xu
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Shiyuan Zhang
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Honghui Huang
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Ying Li
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Yingzuo Bi
- College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| |
Collapse
|
4
|
Liang Z, Luo R, He Q, Tang C, Zhang Z, Li Y, Guo Z. Specific and sensitive detection of bovine coronavirus using CRISPR-Cas13a combined with RT-RAA technology. Front Vet Sci 2025; 11:1473674. [PMID: 39840345 PMCID: PMC11749252 DOI: 10.3389/fvets.2024.1473674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Bovine coronavirus (BCoV) is an important pathogen of enteric and respiratory disease in cattle, resulting in huge economic losses to the beef and dairy industries worldwide. A specific and sensitive detection assay for BCoV is critical to the early-stage disease prevention and control. Methods We established a specific, sensitive, and stable assay for BCoV nucleic acid detection based on CRISPR/Cas13a combined with reverse transcription recombinase-aided amplification (RT-RAA) technology. The specific primers for RT-RAA and CRISPR RNA (crRNA) were designed in the conserved region of the BCoV nucleocapsid (N) gene. Results The detection limit of the RT-RAA CRISPR/Cas13a assays for BCoV detection was 1.72 copies/μl, and there were no cross-reactions with the other 10 common bovine enteric and respiratory disease-associated pathogens. The coefficient of variations (CVs) of within and between batches were less than 4.98 and 4.58%, respectively. The RT-RAA-CRISPR/Cas13a assays work well in clinical samples of cattle and yak, the BCoV positive rate of 84 clinical samples detected by RT-RAA-CRISPR/Cas13a assays was 58.3% (49/84), it was notably higher than that of RT-qPCR (2.4%, 2/84; p < 0.001). The 49 positive samples detected by RT-RAA-CRISPR/Cas13a assays were further confirmed as BCoV by Sanger sequencing. Discussion A specific, sensitive, and stable assay based on RT-RAA-CRISPR/Cas13a assays for BCoV was developed, providing new technical support for the clinical detection and epidemiological monitoring of BCoV.
Collapse
Affiliation(s)
- Zili Liang
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Ruxing Luo
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Qifu He
- Wuhou District Health Hospital for Women & Children, Chengdu, China
| | - Cheng Tang
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Zhidong Zhang
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yanmin Li
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Zijing Guo
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|
5
|
Dai Y, Zhong Y, Xu F, Gu S, Zhou H, Wang J, Yin D, Yin L, Shen X, Pan X, Liu X. Development and evaluation of three multienzyme isothermal rapid amplification assays for fowl adenovirus serotype 4. Poult Sci 2024; 103:104452. [PMID: 39504832 PMCID: PMC11570712 DOI: 10.1016/j.psj.2024.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the main causative agent of hydropericardium hepatitis syndrome (HHS), which has resulted in huge economic losses to the poultry industry in recent years. Hence, a rapid and simple visual detection method is needed for identification of FAdV-4. In this study, three multienzyme isothermal rapid amplification (MIRA) assays, basic MIRA, MIRA-qPCR and MIRA-LFD were developed for detection of FAdV-4. The amplification primers and reaction conditions were optimized, and the specificity and sensitivity of the assays were evaluated. The MIRA assays were specific for FAdV-4 with no cross-reaction with novel goose astrovirus, H9 subtype avian influenza virus, duck enteritis virus, Muscovy duck reovirus, or duck circovirus. The basic MIRA assay required only one primer pair and the reaction can be completed within 30 min at 36 °C. The MIRA-qPCR and MIRA-LFD assays were completed in 20 min with a minimum detection limit of 1 × 101 copies/μL and 1 × 102 copies/μL, respectively. The results of the MIRA-LFD assay can be observed directly with the naked eye, omitting the need for specialized instruments. The positive rate of three proposed MIRA assays were consistent with that of the conventional PCR assay. The MIRA assays are simple, rapid, and effective diagnostic tools for field detection of FAdV-4.
Collapse
Affiliation(s)
- Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China.
| | - Yueyi Zhong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fazhi Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Siqin Gu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huiqin Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xuelan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Zhu Y, Chen L, Xu X, Ye W, Ni Z, Huo S, Hua J, Yun T, Yao H, Wang H, Zhang C. Development of a multienzyme isothermal and lateral flow dipstick combination assay for the rapid detection of goose astrovirus II. Front Cell Infect Microbiol 2024; 14:1424212. [PMID: 39165916 PMCID: PMC11333440 DOI: 10.3389/fcimb.2024.1424212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Goose astrovirus (GAstV) is a newly emerging pathogen that is currently widespread among geese, causing visceral gout and leading to substantial gosling mortalities, posing a severe threat to the waterfowl industry. GAstV II is the predominant epidemic strain, characterized by its high morbidity and mortality rate. Consequently, there is an urgent necessity to develop an effective diagnostic approach to control the dissemination of GAstV II, particularly in clinical farms with limited laboratory resources. Methods In this study, a novel multi-enzyme isothermal rapid amplification (MIRA) and lateral flow dipstick (LFD) combined assay was developed. Different primers designed specific targeting a highly conserved region within the viral RdRp gene for the detection of GAstV II. Primers optimized and MIRA-LFD assay analyzed its performance regarding limits of detection, specificity, and efficiency of detection. Results The developed MIRA amplification is conducted at a constant temperature and accomplished within 10 minutes. Subsequent naked-eye observation of the LFD strips merely takes 5 minutes. The established MIRA-LFD method exhibits high specificity, with no cross-reaction with other pathogens and attains a detection sensitivity of 1 copy/μl, which is consistent with the reverse transcription quantitative PCR (RT-qPCR) assay. Further evaluation with clinical samples indicates that the accuracy of this MIRA-LFD method correlates well with RT-qPCR for the detection of GAstV II. Conclusion In summary, the convenience, sensitivity, and rapidity of this newly developed detection method offer a significant advantage for on-site diagnosis of GAstV II.
Collapse
Affiliation(s)
- Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Suxin Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Xing Y, Duan Z, Jiang Y, Li M, Lu W, Li J. Development and evaluation of a real-time multienzyme isothermal rapid amplification assay for rapid detection of Streptococcus pneumoniae. Sci Rep 2024; 14:17729. [PMID: 39085471 PMCID: PMC11291690 DOI: 10.1038/s41598-024-68524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Streptococcus pneumoniae is a significant pathogen causing infectious diseases, including pneumonia, otitis media, septicemia, and meningitis. The introduction of multivalent vaccines has coincided with a remarkable decrease in the number of pneumococcal-related deaths. Despite this, pneumococcal infection remains a significant cause of death among children under 5 years old and adults aged 65 or older at a global level. Therefore, early detection of S. pneumoniae infection is crucial for prognosis of pneumococcal infection patients. In this study, we evaluated the utility of a real-time multienzyme isothermal rapid amplification (MIRA) assay for detecting S. pneumoniae and other non-S. pneumoniae bacterial species. A primer-probe set targeting the S. pneumoniae lytA gene was designed, followed by optimization of parameters for the MIRA assay. At the same time, we validated the real-time MIRA assay for detecting S. pneumoniae using 79 clinical isolates identified by VITEK MS. The results showed a detection sensitivity and specificity of 100%. These results demonstrate that the designed real-time MIRA assay is a promising, rapid, simple, and reliable method for detecting S. pneumoniae infection in resource-limited areas. It has great potential for application in detecting not only S. pneumoniae but also other non-S. pneumoniae bacterial species.
Collapse
Affiliation(s)
- Yun Xing
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhixiong Duan
- Department of Laboratory Medicine, The Chen Jia Qiao Hospital of Sha Ping Ba District of Chongqing City, Chongqing, China
| | - Yuansu Jiang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Weiping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China.
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China.
- Department of Laboratory Medicine, Chongqing Medical University Affiliated Dazu Hospital, Chongqing, China.
| |
Collapse
|
8
|
Tian R, Xie F, Liu Y, Liu G, Li Q, Wang J, Zhang H, Dai L, Zhang W. Recombinase polymerase amplification combined with lateral flow biosensor for rapid visual detection of Clostridium perfringens in chicken meat and milk. Front Vet Sci 2024; 11:1395188. [PMID: 39011320 PMCID: PMC11246993 DOI: 10.3389/fvets.2024.1395188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Aims Clostridium perfringens is one of the major anaerobic pathogen causing food poisoning and animal enteritis. With the rise of antibiotic resistance and the restrictions of the use of antibiotic growth promoting agents (AGPs) in farming, Clostridium enteritis and food contamination have become more common. It is time-consuming and labor-intensive to confirm the detection by standard culture methods, and it is necessary to develop on-site rapid detection tools. In this study, a combination of recombinase polymerase amplification (RPA) and lateral flow biosensor (LFB) was used to visually detect C. perfringens in chicken meat and milk. Methods and results Two sets of primers were designed for the plc gene of C. perfringens, and the amplification efficiency and specificity of the primers. Selection of primers produces an amplified fragment on which the probe is designed. The probe was combined with the lateral flow biosensor (LFB). The reaction time and temperature of RPA-LFB assay were optimized, and the sensitivity of the assay was assessed. Several common foodborne pathogens were selected to test the specificity of the established method. Chicken and milk samples were artificially inoculated with different concentrations (1 × 102 CFU/mL to 1 × 106 CFU/mL) of C. perfringens, and the detection efficiency of RPA-LFB method and PCR method was compared. RPA-LFB can be completed in 20 min and the results can be read visually by the LFB test strips. The RPA-LFB has acceptable specificity and the lowest detection limit of 100 pg./μL for nucleic acid samples. It was able to stably detect C. perfringens contamination in chicken and milk at the lowest concentration of 1 × 104 CFU/mL and 1 × 103 CFU/mL, respectively. Conclusion In conclusion, RPA-LFB is specific and sensitive. It is a rapid, simple and easy-to-visualize method for the detection of C. perfringens in food and is suitable for use in field testing work.
Collapse
Affiliation(s)
- Rui Tian
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xie
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guangjin Liu
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qingxia Li
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Jinxiu Wang
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Hongjian Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Lei Dai
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Wei Zhang
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
van den Hurk S, Regmi G, Naikare HK, Velayudhan BT. Advances in Laboratory Diagnosis of Coronavirus Infections in Cattle. Pathogens 2024; 13:524. [PMID: 39057751 PMCID: PMC11279749 DOI: 10.3390/pathogens13070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the respiratory form of coronavirus, whereas the gastroenteric form causes neonatal diarrhea or calf scours in young cattle and winter dysentery in adult cattle. The tremendous impacts of bovine respiratory disease and the associated losses are well-documented and underscore the importance of this pathogen. Beyond this, studies have demonstrated significant impacts on milk production associated with outbreaks of winter dysentery, with up to a 30% decrease in milk yield. In North America, BCoV was identified for the first time in 1972, and it continues to be a significant economic concern for the cattle industry. A number of conventional and molecular diagnostic assays are available for the detection of BCoV from clinical samples. Conventional assays for BCoV detection include virus isolation, which is challenging from clinical samples, electron microscopy, fluorescent antibody assays, and various immunoassays. Molecular tests are mainly based on nucleic acid detection and predominantly include conventional and real-time polymerase chain reaction (PCR) assays. Isothermal amplification assays and genome sequencing have gained increased interest in recent years for the detection, characterization, and identification of BCoV. It is believed that isothermal amplification assays, such as loop-mediated isothermal amplification and recombinase polymerase amplification, among others, could aid the development of barn-side point-of-care tests for BCoV. The present study reviewed the literature on coronavirus infections in cattle from the last three and a half decades and presents information mainly on the current and advancing diagnostics in addition to epidemiology, clinical presentations, and the impact of the disease on the cattle industry.
Collapse
Affiliation(s)
- Shaun van den Hurk
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Girija Regmi
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA 30602, USA;
| | - Hemant K. Naikare
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN 55108, USA;
| | - Binu T. Velayudhan
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
10
|
Sun ML, Yang Y, Hu R, Li JL, Liu SH, Chen YZ, Wang DY, Wang L, Li YZ, Zhong Y, Yao J, Li XN. Simple and field-adapted species identification of biological specimens combining multiplex multienzyme isothermal rapid amplification, lateral flow dipsticks, and universal primers for initial rapid screening without standard PCR laboratory. Int J Legal Med 2024; 138:561-570. [PMID: 37801116 DOI: 10.1007/s00414-023-03101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Species identification of biological specimens can provide the valuable clues and accelerate the speed of prosecution material processing for forensic investigation, especially when the case scene is inaccessible and the physical evidence is cumbersome. Thus, establishing a rapid, simple, and field-adapted species identification method is crucial for forensic scientists, particularly as first-line technology at the crime scene for initial rapid screening. In this study, we established a new field-adapted species identification method by combining multiplex multienzyme isothermal rapid amplification (MIRA), lateral flow dipstick (LFD) system, and universal primers. Universal primers targeting COX I and COX II genes were used in multiplex MIRA-LFD system for seven species identification, and a dedicated MIRA-LFD system primer targeting CYT B gene was used to detect the human material. DNA extraction was performed by collecting DNA directly from the centrifuged supernatant. Our study found that the entire amplification process took only 15 min at 37 °C and the results of LFDs could be visually observed after 10 min. The detection sensitivity of human material could reach 10 pg, which is equivalent to the detection of single cell. Different common animal samples mixed at the ratio of 1 ng:1 ng, 10 ng:1 ng, and 1 ng:10 ng could be detected successfully. Furthermore, the damaged and degraded samples could also be detected. Therefore, the convenient, feasible, and rapid approach for species identification is suitable for popularization as first-line technology at the crime scene for initial rapid screening and provides a great convenient for forensic application.
Collapse
Affiliation(s)
- Mao-Ling Sun
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Ying Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ran Hu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jia-Lun Li
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Shu-Han Liu
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Yun-Zhou Chen
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Dong-Yi Wang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Lan Wang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Yu-Zhang Li
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Yang Zhong
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China.
| | - Xiao-Na Li
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China.
| |
Collapse
|
11
|
Park SB, Zhang Y. Development of Multienzyme Isothermal Rapid Amplification (MIRA) Combined with Lateral-Flow Dipstick (LFD) Assay to Detect Species-Specific tlh and Pathogenic trh and tdh Genes of Vibrio parahaemolyticus. Pathogens 2024; 13:57. [PMID: 38251364 PMCID: PMC10819497 DOI: 10.3390/pathogens13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Vibrio parahaemolyticus causes severe gastroenteritis in humans after consuming contaminated raw or undercooked seafood. A species-specific marker, the thermolabile hemolysin (tlh) gene, and two pathogenic markers, thermostable-related hemolysin (trh) and thermostable-direct hemolysin (tdh) genes, have been used to identify V. parahaemolyticus and determine its pathogenicity using both PCR and qPCR assays. To enable testing in field conditions with limited resources, this study aimed to develop a simple and rapid method to detect the species-specific (tlh) and pathogenic (trh and tdh) genes of V. parahaemolyticus using multienzyme isothermal rapid amplification (MIRA) combined with a lateral-flow dipstick (LFD). The amplification of the tlh, trh, and tdh genes could be completed within 20 min at temperatures ranging from 30 to 45 °C (p < 0.05). The test yielded positive results for V. parahaemolyticus but produced negative results for nine Vibrio species and eighteen foodborne pathogenic bacterial species. MIRA-LFD could detect 10 fg of DNA and 2 colony-forming units (CFU) of V. parahaemolyticus per reaction, demonstrating a sensitivity level comparable to that of qPCR, which can detect 10 fg of DNA and 2 CFU per reaction. Both MIRA-LFD and qPCR detected seven tlh-positive results from thirty-six oyster samples, whereas one positive result was obtained using the PCR assay. No positive results for the trh and tdh genes were obtained from any oyster samples using MIRA-LFD, PCR, and qPCR. This study suggests that MIRA-LFD is a simple and rapid method to detect species-specific and pathogenic genes of V. parahaemolyticus with high sensitivity.
Collapse
Affiliation(s)
- Seong Bin Park
- Experimental Seafood Processing Laboratory, Coastal Research & Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research & Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| |
Collapse
|
12
|
Guo Y, Zhang L, Yang Y, Li J, Luan X, Gong S, Ma Y, Gu W, Du J, Meng Q. Development and application of the MIRA and MIRA-LFD detection methods of Spiroplasma eriocheiris. J Invertebr Pathol 2023; 201:108017. [PMID: 37926345 DOI: 10.1016/j.jip.2023.108017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The tremor disease (TD) caused by Spiroplasma eriocheiris is the most destructive disease of the Chinese mitten crab, Eriocheir sinensis. This study attempts to construct Multienzyme Isothermal Rapid Amplification (MIRA), a quick and simple nucleic acid amplification method that operates at room temperature. Based on the gene sequences of S. eriocheiris, appropriate amplification primers were constructed and screened in this investigation. Both the relevant specific probe and the chosen specific amplification primers were designed and labeled. The MIRA and MIRA-LFD reaction conditions were then optimized. The result showed MIRA and MIRA-FFD could identify S. eriocheiris at 37 °C in 30 min and 15 min, respectively. To investigate the specificity of MIRA and MIRA-LFD, three Gram-negative bacteria (Bacillus subtilis, Bacillus thuringiensis, and Staphylococcus aureus), three Gram-positive bacteria (Escherichia coli, Aeromonas hydrophila, and Salmonella typhimurium) and S. eriocheiris were selected. The result showed MIRA and MIRA-LFD were highly specific to S. eriocheiris and did not react with other six pathogens. The sensitivities of PCR, MIRA, and MIRA-LFD were then evaluated. The result showed the detection limit of PCR is 1 ng/L whereas the detection limit of MIRA and MIRA-LFD is 10 pg/L. Finally, the established MIRA and MIRA-LFD detection methods had the advantages of being quick, sensitive, and specific for S. eriocheiris detection, as well as not requiring any specialized equipment.
Collapse
Affiliation(s)
- Ying Guo
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Leiting Zhang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Yue Yang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Jiaying Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Xiaoqi Luan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Sinan Gong
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Yubo Ma
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
13
|
Reynolds J, Loeffler RS, Leigh PJ, Lopez HA, Yoon JY. Recent Uses of Paper Microfluidics in Isothermal Nucleic Acid Amplification Tests. BIOSENSORS 2023; 13:885. [PMID: 37754119 PMCID: PMC10526735 DOI: 10.3390/bios13090885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Isothermal nucleic acid amplification tests have recently gained popularity over polymerase chain reaction (PCR), as they only require a constant temperature and significantly simplify nucleic acid amplification. Recently, numerous attempts have been made to incorporate paper microfluidics into these isothermal amplification tests. Paper microfluidics (including lateral flow strips) have been used to extract nucleic acids, amplify the target gene, and detect amplified products, all toward automating the process. We investigated the literature from 2020 to the present, i.e., since the onset of the COVID-19 pandemic, during which a significant surge in isothermal amplification tests has been observed. Paper microfluidic detection has been used extensively for recombinase polymerase amplification (RPA) and its related methods, along with loop-mediated isothermal amplification (LAMP) and rolling circle amplification (RCA). Detection was conducted primarily with colorimetric and fluorometric methods, although a few publications demonstrated flow distance- and surface-enhanced Raman spectroscopic (SERS)-based detection. A good number of publications could be found that demonstrated both amplification and detection on paper microfluidic platforms. A small number of publications could be found that showed extraction or all three procedures (i.e., fully integrated systems) on paper microfluidic platforms, necessitating the need for future work.
Collapse
Affiliation(s)
- Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Reid S. Loeffler
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Preston J. Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Hannah A. Lopez
- Department of Neuroscience, The University of Arizona, Tucson, AZ 85721, USA;
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| |
Collapse
|