1
|
Song F, Verheust Y, Sampers I, Raes K. The stability of isothiocyanates in broccoli extract: Oxidation from erucin to sulforaphane was discovered. Food Chem 2025; 480:143872. [PMID: 40120311 DOI: 10.1016/j.foodchem.2025.143872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/22/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
The health-beneficial effects of Brassica vegetables are attributed to glucosinolates-derived isothiocyanates (ITCs) whose yield is always underestimated due to their reactivity and volatility. In this work, the distribution and stability of four ITCs, including allyl ITC (AITC), phenethyl ITC (PEITC), erucin (ERN), and sulforaphane (SFN), incorporated in water and broccoli extract were described. All ITCs were mainly distributed in the aqueous phase (> 99 %). AITC and PEITC exhibited similar stability in water and broccoli extract. However, an oxidation of ERN to SFN was observed in the broccoli extract, so a rapid decrease in ERN was observed while SFN experienced an increase before the decline. Except for ERN, all three ITCs become more labile when the pH increases from 3.4 to 8.4. Both oxygen and acid conditions promote the oxidation of ERN. Those results contribute to a better understanding of the stability and detection of ITCs in broccoli extract.
Collapse
Affiliation(s)
- Fanfen Song
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, St-Martems Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Yannick Verheust
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, St-Martems Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, St-Martems Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, St-Martems Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
2
|
Kaimuangpak K, Lehtonen M, Rautio J, Weerapreeyakul N. Unraveled cancer cell survival-associated amino acid metabolism of HepG2 cells altered by Thai rat-tailed radish microgreen extract examined by untargeted LC-MS/MS analysis. Food Chem 2025; 474:143206. [PMID: 39954416 DOI: 10.1016/j.foodchem.2025.143206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/02/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Thai rat-tailed radish (RS) microgreens are enriched in macro- and micronutrients and phytochemicals with anticancer potential. This study investigates the antiproliferative effects of RS in the liver HepG2 cell model and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. RS was partitioned in water and dichloromethane (DCM). DCM was collected and evaporated to yield crude extract. The extract exhibited antiproliferation with inhibitory concentrations (IC50) of 612.5 ± 24.7 μg/ml at 24 h and 568.6 ± 11.0 μg/ml at 48 h. Metabolic pathways relevant to the anticancer effects are amino acid metabolism, including (1) alanine, aspartate, and glutamate metabolism; (2) nicotinate and nicotinamide metabolism; and (3) cysteine and methionine metabolism. Significantly, glutamine was upregulated, and aspartic acid, NAD, 5'-methylthioadenosine, cystathionine, and S-adenosylhomocysteine were downregulated. This finding suggested plausible effects of RS on liver cancer cell survival and invasion activities.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (in the program of Research and Development in Pharmaceuticals), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
3
|
Uthaman SK, Kang WS, Park JY, Kim S, Le DD, Oh SJ, Murugesh K, Oh LM, Lee M, Park JW. Endogenous extraction yielded high quality sulforaphane from broccoli sprouts unveils potent antioxidant and anti-Alzheimer's activities. Heliyon 2025; 11:e42673. [PMID: 40034321 PMCID: PMC11875816 DOI: 10.1016/j.heliyon.2025.e42673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
The extraction of sulforaphane (SFN) is challenging due to its instability and low water solubility, with existing methods often involving toxic solvents or yielding low SFN. We optimized an endogenous extraction protocol for high SFN content, characterized by HPLC and LC-MS analyses. SFN remained stable in refrigerated broccoli sprout extract powder (BSEP) for over a month. BSEP showed four times higher oxygen radical absorbance capacity (ORAC) than the SFN standard, indicating high antioxidant capacity. It also reduced inflammatory responses by down-regulating COX-2, IL-6, and TNF-α gene expression in LPS-induced RAW 264.7 macrophages. Additionally, BSEP exhibited neuroprotective properties in amyloid-beta (1-42) (Aβ1-42)-induced Alzheimer's disease (AD) mice, enhancing memory and learning retention in water maze and passive avoidance tests. BSEP mitigated spatial cognitive impairment and improved memory function in Aβ1-42-induced memory-deficient mice. While BSEP did not alter acetylcholine (ACh) concentration, it improved memory and learning by inhibiting acetylcholinesterase (AChE) activity. BSEP with SFN content exceeding 200 mg/kg ameliorated neurobehavioral deficits and protected the brain from amyloid deposition, suggesting its therapeutic potential in AD treatment. We propose an eco-friendly form of SFN-rich BSEP for daily intake and commercial therapeutics.
Collapse
Affiliation(s)
| | - Wan Seok Kang
- Central R&D Center, B&Tech Co., Ltd., Naju, 58025, Republic of Korea
| | - Ju-Young Park
- Research & Development, Ecoworld Pharm Co. Ltd., Damyang, 57304, Republic of Korea
| | - Sunoh Kim
- Central R&D Center, B&Tech Co., Ltd., Naju, 58025, Republic of Korea
| | - Duc Dat Le
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Suk-Jung Oh
- Research & Development, Ecoworld Pharm Co. Ltd., Damyang, 57304, Republic of Korea
| | - Karthik Murugesh
- Research & Development, Ecoworld Pharm Co. Ltd., Damyang, 57304, Republic of Korea
| | - Laura Minju Oh
- Research & Development, Ecoworld Pharm Co. Ltd., Damyang, 57304, Republic of Korea
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| |
Collapse
|
4
|
Alibrahem W, Nguyen DHH, Kharrat Helu N, Tóth F, Nagy PT, Posta J, Prokisch J, Oláh C. Health Benefits, Applications, and Analytical Methods of Freshly Produced Allyl Isothiocyanate. Foods 2025; 14:579. [PMID: 40002023 PMCID: PMC11853810 DOI: 10.3390/foods14040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Allyl isothiocyanate (AITC) is a low-molecular-weight natural chemical predominantly obtained from the autolysis of sinigrin, a glucosinolate found in cruciferous vegetables like mustard, horseradish, and wasabi. AITC has sparked widespread interest due to its various biological actions, which include strong antioxidant, anti-inflammatory, antibacterial, and anticancer capabilities. This compound offers promising potential in several fields, particularly in food preservation, medicine, and enhancing food quality through natural means. AITC's effectiveness against a broad spectrum of microorganisms, including foodborne pathogens and spoilage agents, makes it an attractive natural alternative to synthetic preservatives. The potential to extend the shelf life of perishable foods makes AITC an important tool for food production, meeting rising customer demand for natural additives. In addition to its antimicrobial effects, AITC demonstrates significant anti-inflammatory activity, reducing levels of pro-inflammatory cytokines and modulating key signaling pathways, which could make it valuable in managing chronic inflammatory conditions. Furthermore, emerging research highlights its potential in cancer prevention and treatment, as AITC has been demonstrated to induce apoptosis and inhibit cell increase in several cancer cell lines, offering a natural approach to chemoprevention. This review delves into the chemical structure, metabolism, and bioavailability of freshly produced AITC, providing a comprehensive overview of its beneficial properties. Challenges related to AITC's volatility, dosage optimization, and regulatory considerations are also discussed, alongside future research directions to enhance the stability and efficacy of AITC-based formulations. The findings underscore AITC's role as a versatile bioactive compound with known potential to support human health and the sustainable food industry.
Collapse
Affiliation(s)
- Walaa Alibrahem
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Duyen H. H. Nguyen
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (D.H.H.N.); (J.P.)
| | - Nihad Kharrat Helu
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Florence Tóth
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (F.T.); (P.T.N.)
| | - Péter Tamás Nagy
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (F.T.); (P.T.N.)
| | - János Posta
- Health Care Service Units, Diagnostic Units, Forensic Medicine, University of Debrecen Clinical Center, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary;
| | - József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (D.H.H.N.); (J.P.)
| | - Csaba Oláh
- Mathias Institute, University of Tokaj, Eötvös Str. 7, 3950 Sárospatak, Hungary;
- Neurosurgery Department, Borsod County University Teaching Hospital, Szentpéteri kapu 72-76, 3526 Miskolc, Hungary
| |
Collapse
|
5
|
Ali Redha A, Torquati L, Bows JR, Gidley MJ, Cozzolino D. Microencapsulation of broccoli sulforaphane using whey and pea protein: in vitro dynamic gastrointestinal digestion and intestinal absorption by Caco-2-HT29-MTX-E12 cells. Food Funct 2025; 16:71-86. [PMID: 39431890 DOI: 10.1039/d4fo03446e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sulforaphane, an organosulfur phytochemical, has been demonstrated to have significant anticancer potential in both in vitro and in vivo studies, exhibiting mechanisms of action that include inducing apoptosis, inhibiting cell proliferation, and modulating key signalling pathways involved in cancer development. However, its instability presents a major obstacle to its clinical application due to its limited bioavailability. This study aimed to improve the stability and thus the bioavailability of sulforaphane from broccoli by microencapsulation with whey (BW) and pea protein (BP) by freeze-drying. BW and BP were characterised by particle size measurement, colour, infrared spectroscopy, scanning electron microscopy, thermogravimetry, and differential scanning calorimetry. Dynamic in vitro gastrointestinal digestion was performed to measure sulforaphane bioaccessibility, in BP, BW and dried broccoli. A Caco-2-HT29-MTX-E12 intestinal absorption model was used to measure sulforaphane bioavailability. The in vitro dynamic gastrointestinal digestion revealed that sulforaphane bioaccessibility of BW was significantly higher (67.7 ± 1.2%) than BP (19.0 ± 2.2%) and dried broccoli (19.6 ± 10.4%) (p < 0.01). In addition, sulforaphane bioavailability of BW was also significantly greater (54.4 ± 4.0%) in comparison to BP (9.6 ± 1.2%) and dried broccoli (15.8 ± 2.2%) (p < 0.01). Microencapsulation of broccoli sulforaphane with whey protein significantly improved its in vitro bioaccessibility and bioavailability. This suggests that whey protein isolate could be a promising wall material to protect and stabilise sulforaphane for enhanced bioactivity and applications (such as nutraceutical formulations).
Collapse
Affiliation(s)
- Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Luciana Torquati
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
| | | | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Gudiño I, Casquete R, Martín A, Wu Y, Benito MJ. Comprehensive Analysis of Bioactive Compounds, Functional Properties, and Applications of Broccoli By-Products. Foods 2024; 13:3918. [PMID: 39682990 DOI: 10.3390/foods13233918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Broccoli by-products, traditionally considered inedible, possess a comprehensive nutritional and functional profile. These by-products are abundant in glucosinolates, particularly glucoraphanin, and sulforaphane, an isothiocyanate renowned for its potent antioxidant and anticarcinogenic properties. Broccoli leaves are a significant source of phenolic compounds, including kaempferol and quercetin, as well as pigments, vitamins, and essential minerals. Additionally, they contain proteins, essential amino acids, lipids, and carbohydrates, with the leaves exhibiting the highest protein content among the by-products. Processing techniques such as ultrasound-assisted extraction and freeze-drying are crucial for maximizing the concentration and efficacy of these bioactive compounds. Advanced analytical methods, such as high-performance liquid chromatography-mass spectrometry (HPLC-MS), have enabled precise characterization of these bioactives. Broccoli by-products have diverse applications in the food industry, enhancing the nutritional quality of food products and serving as natural substitutes for synthetic additives. Their antioxidant, antimicrobial, and anti-inflammatory properties not only contribute to health promotion but also support sustainability by reducing agricultural waste and promoting a circular economy, thereby underscoring the value of these often underutilized components.
Collapse
Affiliation(s)
- Iris Gudiño
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Alberto Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
7
|
Gupta S, Gupta R. Research Update on the Therapeutic Potential of Garden Cress ( Lepidium sativum Linn.) with Threatened Status. Curr Drug Res Rev 2024; 16:369-380. [PMID: 37929722 DOI: 10.2174/0125899775273877231023102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Garden cress (Lepidium sativum) has been used in India for medicinal purposes since the Vedic era. Garden cress, a native of Egypt and southwest Asia, is a small perennial edible herb that has been used to treat many diseases for centuries. The seeds, leaves as well as roots have medicinal properties. The seeds are rich in protein, fat, calcium, and iron and have high nutritional value. They are considered to be galactagogue, anticarcinogenic, antidiabetic, antiasthmatic and antidiarrheal. Leaves, seeds, and aerial parts extracts are found to have alkaloids, flavonoids, glycosides, polypeptides, vitamins, minerals, proteins, fats, and carbohydrates. Lepidium sativum is known for its pungent odor due to the several volatile oils and has been used to treat various conditions, including respiratory disorders, muscle pain, inflammation, and bone fractures in the past. Lepidium sativum is a fast-growing annual herb; in India, it is commonly known as Chandrasoor. Whole fruits or seeds are used, fresh or dried, as a seasoning with a peppery flavor. Boiled seeds are consumed in drinks by Arabs, either ground in honey or as an infusion in hot milk. The seed oil can be used for illumination and soap making. Additionally, limited awareness and conservation efforts have further contributed to its threatened status. Recognizing the importance of preserving this valuable plant species is crucial for maintaining biodiversity and ensuring its availability for future generations. Furthermore, this review explores the potential benefits of Lepidium sativum in different domains. Its nutritional value and health benefits make it a promising candidate for addressing malnutrition and improving overall well-being. The presence of bioactive compounds suggests its potential use in functional foods, pharmaceuticals, and natural medicines for various ailments. Moreover, Lepidium sativum exhibits antimicrobial and insecticidal properties, offering potential applications in agriculture and pest control. The current review discussed the nutritional, potential benefits and pharmacological effects of Lepidium sativum.
Collapse
Affiliation(s)
- Suchita Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
8
|
Khan F, Joshi A, Devkota HP, Subramaniyan V, Kumarasamy V, Arora J. Dietary glucosinolates derived isothiocyanates: chemical properties, metabolism and their potential in prevention of Alzheimer's disease. Front Pharmacol 2023; 14:1214881. [PMID: 37554984 PMCID: PMC10404612 DOI: 10.3389/fphar.2023.1214881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia affecting millions of people worldwide. It is a progressive, irreversible, and incurable neurodegenerative disorder that disrupts the synaptic communication between millions of neurons, resulting in neuronal death and functional loss due to the abnormal accumulation of two naturally occurring proteins, amyloid β (Aβ) and tau. According to the 2018 World Alzheimer's Report, there is no single case of an Alzheimer's survivor; even 1 in 3 people die from Alzheimer's disease, and it is a growing epidemic across the globe fruits and vegetables rich in glucosinolates (GLCs), the precursors of isothiocyanates (ITCs), have long been known for their pharmacological properties and recently attracted increased interest for the possible prevention and treatment of neurodegenerative diseases. Epidemiological evidence from systematic research findings and clinical trials suggests that nutritional and functional dietary isothiocyanates interfere with the molecular cascades of Alzheimer's disease pathogenesis and prevent neurons from functional loss. The aim of this review is to explore the role of glucosinolates derived isothiocyanates in various molecular mechanisms involved in the progression of Alzheimer's disease and their potential in the prevention and treatment of Alzheimer's disease. It also covers the chemical diversity of isothiocyanates and their detailed mechanisms of action as reported by various in vitro and in vivo studies. Further clinical studies are necessary to evaluate their pharmacokinetic parameters and effectiveness in humans.
Collapse
Affiliation(s)
- Farhana Khan
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Abhishek Joshi
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Arora
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
9
|
Adelakun SA, Akintunde OW, Ogunlade B, Adeyeluwa BE. Histochemical and histomorphological evidence of the modulating role of 1-isothiocyanate-4-methyl sulfonyl butane on cisplatin-induced testicular-pituitary axis degeneration and cholesterol homeostasis in male Sprague-Dawley rats. Morphologie 2023; 107:80-98. [PMID: 35659716 DOI: 10.1016/j.morpho.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND This study examine the histochemical and histomorphological effect of 1-isothiocyanato-4-methyl sulfonyl butane (SFN) on cisplatin (CP) induced testicular alteration and cholesterol homeostasis. MATERIALS AND METHODS Ninety adult-male Sprague-Dawley rats were randomized into nine groups of ten (n=10) rats each. Group A (control) received normal saline, group B received a single dose of 10mg/Kg body weight (bwt) CP (i.p.), group C received 50mg/Kg bwt of SFN, group D received 100mg/Kg bwt of SFN, group E received 10mg/Kg bwt CP and 50mg/Kg bwt of SFN, group F received 10mg/Kg bwt CP and 100mg/Kg bwt of SFN, group G received 10mg/Kg bwt CP and 50mg/Kg bwt vitamin C, group H received 50mg/Kg bwt of SFN and 10mg/Kg bwt CP, group I received 100mg/Kg bwt of SFN and 10mg/Kg bwt CP. The procedure lasted for 56 days. Testicular histomorphology and histochemistry, testicular testosterone, sperm parameters, total antioxidant status (TSA), total oxidant status (TOS), oxidative stress index (OSI), and serum lipid profile were examined. RESULTS Cisplatin decrease intra-testicular testosterone, sperm quality, and expression of glycogen and increases testicular TOS and OSI, serum lipid profile, collagen, and disruption of germinal epithelium. However, the intervention of SFN reversed the effect of CP on testes' weight and volume, DSP, ESP, testosterone production, TAS, TOS, and OSI. Histoarchitectecture showing normal seminiferous tubules and even distribution of glycogen and collagen fibers. CONCLUSION Treatment with SFN ameliorate CP-induced testicular toxicity by reversing the cytotoxic mechanisms of CP.
Collapse
Affiliation(s)
- S A Adelakun
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria; Department of Anatomy, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - O W Akintunde
- Department of Anatomy, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| | - B Ogunlade
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| | - B E Adeyeluwa
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
10
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
11
|
Doria E, Buonocore D, Marra A, Bontà V, Gazzola A, Dossena M, Verri M, Calvio C. Bacterial-Assisted Extraction of Bioactive Compounds from Cauliflower. PLANTS (BASEL, SWITZERLAND) 2022; 11:816. [PMID: 35336698 PMCID: PMC8949413 DOI: 10.3390/plants11060816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The market for nutraceutical molecules is growing at an impressive pace in all Western countries. A convenient source of bioactive compounds is found in vegetable waste products, and their re-use for the recovery of healthy biomolecules would increase the sustainability of the food production system. However, safe, cheap, and sustainable technologies should be applied for the recovery of these beneficial molecules, avoiding the use of toxic organic solvents or expensive equipment. The soil bacterium Bacillus subtilis is naturally endowed with several enzymes targeting complex vegetable polymers. In this work, a raw bacterial culture supernatant was used to assist in the extraction of bioactives using isothermal pressurization cycles. Besides a wild-type Bacillus subtilis strain, a new strain showing increased secretion of cellulases and xylanases, pivotal enzymes for the digestion of the plant cell wall, was also used. Results indicate that the recovery of compounds correlates with the amount of cellulolytic enzymes applied, demonstrating that the pretreatment with non-purified culture broth effectively promotes the release of bioactives from the vegetable matrix. Therefore, this approach is a valid and sustainable procedure for the recovery of bioactive compounds from food waste.
Collapse
Affiliation(s)
- Enrico Doria
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, 27100 Pavia, Italy; (D.B.); (A.M.); (V.B.); (M.D.); (M.V.); (C.C.)
| | - Daniela Buonocore
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, 27100 Pavia, Italy; (D.B.); (A.M.); (V.B.); (M.D.); (M.V.); (C.C.)
| | - Antonio Marra
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, 27100 Pavia, Italy; (D.B.); (A.M.); (V.B.); (M.D.); (M.V.); (C.C.)
| | - Valeria Bontà
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, 27100 Pavia, Italy; (D.B.); (A.M.); (V.B.); (M.D.); (M.V.); (C.C.)
| | - Andrea Gazzola
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Maurizia Dossena
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, 27100 Pavia, Italy; (D.B.); (A.M.); (V.B.); (M.D.); (M.V.); (C.C.)
| | - Manuela Verri
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, 27100 Pavia, Italy; (D.B.); (A.M.); (V.B.); (M.D.); (M.V.); (C.C.)
| | - Cinzia Calvio
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, 27100 Pavia, Italy; (D.B.); (A.M.); (V.B.); (M.D.); (M.V.); (C.C.)
| |
Collapse
|