1
|
Serrat J, Torres-Valle M, De Marco Verissimo C, Siles-Lucas M, González-Miguel J. Binding and cleavage of pro-urokinase by a tegument extract of Fasciola hepatica newly excysted juveniles activate the host fibrinolytic system. Vet Res 2025; 56:20. [PMID: 39856784 PMCID: PMC11762853 DOI: 10.1186/s13567-025-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/26/2024] [Indexed: 01/27/2025] Open
Abstract
Plasmin, the final product of fibrinolysis, is a broad-spectrum serine protease that degrades extracellular matrix (ECM) components, a function exploited by multiple pathogens for dissemination purposes. The trematode Fasciola hepatica is the leading cause of fasciolosis, a major disease of livestock and an emerging zoonosis in humans. Infection success depends on the ability of F. hepatica newly excysted juveniles (FhNEJ) to penetrate the host intestinal wall, a process that remains incompletely understood. We have previously shown that FhNEJ are capable of binding plasminogen (PLG), the zymogen of plasmin, on their tegument surface, which leads to plasmin generation in the presence of host-derived PLG activators and subsequent degradation of laminin, a major component of the intestinal ECM. Here, we describe the interaction between a tegument extract of FhNEJ and the precursor of the urokinase-type PLG activator (pro-u-PA). We found that F. hepatica cathepsins B3, L3, enolase and glutathione S-transferase mediate this interaction, suggesting a multifactorial or moonlighting role for these proteins. Additionally, our results revealed that the tegument of FhNEJ contains a protease that is capable of cleaving and activating pro-u-PA into its catalytically active form, which positively impacts the capacity of the parasites to generate plasmin from the host PLG. Collectively, our findings indicate that FhNEJ interact with the host fibrinolytic system at multiple levels, reinforcing the potential of targeting this interaction as a strategy to prevent FhNEJ trans-intestinal migration and infection success.
Collapse
Affiliation(s)
- Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - María Torres-Valle
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | | | - Mar Siles-Lucas
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain.
| |
Collapse
|
2
|
de Macêdo IL, de Sousa DER, Souza ADR, de Toledo Costa GR, Scalon MC, Duarte MA, Paludo GR, Hoppe EGL, Oliveira WJ, de Oliveira Passos PH, Romano APM, de Lima EMM, de Melo CB, de Castro MB. Hepatobiliary Platynosomosis in Black-Tufted Marmosets (Callithrix penicillata): A Lethal Threat for Wildlife and Captive Populations. Am J Primatol 2025; 87:e23701. [PMID: 39580662 DOI: 10.1002/ajp.23701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/10/2024] [Accepted: 11/03/2024] [Indexed: 11/26/2024]
Abstract
Helminthic infections, particularly those caused by trematodes, pose a significant health risk to both animals and humans. This study investigates hepatobiliary platynosomosis (HP) caused by Platynosomum illiciens in black-tufted marmosets (Callithrix penicillata) in Central Brazil. Data were retrospectively collected from autopsy records at the Laboratory of Veterinary Pathology and Forensics, University of Brasília, from January 2006 to July 2021. Epidemiological, clinical, and pathological information was analyzed, including comparisons between free-ranging and captive marmosets. A total of 1596 nonhuman primate (NHP) death records were examined, with black-tufted marmosets accounting for 75.6% (1206/1595) of autopsies. HP was identified in 10.8% (131/1206) of these cases. Captive marmosets showed a higher prevalence of HP (49.6%) than free-ranging ones (6.5%). This study revealed a significant seasonal trend, with higher HP prevalence observed during the wet season until the onset of the dry season. Pathological examinations revealed severe liver and bile duct damage in fatal HP cases, including fibrosis, bile duct thickening, and the presence of flukes. Captive marmosets exhibited pronounced clinical signs, such as weight loss and apathy. Morphological and molecular analysis of sampled flukes confirmed P. illiciens infecting the marmosets. These findings underscore the substantial impact of HP on marmoset populations, particularly in captive settings. The high lethality (58% overall; 81.6% in captivity) highlights the need for improved management and preventive measures in captive environments. This study contributes to understanding HP epidemiology, clinical manifestations, and pathological outcomes, underscoring the disease's significance for the health of both free-ranging and captive NHP populations. Our findings also support the need to develop targeted strategies to mitigate the impact of HP on primate species populations.
Collapse
Affiliation(s)
- Isabel Luana de Macêdo
- Laboratory of Veterinary Pathology and Forensic, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
| | - Davi Emanuel Ribeiro de Sousa
- Laboratory of Veterinary Pathology and Forensic, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
- Graduate Program in Animal Sciences, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
| | | | | | - Marcela Corrêa Scalon
- Laboratory of Veterinary Clinical Pathology, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
| | - Matheus Almeida Duarte
- Graduate Program in Animal Sciences, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
- Laboratory of Veterinary Clinical Pathology, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
| | - Giane Regina Paludo
- Graduate Program in Animal Sciences, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
- Laboratory of Veterinary Clinical Pathology, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
| | - Estevam Guilherme Lux Hoppe
- Department of Pathology, Reproduction, and One Health, Parasitic Diseases and Zoonoses Laboratory (LabEPar), School of Agricultural and Veterinarian Sciences, São Paulo State University UNESP, Jaboticabal, SP, Brazil
| | - Wilson Junior Oliveira
- Department of Pathology, Reproduction, and One Health, Parasitic Diseases and Zoonoses Laboratory (LabEPar), School of Agricultural and Veterinarian Sciences, São Paulo State University UNESP, Jaboticabal, SP, Brazil
| | - Pedro Henrique de Oliveira Passos
- Graduate Program in Animal Sciences, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
- Health Surveillance Secretariat (S.V.S.), Brazilian Ministry of Health, Brasilia, DF, Brazil
| | | | - Eduardo Mauricio Mendes de Lima
- Graduate Program in Animal Sciences, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
| | - Cristiano Barros de Melo
- Graduate Program in Animal Sciences, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
| | - Márcio Botelho de Castro
- Laboratory of Veterinary Pathology and Forensic, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
- Graduate Program in Animal Sciences, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
3
|
Rawat SS, Keshri AK, Arora N, Kaur R, Mishra A, Kumar R, Prasad A. Taenia solium cysticerci's extracellular vesicles Attenuate the AKT/mTORC1 pathway for Alleviating DSS-induced colitis in a murine model. J Extracell Vesicles 2024; 13:e12448. [PMID: 38779712 PMCID: PMC11112404 DOI: 10.1002/jev2.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/24/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The excretory-secretory proteome plays a pivotal role in both intercellular communication during disease progression and immune escape mechanisms of various pathogens including cestode parasites like Taenia solium. The cysticerci of T. solium causes infection in the central nervous system known as neurocysticercosis (NCC), which affects a significant population in developing countries. Extracellular vesicles (EVs) are 30-150-nm-sized particles and constitute a significant part of the secretome. However, the role of EV in NCC pathogenesis remains undetermined. Here, for the first time, we report that EV from T. solium larvae is abundant in metabolites that can negatively regulate PI3K/AKT pathway, efficiently internalized by macrophages to induce AKT and mTOR degradation through auto-lysosomal route with a prominent increase in the ubiquitination of both proteins. This results in less ROS production and diminished bacterial killing capability among EV-treated macrophages. Due to this, both macro-autophagy and caspase-linked apoptosis are upregulated, with a reduction of the autophagy substrate sequestome 1. In summary, we report that T. solium EV from viable cysts attenuates the AKT-mTOR pathway thereby promoting apoptosis in macrophages, and this may exert immunosuppression during an early viable stage of the parasite in NCC, which is primarily asymptomatic. Further investigation on EV-mediated immune suppression revealed that the EV can protect the mice from DSS-induced colitis and improve colon architecture. These findings shed light on the previously unknown role of T. solium EV and the therapeutic role of their immune suppression potential.
Collapse
Affiliation(s)
- Suraj Singh Rawat
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Anand Kumar Keshri
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Naina Arora
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Rimanpreet Kaur
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Amit Mishra
- Cellular and Molecular Neurobiology UnitIndian Institute of Technology JodhpurJodhpurRajasthanIndia
| | - Rajiv Kumar
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurHimachal PradeshIndia
| | - Amit Prasad
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| |
Collapse
|
4
|
Ahumada M, Godino A, Guasconi L, Deheza C, Amaranto M, Pruzzo CI, Vitulli-Moya G, Chiapello L, Carrizo ME, Barra JL, Cervi L. Antibody detection against Kunitz-type protein in Fasciola hepatica experimentally infected sheep using enzyme-linked immunosorbent assay (ELISA). Int J Vet Sci Med 2023; 11:126-137. [PMID: 38173987 PMCID: PMC10763594 DOI: 10.1080/23144599.2023.2273678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 01/05/2024] Open
Abstract
Fasciolosis is a parasitic disease considered as emerging and neglected by the WHO. Sheep are highly susceptible to this disease, and affected flocks experience decreased productivity due to increased mortality, and the reduced quality of their products, such as wool and meat. To effectively control this disease, reliable and early diagnosis is essential for making decisions regarding antiparasitic application and/or the removal of affected animals. Currently, the diagnosis of F. hepatica in sheep relies on the detection of parasite eggs in faeces, a method that becomes reliable from week 10 post-infection. Consequently, there is a need for earlier diagnostic tools based on immune response. However, obtaining antigens for antibody detection has proven to be difficult and expensive. The aim of this study was to evaluate members of the Kunitz protein family of F. hepatica expressed in the form of a fusion protein in the serological diagnosis of F. hepatica in sheep. The performance of three recombinant F. hepatica Kunitz-type inhibitors (FhKT1.1, FhKT1.3, and FhKT4) was compared with a synthetic Kunitz-type peptide (sFhKT) in sera from sheep experimentally infected with F. hepatica, using an ELISA. Of these, FhKT1.1 showed the most promising diagnostic indicators, exhibiting high precision and low cross-reactivity, and thus potential for standardized production. The results of our study demonstrated that the application of FhKT1.1 is a valuable tool for early-stage diagnosis of F. hepatica in sheep. Such an early diagnosis can aid in implementing timely interventions and effectively managing the disease in sheep populations.
Collapse
Affiliation(s)
- María Ahumada
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, Universidad Católica de Córdoba, Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria Manfredi, Córdoba, Argentina
| | - Agustina Godino
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Lorena Guasconi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Carla Deheza
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Marilla Amaranto
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Cesar Iván Pruzzo
- Departamento de Epizootiología y Salud Pública, Universidad Nacional de La Plata, La Plata, Argentina
- Centro de Diagnósticos e Investigación Veterinaria (CEDIVE), Universidad Nacional de La Plata, La Plata, Argentina
| | - Gabriel Vitulli-Moya
- Centro de Diagnósticos e Investigación Veterinaria (CEDIVE), Universidad Nacional de La Plata, La Plata, Argentina
| | - Laura Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Elena Carrizo
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - José Luis Barra
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
5
|
Serrat J, Torres-Valle M, López-García M, Becerro-Recio D, Siles-Lucas M, González-Miguel J. Molecular Characterization of the Interplay between Fasciola hepatica Juveniles and Laminin as a Mechanism to Adhere to and Break through the Host Intestinal Wall. Int J Mol Sci 2023; 24:8165. [PMID: 37175870 PMCID: PMC10179147 DOI: 10.3390/ijms24098165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Fasciola hepatica is the main causative agent of fasciolosis, a zoonotic parasitic disease of growing public health concern. F. hepatica metacercariae are ingested by the host and excyst in the intestine, thereby releasing the newly excysted juveniles (FhNEJ), which traverse the gut wall and migrate towards the biliary ducts. Since blocking F. hepatica development is challenging after crossing of the intestinal wall, targeting this first step of migration might result in increased therapeutic success. The intestinal extracellular matrix (ECM) is constituted by a network of structural proteins, including laminin (LM) and fibronectin (FN), that provide mechanical support while acting as physical barrier against intestinal pathogens. Here, we employed ELISA and immunofluorescent assays to test for the presence of LM- and FN-binding proteins on a tegument-enriched antigenic fraction of FhNEJ, and further determined their identity by two-dimensional electrophoresis coupled to mass spectrometry. Additionally, we performed enzymatic assays that revealed for the first time the capability of the juvenile-specific cathepsin L3 to degrade LM, and that LM degradation by FhNEJ proteins is further potentiated in the presence of host plasminogen. Finally, a proteomic analysis showed that the interaction with LM triggers protein changes in FhNEJ that may be relevant for parasite growth and adaptation inside the mammalian host. Altogether, our study provides valuable insights into the molecular interplay between FhNEJ and the intestinal ECM, which may lead to the identification of targetable candidates for the development of more effective control strategies against fasciolosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain; (J.S.); (M.T.-V.); (M.L.-G.); (D.B.-R.); (M.S.-L.)
| |
Collapse
|
6
|
Serrat J, Becerro-Recio D, Torres-Valle M, Simón F, Valero MA, Bargues MD, Mas-Coma S, Siles-Lucas M, González-Miguel J. Fasciola hepatica juveniles interact with the host fibrinolytic system as a potential early-stage invasion mechanism. PLoS Negl Trop Dis 2023; 17:e0010936. [PMID: 37083884 PMCID: PMC10155961 DOI: 10.1371/journal.pntd.0010936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/03/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The trematode Fasciola hepatica is the most widespread causative agent of fasciolosis, a parasitic disease that mainly affects humans and ruminants worldwide. During F. hepatica infection, newly excysted juveniles (FhNEJ) emerge in the duodenum of the mammalian host and migrate towards their definitive location, the intra-hepatic biliary ducts. Understanding how F. hepatica traverses the intestinal wall and migrates towards the liver is pivotal for the development of more successful strategies against fasciolosis. The central enzyme of the mammalian fibrinolytic system is plasmin, a serine protease whose functions are exploited by a number of parasite species owing to its broad spectrum of substrates, including components of tissue extracellular matrices. The aim of the present work is to understand whether FhNEJ co-opt the functions of their host fibrinolytic system as a mechanism to facilitate trans-intestinal migration. METHODOLOGY/PRINCIPAL FINDINGS A tegument-enriched antigenic extract of FhNEJ (FhNEJ-Teg) was obtained in vitro, and its capability to bind the zymogen plasminogen (PLG) and enhance its conversion to the active protease, plasmin, were analyzed by a combination of enzyme-linked immunosorbent, chromogenic and immunofluorescence assays. Additionally, PLG-binding proteins in FhNEJ-Teg were identified by bidimensional electrophoresis coupled to mass spectrometry analysis, and the interactions were validated using FhNEJ recombinant proteins. CONCLUSIONS/SIGNIFICANCE Our results show that FhNEJ-Teg contains proteins that bind PLG and stimulate its activation to plasmin, which could facilitate the traversal of the intestinal wall by FhNEJ and contribute to the successful establishment of the parasite within its mammalian host. Altogether, our findings contribute to a better understanding of host-parasite relationships during early fasciolosis and may be exploited from a pharmacological and/or immunological perspective for the development of treatment and control strategies against this global disease.
Collapse
Affiliation(s)
- Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - David Becerro-Recio
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - María Torres-Valle
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - María Adela Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - María Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - Mar Siles-Lucas
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
7
|
Mas-Coma S, Valero MA, Bargues MD. Human and Animal Fascioliasis: Origins and Worldwide Evolving Scenario. Clin Microbiol Rev 2022; 35:e0008819. [PMID: 36468877 PMCID: PMC9769525 DOI: 10.1128/cmr.00088-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fascioliasis is a plant- and waterborne zoonotic parasitic disease caused by two trematode species: (i) Fasciola hepatica in Europe, Asia, Africa, the Americas, and Oceania and (ii) F. gigantica, which is restricted to Africa and Asia. Fasciolid liver flukes infect mainly herbivores as ruminants, equids, and camelids but also omnivore mammals as humans and swine and are transmitted by freshwater Lymnaeidae snail vectors. Two phases may be distinguished in fasciolid evolution. The long predomestication period includes the F. gigantica origin in east-southern Africa around the mid-Miocene, the F. hepatica origin in the Near-Middle East of Asia around the latest Miocene to Early Pliocene, and their subsequent local spread. The short postdomestication period includes the worldwide spread by human-guided movements of animals in the last 12,000 years and the more recent transoceanic anthropogenic introductions of F. hepatica into the Americas and Oceania and of F. gigantica into several large islands of the Pacific with ships transporting livestock in the last 500 years. The routes and chronology of the spreading waves followed by both fasciolids into the five continents are redefined on the basis of recently generated knowledge of human-guided movements of domesticated hosts. No local, zonal, or regional situation showing disagreement with historical records was found, although in a few world zones the available knowledge is still insufficient. The anthropogenically accelerated evolution of fasciolids allows us to call them "peridomestic endoparasites." The multidisciplinary implications for crucial aspects of the disease should therefore lead the present baseline update to be taken into account in future research studies.
Collapse
Affiliation(s)
- Santiago Mas-Coma
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - M. Adela Valero
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - M. Dolores Bargues
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| |
Collapse
|
8
|
Host–Parasite Relationships in Veterinary Parasitology: Get to Know Your Enemy before Fighting It. Animals (Basel) 2022; 12:ani12040448. [PMID: 35203156 PMCID: PMC8868562 DOI: 10.3390/ani12040448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The evolutionary success of parasitism is directly related to the huge number of species that have evolved this way of life [...]
Collapse
|
9
|
Cwiklinski K, Drysdale O, López Corrales J, Corripio-Miyar Y, De Marco Verissimo C, Jewhurst H, Smith D, Lalor R, McNeilly TN, Dalton JP. Targeting Secreted Protease/Anti-Protease Balance as a Vaccine Strategy against the Helminth Fasciola hepatica. Vaccines (Basel) 2022; 10:155. [PMID: 35214614 PMCID: PMC8878381 DOI: 10.3390/vaccines10020155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
The liver fluke Fasciola hepatica is an economically important global pathogen of humans and their livestock. To facilitate host invasion and migration, F. hepatica secretes an abundance of cathepsin peptidases but prevents excessive damage to both parasite and host tissues by co-secreting regulatory peptidase inhibitors, cystatins/stefins and Kunitz-type inhibitors. Here, we report a vaccine strategy aimed at disrupting the parasite's protease/anti-protease balance by targeting these key inhibitors. Our vaccine cocktail containing three recombinant stefins (rFhStf-1, rFhStf-2, rFhStf-3) and a Kunitz-type inhibitor (rFhKT1) formulated in adjuvant Montanide 61VG was assessed in two independent sheep trials. While fluke burden was not reduced in either trial, in Trial 1 the vaccinated animals showed significantly greater weight gain (p < 0.05) relative to the non-vaccinated control group. In both trials we observed a significant reduction in egg viability (36-42%). Multivariate regression analyses showed vaccination and increased levels of IgG2 antibodies specific for the F. hepatica peptidase inhibitors were positive indicators for increased weight gain and levels of haemoglobin within the normal range at 16 weeks post-infection (wpi; p < 0.05). These studies point to the potential of targeting peptidase inhibitors as vaccine cocktails for fasciolosis control in sheep.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Orla Drysdale
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
| | - Yolanda Corripio-Miyar
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - David Smith
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
| | - Tom N. McNeilly
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - John P. Dalton
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| |
Collapse
|