1
|
Nchanji GT, Fossi BT, Fru-Cho J, Shey RA, Andoh AA, Kemajou Tchamba AL, Hasan NA, Wanji S. Bacterial Diversity in Aquacultured African Catfish and Source Pond Water in Buea, Cameroon. Int J Microbiol 2025; 2025:6132661. [PMID: 40420853 PMCID: PMC12105891 DOI: 10.1155/ijm/6132661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/11/2025] [Indexed: 05/28/2025] Open
Abstract
The catfish is a prominent freshwater fish species farmed in Cameroon to meet the escalating demand for fish products. Despite considerable growth potential, there are concerns about the occurrence of bacteria pathogenic to both fish and humans within aquaculture systems. Research on the microbiome of catfish and their habitats remains largely unexplored. Given the critical importance of understanding the microbial composition within aquaculture systems to ensure food safety and protect public health, this study aimed to generate vital preliminary data by investigating the bacteriome of catfish gills and intestines and pond water environment in Cameroon using 16S rRNA gene amplicon sequencing. The findings revealed a diverse bacterial community (30 phyla, 678 genera, and 1056 species), with Fusobacteria, Bacteroidetes, Proteobacteria, Firmicutes, and Verrucomicrobia collectively representing over 93% of the bacterial community observed. Notably, Fusobacteria emerged as the dominant phylum in catfish gills (49.98%) and intestines (65.3%), while Proteobacteria predominated in the pond water environment (40.24%). Bacteria of genus Cetobacterium dominated all three samples (gills, 49.93%; intestines, 65.19%; and pond water, 23.85%). Furthermore, this study identified many bacterial genera, including potential fish pathogens such as Edwardsiella, Aeromonas, Plesiomonas, and Flavobacterium, and human gut bacteria such as Clostridium and Bacteroides, alongside potential beneficial probiotic bacteria such as Lactococcus spp. The coexistence of both potentially pathogenic and probiotic species underscores ecological complex dynamics within freshwater fish aquaculture and highlights the need for thorough microbial management strategies. This study provides insights into the bacterial landscape of Cameroonian aquaculture, revealing potential risks and benefits of catfish farming.
Collapse
Affiliation(s)
- Gordon Takop Nchanji
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea, Cameroon
| | | | - Jerome Fru-Cho
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Robert Adamu Shey
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Akeson Akeh Andoh
- Department of Fisheries and Aquatic Resources Management, Faculty of Agriculture and Veterinary Medicine, University of Buea, Buea, Cameroon
| | | | | | - Samuel Wanji
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| |
Collapse
|
2
|
Calcagnile M, Quarta E, Sicuro A, Pecoraro L, Schiavone R, Tredici SM, Talà A, Corallo A, Verri T, Stabili L, Alifano P. Effect of Bacillus velezensis MT9 on Nile Tilapia (Oreochromis Niloticus) Intestinal Microbiota. MICROBIAL ECOLOGY 2025; 88:37. [PMID: 40310547 PMCID: PMC12045831 DOI: 10.1007/s00248-025-02531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025]
Abstract
In recent years, there has been a growing interest in the use of probiotics in aquaculture, due to their effectiveness on production, safety, and environmental friendliness. Probiotics, used as feed additives and as an alternative to antibiotics for disease prevention, have been shown to be active as growth promoters, improving survival and health of farmed fish. In this study, we have investigated the ability of the strain Bacillus velezensis MT9, as potential probiotic, to modulate the intestinal microbiota of the Nile tilapia (Oreochromis niloticus) fed with the Bacillus velezensis-supplemented feed in an experimental aquaculture plant. The analysis of the microbial community of the Nile tilapia by culture-based and 16S rRNA gene metabarcoding approaches demonstrated that B. velezensis MT9 reshapes the fish intestinal microbiota by reducing the amounts of opportunistic Gram-negative bacterial pathogens belonging to the phylum of Proteobacterium (Pseudomonadota) and increasing the amounts of beneficial bacteria belonging to the phyla Firmicutes (Bacillota) and Actinobacteria (Actinomycetota). Specifically, dietary supplementation of Nile tilapia with B. velezensis MT9 resulted in an increase in the relative abundance of bacteria of the genus Romboutsia, which has a well-documented probiotic activity, and a decrease in the relative abundance of Gammaproteobacteria of the genera Aeromonas and Vibrio, which include opportunistic pathogens for fish, and Escherichia/Shigella, which may pose a risk to consumers. The whole genome sequence of B. velezensis MT9 was then determined. Genome analysis revealed several peculiarities of B. velezensis MT9 compared to other B. velezensis reference strains including specific metabolic traits, differences in two-component and quorum sensing systems as well as the potential ability to produce a distinct array of secondary metabolites, which could explain the strong ability of this strain to modulate the intestinal microbiota of the Nile tilapia.
Collapse
Affiliation(s)
- Matteo Calcagnile
- Department of Experimental Medicine (DiMeS), University of Salento, Via Monteroni, 73100, Lecce, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Elisa Quarta
- Institute of Water Research (IRSA), Istituto Talassografico "A. Cerruti", National Research Council (CNR), Via Roma 3, 74123, Taranto, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alessandro Sicuro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Laura Pecoraro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Roberta Schiavone
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | | | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Angelo Corallo
- Department of Experimental Medicine (DiMeS), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy.
- Institute of Water Research (IRSA), Istituto Talassografico "A. Cerruti", National Research Council (CNR), Via Roma 3, 74123, Taranto, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| | - Pietro Alifano
- Department of Experimental Medicine (DiMeS), University of Salento, Via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
3
|
Wang XY, Ding ZL, Xu YX, Yang DZ, Yang S, Fei H. Effect of Supplementing Exogenous Glucanase or/and Mannanase to Diets Containing Torula Yeast on Growth Performance, Biochemical Indices, Liver and Intestinal Morphology, and Intestinal Microbiota and Metabolism of Largemouth Bass (Micropterus salmoides). Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10560-z. [PMID: 40304965 DOI: 10.1007/s12602-025-10560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
In the current study, we investigated the effect of a basic diet (where 20% of fishmeal was replaced by torula yeast, referred to as the control group), supplementation with β-glucanase (1000 U·kg-1, referred to as the TYG group), β-mannanase (510 U·kg-1, referred to as the group), and their combination (TYGM group), on the growth and health of juvenile largemouth bass (Micropterus salmoides). After an 8-week feeding experiment, the results revealed that juveniles in the TYM and TYGM groups exhibited significantly higher specific growth rates and hepatic antioxidant capacity, along with notably reduced levels of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase activities in their serum. Histomorphological assessment indicated that dietary glucanase and/or mannanase could mitigate vacuolization and nuclear deviation in the liver, while also increasing villus width and height. Furthermore, 16S rRNA sequence analysis revealed a significant decrease in Mycoplasma levels in the TYM and TYGM groups, along with a notable increase in Cetobacterium content in the TYGM group compared to the other groups. Additionally, untargeted metabolomics analysis showed that the differentially expressed metabolites were primarily correlated with lipid metabolism, including steroid hormone biosynthesis (cholesterol sulfate), primary bile acid biosynthesis (cerebrosterol), and sphingolipid metabolism (phytosphingosine) between the control and TYGM groups. In conclusion, our study demonstrated that dietary glucanase + mannanase could partially alleviate the adverse impacts on the growth and health of juveniles caused by high levels of torula yeast in the diet.
Collapse
Affiliation(s)
- Xiao Yan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhi Li Ding
- College of Life Science, Huzhou University, Huzhou, 313000, China
| | - You Xing Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dao Zhi Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Ding C, Yang Y, Gao Z, Ding W, Ma J, Li X. Destruction of the intestinal microbiota and gut-liver axis homeostasis by microcystin-LR-induced inflammation in the common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118155. [PMID: 40215691 DOI: 10.1016/j.ecoenv.2025.118155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/21/2025]
Abstract
Water eutrophication leads to the frequent occurrence of cyanobacterial blooms, which pose a serious threat to the health and survival of fish, the top consumer in freshwater ecosystems. The hepatotoxicity induced by microcystin-LR (MC-LR) has been well studied; however, its impact on the intestinal flora and the gut-liver axis has rarely been reported. This study aimed to investigate the harmful effects of acute oral (303.89 µg/kg.bw) and intraperitoneal (i.p., 101.3 µg/kg.bw) exposure to MC-LR on the intestine and liver and the gut-liver axis of common carp. The results showed that the transaminase activity and levels of proinflammatory factors increased significantly, and histological abnormalities were observed, indicating that MC-LR induced a hepatoenteric inflammatory response. The levels of gram-negative bacteria increased, but the expression levels of bile acid (BA)-related genes (cyp7a1, cyp8b1, cyp27a1, and fxr) and the short-chain fatty acid (SCFA) content decreased as the LPS level increased. These results suggest that MC-LR exposure induces liver inflammation and impairs BA synthesis, weakening intestinal defences and promoting LPS-related hepatic inflammation. Additionally, increased intestinal permeability and reduced SCFA synthesis can further compromise intestinal epithelium protection. The inflammation induced by MC-LR was significantly more severe in the liver than in the intestine, and the recovery of the liver was slower. This study enhances the understanding of the environmental risks posed by cyanobacteria.
Collapse
Affiliation(s)
- Cuihong Ding
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yanzhe Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhaolu Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China.
| | - Xiaoyu Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
5
|
Wang H, Su Q, Sun H, Meng Y, Xing X, Zheng H, Li Y. Unexpected Microbial and Genetic Diversity in the Gut of Chinese Giant Salamander. Integr Zool 2025. [PMID: 40165002 DOI: 10.1111/1749-4877.12976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
The gut microbiome is crucial for animal health, yet the diversity of the critically endangered Chinese giant salamander's gut microbiota remains largely uncharacterized. In this study, we first conducted a comprehensive landscape survey of the gut microbiome of the Chinese giant salamander using 16S rRNA sequencing across a wide geographic range, identifying a distinct microbial cluster within its habitat. Subsequently, using shotgun metagenomes, we recovered 1518 metagenome-assembled genomes. Notably, 85% of the newly identified genomes could not be assigned to any known bacterial species, indicating a significant presence of novel taxa in Chinese giant salamander intestines. We observed substantial species-level variations in the gut microbiome across different age groups, with some novel species uniquely enriched in specific age populations. From the gut symbionts, we established a gene catalog comprising 3 278 107 non-redundant protein-coding genes, of which 7733 were annotated into recognized KEGG orthology groups. Additionally, we found that the gut microbiota of the Chinese giant salamander exhibits enhanced functional capacities explicitly in lipid metabolism and assimilatory sulfate reduction. Significant variations in the abundance of related enzyme-encoding genes across age groups suggest the unique roles of microbial metabolism in salamander health. By identifying microbial genomes and constructing an integrated gene catalog from metagenomic data, we significantly expand the resources available for research on the gut microbiome of the Chinese giant salamander, paving the way for further investigations into its ecological and health-related implications.
Collapse
Affiliation(s)
- Hongjian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huihui Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yujie Meng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinhui Xing
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yiyuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Li Z, Lv J, Chen J, Sun F, Sheng R, Qin Y, Rao L, Lu T, Sun L. Comparative study of gut content microbiota in freshwater fish with different feeding habits: A case study of an urban lake. JOURNAL OF FISH BIOLOGY 2025; 106:823-835. [PMID: 39567260 DOI: 10.1111/jfb.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
The gut microbiota plays a crucial role in various physiological functions of the host and can be modulated by numerous factors, including feeding habit or trophic level. In this study, the impact of host feeding habits on the gut microbiota of freshwater fish was explored. Ten fish species, classified into four feeding habit categories (herbivorous, omnivorous, planktivorous, and carnivorous) were sampled from West Lake, a renowned urban scenic lake, and their gut content microbiota was analysed using 16S ribosomal RNA gene sequencing. A total of 2531 operational taxonomic units, belonging to 34 bacterial phyla, were identified, with 33.4% shared across all feeding habits. Firmicutes and Proteobacteria were the predominant phyla. However, at the family level, Peptostreptococcaceae and Clostridiaceae_1 were the most dominant. Microbiota composition diversity was highest in herbivorous fish, followed by omnivores, carnivores, and planktivores. Statistically significant differences in microbiota diversity were found between different feeding categories, except for the omnivores, which did not differ from the carnivores or planktivores. The most abundant predicted metabolic pathways across all feeding habits were similar, with amino acid metabolism, carbohydrate metabolism, metabolism of cofactors and vitamins, and metabolism of other amino acids being dominant. However, comparing the relative abundance of gene functions between different feeding habits revealed notable variations across most comparisons. Co-occurrence network analysis for each feeding habit revealed that all networks were dominated by the strong positive correlation among pairs of bacterial genera abundances, while the basic properties varied, implying differences in gut microbiota interactions based on the feeding habit. In conclusion, these results confirmed that the feeding habit could affect the structure and composition of the gut content microbiota but also changed their functions and interactions.
Collapse
Affiliation(s)
- Zaitian Li
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Junsheng Lv
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jun Chen
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou, China
| | - Fengzhu Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Ruozhu Sheng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yueyun Qin
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lihua Rao
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Qian L, Lu S, Jiang W, Mu Q, Lin Y, Gu Z, Wu Y, Ge X, Miao L. Lactobacillus plantarum Alters Gut Microbiota and Metabolites Composition to Improve High Starch Metabolism in Megalobrama amblycephala. Animals (Basel) 2025; 15:583. [PMID: 40003065 PMCID: PMC11852042 DOI: 10.3390/ani15040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this study was to explore the effects of adding Lactobacillus plantarum (LAB) to a high-starch diet on glucose and lipid metabolism, gut microbiota, and the composition of metabolites in Megalobrama amblycephala. This experiment was equipped with three isonitrogenous and isoenergetic feeds as control group (LW), high starch group (HW), and high starch with LAB group (HP). A total of 180 experimental fish (13.5 ± 0.5 g) were randomly divided into three treatments, and three floating cages (1 m × 1 m × 1 m) were set up for each treatment. A total of 20 fish per net were kept in an outdoor pond for 8 weeks. The results showed that both the HW and HP groups had an altered structure and a reduced diversity of gut microbiota. LAB increased the abundance of Cetobacterium and the ratio of Firmicutes/Bacteroidota and decreased PC (16:1/20:5) and taurochenodeoxycholic acid levels. LAB promoted the expression of genes related to the intestinal bile acid cycle (fxr, hmgcr, rxr, shp and hnf4α) and inhibited the expression of pparβ and g6pase (p < 0.05). LAB reduced the expression of genes related to transported cholesterol (lxr and ldlr) (p < 0.05) in the liver. In conclusion, LAB addition could regulate the gut microbiota disorders caused by high starch levels, promote cholesterol metabolism, produce bile acids, and reduce lipid deposition.
Collapse
Affiliation(s)
- Linjie Qian
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (L.Q.); (Q.M.)
| | - Siyue Lu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| | - Wenqiang Jiang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| | - Qiaoqiao Mu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (L.Q.); (Q.M.)
| | - Yan Lin
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| | - Zhengyan Gu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| | - Yeyang Wu
- ANYOU Biotechnology Group Co., Ltd., Taicang 215421, China;
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (L.Q.); (Q.M.)
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| | - Linghong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (L.Q.); (Q.M.)
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.L.); (W.J.); (Y.L.); (Z.G.)
| |
Collapse
|
8
|
Li Z, Chen F, Liu J, Zhi L, Junaid M, Chen G, Xiao Z, Wang J, Chong Y. Polystyrene nanoplastics sequester the toxicity mitigating potential of probiotics by altering gut microbiota in grass carp (Ctenopharyngodon idella). JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136778. [PMID: 39644853 DOI: 10.1016/j.jhazmat.2024.136778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
This study evaluated the role of probiotics in enhancing intestinal immunity and mitigating polystyrene nanoplastics (PS-NPs)-induced toxicity in grass carp (Ctenopharyngodon idella). Grass carp were fed probiotics (Bacillus subtilis, Bacillus velezensis, Lactobacillus reuteri, and Lactococcus lactis) for two weeks before being exposed to PS-NPs for five days. Probiotic pretreatment alleviated PS-NPs-induced intestinal damage, with Bacillus velezensis and Lactococcus lactis groups showing milder vacuolation and villus breakage than other groups. Probiotic-treated fish exhibited transient increases in antioxidant enzyme activities (CAT, SOD, MPO) and immune gene expression (IL-6, IL-8, IL-10, IL-1β, TNF-α, and IFN-γ2) shortly after exposure, followed by significant downregulation over time. Higher abundance of the gut dominant phylum Proteobacteria was observed in four probiotic groups exposed to PS-NPs than that in the blank control group. The Clostridium phylum showed a significant decrease in the abundance both in the LRS-PS100 and LLS-PS100 groups, while the abundance of the Thick-walled phylum increased. The Spearman correlation matrix revealed that specific gut microbiota, such as Serratia, Neisseria, and Lactococcus, were significantly associated with enzymatic activities and immune system related genes' expressions. Probiotic pretreatment enhanced the intestinal immune response of grass carp. However, this enhanced immune response was insufficient to counteract the toxic effects of PS-NPs exposure, particularly in terms of oxidative stress levels and gut microbial diversity. This study offers new insights into the potential of probiotics to combat NPs pollution in aquaculture. It emphasizes the need for further research to explore various probiotic combinations. Future studies should also investigate optimal dosages and durations to effectively mitigate the biological toxicity of NPs pollution.
Collapse
Affiliation(s)
- Zhen Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Fang Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- College of Science and Technology, University of Macau, Macau 999078, China
| | - Linyong Zhi
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhengzhong Xiao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jun Wang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Yunxiao Chong
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Ali Z, Khan I, Iqbal MS, Shi H, Ding L, Hong M. Impact of copper stress in the intestinal barriers and gut microbiota of Chinese stripe-necked turtle (Mauremys sinensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117723. [PMID: 39827614 DOI: 10.1016/j.ecoenv.2025.117723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Copper is used to treat algal blooms, macrophyte infestations and other environmental issues, but its rising ambient levels harm aquatic animals, especially their intestines. However, its impact on turtles' digestive health is not well understood, and the risks are unclear. This study investigates the effects of copper on the intestinal health of Chinese stripe-necked turtle, focusing on histomorphology, mucosal barrier function, gene expression, and gut microbiota. Copper stress caused intestinal damage, characterized by shortened villi, inflammatory cell infiltration, and reduced epithelial layer thickness, as well as decreased acidic mucins, increased villi edema and inflammation. The mRNA expression level of bacteriostatic enzymes significantly reduced. Furthermore, This study found that copper exposure increases gut permeability by suppressing tight junction genes and triggers an inflammatory response in the gut, as indicated by elevated inflammatory cytokines. At the phylum level, Firmicutes exhibited a significant decrease, whereas Bacteroidota displayed a notable increase, and Fusobacteriota showed a substantial reduction in relative abundance in copper-treated groups. Similarly, at genus level Romboutsia, Cetobacterium decreased, while Turicibacter and Sarcina significantly increases in copper-treated groups compared to the control. This indicating the unique properties of copper including its essentiality, reactivity, and accumulation enables it to profoundly impact gut bacteria, altering both their composition and function. Copper's dual role as a nutrient and toxicant uniquely impacts gut microbes. Our findings suggest that copper stress compromises the intestinal physical, immune, chemical, and microbial barrier in M. sinensis, all of which contribute to the turtle's poor health.
Collapse
Affiliation(s)
- Zeeshan Ali
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Ijaz Khan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Muhammad Shahid Iqbal
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
10
|
Kumar H, Kaur K, Kaur R. Stress-resilient effect of Spirulina platensis on zebrafish chronic unpredictable stress model. Physiol Behav 2024; 287:114691. [PMID: 39251154 DOI: 10.1016/j.physbeh.2024.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Spirulina platensis is rich in nutritional profile and a great source of prebiotic with neuro-protective properties. Stress is an inevitable part of today's lives, affecting people differently, and individuals with resilient adaptations are less vulnerable to it. The present study aims at evaluating Spirulina as a prebiotic supplement in the early life of zebrafish to cope with chronic unpredictable stress (CUS) in its later stage of life. Zebrafish 5dpf larvae were fed with 1% Spirulina formulated diet for 90 days, and then adult zebrafish were subjected to CUS for 15 days to evaluate the diet's response to chronic stress. The observations were compared by studying the anxiety level through behavioural test, gut microbiota composition analysis, and the effect on the myelin sheath at the ultrastructural and molecular levels. In zebrafish given the Spirulina supplemented diet, CUS did not induce anxiety-like behaviour, Spirulina supplementation lowered the Firmicutes to Bacteroidetes ratio and helped in myelin protection, with a significant decrease in the myelin g-ratio and upregulation of myelin-related genes bdnf, mpz, olig2 and sox10 which resulted in mitigating the effect of stress as compared to fish fed with a normal diet. To conclude, Spirulina supplementation in the early life of zebrafish helps to reduce the effects of a chronic unpredictable stress. However, Spirulina's protective effect against overall stress needs to be evaluated further.
Collapse
Affiliation(s)
- Harender Kumar
- Department of Zoology, Panjab University, Chandigarh, India.
| | - Kawalpreet Kaur
- Department of Botany, SGGS College, Sector 26, Chandigarh, India.
| | - Ravneet Kaur
- Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
11
|
Huang J, Jordan HR, Older CE, Griffin MJ, Allen PJ, Wise DJ, Goodman PM, Reifers JG, Yamamoto FY. Lactococcus lactis MA5 is a potential autochthonous probiotic for nutrient digestibility enhancement and bacterial pathogen inhibition in hybrid catfish (Ictalurus punctatus × I. furcatus). JOURNAL OF FISH DISEASES 2024; 47:e13997. [PMID: 38973153 DOI: 10.1111/jfd.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
With the emergence of diseases, the U.S. catfish industry is under challenge. Current trends prefer autochthonous bacteria as potential probiotic candidates owing to their adaptability and capacity to effectively colonize the host's intestine, which can enhance production performance and bolster disease resistance. The objective of this study was to isolate an autochthonous bacterium as probiotic for hybrid catfish. Initially, an analysis of the intestinal microbiota of hybrid catfish reared in earthen ponds was conducted for subsequent probiotic development. Twenty lactic acid bacteria were isolated from the digesta of overperforming catfish, and most of the candidates demonstrated probiotic traits, including proteolytic and lipolytic abilities; antagonistic inhibition of catfish enteric bacterial pathogens, negative haemolytic activity and antibiotic susceptibility. Subsequent to this screening process, an isolate of Lactococcus lactis (MA5) was deemed the most promising probiotic candidate. In silico analyses were conducted, and several potential probiotic functions were predicted, including essential amino acids and vitamin synthesis. Moreover, genes for three bacteriocins, lactococcin A, enterolysin A and sactipeptide BmbF, were identified. Lastly, various protectant media for lyophilization of MA5 were assessed. These findings suggest that Lactococcus lactis MA5 can be an autochthonous probiotic from hybrid catfish, holding promise to be further tested in feeding trials.
Collapse
Affiliation(s)
- Jing Huang
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - Heather R Jordan
- Department of Biology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Caitlin E Older
- Warmwater Aquaculture Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, Mississippi, USA
| | - Matt J Griffin
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Peter J Allen
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - David J Wise
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - Penelope M Goodman
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - J Grant Reifers
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Fernando Y Yamamoto
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
12
|
Fouad AM, Abo-Al-Ela HG, Negm EA, Abdelhaseib M, Alian A, Abdelsater N, Said REM, Anwar FAS, Assar DH, Mohamed SAA. Impact of Polyonchobothrium magnum on health and gut microbial ecology of African catfish (Clarias gariepinus): Insights from morphological, molecular, and microbiological analyses. JOURNAL OF FISH DISEASES 2024:e14013. [PMID: 39239791 DOI: 10.1111/jfd.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Parasites pose significant challenges to aquaculture and fisheries industries. Our study focuses on the Polyonchobothrium magnum and African catfish to address a potential health issue in aquaculture, explore host-parasite interactions that can help develop effective management practices to ensure fish health and industry sustainability. P. magnum was isolated from the stomach of African catfish (Clarias gariepinus) as the primary site of infection, with a prevalence of 10%. Most affected fish were heavily infected (8 out of 10). Infection was confirmed by sequencing the PCR-targeted region of the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene, along with light and scanning electron microscopes. The parasite had an elongated scolex with deep bothria, a prominent apical disc wider than the scolex itself, and a four-lobed appearance. The scolex contained a central rostellum divided into two semicircles, bearing 26-30 hooks, with an average of 28. The apical disc had large hooks arranged in four quadrants, with 6-8 hooks each, averaging 7 per quadrant. No neck was observed. Phylogenetic analysis of our sequence showed a 100% match with isolates from Guangzhou, China. In infected fish, the anterior kidney showed increased expression levels of nuclear factor kappa B and lysozyme, but decreased levels of in major histocompatibility complex antigen II. Plasma analysis revealed a significant drop in superoxide dismutase, a rise in interleukin-1 beta, and lower IgM levels compared to non-infected controls. Non-infected fish displayed greater gut microbiota diversity, with dominant families including Moraxellaceae, Enterobacteriaceae, Fusobacteriaceae, and Caulobacteraceae, and prevalent genera such as Acinetobacter, Cetobacterium, and Brevundimonas. In contrast, infected fish exhibited very low diversity, with significantly higher proportions of Enterobacteriaceae (45.99%) and Aeromonadaceae (41.79%) compared to non-infected fish, which had 13.76% and 3.64% respectively. Cetobacterium somerae was prevalent in non-infected fish, while infected fish harboured Aeromonas fluvialis, Plesiomonas shigelloides, and Gallaecimonas xiamenensis. Overall, P. magnum disrupted the immune status and gut microbiota of the host, thereby impacting its health.
Collapse
Affiliation(s)
- Alamira Marzouk Fouad
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, Egypt
- Genetics and Genetic Engineering, Development of Animal Wealth, Faculty of Veterinary Medicine, Egyptian Chinese University, Cairo, Egypt
| | - Eman A Negm
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Maha Abdelhaseib
- Department of Food Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abdallah Alian
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Naser Abdelsater
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Fatma A S Anwar
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sara Abdel-Aal Mohamed
- Department of Parasitology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
13
|
Han Z, Sun J, Jiang B, Chen K, Ge L, Sun Z, Wang A. Fecal microbiota transplantation accelerates restoration of florfenicol-disturbed intestinal microbiota in a fish model. Commun Biol 2024; 7:1006. [PMID: 39152200 PMCID: PMC11329668 DOI: 10.1038/s42003-024-06727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Antibiotic-induced dysbiosis in the fish gut causes significant adverse effects. We use fecal microbiota transplantation (FMT) to accelerate the restoration of florfenicol-perturbed intestinal microbiota in koi carp, identifying key bacterial populations and metabolites involved in the recovery process through microbiome and metabolome analyses. We demonstrate that florfenicol disrupts intestinal microbiota, reducing beneficial genera such as Lactobacillus, Bifidobacterium, Bacteroides, Romboutsia, and Faecalibacterium, and causing mucosal injuries. Key metabolites, including aromatic amino acids and glutathione-related compounds, are diminished. We show that FMT effectively restores microbial populations, repairs intestinal damage, and normalizes critical metabolites, while natural recovery is less effective. Spearman correlation analyses reveal strong associations between the identified bacterial genera and the levels of aromatic amino acids and glutathione-related metabolites. This study underscores the potential of FMT to counteract antibiotic-induced dysbiosis and maintain fish intestinal health. The restored microbiota and normalized metabolites provide a basis for developing personalized probiotic therapies for fish.
Collapse
Affiliation(s)
- Zhuoran Han
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, China
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
- College of Life Science, South China Normal University, Guangzhou, Guangdong, China
| | - Jingfeng Sun
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, China.
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China.
| | - Boyun Jiang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Kun Chen
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Lunhua Ge
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Zhongshi Sun
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Anli Wang
- College of Life Science, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Ke T, Rajoo A, Tinkov AA, Skalny AV, Tizabi Y, Rocha JBT, Bowman AB, Aschner M. Intestinal microbiota protects against methylmercury-induced neurotoxicity. Biometals 2024; 37:561-576. [PMID: 37973679 DOI: 10.1007/s10534-023-00554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/14/2023] [Indexed: 11/19/2023]
Abstract
Methylmercury (MeHg) remains a global public health issue because of its frequent presence in human food sources obtained from the water. The excretion of MeHg in humans occurs slowly with a biological half-time of 32-47 days. Short-term MeHg exposure may cause long-lasting neurotoxicity. The excretion through feces is a major route in the demethylation of MeHg. Accumulating evidence suggests that the intestinal microbiota plays an important role in the demethylation of MeHg, thereby protecting the host from neurotoxic effects. Here, we discuss recent developments on the role of intestinal microbiota in MeHg metabolism, based on in vitro cell culture experiments, experimental animal studies and human investigations. Demethylation by intestinal bacteria is the rate-limiting step in MeHg metabolism and elimination. The identity of bacteria strains responsible for this biotransformation is currently unknown; however, the non-homogenous distribution of intestinal microbiota may lead to different demethylation rates in the intestinal tract. The maintenance of intestinal barrier function by intestinal microbiota may afford protection against MeHg-induced neurotoxicity, which warrant future investigations. We also discuss studies investigating the effects of MeHg exposure on the population structural stability of intestinal microbiota in several host species. Although this is an emerging area in metal toxicity, current research suggests that a change in certain phyla in the intestinal microbiota may indicate MeHg overexposure.
Collapse
Affiliation(s)
- Tao Ke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - André Rajoo
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119991
- Yaroslavl State University, Yaroslavl, Russia, 150003
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia, 460000
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119991
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia, 117198
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, 97105900, RS, Brazil
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer Building, Room 209, Bronx, NY, 10461, USA.
| |
Collapse
|
15
|
Zheng J, Zhang W, Dan Z, Cao X, Gong Y, Mai K, Ai Q. Dietary methanotroph bacteria meal alleviates soybean meal-induced enteritis by improving immune tolerance and intestinal flora profile of juvenile turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109463. [PMID: 38402918 DOI: 10.1016/j.fsi.2024.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
An 8-week growth trial was performed to investigate the protective effects of methanotroph bacteria meal (MBM) produced from methane against soybean meal-induced enteritis (SBMIE) in juvenile turbot (Scophthalmus maximus L.). Five isonitrogenous and isolipidic diets were formulated: fishmeal-based diet (FM, the control group); FM with approximate 50% of fishmeal substituted by 399.4 g/kg soybean meal (SBM); SBM supplemented with 63.6, 127.2 and 190.8 g/kg MBM (named MBM1, MBM2 and MBM3), each diet was randomly assigned to triplicate fibreglass tanks. Results showed that fish fed with SBM exhibited enteritis, identified by reduced relative weight of intestine (RWI), as well as expanded lamina propria width and up-regulated gene expression of pro-inflammatory cytokines (tnf-α, il-6 and il-8) in intestine. While the above symptoms were reversed when diet SBM supplemented with MBM at the levels of 63.6 and 127.2 g/kg, as well as characterized by up-regulated gene expression of anti-inflammatory cytokines (tgf-β and il-10) and tight junction protein (claudin3, claudin4 and claudin7) in intestine. Intestinal transcriptome analysis showed that the differentially expressed genes between groups FM and SBM predominantly enriched in the JAK-STAT signaling pathway, and the enrichment of differentially expressed genes between groups SBM and SBM supplemented with 63.6 g/kg MBM was in the inflammatory bowel disease (IBD) and JAK-STAT signaling pathway. To be specific, the expression of jak1, jak2b, stat1 and stat5a was significantly up-regulated when fish fed with SBM, suggested the activation of JAK-STAT signaling pathway, while the expression of these above genes was depressed by providing MBM to diet SBM, and the gene expression of toll-like receptors tlr2 and tlr5b showed a similar pattern. Moreover, intestinal flora analysis showed that community richness and abundance of beneficial bacteria (Cetobacterium and acillus_coagulans) were improved when fish fed with SBM supplemented with 63.6 g/kg MBM. Overall, methanotroph bacteria meal may alleviate SBMIE by regulating the expression of tight junction protein, toll-like receptors and JAK-STAT signaling pathway, as well as improving intestinal flora profile, which would be beneficial for enhancing the immune tolerance and utilization efficiency of turbot to dietary soybean meal.
Collapse
Affiliation(s)
- Jichang Zheng
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Wencong Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Zhijie Dan
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Xiufei Cao
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Ye Gong
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
16
|
Arciuch-Rutkowska M, Nowosad J, Gil Ł, Czarnik U, Kucharczyk D. Synergistic Effect of Dietary Supplementation with Sodium Butyrate, β-Glucan and Vitamins on Growth Performance, Cortisol Level, Intestinal Microbiome and Expression of Immune-Related Genes in Juvenile African Catfish ( Clarias gariepinus). Int J Mol Sci 2024; 25:4619. [PMID: 38731838 PMCID: PMC11083991 DOI: 10.3390/ijms25094619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
The effect of dietary supplementation with sodium butyrate, β-glucan and vitamins (A, D3, E, K, C) on breeding indicators and immune parameters of juvenile African catfish was examined. The fish were fed with unenriched (group C) and enriched feed with a variable proportion of sodium butyrate/β-glucan, and constant content of vitamins (W1-W3). After the experiment, blood and the middle gut were collected. The microbiome of the gut was determined using Next Generation Sequencing (NGS). Liver tissue was collected for determination of expression of immune-related genes (HSP70, IL-1β, TNFα). W2 and W3 were characterized by the most favorable values of breeding indicators (p < 0.05). The highest blood cortisol concentration was in group C (71.25 ± 10.45 ng/mL), and significantly the lowest in W1 (46.03 ± 7.01 ng/ mL) (p < 0.05). The dominance of Cetobacterium was observed in all study groups, with the largest share in W3 (65.25%) and W1 (61.44%). Gene expression showed an increased number of HSP70 genes in W1. IL-1β and TNFα genes peaked at W3. The W3 variant turns out to be the most beneficial supplementation, due to the improvement of breeding and immunological parameters. The data obtained can be used to create a preparation for commercial use in the breeding of this species.
Collapse
Affiliation(s)
- Martyna Arciuch-Rutkowska
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Al. Warszawska 117A, 10-957 Olsztyn, Poland; (M.A.-R.); (J.N.)
| | - Joanna Nowosad
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Al. Warszawska 117A, 10-957 Olsztyn, Poland; (M.A.-R.); (J.N.)
- Department of Research and Development, Chemprof, Gutkowo 54B, 11-041 Olsztyn, Poland;
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, National Inland Fisheries Research Institute, ul. M. Oczapowskiego 10, 10-719 Olsztyn, Poland
| | - Łukasz Gil
- Department of Research and Development, Chemprof, Gutkowo 54B, 11-041 Olsztyn, Poland;
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Dariusz Kucharczyk
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Al. Warszawska 117A, 10-957 Olsztyn, Poland; (M.A.-R.); (J.N.)
- Department of Research and Development, Chemprof, Gutkowo 54B, 11-041 Olsztyn, Poland;
| |
Collapse
|
17
|
Seong Wei L, Rahim MSAA, Yeu Hooi K, Khoo MI, Mohamad Nor A, Wee W. Comparative analysis of growth and health of juvenile African catfish ( Clarias gariepinus) fed with different starch diets. Heliyon 2024; 10:e28224. [PMID: 38560210 PMCID: PMC10981047 DOI: 10.1016/j.heliyon.2024.e28224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
This study evaluated the effects of potato, wheat, rice, and corn starch on growth performance, blood parameters, digestive enzyme activity, antioxidative response, and gut microbiota of African catfish, Clarias gariepinus. A control diet (a commercial fish diet) and four different starch (potato, PO; wheat, WH; corn, CO; rice, RC) formulations were fed to African catfish with average weight of 10.5g (n = 30) for eight weeks. The experiment was conducted in triplicates. At the end of the feeding trial, the growth performance of African catfish fed with potato starch (PO) was significantly higher than other treatment groups. Furthermore, this group recorded significant and lowest feed conversion ratio (FCR) compared to other groups. Meanwhile, there were no significant differences in all tested hematological parameters and antioxidative response between the groups. Digestive enzyme activities in the fish intestines, including amylase, lipase, and protease, were significantly higher in African catfish fed with the PO diet. In addition, this group demonstrated substantially lower viscerosomatic index (VSI) and hepatosomatic index (HSI) than other groups, indicating that the fish has more meat on its body. The PO diet group also recorded significantly higher Akkermansia muciniphila, a good gut microbiota. Therefore, the PO diet potentially improves African catfish's growth performance and health status.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Mohd Shaiful Azman Abdul Rahim
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Kon Yeu Hooi
- Department of Johor State Fisheries Complex, Pendas Laut Road, 81550, Gelang Patah, Johor, Malaysia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Malaysia
| | - Azra Mohamad Nor
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, 83352, Indonesia
| | - Wendy Wee
- Center for Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
18
|
Byeon E, Jeong H, Lee YJ, Cho Y, Lee KW, Lee E, Jeong CB, Lee JS, Kang HM. Effects of microplastics and phenanthrene on gut microbiome and metabolome alterations in the marine medaka Oryzias melastigma. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132620. [PMID: 37757554 DOI: 10.1016/j.jhazmat.2023.132620] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Plastic pollution of the oceans is increasing, and toxic interactions between microplastics (MPs) and organic pollutants have become a major environmental concern. However, the combined effects of organic pollutants and MPs on microbiomes and metabolomes have not been studied extensively. In the present study, to evaluate whether MPs and phenanthrene (Phe) act synergistically in the guts of marine medaka (Oryzias melastigma), we performed toxicity assessments, 16 S rRNA gene sequencing, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. Our investigations revealed increased toxicity induced by Phe, as well as disturbances in gut microbiota (known as dysbiosis) when MPs were present. Furthermore, combined exposure to Phe and MPs resulted in greater alterations to microbiota composition and metabolite profiles. Notably, MP exposure was distinctly associated with the abundance of Shewanella and Spongiibacteraceae, while Phe exposure was associated with the abundance of Marimicrobium. Among key microbiota, Marimicrobium and Roseibacillus were significantly correlated with metabolites responsible for coenzyme A and glycerophospholipid metabolism in medaka. These results suggest that interactions between Phe and MPs may have significant effects on the gut microbiota and metabolism of aquatic organisms and underscore the importance of acknowledging the interplay between MPs and contaminants in aquatic environments.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yeon-Ju Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea; KIOST School, University of Science and Technology, Daejeon 34113, South Korea
| | - Yeonwoo Cho
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea; KIOST School, University of Science and Technology, Daejeon 34113, South Korea
| | - Kyun-Woo Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea; KIOST School, University of Science and Technology, Daejeon 34113, South Korea
| | - Euihyeon Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea; KIOST School, University of Science and Technology, Daejeon 34113, South Korea
| | - Chang-Bum Jeong
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea; KIOST School, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
19
|
Colorado Gómez MA, Melo-Bolívar JF, Ruíz Pardo RY, Rodriguez JA, Villamil LM. Unveiling the Probiotic Potential of the Anaerobic Bacterium Cetobacterium sp. nov. C33 for Enhancing Nile Tilapia ( Oreochromis niloticus) Cultures. Microorganisms 2023; 11:2922. [PMID: 38138066 PMCID: PMC10745334 DOI: 10.3390/microorganisms11122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
The bacterium strain Cetobacterium sp. C33 was isolated from the intestinal microbial content of Nile tilapia (O. niloticus) under anaerobic conditions. Given that Cetobacterium species are recognized as primary constituents of the intestinal microbiota in cultured Nile tilapia by culture-independent techniques, the adaptability of the C33 strain to the host gastrointestinal conditions, its antibacterial activity against aquaculture bacterial and its antibiotic susceptibility were assessed. The genome of C33 was sequenced, assembled, annotated, and subjected to functional inference, particularly regarding pinpointed probiotic activities. Furthermore, phylogenomic comparative analyses were performed including closely reported strains/species relatives. Comparative genomics with closely related species disclosed that the isolate is not phylogenetically identical to other Cetobacterium species, displaying an approximately 5% sequence divergence from C. somerae and a 13% sequence divergence from Cetobacterium ceti. It can be distinguished from other species through physiological and biochemical criteria. Whole-genome annotation highlighted that Cetobacterium sp. nov. C33 possesses a set of genes that may contribute to antagonism against competing bacteria and has specific symbiotic adaptations in fish. Additional in vivo experiments should be carried out to verify favorable features, reinforcing its potential as a probiotic bacterium.
Collapse
Affiliation(s)
- Mario Andrés Colorado Gómez
- Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Chía 250001, Colombia; (M.A.C.G.); (J.F.M.-B.); (R.Y.R.P.); (J.A.R.)
- Fundación Clínica Shaio, Bogotá 110121, Colombia
| | - Javier Fernando Melo-Bolívar
- Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Chía 250001, Colombia; (M.A.C.G.); (J.F.M.-B.); (R.Y.R.P.); (J.A.R.)
| | - Ruth Yolanda Ruíz Pardo
- Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Chía 250001, Colombia; (M.A.C.G.); (J.F.M.-B.); (R.Y.R.P.); (J.A.R.)
| | - Jorge Alberto Rodriguez
- Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Chía 250001, Colombia; (M.A.C.G.); (J.F.M.-B.); (R.Y.R.P.); (J.A.R.)
| | - Luisa Marcela Villamil
- Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Chía 250001, Colombia; (M.A.C.G.); (J.F.M.-B.); (R.Y.R.P.); (J.A.R.)
| |
Collapse
|
20
|
Ofek T, Izhaki I, Halpern M. Aeromonashydrophila infection in tilapia triggers changes in the microbiota composition of fish internal organs. FEMS Microbiol Ecol 2023; 99:fiad137. [PMID: 37881004 DOI: 10.1093/femsec/fiad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Aeromonas hydrophila is a major pathogenic species that causes mass mortality in various freshwater fish species including hybrid tilapia, the main fish species in Israeli aquaculture. Our hypothesis was that A. hydrophila infection may cause changes in the microbiota composition of fish internal organs, and therefore we aimed to study the effect of A. hydrophila infection by injection or by net handling on the microbiota compositions of fish intestine, spleen, and liver. Significant differences in the microbiota composition were found between the internal organs of the diseased and the healthy fish in both experimental setups. Fusobacteriota was the most dominant phylum in the microbiota of healthy fish (∼70%, liver). Cetobacterium was the most abundant genus and relatively more abundant in healthy, compared to diseased fish. When A. hydrophila was inoculated by injection, it was the only pathogenic genus in the spleen and liver of the diseased fish. However, in the handling experiment, Vibrio was also detected in the diseased fish, demonstrating coinfection interactions. Based on these experiments, we conclude that indeed, A. hydrophila infection in tilapia causes changes in the microbiota composition of fish internal organs, and that fish net handling may trigger bacterial infection in freshwater aquaculture.
Collapse
Affiliation(s)
- Tamir Ofek
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushi Ave. Mt. Carmel, Haifa 3498838, Israel
- Central Fish Health Laboratory, Fishery and Aquaculture Department, Ministry of Agriculture and Rural Development, 1 Havazelet St. Nir David 1080300, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushi Ave. Mt. Carmel, Haifa 3498838, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushi Ave. Mt. Carmel, Haifa 3498838, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Derech Kiryat Amal, Tivon 3600600, Israel
| |
Collapse
|
21
|
Janakiev T, Milošević Đ, Petrović M, Miljković J, Stanković N, Zdravković DS, Dimkić I. Chironomus riparius Larval Gut Bacteriobiota and Its Potential in Microplastic Degradation. MICROBIAL ECOLOGY 2023; 86:1909-1922. [PMID: 36806012 DOI: 10.1007/s00248-023-02199-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Chironomus riparius are sediment-dwelling invertebrates in freshwater ecosystems and are used as indicators of environmental pollution. Their habitat is threatened by high levels of contaminants such as microplastics and organic matter. A promising strategy for the eco-friendly degradation of pollutants is the use of bacteria and their enzymatic activity. The aim of this study was to characterize for the first time bacteriobiota associated with the gut of C. riparius larvae from nature and laboratory samples, to compare it with sediment and food as potential sources of gut microbiota, and to assess its ability to degrade cellulose, proteins, and three different types of microplastics (polyethylene, polyvinyl chloride, and polyamide). The metabarcoding approach highlighted Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota as most abundant in both gut samples. Culturable microbiota analysis revealed Metabacillus idriensis, Peribacillus simplex, Neobacillus cucumis, Bacillus thuringiensis/toyonensis, and Fictibacillus phosphorivorans as five common species for nature and laboratory samples. Two P. simplex and one P. frigoritolerans isolates showed the ability for intensive growth on polyethylene, polyvinyl chloride, and polyamide. Both cellulolytic and proteolytic activity was observed for Paenibacillus xylanexedens and P. amylolyticus isolates. The characterized strains are promising candidates for the development of environmentally friendly strategies to degrade organic pollution and microplastics in freshwater ecosystems.
Collapse
Affiliation(s)
- Tamara Janakiev
- Biochemistry and Molecular Biology, University of Belgrade Faculty of Biology, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Đurađ Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Serbia
| | - Marija Petrović
- Biochemistry and Molecular Biology, University of Belgrade Faculty of Biology, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Jelena Miljković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Serbia
| | - Nikola Stanković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Serbia
| | - Dimitrija Savić Zdravković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Serbia
| | - Ivica Dimkić
- Biochemistry and Molecular Biology, University of Belgrade Faculty of Biology, Studentski Trg 16, 11158, Belgrade, Serbia.
| |
Collapse
|
22
|
Zhao Y, Bao D, Sun Y, Meng Y, Li Z, Liu R, Lang J, Liu L, Gao L. Comparative analysis of the gut bacteria of the relict gull ( Larus Relictus) and black-necked grebe ( Podiceps Nigricollis) in Erdos Relic Gull National Nature Reserve in Inner Mongolia, China. PeerJ 2023; 11:e15462. [PMID: 37456862 PMCID: PMC10340111 DOI: 10.7717/peerj.15462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/04/2023] [Indexed: 07/18/2023] Open
Abstract
The gut microbiota promotes host health by maintaining homeostasis and enhancing digestive efficiency. The gut microflora in wild birds affects host physiological characteristics, nutritional status, and stress response. The relict gull (Larus Relictus, a Chinese national first-class protected species) and the black-necked grebe (Podiceps Nigricollis, a secondary protected species) bred in the Ordos Relic Gull National Nature Reserve share similar feeding habits and living environments but are distantly related genetically. To explore the composition and differences in the gut microbiota of these two key protected avian species in Erdos Relic Gull National Nature Reserve and provide a basis for their protection, 16S rRNA gene high-throughput sequencing was performed and the gut microbial diversity and composition of the relict gull (L. Relictus) and black-necked grebe (P. Nigricollis) was characterized. In total, 445 OTUs (operational taxonomic units) were identified and classified into 15 phyla, 22 classes, 64 orders, 126 families, and 249 genera. Alpha diversity analysis indicates that the gut microbial richness of the relict gull is significantly lower than that of the black-necked grebe. Gut microbe composition differs significantly between the two species. The most abundant bacterial phyla in these samples were Proteobacteria, Firmicutes, Fusobacteria, and Bacteroidetes. The prominent phylum in the relict gull was Proteobacteria, whereas the prominent phylum in the black-necked grebe was Firmicutes. The average relative abundance of the 17 genera identified was greater than 1%. The dominant genus in the relict gull was Escherichia-Shigella, whereas Halomonas was dominant in the black-necked grebe. Microbial functional analyses indicate that environmental factors exert a greater impact on relict gulls than on black-necked grebes. Compared with the relict gull, the black-necked grebe was able to use food more efficiently to accumulate its nutrient requirements, and the gut of the relict gull harbored more pathogenic bacteria, which may be one reason for the decline in the relict gull population, rendering it an endangered species. This analysis of the gut microbial composition of these two wild avian species in the same breeding grounds is of great significance, offers important guidance for the protection of these two birds, especially relict gulls, and provides a basis for understanding the propagation of related diseases.
Collapse
Affiliation(s)
- Yaru Zhao
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China
| | - Dulan Bao
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China
| | - Ying Sun
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China
| | - Yajie Meng
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China
| | - Ziteng Li
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China
| | - Rui Liu
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China
| | - Jiwei Lang
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China
| | - Li Liu
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China
| | - Li Gao
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China
| |
Collapse
|
23
|
da Silva VG, Favero LM, Mainardi RM, Ferrari NA, Chideroli RT, Di Santis GW, de Souza FP, da Costa AR, Gonçalves DD, Nuez-Ortin WG, Isern-Subich MM, de Oliveira-Junior AG, Lopera-Barrero NM, Pereira UDP. Effect of an organic acid blend in Nile tilapia growth performance, immunity, gut microbiota, and resistance to challenge against francisellosis. Res Vet Sci 2023; 159:214-224. [PMID: 37167686 DOI: 10.1016/j.rvsc.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Organic acids (OAs) are a class of feed additives that have prophylactic and inhibitory properties against pathogenic bacteria. In this study, we investigated growth performance, innate immune response, gut microbiota, and disease resistance against Francisella orientalis F1 in Nile tilapia (Oreochromis niloticus) fed different doses of Bacti-nil®Aqua, a blend of short- and medium-chain OAs. For 21 days, 680 juvenile tilapias were fed a control diet or diets supplemented with a 0.3% (D3) or 0.5% (D5) OA blend. The feed conversion rate of fish fed the 0.5% enriched diet was considerably lower (p < 0.05) than that of the fish fed the basal diet. Lysozyme and serum bactericidal activities were significantly elevated following OA administration. After infection, no differences in the diversity and composition of gut microbiota were observed between the groups. After the bacterial challenge, the mortality was significantly lower in group D5 (p < 0.01). The diet supplemented with Bacti-nil®Aqua (Adisseo) improved the immune response and resistance of tilapia juveniles against F. orientalis infection. Thus, this OA blend could serve as a feed additive with good activity against F. orientalis.
Collapse
Affiliation(s)
- Vanessa Gomes da Silva
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Leonardo Mantovani Favero
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Raffaella Menegheti Mainardi
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Natália Amoroso Ferrari
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Roberta Torres Chideroli
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Giovana Wingeter Di Santis
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | | | - Arthur Roberto da Costa
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Daniela Dib Gonçalves
- Department of Preventive Veterinary Medicine and Public Health, Paranaense University, Umuarama, PR, Brazil
| | | | | | | | | | - Ulisses de Pádua Pereira
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil.
| |
Collapse
|
24
|
Liao M, Liao X, Long X, Zhao J, He Z, Zhang J, Wu T, Sun C. Host-microbiota interactions and responses of Metapenaeus ensis infected with decapod iridescent virus 1. Front Microbiol 2023; 13:1097931. [PMID: 36713173 PMCID: PMC9880205 DOI: 10.3389/fmicb.2022.1097931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Decapod iridescent virus 1 (DIV1) has caused severe economic losses in shrimp aquaculture. So far, Researchs on DIV1-infected shrimp have mainly focused on the hemocytes immune response, while studies on the host-intestine microbiota interactions during DIV1 infection have been scarce. Methods This study determined the lethal concentration 50 (LC50) of DIV1 to Metapenaeus ensis, preliminarily determining that M. ensis could serve as a susceptible object for DIV1. The interactions and responses between the immune and intestine microbiota of shrimp under DIV1 infection were also investigated. Results and Discussion DIV1 infection decreases intestine bacterial diversity and alters the composition of intestine microbiota. Specifically, DIV1 infection decreases the abundance of potentially beneficial bacteria (Bacteroidetes, Firmicutes, and Actinobacteria), and significantly increases the abundance of pathogenic bacteria such as Vibrio and Photobacterium, thereby increasing the risk of secondary bacterial infections. The results of PICRUSt functional prediction showed that altered intestine microbiota induces host metabolism disorders, which could be attributed to the bioenergetic and biosynthetic requirements for DIV1 replication in shrimp. The comparative transcriptomic analysis showed that some metabolic pathways related to host immunity were significantly activated following DIV1 infection, including ncRNA processing and metabolic process, Ascorbate and aldarate metabolism, and Arachidonic acid metabolism. M. ensis may against DIV1 infection by enhancing the expression of some immune-related genes, such as Wnt16, heat shock protein 90 (Hsp90) and C-type lectin 3 (Ctl3). Notably, correlation analysis of intestinal microbial variation with host immunity showed that expansion of pathogenic bacteria (Vibrio and Photobacterium) in DIV1 infection could increased the expression of NF-κB inhibitors cactus-like and Toll interacting protein (Tollip), which may limit the TLR-mediated immune response and ultimately lead to further DIV1 infection. Significance and Impact of the Study This study enhances our understanding of the interactions between shrimp immunity and intestinal microbiota. The ultimate goal is to develop novel immune enhancers for shrimp and formulate a safe and effective DIV1 defense strategy.
Collapse
Affiliation(s)
- Minze Liao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xuzheng Liao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinxin Long
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jichen Zhao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jingyue Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Tingfen Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China,*Correspondence: Chengbo Sun, ✉
| |
Collapse
|
25
|
Kakakhel MA, Bibi N, Mahboub HH, Wu F, Sajjad W, Din SZU, Hefny AA, Wang W. Influence of biosynthesized nanoparticles exposure on mortality, residual deposition, and intestinal bacterial dysbiosis in Cyprinus carpio. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109473. [PMID: 36174907 DOI: 10.1016/j.cbpc.2022.109473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
Nanotechnology has revealed profound possibilities for the applications in applied sciences. The nanotechnology works based on nanoparticles. Among nanoparticles, silver nanoparticles largely introduced into aquatic environments during fabrication. Which cause severe contamination in the environment specially in freshwater fish. Therefore, the current study was a pioneer attempt to use the animal blood to fabricate AgNPs and investigate their toxicity in Cyprinus carpio (C. carpio) by recording mortality, tissue bioaccumulation, and influence on intestinal bacterial diversity. For this purpose, fish groups were exposed to different concentrations of B-AgNPs including 0.03, 0.06, and 0.09 mg/L beside the control group for 1, 10, and 20 days. Initially, the highest concentration caused mortality. The results revealed that B-AgNPs were significantly (p < 0.005) accumulated in the liver followed by intestines, gills, and muscles. In addition, the accumulation of B-AgNPs in the intestine led to bacterial dysbiosis in Cyprinus carpio. At the phylum level, Tenericutes, Bacteroidetes, and Planctomycetes were gradually decreased at the highest concentration of B-AgNPs (0.09 mg/L) on days 1, 10, and 20 days. The genera Cetobacterium and Luteolibactor were increased at the highest concentration on day 20. Moreover, the principal coordinate analysis (PCoA) based on Bray-Curtis showed that the B-AgNPs had led to a variation in the intestinal bacterial community. Based on findings, the B-AgNPs induced mortality, and residual deposition in different tissues, and had a stress influence on intestinal homeostasis by affecting the intestinal bacterial community in C. carpio which could have a significant effect on fish growth.
Collapse
Affiliation(s)
- Mian Adnan Kakakhel
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. https://twitter.com/pukhtunfriend
| | - Nadia Bibi
- Department of Microbiology, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Heba H Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Fasi Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang 736200, Gansu, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Syed Zaheer Ud Din
- International School for Optoelectronic Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ahmed A Hefny
- Colleague of Microbiology, Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Wanfu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang 736200, Gansu, China.
| |
Collapse
|
26
|
Gao N, Yang Y, Liu S, Fang C, Dou X, Zhang L, Shan A. Gut-Derived Metabolites from Dietary Tryptophan Supplementation Quench Intestinal Inflammation through the AMPK-SIRT1-Autophagy Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16080-16095. [PMID: 36521060 DOI: 10.1021/acs.jafc.2c05381] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tryptophan has drawn wide attention due to its involvement in improving intestinal immune defense directly and indirectly by regulating metabolic pathways. The study aims to elucidate the potential modulating roles of tryptophan to protect against intestinal inflammation and elucidate the underlying molecular mechanisms. The protective effects of tryptophan against intestinal inflammation are examined in the lipopolysaccharide (LPS)-induced inflammatory model. We first found that tryptophan markedly (p < 0.01) inhibited proinflammatory cytokines production and nuclear factor κB (NF-κB) pathway activation upon LPS challenge. Next, we demonstrated that tryptophan (p < 0.05) attenuated LPS-caused intestinal mucosal barrier damage by increasing the number of goblet cells, mucins, and antimicrobial peptides (AMPs) in the ileum of mice. In addition, tryptophan (p < 0.05) inhibited LPS-induced autophagic flux through the AMP-activated protein kinase (AMPK)-sirtuin 1 (SIRT1) pathway in the intestinal systems to maintain autophagy homeostasis. Meanwhile, tryptophan also reshaped the gut microbiota composition in LPS-challenge mice by increasing the abundance of short-chain fatty acid (SCFA)-producing bacteria such as Acetivibrio (0.053 ± 0.017 to 0.21 ± 0.0041%). Notably, dietary tryptophan resulted in the activation of metabolic pathways during the inflammatory response. Furthermore, exogenous treatment of tryptophan metabolites kynurenine (Kyn) and 5-HT in porcine intestinal epithelial cells (IPEC-J2 cells) reproduced similar protective effects as tryptophan to attenuate LPS-induced intestinal inflammation through regulating the AMPK-SIRT1-autophagy. Taken together, the present study indicates that tryptophan exhibits intestinal protective and immunoregulatory effects resulting from the activation of metabolic pathways, maintenance of gut mucosal barrier integrity, microbiota composition, and AMPK-SIRT1-autophagy level.
Collapse
Affiliation(s)
- Nan Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Chunyang Fang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiujing Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
27
|
Rahman MM, Paul SI, Rahman A, Haque MS, Ador MAA, Foysal MJ, Islam MT, Rahman MM. Suppression of Streptococcosis and Modulation of the Gut Bacteriome in Nile Tilapia ( Oreochromis niloticus) by the Marine Sediment Bacteria Bacillus haynesii and Advenella mimigardefordensis. Microbiol Spectr 2022; 10:e0254222. [PMID: 36453920 PMCID: PMC9769507 DOI: 10.1128/spectrum.02542-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Streptococcosis is one of the major threats to Nile tilapia (Oreochromis niloticus) in most regions of the world. Recently, Enterococcus faecalis has been widely reported to be involved in streptococcosis in O. niloticus in Asia and Africa. This study aimed to isolate beneficial marine bacteria to evaluate their effects on growth, hematological parameters, nonspecific immunity, the gut bacteriome, and streptococcosis prevention efficacy in O. niloticus. A total of 36 marine soil bacteria were isolated, and in vitro screening was conducted to determine their antibacterial activities against fish pathogens. Two antagonistic bacteria were identified based on 16S rRNA gene sequencing, Bacillus haynesii CD223 and Advenella mimigardefordensis SM421. These bacteria were incorporated into fish feed and fed to O. niloticus for 90 days. The application of these strains via incorporation into fish feed significantly promoted growth, improved hematological parameters and immunoglobulin M (IgM) levels, modulated the gut bacteriome by reducing the load of pathogenic Enterococcus spp., and developed disease prevention efficacy in O. niloticus. Furthermore, in vivo assays revealed that the inclusion of extracellular products (ECPs) (at 250 μg mL-1) of CD223 and SM421 with feed significantly enhanced the rate of survival (100%) of O. niloticus from streptococcosis compared to the controls (only 30%). The ECPs of these bacteria also prevented 90 to 100% of fish from developing streptococcosis. These strains could be promising for safe use in O. niloticus farming to prevent and control the emergence of streptococcosis caused by E. faecalis. IMPORTANCE Nile tilapia (Oreochromis niloticus) is one of the most economically important cultured fish species throughout the world. Streptococcosis is a significant threat to global Nile tilapia farming. Enterococcus faecalis has recently emerged as an important pathogen of streptococcosis in Asia and Africa. The application of antibiotics and probiotics and vaccination are the major ways to combat streptococcosis. However, the extensive use of antibiotics leads to the development of antibiotic resistance in pathogenic as well as environmental bacteria, which is a great threat to public health. There is no study on preventing streptococcosis caused by E. faecalis using beneficial bacteria. For the first time, the present study demonstrated that two marine bacteria, Bacillus haynesii strain CD223 and Advenella mimigardefordensis strain SM421, have great potential for controlling streptococcosis in Nile tilapia. These bacteria also enhanced the growth, improved hematological parameters and IgM levels, and positively modulated the gut bacteriome of Nile tilapia.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Sulav Indra Paul
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Ashikur Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Shameul Haque
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Ali Arman Ador
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Javed Foysal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Mahbubur Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
28
|
Damasceno MRA, Lemes CGDC, Braga LSSB, Tizioto PC, Montenegro H, Paduan M, Pereira JG, Cordeiro IF, Rocha LCM, da Silva SA, Sanchez AB, Lima WG, Yazbeck GM, Moreira LM, Garcia CCM. Hatchery tanks induce intense reduction in microbiota diversity associated with gills and guts of two endemic species of the São Francisco River. Front Microbiol 2022; 13:966436. [DOI: 10.3389/fmicb.2022.966436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/02/2022] [Indexed: 12/04/2022] Open
Abstract
The São Francisco River (SFR), one of the main Brazilian rivers, has suffered cumulative anthropogenic impacts, leading to ever-decreasing fish stocks and environmental, economic, and social consequences. Rhinelepis aspera and Prochilodus argenteus are medium-sized, bottom-feeding, and rheophilic fishes from the SFR that suffer from these actions. Both species are targeted for spawning and restocking operations due to their relevance in artisanal fisheries, commercial activities, and conservation concerns. Using high-throughput sequencing of the 16S rRNA gene, we characterized the microbiome present in the gills and guts of these species recruited from an impacted SFR region and hatchery tanks (HT). Our results showed that bacterial diversity from the gill and gut at the genera level in both fish species from HT is 87% smaller than in species from the SFR. Furthermore, only 15 and 29% of bacterial genera are shared between gills and guts in R. aspera and P. argenteus from SFR, respectively, showing an intimate relationship between functional differences in organs. In both species from SFR, pathogenic, xenobiont-degrading, and cyanotoxin-producer bacterial genera were found, indicating the critical pollution scenario in which the river finds itself. This study allowed us to conclude that the conditions imposed on fish in the HT act as important modulators of microbial diversity in the analyzed tissues. It also raises questions regarding the effects of these conditions on hatchery spawn fish and their suitability for restocking activities, aggravated by the narrow genetic diversity associated with such freshwater systems.
Collapse
|
29
|
Zhang Z, Fan Z, Yi M, Liu Z, Ke X, Gao F, Cao J, Wang M, Chen G, Lu M. Characterization of the core gut microbiota of Nile tilapia (Oreochromis niloticus): indication of a putative novel Cetobacterium species and analysis of its potential function on nutrition. Arch Microbiol 2022; 204:690. [DOI: 10.1007/s00203-022-03301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
30
|
Li L, Liu H, Zhang P. Effect of Spirulina Meal Supplementation on Growth Performance and Feed Utilization in Fish and Shrimp: A Meta-Analysis. AQUACULTURE NUTRITION 2022; 2022:8517733. [PMID: 36860451 PMCID: PMC9973199 DOI: 10.1155/2022/8517733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 06/18/2023]
Abstract
The application potential of spirulina meal in aquaculture feeds has been well summarized in several descriptive reviews. Nevertheless, they converged on compiling results from all possible relevant studies. Little available quantitative analysis regarding the pertinent topics has been reported. This quantitative meta-analysis was performed to investigate the influences of dietary spirulina meal (SPM) addition on responsive variables in aquaculture animals, including final body weight (FBW), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER), condition factor (CF), and hepatosomatic index (HSI). The pooled standardized mean difference (Hedges' g) and 95% confidence limit were computed to quantify the primary outcomes based on random-effects model. The sensitivity and subgroup analyses were carried out to evaluate the validity of the pooled effect size. The meta-regression analysis was conducted to investigate the optimal inclusion of SPM as a feed supplement and the upper threshold of SPM usage for substituting fishmeal in aquaculture animals. The results indicated that on the whole, dietary SPM addition significantly improved FBW, SGR, and PER; statistically decreased FCR of animals; had no significant influence on CF and HSI. The growth-enhancing effect of SPM inclusion in the form of feed additive was significant; however, the effect was indistinctive in the form of feedstuff. Furthermore, the meta-regression analysis displayed that the optimal levels of SPM as a feed supplement in fish and shrimp diets were 1.46%-2.26% and 1.67%, respectively. Additionally, up to 22.03%-24.53% and 14.95%-24.85% of SPM as fishmeal substitute did not have a negative effect on growth and feed utilization in fish and shrimp, respectively. Therefore, SPM is a promising fishmeal substitute and a growth-promoting feed additive for sustainable aquaculture of fish and shrimp.
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Haiyan Liu
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Shijiazhuang, Hebei 050024, China
| | - Peiyu Zhang
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Shijiazhuang, Hebei 050024, China
| |
Collapse
|
31
|
Ringø E, Harikrishnan R, Soltani M, Ghosh K. The Effect of Gut Microbiota and Probiotics on Metabolism in Fish and Shrimp. Animals (Basel) 2022; 12:3016. [PMID: 36359140 PMCID: PMC9655696 DOI: 10.3390/ani12213016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
The present paper presents an overview of the effects of gut microbiota and probiotics on lipid-, carbohydrate-, protein- and amino acid metabolism in fish and shrimp. In probiotic fish studies, the zebrafish (Danio rerio) model is the most frequently used, and probiotic administration reveals the effect on glucose homeostasis, anti-lipidemic effects and increasing short-chain fatty acids, and increased expressions of genes related to carbohydrate metabolism and innate immunity, along with down-regulation of oxidative stress-related genes. Further, improved length of the intestinal villi and expression of nutrient transporters in fish owing to probiotics exposure have been documented. The present review will present an appraisal of the effect of intestinal microbiota and probiotic administration on the metabolism of nutrients and metabolites related to stress and immunity in diverse fish- and shrimp species. Furthermore, to give the reader satisfactory information on the topics discussed, some information from endothermic animals is also presented.
Collapse
Affiliation(s)
- Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa’s College for Men, University of Madras, Kanchipuram 631 501, Tamil Nadu, India
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713 104, West Bengal, India
| |
Collapse
|
32
|
Hu MY, Yu QZ, Lin JQ, Fang SG. Sexual Dimorphism of the Gut Microbiota in the Chinese Alligator and Its Convergence in the Wild Environment. Int J Mol Sci 2022; 23:12140. [PMID: 36292992 PMCID: PMC9603114 DOI: 10.3390/ijms232012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022] Open
Abstract
The gut microbiota forms a complex microecosystem in vertebrates and is affected by various factors. As a key intrinsic factor, sex has a persistent impact on the formation and development of gut microbiota. Few studies have analyzed sexual dimorphism of gut microbiota, particularly in wild animals. We used 16S rRNA gene sequencing to analyze the gut microbiota of juvenile and adult Chinese alligators, and untargeted metabolomics to study serum metabolomes of adult alligators. We observed significant sexual differences in the community diversity in juvenile, but not adult, alligators. In terms of taxonomic composition, the phylum Fusobacteriota and genus Cetobacterium were highly abundant in adult alligators, similar to those present in carnivorous fishes, whereas the gut microbiota composition in juvenile alligators resembled that in terrestrial reptiles, indicating that adults are affected by their wild aquatic environment and lack sex dimorphism in gut microbiota. The correlation analysis revealed that the gut microbiota of adults was also affected by cyanobacteria in the external environment, and this effect was sex-biased and mediated by sex hormones. Overall, this study reveals sexual differences in the gut microbiota of crocodilians and their convergence in the external environment, while also providing insights into host-microbiota interactions in wildlife.
Collapse
Affiliation(s)
- Meng-Yuan Hu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qin-Zhang Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian-Qing Lin
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Kawser AR, Foysal MJ, Chua EG, Ali MH, Mannan A, Siddik MA, Paul SI, Rahman MM, Tay A. Microbiome data reveal significant differences in the bacterial diversity in freshwater rohu (Labeo rohita) across the supply chain in Dhaka, Bangladesh. Lett Appl Microbiol 2022; 75:813-823. [PMID: 35575585 PMCID: PMC9796611 DOI: 10.1111/lam.13739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/17/2022] [Accepted: 05/03/2022] [Indexed: 01/01/2023]
Abstract
The present study aimed to characterize and compare the skin and gut microbial communities of rohu at various post-harvest stages of consumption using quantitative real-time polymerase chain reaction and 16S rRNA-based amplicon sequencing. Real-time PCR amplification detected higher copy numbers for coliform bacteria-Escherichia coli, Salmonella enterica and Shigella spp. in the marketed fish-compared to fresh and frozen samples. The 16S rRNA data revealed higher alpha diversity measurements in the skin of fish from different retail markets of Dhaka city. Beta ordination revealed distinct clustering of bacterial OTUs for the skin and gut samples from three different groups. At the phylum level, Proteobacteria was most abundant in all groups except the Fusobacteria in the control fish gut. Although Aeromonas was found ubiquitous in all types of samples, diverse bacterial genera were identified in the marketed fish samples. Nonetheless, low species richness was observed for the frozen fish. Most of the differentially abundant bacteria in the skin samples of marketed fish are opportunistic human pathogens enriched at different stages of postharvest handling and processing. Therefore, considering the microbial contamination in the aquatic environment in Bangladesh, post-harvest handling should be performed with proper methods and care to minimize bacterial transmission into fish.
Collapse
Affiliation(s)
- A.Q.M. Robiul Kawser
- Department of AquacultureBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh,School of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Md Javed Foysal
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh,School of Molecular and Life SciencesCurtin UniversityPerthWAAustralia
| | - Eng Guan Chua
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Md Hazrat Ali
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
| | - Adnan Mannan
- Department of Genetic Engineering and BiotechnologyFaculty of Biological SciencesUniversity of ChittagongChattogramBangladesh
| | - Muhammad A.B. Siddik
- Department of Fisheries Biology and GeneticsPatuakhali Science and Technology UniversityPatuakhaliBangladesh
| | - Sulav Indra Paul
- Institute of Biotechnology and Genetic EngineeringBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Md Mahbubur Rahman
- Institute of Biotechnology and Genetic EngineeringBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Alfred Tay
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
34
|
Yuan Z, Pang Z, Fallah N, Zhou Y, Dong F, Lin W, Hu C. Silicon fertilizer mediated structural variation and niche differentiation in the rhizosphere and endosphere bacterial microbiome and metabolites of sugarcane. Front Microbiol 2022; 13:1009505. [PMID: 36246262 PMCID: PMC9560586 DOI: 10.3389/fmicb.2022.1009505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022] Open
Abstract
The microbiomes of plant are potential determinants of plant growth, productivity, and health. They provide plants with a plethora of functional capacities, namely, phytopathogens suppression, access to low-abundance nutrients, and resistance to environmental stressors. However, a comprehensive insight into the structural compositions of the bacterial abundance, diversity, richness, and function colonizing various microenvironments of plants, and specifically their association with bioactive compounds and soil edaphic factors under silicon (Si) amendment remains largely inconclusive. Here, high-throughput sequencing technology and nontargeted metabolite profiling method were adopted to test the hypotheses regarding microbiome niche abundance, diversity, richness, function, and their association with bioactive compounds and soil edaphic factors within different ecological niches (leaf, stem, root, rhizosphere, and bulk soils) under Si amendment during cane growth were we addressed. Our results demonstrated that Si correspondingly increased sugarcane theoretical production and yield, and remarkably enhanced soil nutrient status, especially Si, AP, and AK. It was also observed that bacterial diversity demonstrated tissue-dependent distribution patterns, with the bulk soil, rhizosphere soil, and root endosphere revealing the highest amount of bacterial diversity compared with the stem and leaf tissues. Moreover, Si exhibited the advantage of considerably promoting bacterial abundance in the various plant compartments. Co-occurrence interactions demonstrated that Si application has the potential to increase bacterial diversity maintenance, coexistence, and plant–soil systems bacteria connections, thereby increasing the functional diversity in the various plant tissues, which, in turn, could trigger positive growth effects in plants. Network analysis further revealed that metabolite profiles exhibited a strong association with bacterial community structures. It was also revealed that Si content had a considerable positive association with bacterial structures. Our findings suggest that the dynamic changes in microbe’s community composition in different plant and soil compartments were compartment-specific. Our study provides comprehensive empirical evidence of the significance of Si in agriculture and illuminated on differential metabolite profiles and soil microbe’s relationship.
Collapse
Affiliation(s)
- Zhaonian Yuan
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning, China
- *Correspondence: Zhaonian Yuan,
| | - Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nyumah Fallah
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongmei Zhou
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fei Dong
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaohua Hu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
35
|
Zhu H, Qiang J, Li Q, Nie Z, Gao J, Sun Y, Xu G. Multi-kingdom microbiota and functions changes associated with culture mode in genetically improved farmed tilapia ( Oreochromis niloticus). Front Physiol 2022; 13:974398. [PMID: 36171968 PMCID: PMC9510917 DOI: 10.3389/fphys.2022.974398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Genetically improved farmed tilapia (GIFT, Oreochromis niloticus) are intensively farmed in China, where most of the yield derives from the pond culture system (PCS). The in-pond raceway system (IPRS) is a new type of highly efficient aquaculture mode, and has been recommended as a novel system for GIFT farming. To determine the effects of these culture modes on the gut microbiome of GIFT, we conducted a 90-days experiment in IPRS and PCS units. A 16S rRNA gene profile analysis showed that the composition of gut microbiota in GIFT under IPRS and PCS conditions gradually separated as rearing progressed, with divergent responses by the midgut and hindgut bacteria. The α-diversity in hindgut decreased significantly by day 90, as compared with on day 7 (p < 0.05), with a significantly greater decrease in PCS-reared fish than in IPRS fish (p < 0.05). The α-diversity of microbiota in midgut remained stable (p > 0.05). The overall dominant gut bacteria were Bacteroidetes, Proteobacteria, and Firmicutes. Rearing mode affected the taxonomic profile of the gut bacteria; in midgut, IPRS samples had more Firmicutes and Fusobacteria compared with PCS samples, but less Proteobacteria, Verrucomicrobia, and Actinobacteria. Firmicutes was enriched in IPRS hindgut, and Fusobacteria was enriched in PCS hindgut. Using random-forest models and LEfSe, we also screened core taxa that could discriminate between the gut microbial communities under IPRS and PCS conditions. The genus Cetobacterium (of family Fusobacteriaceae) was significantly enriched in midgut in IPRS fish, and enriched in hindgut in PCS fish. The genus Clostridium sensu stricto (of family Clostridiaceae 1) was significantly enriched in both IPRS midgut and hindgut. Analysis with PICRUSt2 software revealed that the culture modes were similar in their effects on the gut microbial metabolic functions. The predicted pathways were significantly enriched in the metabolism class (level 1). Further, the relative abundance of functions related to amino acid metabolic, carbohydrate metabolic, energy metabolic, and metabolic of cofactors and vitamins were high at hierarchy level 2, as the metabolic activity of intestinal bacteria is especially active. Overall, this study enhances our understanding of the characteristics of gut microbiota in GIFT under IPRS and PCS culture modes. Moreover, our findings provide insights into the microecological balance in IPRS units, and a theoretical reference for further development of this culture system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
36
|
Chen Y, Xia Z, Li H. Comparative analysis of the fecal bacterial communities of hawksbill sea turtles (Eretmochelys imbricata) and green sea turtles (Chelonia mydas). FEMS Microbiol Lett 2022; 369:6659191. [PMID: 35945331 DOI: 10.1093/femsle/fnac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/24/2022] [Accepted: 08/06/2022] [Indexed: 11/13/2022] Open
Abstract
Hawksbill sea turtles (Eretmochelys imbricata) are important for maintaining healthy coral reef ecosystems currently qualify as 'critically endangered' by the IUCN. Their gut microbiota is closely linked to host nutrition and health, however, the gut microbiota of hawksbill sea turtles from a natural reserve remains unclear. Therefore, exploring their microbial community structure in a natural reserve may provide valuable information on strategies for protecting this species. In this study, we investigated hawksbill sea turtle fecal microbial communities from a natural reserve using 16S metagenomics and compared the gut microbiota from fecal samples of hawksbill and green sea turtles (Chelonia mydas). The results indicated that the structure of fecal microbial communities was significantly different between hawksbill and green sea turtles. In hawksbill sea turtles, the three dominant phyla were Bacteroidetes, Firmicutes, and Fusobacteria, whereas the fecal microbial communities of green sea turtles were mainly composed of Firmicutes, Bacteroidetes, and Proteobacteria. Among the hawksbill sea turtle fecal microbes, the predominant genera were Cetobacterium and Rikenell, whereas in green sea turtles, the predominant genera were Bacteroides and Paludibacter. In addition, predictive metagenomic analysis indicated that sugar catabolism was enriched in green sea turtle fecal microbiota, whereas pathways related to secondary metabolite production were enriched in hawksbill sea turtle fecal microbiota. Our study provides preliminary data on the fecal microbiota features of sea turtles from the natural reserve which may contribute to the management of the food requirements and long-term conservation of hawksbill sea turtles.
Collapse
Affiliation(s)
- Yuan Chen
- School of Life Science, Huizhou University, Huizhou 516007, China
| | - Zhongrong Xia
- Guangdong Huidong Sea Turtle National Nature Reserve Administration, Huidong 516359, Guangdong Province, China
| | - Hongwei Li
- School of Life Science, Huizhou University, Huizhou 516007, China
| |
Collapse
|
37
|
Liu L, Du C, Liu Y, Gao L. Comparative Analysis of the Fecal Microbiota of Relict Gull ( Larus relictus) in Mu Us Desert (Hao Tongcha Nur) and Bojiang Haizi in Inner Mongolia, China. Front Vet Sci 2022; 9:860540. [PMID: 35464369 PMCID: PMC9018992 DOI: 10.3389/fvets.2022.860540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/04/2022] [Indexed: 01/06/2023] Open
Abstract
The gut microbiota contributes to host health by improving digestive efficiency and maintaining homeostasis. The relict gull (Larus relictus), a national first-class protected bird in China, is listed as vulnerable in the International Union for Conservation of Nature Red List. Here, 16S rRNA gene sequencing was performed to characterize and compare the community composition and diversity of the gut microbiota sampled from relict gulls in two breeding sites. In total, 418 operational taxonomic units (OUTs) were obtained and classified into 15 phyla and 228 genera. Alpha diversity analysis revealed no significant differences in community diversity among the two breeding sites. Beta diversity analyses showed that the microbial communities at the two sites were different. Six dominant phyla and fourteen dominant genera were identified. The most abundant bacterial genera had a significant relationship with the diet and living environment, and some bacterial genera were found to adapt to the plateau environment in which relict gulls live, which enables the relict gulls to use local resources effectively to accumulate energy. Simultaneously, a variety of highly abundant pathogenic bacteria were found, suggesting that these gulls may spread diseases among the local gull population. Certain measures should be taken to protect this species and to prevent the spread of diseases.
Collapse
Affiliation(s)
| | | | | | - Li Gao
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| |
Collapse
|
38
|
Zhou S, Rajput AP, Mao T, Liu Y, Ellepola G, Herath J, Yang J, Meegaskumbura M. Adapting to Novel Environments Together: Evolutionary and Ecological Correlates of the Bacterial Microbiome of the World's Largest Cavefish Diversification (Cyprinidae, Sinocyclocheilus). Front Microbiol 2022; 13:823254. [PMID: 35359710 PMCID: PMC8964274 DOI: 10.3389/fmicb.2022.823254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
The symbiosis between a host and its microbiome is essential for host fitness, and this association is a consequence of the host’s physiology and habitat. Sinocyclocheilus, the largest cavefish diversification of the world, an emerging multi-species model system for evolutionary novelty, provides an excellent opportunity for examining correlates of host evolutionary history, habitat, and gut-microbial community diversity. From the diversification-scale patterns of habitat occupation, major phylogenetic clades (A–D), geographic distribution, and knowledge from captive-maintained Sinocyclocheilus populations, we hypothesize habitat to be the major determinant of microbiome diversity, with phylogeny playing a lesser role. For this, we subject environmental water samples and fecal samples (representative of gut-microbiome) from 24 Sinocyclocheilus species, both from the wild and after being in captivity for 6 months, to bacterial 16S rRNA gene profiling using Illumina sequencing. We see significant differences in the gut microbiota structure of Sinocyclocheilus, reflective of the three habitat types; gut microbiomes too, were influenced by host-related factors. There is no significant association between the gut microbiomes and host phylogeny. However, there is some microbiome related structure at the clade level, with the most geographically distant clades (A and D) being the most distinct, and the two overlapping clades (B and C) showing similarities. Microbes inhabiting water were not a cause for significant differences in fish-gut microbiota, but water quality parameters were. Transferring from wild to captivity, the fish microbiomes changed significantly and became homogenized, signifying plastic changes and highlighting the importance of environmental factors (habitat) in microbiome community assembly. The core microbiome of this group, at higher taxonomic scale, resembled that of other teleost fishes. Our results suggest that divergent natural environments giving rise to evolutionary novelties underlying host adaptations, also includes the microbiome of these fishes.
Collapse
Affiliation(s)
- Shipeng Zhou
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Amrapali P Rajput
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Tingru Mao
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Yewei Liu
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Gajaba Ellepola
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jayampathi Herath
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jian Yang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
| | - Madhava Meegaskumbura
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| |
Collapse
|
39
|
Zhou JS, Cheng JF, Li XD, Li YH. Unique bacterial communities associated with components of an artificial aquarium ecosystem and their possible contributions to nutrient cycling in this microecosystem. World J Microbiol Biotechnol 2022; 38:72. [PMID: 35277761 DOI: 10.1007/s11274-022-03258-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
In order to better understand the bacterial distribution characteristics in a whole microecosystem, the bacterial communities in different components of an artificial aquarium (i.e., plants, fishes, sand and water) were characterized using high throughput sequencing of bacterial 16S rRNA genes. Across all samples, 2873 operational taxonomic units were identified and assigned to 771 genera in 36 phyla. In a principle coordinate analysis, samples clustered according to their origin, indicating that bacterial communities from the same component were most similar. Further taxonomic analysis revealed that most dominant genera, even those with the similar functions, were biased to one component: Nitrospira and Rhodobacter were mainly abundant in plant samples; Rhodococcus, Serratia, Ralstonia, Sphingobacterium and Pseudomonas were most common in sand samples; Cetobacterium and Aeromonas dominated fish samples; and Flavobacterium, Alpinimonas and Limnobacter were especially common in water samples. Functional predictions performed by PICRUSt and the dominant genera exhibited that bacteria detected in each component could participate in all nutrient cycles in the aquarium. However, those involved in carbon and nitrogen cycling were most common in plant and fish samples, while phosphate metabolism-related pathways were more abundant in sand and water samples. Moreover, the aquarium plants, in association with their bacterial communities might be the most important component in the aquarium, as indicated by their highest bacterial richness and diversity. This study adds to our understanding on the differences in the microbiome of different components and their possible contributions to nutrient cycling in a self-sustaining aquarium.
Collapse
Affiliation(s)
- Jun Shi Zhou
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Jian Fei Cheng
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Xue Dong Li
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Yan Hong Li
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China.
| |
Collapse
|
40
|
Aaskov ML, Jensen RJ, Skov PV, Wood CM, Wang T, Malte H, Bayley M. Arapaima gigas maintains gas exchange separation in severe aquatic hypoxia but does not suffer branchial oxygen loss. J Exp Biol 2022; 225:274291. [PMID: 35132994 DOI: 10.1242/jeb.243672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022]
Abstract
One of the most air-reliant obligate air-breathing fish is the South American Arapaima gigas, with substantially reduced gills impeding gas diffusion, thought to be a result of recurring aquatic hypoxia in its habitat. In normoxic water, A. gigas is reported to satisfy 70-80% of its O2 requirement from the air while excreting 60-90% of its CO2 to the water. If this pattern of gas exchange were to continue in severely hypoxic water, O2 loss at the gills would be expected. We hypothesized therefore that partitioning of CO2 would shift to the air phase in severe aquatic hypoxia eliminating the risk of branchial O2 loss. By adapting a respirometer designed to measure aquatic MO2/MCO2 we were able to run intermittent closed respirometry on both water and air phase for both of these gasses as well as sample water for N-waste measurements (ammonia-N, urea-N) so as to calculate metabolic fuel utilization. In contrast to our prediction, we found that partitioning of CO2 excretion changed little between normoxia and severe hypoxia (83% vs 77% aquatic excretion respectively) and at the same time there was no evidence of branchial O2 loss in hypoxia. This indicates that A. gigas can utilize distinct transfer pathways for O2 and CO2. Routine and standard MO2, N-waste excretion, and metabolic fuel utilization did not change with water oxygenation. Metabolism was fueled mostly by protein oxidation (53%) while carbohydrates and lipids accounted for 27% and 20% respectively.
Collapse
Affiliation(s)
- Magnus L Aaskov
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rasmus J Jensen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, Hirtshals, Denmark
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Hans Malte
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
41
|
Zhu J, Li H, Jing ZZ, Zheng W, Luo YR, Chen SX, Guo F. Robust host source tracking building on the divergent and non-stochastic assembly of gut microbiomes in wild and farmed large yellow croaker. MICROBIOME 2022; 10:18. [PMID: 35081990 PMCID: PMC8790850 DOI: 10.1186/s40168-021-01214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/12/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Given the lack of genetic background, the source tracking unknown individuals of fish species with both farmed and wild populations often cannot be robustly achieved. The gut microbiome, which is shaped by both deterministic and stochastic processes, can serve as a molecular marker of fish host source tracking, particularly as an alternative to the yet-to-be-established host genetic marker. A candidate for testing the feasibility is the large yellow croaker, Larimichthys crocea, which is carnivorous and ranks the top mariculture fish in China. Wild resource of this fish was depleted decades ago and might have potential problematic estimation because of escaping of farmed individuals. RESULTS The rectums of wild (n = 212) and farmed (n = 79) croakers from multiple batches were collected for the profiling of their gut bacterial communities. The farmed individuals had a higher alpha diversity and lower bacterial load than the wild individuals. The gut microbiota of the two sources exhibited divergence and high inter-batch variation, as featured by the dominance of Psychrobacter spp. in the wild group. Predicted functional capacity of the gut microbiome and representative isolates showed differences in terms of host source. This difference can be linked to the potential diet divergence between farmed and wild fishes. The non-stochastic distribution pattern of the core gut microbiota of the wild and farmed individuals supports the feasibility of microbiota-based host source tracking via the machine learning algorithm. A random forest classifier based on the divergence and non-stochastic assembly of the gut microbiome was robust in terms of host source tracking the individuals from all batches of croaker, including a newly introduced batch. CONCLUSIONS Our study revealed the divergence of gut microbiota and related functional profiles between wild and farmed croakers. For the first time, with representative datasets and non-stochastic patterns, we have verified that gut microbiota can be robustly applied to the tracking of host source even in carnivorous fish. Video abstract.
Collapse
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ze Zhou Jing
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuan Rong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, China
| | - Shi Xi Chen
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Feng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
42
|
Wang A, Zhang Z, Ding Q, Yang Y, Bindelle J, Ran C, Zhou Z. Intestinal Cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish. Gut Microbes 2022; 13:1-15. [PMID: 33840371 PMCID: PMC8043178 DOI: 10.1080/19490976.2021.1900996] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The capability of carbohydrate utilization in fish is limited compared to mammals. It has scientific and practical significance to improve the ability of fish to use carbohydrates. The efficiency of dietary carbohydrate utilization varies among fish with different feeding habits, which are associated with differential intestinal microbiota. In this study, we found that zebrafish fed with omnivorous diet (OD) and herbivorous diet (HD) showed better glucose homeostasis compared with carnivorous diet (CD) fed counterpart and the differential glucose utilization efficiency was attributable to the intestinal microbiota. The commensal bacterium Cetobacterium somerae, an acetate producer, was enriched in OD and HD groups, and administration of C. somerae in both adult zebrafish and gnotobiotic larval zebrafish models resulted in improved glucose homeostasis and increased insulin expression, supporting a causative role of C. somerae enrichment in glucose homeostasis in fish. The enrichment of C. somerae was constantly associated with higher acetate levels, and dietary supplementation of acetate promotes glucose utilization in zebrafish, suggesting a contribution of acetate in the function of C. somerae. Furthermore, we found that the beneficial effect of both acetate and C. somerae on glucose homeostasis was mediated through parasympathetic activation. Overall, this work highlights the existence of a C. somerae-brain axis in the regulation of glucose homeostasis in fish and suggests a role of acetate in mediating the axis function. Our results suggest potential strategies for improvement of fish carbohydrate utilization.
Collapse
Affiliation(s)
- Anran Wang
- Department of AgroBioChem/Precision Livestock and Nutrition Unit, AgroBioChem/TERRA, Gembloux Agro-Bio Tech, Liège University (ULiège), Gembloux, Belgium,China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Qianwen Ding
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Jérôme Bindelle
- Department of AgroBioChem/Precision Livestock and Nutrition Unit, AgroBioChem/TERRA, Gembloux Agro-Bio Tech, Liège University (ULiège), Gembloux, Belgium
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, BeijingChina,Chao Ran
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, BeijingChina,CONTACT Zhi-gang Zhou
| |
Collapse
|
43
|
Dietary supplementation with microalgae enhances the zebrafish growth performance by modulating immune status and gut microbiota. Appl Microbiol Biotechnol 2022; 106:773-788. [PMID: 34989826 DOI: 10.1007/s00253-021-11751-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023]
Abstract
Microalgae are known to be abundant in various habitats around the globe, and are rich in high value-added products such as fatty acids, polysaccharides, proteins, and pigments. Microalgae can be exploited as the basic and primitive food source of aquatic animals. We investigated the effects of dietary supplementation with Schizochytrium sp., Spirulina platensis, Chloroella sorokiniana, Chromochloris zofingiensis, and Dunaliella salina on the growth performance, immune status, and intestinal health of zebrafish (Danio rerio). The results showed that these five microalgae diets could improve the feed conversion rate (FCR), especially the D. salina (FCR = 1.02%) and Schizochytrium sp. (FCR = 1.20%) additive groups. Moreover, the microalgae diets decreased the gene expression level of the pro-inflammatory cytokines IL6, IL8, and IL1β at a normal physiological state of the intestine, especially the Schizochytrium sp., S. platensis, and D. salina dietary groups. The expression of neutrophil marker b7r was increased in the C. sorokiniana diet group; after, the zebrafish were challenged with Vibrio anguillarum, improving the ability to resist this disease. We also found that microalgae diets could regulate the gut microbiota of fish as well as increase the relative abundance of probiotics. To further explain, Cetobacterium was significantly enriched in the S. platensis additive group and Stenotrophomonas was higher in the Schizochytrium sp. additive group than in the other groups. Conversely, harmful bacteria Mycoplasma reduced in all tested microalgae diet groups. Our study indicated that these microalgae could serve as a food source supplement and benefit the health of fish. KEY POINTS: • Microalgae diets enhanced the growth performance of zebrafish. • Microalgae diets attenuated the intestinal inflammatory responses of zebrafish. • Microalgae diets modulated the gut microbiota composition to improve fish health.
Collapse
|
44
|
Elsheshtawy A, Clokie BGJ, Albalat A, Beveridge A, Hamza A, Ibrahim A, MacKenzie S. Characterization of External Mucosal Microbiomes of Nile Tilapia and Grey Mullet Co-cultured in Semi-Intensive Pond Systems. Front Microbiol 2021; 12:773860. [PMID: 34966368 PMCID: PMC8710667 DOI: 10.3389/fmicb.2021.773860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
The external mucosal surfaces of the fish harbor complex microbial communities, which may play pivotal roles in the physiological, metabolic, and immunological status of the host. Currently, little is known about the composition and role of these communities, whether they are species and/or tissue specific and whether they reflect their surrounding environment. Co-culture of fish, a common practice in semi-intensive aquaculture, where different fish species cohabit in the same contained environment, is an easily accessible and informative model toward understanding such interactions. This study provides the first in-depth characterization of gill and skin microbiomes in co-cultured Nile tilapia (Oreochromis niloticus) and grey mullet (Mugil capito) in semi-intensive pond systems in Egypt using 16S rRNA gene-based amplicon sequencing. Results showed that the microbiome composition of the external surfaces of both species and pond water was dominated by the following bacterial phyla: Proteobacteria, Fusobacteriota, Firmicutes, Planctomycetota, Verrucomicrobiota, Bacteroidota, and Actinobacteriota. However, water microbial communities had the highest abundance and richness and significantly diverged from the external microbiome of both species; thus, the external autochthonous communities are not a passive reflection of their allochthonous communities. The autochthonous bacterial communities of the skin were distinct from those of the gill in both species, indicating that the external microbiome is likely organ specific. However, gill autochthonous communities were clearly species specific, whereas skin communities showed higher commonalities between both species. Core microbiome analysis identified the presence of shared core taxa between both species and pond water in addition to organ-specific taxa within and between the core community of each species. These core taxa included possibly beneficial genera such as Uncultured Pirellulaceae, Exiguobacterium, and Cetobacterium and opportunistic potential pathogens such as Aeromonas, Plesiomonas, and Vibrio. This study provides the first in-depth mapping of bacterial communities in this semi-intensive system that in turn provides a foundation for further studies toward enhancing the health and welfare of these cultured fish and ensuring sustainability.
Collapse
Affiliation(s)
- Ahmed Elsheshtawy
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom.,Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | | | - Amaya Albalat
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Allan Beveridge
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Ahmad Hamza
- AQUAVET for Fish Nutrition and Health Solutions, Kafr El Sheikh, Egypt
| | | | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
45
|
Ofek T, Lalzar M, Laviad-Shitrit S, Izhaki I, Halpern M. Comparative Study of Intestinal Microbiota Composition of Six Edible Fish Species. Front Microbiol 2021; 12:760266. [PMID: 34950115 PMCID: PMC8689067 DOI: 10.3389/fmicb.2021.760266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
Intensive freshwater aquaculture in the Spring Valley, Israel, is implemented mainly in earthen fishponds and reservoirs that are stocked with a variety of edible fish species. Here we sampled six different healthy fish species from these intensive aquacultures. The fish were hybrid striped bass, European bass, red drum (all carnivores), hybrid tilapia, flathead grey mullet (both herbivores), and common carp (an omnivore). Significant differences were found among the intestinal microbiota of the six studied fish species. The microbiota composition diversity was strongly related to the trophic level of the fish, such that there was a significant difference between the carnivore and the herbivore species, while the omnivore species was not significantly different from either group. The most abundant genus in the majority of the fishes’ intestinal microbiota was Cetobacterium. Furthermore, we found that beside Cetobacterium, a unique combination of taxa with relative abundance >10% characterized the intestine microbiota of each fish species: unclassified Mycoplasmataceae, Aeromonas, and Vibrio (hybrid striped bass); Turicibacter and Clostridiaceae 1 (European bass); Vibrio (red drum); ZOR0006—Firmicutes (hybrid tilapia); unclassified Mycoplasmataceae and unclassified Vibrionaceae (flathead grey mullet); and Aeromonas (common carp). We conclude that each fish species has a specific bacterial genera combination that characterizes it. Moreover, diet and the trophic level of the fish have a major influence on the gut microbiota of healthy fish that grow in intensive freshwater aquaculture.
Collapse
Affiliation(s)
- Tamir Ofek
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.,Central Fish Health Laboratory, Fishery and Aquaculture Department, Ministry of Agriculture and Rural Development, Nir David, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.,Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Kiryat Tiv'on, Israel
| |
Collapse
|
46
|
Cupriavidus in the intestinal microbiota of Tibet endemic fish Glyptosternum maculatum can help it adapt to habitat of the Qinghai Tibet Plateau. BMC Vet Res 2021; 17:377. [PMID: 34876102 PMCID: PMC8650323 DOI: 10.1186/s12917-021-03092-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Background Gut microbes play an important role in the growth and development of fish. The Tibetan Plateau fish Glyptosternum maculatum is a unique species of sisorid catfish living in the river up to 4200 m altitude. Results To understand the mechanisms underlying the ability of G. maculatum to adapt to the high-altitude habitat, the intestinal microbiota of G. maculatum was studied. We used high-throughput sequencing of the 16S ribosomal RNA gene of intestinal microorganisms of wild and cultured G. maculatum to explore the characteristics of intestinal microorganisms and compared the gut microbial community of wild and cultured G. maculatum. The results showed that the α-diversity and richness of the intestinal microbiome were higher in wild G. maculatum than in cultured fish. The most abundant phylum in both G. maculatum were Fusobacteria, Proteobacteria, Firmicutes, and Bacteroidetes; Cetobacterium and Cupriavidus are the most dominant genus. The membership and structure of intestinal bacterial communities in wild G. maculatum are similar to the cultured fish, suggesting that a core microbiota is present in both G. maculatum intestinal bacterial communities. Metastats analysis showed that six genera were differentially represented between the wild and cultured G. maculatum. Conclusions The most interesting characteristic of the intestinal microbial communities of G. maculatum is that there were large numbers of Cupriavidus, which may play an important role in the adaptation of G. maculatum to the water of the Yarlung Zangbo River with a high Cu content. This result, in turn, can guide us on breeding G. maculatum.
Collapse
|
47
|
Comparison of Gut Microbiota between Gentoo and Adélie Penguins Breeding Sympatrically on Antarctic Ardley Island as Revealed by Fecal DNA Sequencing. DIVERSITY 2021. [DOI: 10.3390/d13100500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are two pygoscelid penguins, the Gentoo (Pygoscelis papua Forster, 1781) and Adélie (P. adeliae Hombron and Jacquinot, 1841) penguins, breeding sympatrically on Ardley Island, Fildes Peninsula region, South Shetlands, Antarctica. Whether the two closely related penguin species with similar dietary habits possess compositional similarity in gut microbiota remains unknown. DNA barcoding of feces is an emerging approach for gut microbiota analysis of protected animals. In the present study, the 16S rRNA gene from penguin feces was sequenced using the Illumina MiSeq platform to investigate the gut microbiota of the two pygoscelid penguin species. The fecal community of Gentoo penguins has higher diversity indices and OTU (operational taxonomic unit) richness compared to Adélie penguins. Besides unclassified bacteria, sequences fell into 22 major lineages of the domain Bacteria: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chlamydiae, Chloroflexi, Cloacimonetes, Cyanobacteria, Deinococcus-Thermus, Fibrobacteres, Firmicutes, Fusobacteria, Gemmatimonadetes, Ignavibacteriae, Planctomycetes, Proteobacteria, Tenericutes, Verrucomicrobia, and candidate divisions BRC1, SR1, WPS-2, and Saccharibacteria. Among these, Firmicutes (37.7%), Proteobacteria (23.1%, mainly Gamma- and Betaproteobacteria), Fusobacteria (14.3%), Bacteroidetes (7.9%), and Actinobacteria (6.6%) were dominant in the fecal microbiota of the two penguin species. At the same time, significantly higher abundances of Actinobacteria and Cyanobacteria were detected in Gentoo penguins than in Adélie penguins (p < 0.05). Overall, there was a clear difference in the composition of gut microbiota between the Adélie and Gentoo penguins. The results suggested that both the phylogeny of penguin species and the diet could be responsible for the differences in the gut microbiota of the two pygoscelid penguins breeding in the same area.
Collapse
|
48
|
Investigating the Effect of an Oxytetracycline Treatment on the Gut Microbiome and Antimicrobial Resistance Gene Dynamics in Nile Tilapia ( Oreochromis niloticus). Antibiotics (Basel) 2021; 10:antibiotics10101213. [PMID: 34680794 PMCID: PMC8532870 DOI: 10.3390/antibiotics10101213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
Antibiotics play a vital role in aquaculture where they are commonly used to treat bacterial diseases. However, the impact of antibiotic treatment on the gut microbiome and the development of antimicrobial resistance in Nile tilapia (Oreochromis niloticus) over time remains to be fully understood. In this study, fish were fed a single treatment of oxytetracycline (100 mg/kg/day) for eight days, followed by a 14-day withdrawal period. Changes in the distal gut microbiome were measured using 16S rRNA sequencing. In addition, the abundance of antimicrobial resistance genes was quantified using real-time qPCR methods. Overall, the gut microbiome community diversity and structure of Nile tilapia was resilient to oxytetracycline treatment. However, antibiotic treatment was associated with an enrichment in Plesiomonas, accompanied by a decline in other bacteria taxa. Oxytetracycline treatment increased the proportion of tetA in the distal gut of fish and tank biofilms of the treated group. Furthermore, the abundance of tetA along with other tetracycline resistance genes was strongly correlated with a number of microbiome members, including Plesiomonas. The findings from this study demonstrate that antibiotic treatment can exert selective pressures on the gut microbiome of fish in favour of resistant populations, which may have long-term impacts on fish health.
Collapse
|
49
|
The effect of benzo[a]pyrene on the gut microbiota of Nile tilapia (Oreochromis niloticus). Appl Microbiol Biotechnol 2021; 105:7935-7947. [PMID: 34542683 DOI: 10.1007/s00253-021-11592-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023]
Abstract
Benzo[a]pyrene (BaP) is a highly toxic and carcinogenic polycyclic aromatic hydrocarbon (PAH) whose toxicological effects in the gut microbiota of aquatic organisms have not yet been fully revealed. Therefore, in this study, we used high-throughput 16S rRNA gene sequencing to evaluate the effects of BaP in the gut microbiome of Oreochromis niloticus, including its possible participation in the process of detoxification and its ability to recover. The fish were injected with a single intraperitoneal dose of 20 mg kg-1 of BaP, and the effects in the microbiome were evaluated at 24, 72, and 120 h post-injection. The results indicate a clear dysbiosis (in composition, relative abundance, diversity, and interaction networks) of the gut microbiota during 24 h post-injection, dominated by Fusobacteria and Bacteroidetes and a decrease in Proteobacteria and Spirochaetae. Interestingly, a slight recovery of the microbiome begins at 72 h and stabilises at 120 h post-injection. Pathway analysis revealed the participation of the gut microbiome in PAH degradation mainly at 24 h post-injection. This study provides new insights in the toxicology of BaP in O. niloticus and the first evidence of the ability of the gut microbiome to recovery after a chemical disturbance. KEY POINTS: • Benzo[a]pyrene caused a dysbiosis in the gut microbiota of Oreochromis niloticus. • We observed an enrichment of bacteria involved in the metabolism of xenobiotics. • The gut microbiota was recovered after exposure to benzo[a]pyrene.
Collapse
|
50
|
Chironomus ramosus Larval Microbiome Composition Provides Evidence for the Presence of Detoxifying Enzymes. Microorganisms 2021; 9:microorganisms9081571. [PMID: 34442650 PMCID: PMC8398091 DOI: 10.3390/microorganisms9081571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Chironomids (Diptera; Chironomidae) are aquatic insects that are abundant in freshwater. We aimed to study the endogenous microbiota composition of Chironomus ramosus larvae that were sampled from the Mutha River and a laboratory culture in India. Furthermore, we performed a metagenomic analysis of the larval microbiome, sampled from the Mutha River. Significant differences were found between the bacterial community composition of C. ramosus larvae that were sampled from the Mutha River and the laboratory culture. A total of 54.7% of the amplicon sequence variants (ASVs) that were identified in the larvae from the Mutha River were unique, compared to only 12.9% of unique ASVs that were identified from the laboratory-reared larvae. The four most abundant phyla across all samples were: Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes, while the nine most abundant genera were: Aeromonas, Alkanindiges, Breznakia, Cetobacterium, Chryseobacterium, Desulfovibrio, Dysgonomonas, Thiothrix, and Vibrio. Moreover, in the metagenomic analysis, we detected bacterial genes and bacterial pathways that demonstrated the ability to degrade different toxic compounds, detoxify metal, and confer resistance to antibiotics and UV radiation, amongst other functions. The results illuminate the fact that there are detoxifying enzymes in the C. ramosus larval microbiome that possibly play a role in protecting the insect in polluted environments.
Collapse
|