1
|
Monistero V, Hossain D, Fusar Poli S, de Medeiros ES, Cremonesi P, Castiglioni B, Biscarini F, Graber HU, Mochettaz G, Ganio S, Gazzola A, Addis MF, Roullet C, Barberio A, Deotto S, Biasio L, Ulloa F, Galanti D, Bronzo V, Moroni P. Prevalence of Variant GTR IStaphylococcus aureus Isolated from Dairy Cow Milk Samples in the Alpine Grazing System of the Aosta Valley and Its Association with AMR and Virulence Profiles. Antibiotics (Basel) 2025; 14:348. [PMID: 40298516 PMCID: PMC12024214 DOI: 10.3390/antibiotics14040348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: In the Aosta Valley, the alpine grazing system integrates livestock production and land management. Valdostana breeding has adapted to this mountainous region, but the spread of Staphylococcus aureus within pastures may impact animal health. The aim of this study was to provide an overview of S. aureus genotypes associated with antimicrobial resistance (AMR) and virulence profiles in four dairy herds in the Aosta Valley from July 2022 to August 2023. Methods: A total of 468 composite milk samples were collected at three timepoints: T1 (pasture-livestock system), T2 (farm-livestock system), and T3 (pasture-livestock system). S. aureus isolates were characterized by antimicrobial susceptibility testing, ribosomal spacer (RS)-PCR, multilocus sequence typing (MLST), PCR analysis for 28 virulence genes and 6 AMR genes, and adlb-targeted real-time PCR. Results: RS-PCR analysis of 82 S. aureus strains revealed 12 genotypes (GT) in eight clusters (CL). The most prevalent variant was GTRI (61%), followed by GTB (15%). Resistance to penicillin was high (69%), with CLR strains showing 88% resistance, and 51% resistance to amoxicillin plus clavulanate. All strains were susceptible to cephalosporins and oxacillin. Macrolide resistance was low (4%), and multi-drug resistance was 6%. AMR gene presence corresponded with susceptibility, with blaZ detected in 94% of CLR strains. CLR strains also possessed genes for biofilm formation and virulence factors. Conclusions: This study highlights the presence of AMR and virulence factors in S. aureus strains from alpine grazing systems, underscoring the need for ongoing monitoring to mitigate risks to animal health.
Collapse
Affiliation(s)
- Valentina Monistero
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università Degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (D.H.); (S.F.P.); (E.S.d.M.); (M.F.A.); (D.G.); (V.B.)
- Laboratorio di Malattie Infettive Degli Animali-MiLab, University of Milan, 26900 Lodi, Italy
| | - Delower Hossain
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università Degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (D.H.); (S.F.P.); (E.S.d.M.); (M.F.A.); (D.G.); (V.B.)
- Laboratorio di Malattie Infettive Degli Animali-MiLab, University of Milan, 26900 Lodi, Italy
- Department of Medicine and Public Health, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University (SAU), Dhaka 1207, Bangladesh
| | - Sara Fusar Poli
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università Degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (D.H.); (S.F.P.); (E.S.d.M.); (M.F.A.); (D.G.); (V.B.)
- Laboratorio di Malattie Infettive Degli Animali-MiLab, University of Milan, 26900 Lodi, Italy
| | - Elizabeth Sampaio de Medeiros
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università Degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (D.H.); (S.F.P.); (E.S.d.M.); (M.F.A.); (D.G.); (V.B.)
- Laboratorio di Malattie Infettive Degli Animali-MiLab, University of Milan, 26900 Lodi, Italy
- Laboratório de Inspeção de Carne e Leite, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco (UFRPE), Recife 51171-900, PE, Brazil
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council, 26900 Lodi, Italy; (P.C.); (B.C.); (F.B.)
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council, 26900 Lodi, Italy; (P.C.); (B.C.); (F.B.)
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council, 26900 Lodi, Italy; (P.C.); (B.C.); (F.B.)
| | - Hans Ulrich Graber
- Food Microbial Systems, Microbiological Safety of Foods of Animal Origin Group, Agroscope, 3003 Bern, Switzerland;
| | - Giulia Mochettaz
- Dipartimento di Prevenzione AUSL Della Valle d’Aosta, 11100 Aosta, Italy; (G.M.); (S.G.); (C.R.)
| | - Sandra Ganio
- Dipartimento di Prevenzione AUSL Della Valle d’Aosta, 11100 Aosta, Italy; (G.M.); (S.G.); (C.R.)
| | - Alessandra Gazzola
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’emilia-Romagna, 26900 Lodi, Italy;
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università Degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (D.H.); (S.F.P.); (E.S.d.M.); (M.F.A.); (D.G.); (V.B.)
- Laboratorio di Malattie Infettive Degli Animali-MiLab, University of Milan, 26900 Lodi, Italy
| | - Claudio Roullet
- Dipartimento di Prevenzione AUSL Della Valle d’Aosta, 11100 Aosta, Italy; (G.M.); (S.G.); (C.R.)
| | - Antonio Barberio
- Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy; (A.B.); (S.D.); (L.B.)
| | - Silvia Deotto
- Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy; (A.B.); (S.D.); (L.B.)
| | - Lara Biasio
- Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy; (A.B.); (S.D.); (L.B.)
| | - Fernando Ulloa
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Davide Galanti
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università Degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (D.H.); (S.F.P.); (E.S.d.M.); (M.F.A.); (D.G.); (V.B.)
| | - Valerio Bronzo
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università Degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (D.H.); (S.F.P.); (E.S.d.M.); (M.F.A.); (D.G.); (V.B.)
- Laboratorio di Malattie Infettive Degli Animali-MiLab, University of Milan, 26900 Lodi, Italy
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università Degli Studi di Milano, 26900 Lodi, Italy; (V.M.); (D.H.); (S.F.P.); (E.S.d.M.); (M.F.A.); (D.G.); (V.B.)
- Laboratorio di Malattie Infettive Degli Animali-MiLab, University of Milan, 26900 Lodi, Italy
| |
Collapse
|
2
|
Havas KA, Edler R, Ruesch L, Braun M, Nerem J, Dee S, Spronk T, Goodman LB, Noyes N, Scott HM. Evaluation of antibiotic purchase data for ceftiofur and enrofloxacin and minimum inhibitory concentrations among Escherichia coli isolates from swine farms in the Midwestern United States using multiple statistical models. Prev Vet Med 2025; 235:106411. [PMID: 39724738 DOI: 10.1016/j.prevetmed.2024.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Antimicrobial resistance is considered a global One Health threat. Controlling selection pressure by reducing antibiotic use in livestock is a significant component of the response to this threat. The science concerning use and resistance is complicated and affected by time from antibiotic exposure, changing bacterial fitness, and varies by drug and pathogen. From May 2020 through October 2023, we collected intestinal (substandard and sick pigs) and fecal swab (healthy pig) samples at breed-to-wean (BTW) and wean-to-market (WTM) swine production sites and isolated E. coli bacteria. Antibiotic susceptibility testing was performed on these isolates to determine minimum inhibitory concentrations (MIC) for ceftiofur and enrofloxacin. Monthly antibiotic purchase data were used to calculate the active milligrams of drug purchased and these were divided by the kilograms of pigs produced from a farm site to provide a mass-adjusted proxy metric for farm-level antibiotic use. The relationship between use and MIC was then evaluated using a variety of multivariable statistical models. Across multiple modeling approaches, both farm type (i.e., BTW versus WTM) and farm-level antibiotic use maintained statistically significant relationships relative to E. coli MIC values for each respective drug. Use of ceftiofur and enrofloxacin can lead to increased MIC values among E. coli over time. The reasons for antibiotic purchases were not tracked as part of this project. Future work should evaluate the age of the individual pig and the time from last treatment when sampling these animals to separate out the group from individual-level effects of antibiotic use.
Collapse
Affiliation(s)
| | - Roy Edler
- Pipestone Research, Pipestone, MN, United States
| | - Laura Ruesch
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Marlee Braun
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Joel Nerem
- Pipestone Veterinary Services, Pipestone, MN, United States
| | - Scott Dee
- Pipestone Research, Pipestone, MN, United States
| | | | - Laura B Goodman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Noelle Noyes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - H Morgan Scott
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Kanyairita GG, Mortley DG, Collier WE, Fagbodun S, Mweta JM, Uwamahoro H, Dowell LT, Mukuka MF. An In Vitro Evaluation of Industrial Hemp Extracts Against the Phytopathogenic Bacteria Erwinia carotovora, Pseudomonas syringae pv. tomato, and Pseudomonas syringae pv. tabaci. Molecules 2024; 29:5902. [PMID: 39769990 PMCID: PMC11678642 DOI: 10.3390/molecules29245902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Pests and diseases have caused significant problems since the domestication of crops, resulting in economic loss and hunger. To overcome these problems, synthetic pesticides were developed to control pests; however, there are significant detrimental side effects of synthetic pesticides on the environment and human health. There is an urgent need to develop safer and more sustainable pesticides. Industrial hemp is a reservoir of compounds that could potentially replace some synthetic bactericides, fungicides, and insecticides. We determined the efficacy of industrial hemp extracts against Pseudomonas syringae pv. tabaci (PSTA), Pseudomonas syringae pv. tomato (PSTO), and Erwinia carotovora (EC). The study revealed a minimum inhibitory concentration (MIC) of 2.05 mg/mL and a non-inhibitory concentration (NIC) of 1.2 mg/mL for PSTA, an MIC of 5.7 mg/mL and NIC of 0.66 mg/mL for PSTO, and an MIC of 12.04 mg/mL and NIC of 5.4 mg/mL for EC. Time-kill assays indicated the regrowth of E. carotovora at 4 × MIC after 15 h and P. syringae pv. tomato at 2 × MIC after 20 h; however, P. syringae pv. tabaci had no regrowth. The susceptibility of test bacteria to hemp extract can be ordered from the most susceptible to the least susceptible, as follows: P. syringae pv. tabaci > P. syringae pv. tomato > E. carotovora. Overall, the data indicate hemp extract is a potential source of sustainable and safe biopesticides against these major plant pathogens.
Collapse
Affiliation(s)
- Getrude G. Kanyairita
- Department of Agriculture and Environmental Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (G.G.K.); (D.G.M.); (J.M.M.)
- Department of Chemistry, Tuskegee University, Tuskegee, AL 36088, USA;
- Department of Crop Science & Beekeeping Technology, University of Dar es Salaam, Dar es Salaam P.O. Box 35091, Tanzania
| | - Desmond G. Mortley
- Department of Agriculture and Environmental Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (G.G.K.); (D.G.M.); (J.M.M.)
| | | | - Sheritta Fagbodun
- Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Jamila M. Mweta
- Department of Agriculture and Environmental Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (G.G.K.); (D.G.M.); (J.M.M.)
| | - Hilarie Uwamahoro
- Department of Chemistry, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Le’Shaun T. Dowell
- Department of Mathematics & Computer Science, Alabama State University, Montgomery, AL 36104, USA; (L.T.D.); (M.F.M.)
| | - Mwamba F. Mukuka
- Department of Mathematics & Computer Science, Alabama State University, Montgomery, AL 36104, USA; (L.T.D.); (M.F.M.)
| |
Collapse
|
4
|
Tejada-Muñoz S, Cortez D, Rascón J, Chavez SG, Caetano AC, Díaz-Manchay RJ, Sandoval-Bances J, Huyhua-Gutierrez S, Gonzales L, Chenet SM, Tapia-Limonchi R. Antimicrobial Activity of Origanum vulgare Essential Oil against Staphylococcus aureus and Escherichia coli. Pharmaceuticals (Basel) 2024; 17:1430. [PMID: 39598342 PMCID: PMC11597097 DOI: 10.3390/ph17111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Oreganum vulgare essential oil (OEO) is safe, effective, multifunctional, and widely used. This study aimed to evaluate OEO's chemical composition and antimicrobial activity in vitro against S. aureus and E. coli. Methods: The composition of OEO was determined by gas chromatography-mass spectrometry (GC-MS). Results: Compounds included monoterpenes with known antimicrobial activity, such as 2-menthen-1-ol (36.33%), linalyl acetate (9.26%), terpinene-4-ol (9.01%), 4-thujanol (6.33%), menthen (5.81%), sabinene (5.18%), and carvacrol methyl ether (5.14%). Conclusions: OEO had a strong antimicrobial activity with a minimum inhibitory concentration (MIC) of 1.90 mg/mL for S. aureus and 0.49 mg/mL for E. coli after 18 h incubation. The minimum bactericidal concentration (MBC) was 7.9 mg/mL against S. aureus and 0.99 mg/mL against E. coli. Thus, OEO could be used as a natural antimicrobial against S. aureus and E. coli infections.
Collapse
Affiliation(s)
- Sonia Tejada-Muñoz
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Instituto de Salud Integral Intercultural, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Denny Cortez
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
| | - Jesús Rascón
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (S.G.C.); (A.C.C.)
| | - Segundo G. Chavez
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (S.G.C.); (A.C.C.)
| | - Aline C. Caetano
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (S.G.C.); (A.C.C.)
| | - Rosa J. Díaz-Manchay
- Departamento de Ciencias de la Salud, Escuela de Enfermería, Universidad Católica Santo Toribio de Mogrovejo, Chiclayo 14012, Peru;
| | - Julio Sandoval-Bances
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
| | - Sonia Huyhua-Gutierrez
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Instituto de Salud Integral Intercultural, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Lizandro Gonzales
- Dirección Regional de Salud de Amazonas, Laboratorio de Referencia Regional, Chachapoyas 01001, Peru;
| | - Stella M. Chenet
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Facultad de Medicina, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Rafael Tapia-Limonchi
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Facultad de Medicina, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| |
Collapse
|
5
|
Bortolami L, Barberio A, Schiavon E, Martignago F, Littamè E, Sturaro A, Gagliazzo L, De Lucia A, Ostanello F. Surveillance of Antimicrobial Resistance of Escherichia coli Isolates from Intestinal Contents of Dairy and Veal Calves in the Veneto Region, Northeaster Italy. Animals (Basel) 2024; 14:1429. [PMID: 38791647 PMCID: PMC11117218 DOI: 10.3390/ani14101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This surveillance study aimed to estimate the proportion of antimicrobial resistant strains and antimicrobial resistance (AMR) profiles of E. coli isolates detected from the intestinal contents of veal and dairy calves in the Veneto Region, Northeaster Italy. Additionally, we investigated the differences in AMR profiles between dairy and veal calves over the period 2017-2022. Overall 1150 E. coli isolates were tested from calves exhibiting enteric disease, with 868 from dairy and 282 from veal calves. The percentage of resistant isolates to nine antimicrobials was notably higher in veal calves compared to dairy calves, except for ampicillin. Throughout the study period, we observed a significant increase in the proportion of resistant isolates to florfenicol, gentamycin, paromomycin, tetracycline and trimethoprim/sulfamethoxazole in dairy calves, while we did not detect any significant increase in the proportion of resistant isolates among veal calves. A substantial proportion (75.9%) of the isolated E. coli exhibited multi-drug resistance (MDR). The proportion of multi-drug resistant isolates was significantly higher in veal calves (91.7%) compared to dairy calves (74.3%) all through the surveillance period (2017-2022), with no significant variation in MDR proportion among veal calves between 2017 and 2022 but a significant increase among dairy calves.
Collapse
Affiliation(s)
- Laura Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, Legnaro, 35020 Padova, Italy; (L.B.); (A.B.); (E.S.); (F.M.); (E.L.); (A.S.); (L.G.)
| | - Antonio Barberio
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, Legnaro, 35020 Padova, Italy; (L.B.); (A.B.); (E.S.); (F.M.); (E.L.); (A.S.); (L.G.)
| | - Eliana Schiavon
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, Legnaro, 35020 Padova, Italy; (L.B.); (A.B.); (E.S.); (F.M.); (E.L.); (A.S.); (L.G.)
| | - Federico Martignago
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, Legnaro, 35020 Padova, Italy; (L.B.); (A.B.); (E.S.); (F.M.); (E.L.); (A.S.); (L.G.)
| | - Erica Littamè
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, Legnaro, 35020 Padova, Italy; (L.B.); (A.B.); (E.S.); (F.M.); (E.L.); (A.S.); (L.G.)
| | - Anna Sturaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, Legnaro, 35020 Padova, Italy; (L.B.); (A.B.); (E.S.); (F.M.); (E.L.); (A.S.); (L.G.)
| | - Laura Gagliazzo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, Legnaro, 35020 Padova, Italy; (L.B.); (A.B.); (E.S.); (F.M.); (E.L.); (A.S.); (L.G.)
| | | | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
6
|
Calabro C, Sadhu R, Xu Y, Aprea M, Guarino C, Cazer CL. Longitudinal antimicrobial susceptibility trends of canine Staphylococcus pseudintermedius. Prev Vet Med 2024; 226:106170. [PMID: 38493570 DOI: 10.1016/j.prevetmed.2024.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Antimicrobial resistance within Staphylococcus pseudintermedius poses a significant risk for the treatment of canine pyoderma and as a reservoir for resistance and potential zoonoses, but few studies examine long-term temporal trends of resistance. This study assesses the antimicrobial resistance prevalence and minimum inhibitory concentration (MIC) trends in S. pseudintermedius (n=1804) isolated from canine skin samples at the Cornell University Animal Health Diagnostic Center (AHDC) between 2007 and 2020. Not susceptible (NS) prevalence, Cochran-Armitage tests, logrank tests, MIC50 and MIC90 quantiles, and survival analysis models were used to evaluate resistance prevalence and temporal trends to 23 antimicrobials. We use splines as predictors in accelerated failure time (AFT) models to model non-linear temporal trends in MICs. Multidrug resistance was common among isolates (47%), and isolates had moderate to high NS prevalence to the beta-lactams, chloramphenicol, the fluoroquinolones, gentamicin, the macrolides/lincosamides, the tetracyclines, and trimethoprim-sulfamethoxazole. However, low levels of NS to amikacin, rifampin, and vancomycin were observed. Around one third of isolates (38%) were found to be methicillin resistant S. pseudintermedius (MRSP), and these isolates had a higher prevalence of NS to all tested antimicrobials than methicillin susceptible isolates. Amongst the MRSP isolates, one phenotypically vancomycin resistant isolate (MIC >16 µg/mL) was identified, but genomic sequence data was unavailable. AFT models showed increasing MICs across time to the beta-lactams, chloramphenicol, the fluoroquinolones, gentamicin, and the macrolides/lincosamides, and decreasing temporal resistance (decreasing MICs) to doxycycline was observed amongst isolates. Notably, ATF modeling showed changes in MIC distributions that were not identified using Cochran-Armitage tests on prevalence, MIC quantiles, and logrank tests. Increasing resistance amongst these S. pseudintermedius isolates highlights the need for rational, empirical prescribing practices and increased antimicrobial resistance (AMR) surveillance to maintain the efficacy of current therapeutic agents. AFT models with non-linear predictors may be a useful, breakpoint-independent, surveillance tool alongside other modeling methods and antibiograms.
Collapse
Affiliation(s)
- Caroline Calabro
- Department of Public and Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA; Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Ritwik Sadhu
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Yuchen Xu
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Melissa Aprea
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Cassandra Guarino
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Casey L Cazer
- Department of Public and Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA; Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
7
|
Barth SA, Preussger D, Pietschmann J, Feßler AT, Heller M, Herbst W, Schnee C, Schwarz S, Kloss F, Berens C, Menge C. In Vitro Antibacterial Activity of Microbial Natural Products against Bacterial Pathogens of Veterinary and Zoonotic Relevance. Antibiotics (Basel) 2024; 13:135. [PMID: 38391521 PMCID: PMC10886079 DOI: 10.3390/antibiotics13020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is considered one of the greatest threats to both human and animal health. Efforts to address AMR include implementing antimicrobial stewardship programs and introducing alternative treatment options. Nevertheless, effective treatment of infectious diseases caused by bacteria will still require the identification and development of new antimicrobial agents. Eight different natural products were tested for antimicrobial activity against seven pathogenic bacterial species (Brachyspira sp., Chlamydia sp., Clostridioides sp., Mannheimia sp., Mycobacterium sp., Mycoplasma sp., Pasteurella sp.). In a first pre-screening, most compounds (five out of eight) inhibited bacterial growth only at high concentrations, but three natural products (celastramycin A [CA], closthioamide [CT], maduranic acid [MA]) displayed activity at concentrations <2 µg/mL against Pasteurella sp. and two of them (CA and CT) also against Mannheimia sp. Those results were confirmed by testing a larger collection of isolates encompassing 64 Pasteurella and 56 Mannheimia field isolates originating from pigs or cattle, which yielded MIC90 values of 0.5, 0.5, and 2 µg/mL against Pasteurella and 0.5, 4, and >16 µg/mL against Mannheimia for CA, CT, and MA, respectively. CA, CT, and MA exhibited higher MIC50 and MIC90 values against Pasteurella isolates with a known AMR phenotype against commonly used therapeutic antimicrobial agents than against isolates with unknown AMR profiles. This study demonstrates the importance of whole-cell antibacterial screening of natural products to identify promising scaffolds with broad- or narrow-spectrum antimicrobial activity against important Gram-negative veterinary pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Stefanie A Barth
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Daniel Preussger
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Jana Pietschmann
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Martin Heller
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Werner Herbst
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, 35392 Giessen, Germany
| | - Christiane Schnee
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Leibniz-HKI, 07745 Jena, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| |
Collapse
|
8
|
Conceição S, Queiroga MC, Laranjo M. Antimicrobial Resistance in Bacteria from Meat and Meat Products: A One Health Perspective. Microorganisms 2023; 11:2581. [PMID: 37894239 PMCID: PMC10609446 DOI: 10.3390/microorganisms11102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
According to the 2030 Agenda of the United Nations, one of the sustainable development goals is to ensure sustainable consumption and production patterns. The need to ensure food safety includes, other than microbiological hazards, concerns with antimicrobial-resistant (AMR) bacteria. The emergence of resistant bacteria in the food industry is essentially due to the abusive, and sometimes incorrect, administration of antimicrobials. Although not allowed in Europe, antimicrobials are often administered to promote animal growth. Each time antimicrobials are used, a selective pressure is applied to AMR bacteria. Moreover, AMR genes can be transmitted to humans through the consumption of meat-harbouring-resistant bacteria, which highlights the One Health dimension of antimicrobial resistance. Furthermore, the appropriate use of antimicrobials to ensure efficacy and the best possible outcome for the treatment of infections is regulated through the recommendations of antimicrobial stewardship. The present manuscript aims to give the current state of the art about the transmission of AMR bacteria, particularly methicillin-resistant S. aureus, ESBL-producing Enterobacteriaceae, and vancomycin-resistant Enterococcus spp., along with other ESKAPE bacteria, from animals to humans through the consumption of meat and meat products, with emphasis on pork meat and pork meat products, which are considered the most consumed worldwide.
Collapse
Affiliation(s)
- Sara Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
| | - Maria Cristina Queiroga
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Marta Laranjo
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
9
|
Hussein NN, Al-Azawi K, Sulaiman GM, Albukhaty S, Al-Majeed RM, Jabir M, Al-Dulimi AG, Mohammed HA, Akhtar N, Alawaji R, A Alshammari AA, Khan RA. Silver-cored Ziziphus spina-christi extract-loaded antimicrobial nanosuspension: overcoming multidrug resistance. Nanomedicine (Lond) 2023; 18:1839-1854. [PMID: 37982771 DOI: 10.2217/nnm-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Aims: To synthesize a silver-cored nanosuspension utilizing Ziziphus spina-christi fresh-leaf extract and evaluate their antimicrobial activity against multidrug-resistant pathogenic microbes. Materials and Methods: The prepared nanosuspension was analyzed by spectro-analytical techniques and tested for antimicrobial activity and resistance to biofilm formation. The leaf extract and nanosuspension were tested separately and together as a mixture. Results: Constituent nanoparticles were average-sized (∼34 nm) and were active against both Gram-positive and Gram-negative microbes and yeast. Candida albicans showed a 24.50 ± 1.50 mm inhibition zone, followed by Escherichia coli and Staphylococcus aureus. Increased bioactivity with the highest multifold increments, 150%, for erythromycin against all tested microbes was observed. Carbenicillin and trimethoprim showed 166%- and 300%-fold increments for antimicrobial activity against Pseudomonas aeruginosa, respectively. Conclusion: The nanosuspension exhibited strong potential as an antimicrobial agent and overcame multidrug resistance.
Collapse
Affiliation(s)
- Nehia N Hussein
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Khalida Al-Azawi
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, 56001, Karbala, Iraq
| | - Reem Ma Al-Majeed
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Ali G Al-Dulimi
- Department of Dentistry, Bilad Alrafidain University College, Diyala, 32001, Iraq
| | - Hamdoon A Mohammed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, P.O. Box 31717, Buraydah 51418, Qassim, Saudi Arabia
| | - Razan Alawaji
- Pharmaceutical Care Services, King Salman Medical City, Maternity and Children Hospital, Al Madinah Al Munawwarah 11176, Saudi Arabia
| | - Abdulaziz Arif A Alshammari
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Graduate Student
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
10
|
Lee Y, Kim N, Roh H, Ho DT, Park J, Lee JY, Kim YJ, Kang HY, Lee J, Song JY, Kim A, Kim MS, Cho M, Choi HS, Park CI, Kim DH. Serotype distribution and antibiogram of Streptococcus parauberis isolated from fish in South Korea. Microbiol Spectr 2023; 11:e0440022. [PMID: 37555676 PMCID: PMC10581249 DOI: 10.1128/spectrum.04400-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/27/2023] [Indexed: 08/10/2023] Open
Abstract
Streptococcus parauberis is the dominant etiological agent of streptococcosis, the most devastating bacterial disease in the olive flounder farming industry in South Korea. In this study, the distribution of serotypes, antimicrobial susceptibility, and presence of antimicrobial resistance genes (ARGs) in S. parauberis isolates obtained between 1999 and 2021 was thoroughly investigated to gain insight into the dynamics of their presence and the relationship between serotypes and antimicrobial resistance. Disk diffusion testing of 103 isolates against 10 antimicrobial agents was performed, and epidemiological cut-off values generated through normalized resistance interpretation analysis were used to classify wild-type (WT) and non-wild-type (NWT) populations. Principal component analysis and hierarchical clustering were implemented to achieve an understanding on the relationship between serotypes and antimicrobial resistance patterns. PCR-based serotyping showed that serotype Ia (67.1%) was the most prevalent in South Korea, followed by serotypes Ib/Ic (25.2%) and II (7.7%). The highest proportion of isolates was assigned to NWT against amoxicillin (80.6%), followed by oxytetracycline (77.7%) and erythromycin (48.5%). The time-scale data showed that recently obtained serotypes Ib/Ic and II isolates tended to be categorized as NWT populations resistant to more antibiotics, possibly due to microbial adaptation to antibiotic pressure. ARGs responsible for resistance to oxytetracycline and erythromycin were found only in NWT populations in serotype Ia [tet(S) and erm(B), respectively], and serotype II [tet(M) and mef(J)-msr(I), respectively]. We also found that the mef-msr gene pair in S. parauberis serotype II might be involved in low-level resistance to erythromycin. IMPORTANCE This study presents serotype distribution and antimicrobial susceptibility data along with the antimicrobial resistance genes (ARGs) of Streptococcus parauberis, which is an important bacterial fish pathogen worldwide. In particular, almost all oxytetracycline and erythromycin non-wild-type (NWT) populations harbored tet(S) or tet(M), and erm(B) or mef(J)-msr(I), respectively. Interestingly, these ARGs were distributed in a highly serotype-dependent manner, resulting in a clear correlation between the antibiogram and serotype distribution. Moreover, recent isolates belonging to serotypes Ib/Ic and II tended to be more frequently categorized as NWT against antimicrobials, including amoxicillin and cefalexin compared to old isolates, while a dramatic decrease in erythromycin and clindamycin NWT frequencies was observed in recent serotype Ia isolates, which lacked erm(B). These variations might be attributed to shifts in the antibiotics employed in South Korean aquaculture over time. The overall findings would provide important background knowledge for understanding the epidemiology of S. parauberis infection in aquaculture.
Collapse
Affiliation(s)
- Yoonhang Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Nameun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - HeyongJin Roh
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Diem Tho Ho
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Jiyeon Park
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Ju Yeop Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Yoon-Jae Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Hyo-Young Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Jungmin Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Jun-Young Song
- Pathology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Ahran Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Myoung Sug Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Miyoung Cho
- Pathology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Hye Sung Choi
- Pathology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| |
Collapse
|
11
|
Breen MJ, Williams DR, Abdelfattah EM, Karle BM, Byrne BA, Lehenbauer TW, Aly SS. Effect of Group Housing of Preweaned Dairy Calves: Health and Fecal Commensal Antimicrobial Resistance Outcomes. Antibiotics (Basel) 2023; 12:1019. [PMID: 37370338 DOI: 10.3390/antibiotics12061019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The objectives of this study were to investigate the effects of group housing (three calves per group) on bovine respiratory disease (BRD), diarrhea and antimicrobial resistance (AMR) to fecal commensal Escherichia coli (EC) and enterococci/streptococci (ES). Our study comprised two arms, one experimental and one observational. In the experimental arm, preweaned calves on a California dairy were randomized to either individual (IND; n = 21) or group (GRP; n = 21) housing, using a modified California-style wooden hutch. The study period lasted from birth to 56 days of age, during which calves were health scored daily. Cumulative incidence and hazard ratios were estimated for disease. Antimicrobial resistance outcomes were assessed using a prospective cohort design; feces were collected from each calf three times per week and EC and ES were evaluated for AMR using the broth microdilution method against a panel of 19 antimicrobial drugs (AMD). Analysis of treatment records was used to select calves that had been exposed (EXP) to an AMD-treated calf. In GRP, exposure occurred when a calf was a hutchmate with an AMD-treated calf. In IND, exposure occurred when a calf was a neighbor with an AMD-treated calf (TRT). Age-matched unexposed calves (UNEXP) were then selected for comparison. Proportions of AMR in fecal commensals among EXP, UNEXP, and TRT calves were compared between GRP and IND. Accelerated failure time survival regression models were specified to compare differences in minimum inhibitory concentration (MIC) of fecal commensals between EXP and UNEXP calves within each of GRP and IND calves separately. Group calves had a BRD hazard 1.94 times greater that of IND calves (p = 0.03), using BRD treatment records as the outcome. For AMR in EC isolates, higher resistance to enrofloxacin was detected in enrofloxacin-EXP GRP isolates compared with enrofloxacin-EXP IND isolates, and UNEXP GRP calves had lower resistance to ceftiofur compared with enrofloxacin-EXP and enrofloxacin-TRT calves. A significant housing-by-time interaction was detected for EC ceftiofur MIC in EXP GRP calves at 4-14 days post exposure to enrofloxacin (MIC EXP-UNEXP: µg/mL (95% CI): 10.62 (1.17, 20.07)), compared with UNEXP calves. The findings of this study show an increase in BRD hazard for group-housed calves and an increase in ceftiofur resistance in group-housed calves exposed to an enrofloxacin-treated calf.
Collapse
Affiliation(s)
- Martin J Breen
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA
| | - Deniece R Williams
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA
| | - Essam M Abdelfattah
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA
- Department of Animal Hygiene and Veterinary Management, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Egypt
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Betsy M Karle
- Cooperative Extension, Division of Agriculture and Natural Resources, University of California, Orland, CA 95963, USA
| | - Barbara A Byrne
- Department of Veterinary Pathology, Microbiology & Immunology, University of California Davis, Davis, CA 95616, USA
| | - Terry W Lehenbauer
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Sharif S Aly
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Kaya DE, Ülgen E, Kocagöz AS, Sezerman OU. A comparison of various feature extraction and machine learning methods for antimicrobial resistance prediction in streptococcus pneumoniae. FRONTIERS IN ANTIBIOTICS 2023; 2:1126468. [PMID: 39816648 PMCID: PMC11731958 DOI: 10.3389/frabi.2023.1126468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 01/18/2025]
Abstract
Streptococcus pneumoniae is one of the major concerns of clinicians and one of the global public health problems. This pathogen is associated with high morbidity and mortality rates and antimicrobial resistance (AMR). In the last few years, reduced genome sequencing costs have made it possible to explore more of the drug resistance of S. pneumoniae, and machine learning (ML) has become a popular tool for understanding, diagnosing, treating, and predicting these phenotypes. Nucleotide k-mers, amino acid k-mers, single nucleotide polymorphisms (SNPs), and combinations of these features have rich genetic information in whole-genome sequencing. This study compares different ML models for predicting AMR phenotype for S. pneumoniae. We compared nucleotide k-mers, amino acid k-mers, SNPs, and their combinations to predict AMR in S. pneumoniae for three antibiotics: Penicillin, Erythromycin, and Tetracycline. 980 pneumococcal strains were downloaded from the European Nucleotide Archive (ENA). Furthermore, we used and compared several machine learning methods to train the models, including random forests, support vector machines, stochastic gradient boosting, and extreme gradient boosting. In this study, we found that key features of the AMR prediction model setup and the choice of machine learning method affected the results. The approach can be applied here to further studies to improve AMR prediction accuracy and efficiency.
Collapse
Affiliation(s)
- Deniz Ece Kaya
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ege Ülgen
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ayşe Sesin Kocagöz
- Department of Infectious Diseases, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Osman Uğur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
13
|
Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M. tuberculosis. Eur Respir J 2022; 60:2200239. [PMID: 35301246 PMCID: PMC9556810 DOI: 10.1183/13993003.00239-2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Drug susceptibility testing of M. tuberculosis is rooted in a binary susceptible/resistant paradigm. While there are considerable advantages in measuring the minimum inhibitory concentrations (MICs) of a panel of drugs for an isolate, it is necessary to measure the epidemiological cut-off values (ECOFF/ECVs) to permit comparison with qualitative data. Here we present ECOFF/ECVs for 13 anti-tuberculosis compounds, including bedaquiline and delamanid, derived from 20 637 clinical isolates collected by 14 laboratories based in 11 countries on five continents. Each isolate was incubated for 14 days on a dry 96-well broth microdilution plate and then read. Resistance to most of the drugs due to prior exposure is expected and the MIC distributions for many of the compounds are complex, and therefore a phenotypically wild-type population could not be defined. Since a majority of samples also underwent genetic sequencing, we defined a genotypically wild-type population and measured the MIC of the 99th percentile by direct measurement and via fitting a Gaussian using interval regression. The proposed ECOFF/ECVs were then validated by comparing with the MIC distributions of high-confidence genetic variants that confer resistance and with qualitative drug susceptibility tests obtained via the Mycobacterial Growth Indicator Tube (MGIT) system or Microscopic-Observation Drug Susceptibility (MODS) assay. These ECOFF/ECVs will inform and encourage the more widespread adoption of broth microdilution: this is a cheap culture-based method that tests the susceptibility of 12-14 antibiotics on a single 96-well plate and so could help personalise the treatment of tuberculosis.
Collapse
Affiliation(s)
- The CRyPTIC Consortium
- For a list of all members of the CRyPTIC Consortium and their affiliations, please see the section at the end of this article
| |
Collapse
|
14
|
Diep TT, Bizley S, Edwards AD. 3D-Printed Dip Slides Miniaturize Bacterial Identification and Antibiotic Susceptibility Tests Allowing Direct Mastitis Sample Analysis. MICROMACHINES 2022; 13:mi13060941. [PMID: 35744555 PMCID: PMC9231150 DOI: 10.3390/mi13060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
The early detection of antimicrobial resistance remains an essential step in the selection and optimization of antibiotic treatments. Phenotypic antibiotic susceptibility testing including the measurement of minimum inhibitory concentration (MIC) remains critical for surveillance and diagnostic testing. Limitations to current testing methods include bulky labware and laborious methods. Furthermore, the requirement of a single strain of bacteria to be isolated from samples prior to antibiotic susceptibility testing delays results. The mixture of bacteria present in a sample may also have an altered resistance profile to the individual strains, and so measuring the susceptibility of the mixtures of organisms found in some samples may be desirable. To enable simultaneous MIC and bacterial species detection in a simple and rapid miniaturized format, a 3D-printed frame was designed for a multi-sample millifluidic dip-slide device that combines panels of identification culture media with a range of antibiotics (Ampicillin, Amoxicillin, Amikacin, Ceftazidime, Cefotaxime, Ofloxacin, Oxytetracycline, Streptomycin, Gentamycin and Imipenem) diluted in Muëller-Hinton Agar. Our proof-of-concept evaluation confirmed that the direct detection of more than one bacterium parallel to measuring MIC in samples is possible, which is validated using reference strains E. coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa ATCC 10145, and Staphylococcus aureus ATCC 12600 and with mastitis milk samples collected from Reading University Farm. When mixtures were tested, a MIC value was obtained that reflected the most resistant organism present (i.e., highest MIC), suggesting it may be possible to estimate a minimum effective antibiotic concentration for mixtures directly from samples containing multiple pathogens. We conclude that this simple miniaturized approach to the rapid simultaneous identification and antibiotic susceptibility testing may be suitable for directly testing agricultural samples, which is achieved through shrinking conventional tests into a simple "dip-and-incubate" device that can be 3D printed anywhere.
Collapse
|
15
|
Identifying associations between management practices and antimicrobial resistances of sentinel bacteria recovered from bulk tank milk on dairy farms. Prev Vet Med 2022; 204:105666. [DOI: 10.1016/j.prevetmed.2022.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022]
|
16
|
Vercelli C, Gambino G, Amadori M, Re G. Implications of Veterinary Medicine in the comprehension and stewardship of antimicrobial resistance phenomenon. From the origin till nowadays. Vet Anim Sci 2022; 16:100249. [PMID: 35479515 PMCID: PMC9036142 DOI: 10.1016/j.vas.2022.100249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antibiotic resistance is a well-known phenomenon with several implications The contribution of Veterinary Medicine is underestimated. It was believed that only livestock was responsible for antibiotic resistance. Companion animals, wild animals and environment are more involved than estimated. Educational tools for public and more veterinary specialists are needed.
Antimicrobial resistance (AMR) is defined by the entire scientific community as the major threat for human health and it is responsible for an increase in morbidity and mortality rates. The reasons behind this phenomenon are complex and the solution is achievable only considering the One Health approach, that encompasses the integration and implementation of human health, veterinary medicine and environmental status. Authors aimed to write this review to summarize to readers the three milestones of One-Health, underlying the most important topics in which veterinary medicine is mostly involved. Therefore, a short introduction about the history of AMR in veterinary medicine is provided, then more detailed aspects about the impact of AMR related to pets, food producing animals, wild animals and environment are discussed. Finally, some critical aspects about current and future issues are considered.
Collapse
Affiliation(s)
- Cristina Vercelli
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco (Turin), Italy
- Corresponding author.
| | - Graziana Gambino
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco (Turin), Italy
| | | | - Giovanni Re
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco (Turin), Italy
| |
Collapse
|
17
|
Zhang T, Niu G, Boonyayatra S, Pichpol D. Antimicrobial Resistance Profiles and Genes in Streptococcus uberis Associated With Bovine Mastitis in Thailand. Front Vet Sci 2021; 8:705338. [PMID: 34485432 PMCID: PMC8416076 DOI: 10.3389/fvets.2021.705338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/14/2021] [Indexed: 12/04/2022] Open
Abstract
Streptococcus uberis is recognized as an environmental mastitis pathogen in dairy cattle. The varied success rate of antibiotic treatment for S. uberis intramammary infection may be associated with the antimicrobial resistance (AMR) of these bacteria. This observational study aimed to analyze 228 S. uberis strains associated with bovine mastitis in northern Thailand from 2010 to 2017. AMR and AMR genes were determined by the minimum inhibitory concentration (MIC) using a microdilution method and polymerase chain reaction, respectively. The majority of S. uberis strains were resistant to tetracycline (187/228, 82.02%), followed by ceftiofur (44/228, 19.30%), and erythromycin (19/228, 8.33%). The MIC50 and MIC90 of ceftiofur in 2017 were 2–4-fold higher than those in 2010 (P < 0.01). Resistance to tetracycline and ceftiofur significantly increased between 2010 and 2017 (P < 0.05). The most common gene detected in S. uberis was tetM (199/228, 87.28%), followed by ermB (151/228, 66.23 %) and blaZ (15/228, 6.58 %). The association between tetracycline resistance and tetM detection was statistically significant (P < 0.01). The detection rates of tetM significantly increased, while the detection rates of tetO and ermB significantly decreased during 2010–2017. AMR monitoring for bovine mastitis pathogens, especially S. uberis, is necessary to understand the trend of AMR among mastitis pathogens, which can help create an AMR stewardship program for dairy farms in Thailand.
Collapse
Affiliation(s)
- Tingrui Zhang
- Doctor of Philosophy Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Guoyi Niu
- Doctor of Philosophy Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sukolrat Boonyayatra
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Research Group for Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Duangporn Pichpol
- Research Group for Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
18
|
Raimi A, Adeleke R. Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. Arch Microbiol 2021; 203:1917-1942. [PMID: 33677637 DOI: 10.1007/s00203-021-02256-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Presently, several drug discovery investigations on therapeutic management of human health are aimed at bioprospecting for microorganisms, especially endophytic microbes of biotechnological importance. This review investigates the benefits of endophytes, especially in producing bioactive compounds useful in modern medicine by systematically reviewing published data from 12 databases. Only experimental studies investigating either or both bacterial and fungal endophytes and within the scope of this review were selected. The published data from the last 2 decades (2000-2019) revealed diverse endophytes associated with different plants produce a broad spectrum of bioactive compounds with therapeutic benefits. Notably, antibacterial, followed by anticancer and antifungal activities, were mostly reported. Only three studies investigated the anti-plasmodial activity. The variation observed in the synthesis of bioactive compounds amongst endophytes varied with host type, endophyte species, and cultivation medium. Fungal endophytes were more investigated than bacterial endophytes, with both endophytes having species diversity amongst literature. The endophytes were predominantly from medicinal plants and belonged to either Ascomycota (fungi) or Proteobacteria and Firmicutes (bacteria). This review presents excellent prospects of harnessing endophytes and their unique bioactive compounds in developing novel and effective compounds of medicinal importance.
Collapse
Affiliation(s)
- Adekunle Raimi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
19
|
Li X, Liang B, Xu D, Wu C, Li J, Zheng Y. Antimicrobial Resistance Risk Assessment Models and Database System for Animal-Derived Pathogens. Antibiotics (Basel) 2020; 9:E829. [PMID: 33228076 PMCID: PMC7699434 DOI: 10.3390/antibiotics9110829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 01/06/2023] Open
Abstract
(1) Background: The high use of antibiotics has made the issue of antimicrobial resistance (AMR) increasingly serious, which poses a substantial threat to the health of animals and humans. However, there remains a certain gap in the AMR system and risk assessment models between China and the advanced world level. Therefore, this paper aims to provide advanced means for the monitoring of antibiotic use and AMR data, and take piglets as an example to evaluate the risk and highlight the seriousness of AMR in China. (2) Methods: Based on the principal component analysis method, a drug resistance index model of anti-E. coli drugs was established to evaluate the antibiotic risk status in China. Additionally, based on the second-order Monte Carlo methods, a disease risk assessment model for piglets was established to predict the probability of E. coli disease within 30 days of taking florfenicol. Finally, a browser/server architecture-based visualization database system for animal-derived pathogens was developed. (3) Results: The risk of E. coli in the main area was assessed and Hohhot was the highest risk area in China. Compared with the true disease risk probability of 4.1%, the result of the disease risk assessment model is 7.174%, and the absolute error was 3.074%. Conclusions: Taking E. coli as an example, this paper provides an innovative method for rapid and accurate risk assessment of drug resistance. Additionally, the established system and assessment models have potential value for the monitoring and evaluating AMR, highlight the seriousness of antimicrobial resistance, advocate the prudent use of antibiotics, and ensure the safety of animal-derived foods and human health.
Collapse
Affiliation(s)
- Xinxing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (B.L.)
| | - Buwen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (B.L.)
| | - Ding Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083, China; (D.X.); (J.L.)
| | - Congming Wu
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China;
| | - Jianping Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083, China; (D.X.); (J.L.)
| | - Yongjun Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083, China; (D.X.); (J.L.)
| |
Collapse
|