1
|
Younas S, Bukhari DA, Bibi Z, Ullah A, Rehman A. Impact of multistrain probiotics on growth performance, immune response, and gut morphometry in broiler chicken Gallus gallus domesticus. Poult Sci 2025; 104:105026. [PMID: 40101512 PMCID: PMC11960641 DOI: 10.1016/j.psj.2025.105026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
The objective of this investigation was to examine the impact of four lab-isolated probiotics Enterococcus faecium (OR563785.1), Weissella confusa (OR563786.1), Weissella cibaria (OQ543569.1), Lactiplantibacillus plantarum (OQ689085.1) in 1:1:1:1 of CFU dilution as multistrain probiotics (MSP) regarding growth performance, haemato-biochemical indices and immune function in broilers. Ninety uniformly weighed broilers were divided into five groups at random with (n = 18/group). NC: negative control (basal diet); PC: commercial probiotic, G1: MSP supplemented, G2: MSP + vaccinated, G3: (vaccinated). Blood samples were collected at 42 days of age to assess immunological, haemato-biochemical parameters, and intestinal morphometry. Compared to the group of negative control, the broiler chicks' body weight was considerably (p < 0.05) higher in MSP-treated groups (G1, G2). This study found that, as compared to the NC, there was a substantial rise (p < 0.05) in RBC and hemoglobin in the probiotic-supplemented bird group. The results indicated that cholesterol and triglyceride remarkably decreased compared to control in probiotic-treated groups. There was no discernible change in the enzyme activity of ALT, AST, and ALP across the groups (p > 0.05). The findings indicated higher levels of immunoglobulin and interleukins in the MSP group than in the control (NC). The villus's height to crypt depth ratio was higher in the MSP groups (G1, G2) in contrast with the PC group (p < 0.05). The haemagglutination inhibition test (HI) revealed that the probiotic-treated groups had greater New Castle disease virus (NDV) antibodies than the other groups. The humoral response to live NDV vaccinations may be enhanced by multistrain probiotics. These results revealed MSP significantly affected growth performance, haematobiochemical parameters, and immunity through alteration in intestinal morphology which helps in nutrient uptake.
Collapse
Affiliation(s)
- Samina Younas
- Institute of Zoology, Government College University, Lahore, Pakistan
| | | | - Zuhra Bibi
- Institute of Zoology, Government College University, Lahore, Pakistan
| | - Arif Ullah
- Institute of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
2
|
Li R, Ding X, Lei M, Li P, Giannenas I, Wang J, Zhu W. The impact of combined thymol and rosmarinic acid on the intestinal microbiota and barrier function of the piglets challenged by Escherichia coli K88. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:131-144. [PMID: 39967693 PMCID: PMC11834115 DOI: 10.1016/j.aninu.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 02/20/2025]
Abstract
It has been found that thymol (Thy) and rosmarinic acid (Ros-A) improve the growth performance of piglets and relieve intestinal inflammation in animals. The effects of Thy and Ros-A separately or in combination (Thy × Ros-A) on the intestinal function and health of piglets challenged with Escherichia coli K88 (E. coli K88) were investigated. A total of 30 piglets aged 21 d were assigned to 5 groups (n = 6). The control (Con) and K88 groups piglets received a basal diet, while the Thy, Ros-A, and Thy × Ros-A groups were fed a basal diet supplemented with 500 mg/kg Thy, 500 mg/kg Ros-A, and 250 mg/kg Thy + 250 mg/kg Ros-A, respectively. On the 19th and 20th day, piglets in the K88, Thy, Ros-A, and Thy × Ros-A groups were orally administered 10 mL of phosphate-buffered saline (PBS) containing approximately 1 × 109 CFU/mL of E. coli K88, while the Con group received an equal volume of PBS. The results showed that the Thy × Ros-A treatment reduced the damage to ileal villi induced by the E. coli K88 challenge, leading to longer villi in the ileum (P < 0.05). Thy and Ros-A modulated the composition of the ileal microbiota. Compared to the K88 group, the Thy × Ros-A group had a higher abundance of Lactobacillus and Romboutsia, while Escherichia-Shigella and Desulforvibrio were lower (P < 0.05). Additionally, the Thy × Ros-A group showed elevated levels of gene and protein expressions for zonula occludens-1, occludin, and claudin-1 compared to the K88 group (P < 0.05). In conclusion, combining Thy and Ros-A reduced ileal damage and relieved the inflammation in weaned piglets challenged with E. coli K88 by regulating intestinal microflora and improving barrier function.
Collapse
Affiliation(s)
- Runlin Li
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuedong Ding
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingkang Lei
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Li
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ilias Giannenas
- Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Golshahi A, Shams Shargh M, Dastar B, Rahmatnejad E. The effect of thymus vulgaris extract and probiotic on growth performance, blood parameters, intestinal morphology, and litter quality of broiler chickens fed low-protein diets. Poult Sci 2025; 104:104554. [PMID: 39631280 PMCID: PMC11665399 DOI: 10.1016/j.psj.2024.104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
This study investigated the effects of Thymus vulgaris extract (TVE) and probiotic (Protexin) on Arian broiler chickens fed low protein diets over 42 days. The 2 × 3 factorial experiment involved two dietary crude protein (CP) levels and three supplementations, each with five replicates of 10 birds. The CP levels included a control group and a low-CP group with 5% reduced CP content. The supplementations were: no additive, probiotic at 0.1 g/kg diet, and TVE at 1 ml/L drinking water. GC-MS analysis of TVE identified linalool (28.54%), carvacrol (20.22%), and thymol (7.07%) as key bioactive compounds. Low-CP diets increased feed intake (FI) and feed conversion ratio (FCR) during the grower period (P > 0.05). Additives boosted FI and body weight gain (BWG) during the starter period, with probiotics having a stronger effect (P < 0.05). TVE improved protein efficiency ratio (PER) and energy efficiency ratio (EER), while both TVE and probiotics enhanced European production efficiency factor (EPEF) to levels like normal-CP diets (P < 0.05). Intestinal morphology was unaffected by treatments (P > 0.05). Low-CP diets reduced serum albumin levels (P < 0.05). TVE lowered serum cholesterol and triglycerides, while probiotic reduced triglycerides (P < 0.05). TVE also decreased alkaline phosphatase (ALP), and probiotics reduced alanine transaminase (ALT) compared to control (P < 0.05). Cholesterol levels decreased with the normal diet combined with TVE, while TG levels were reduced with the diets combined with TVE and probiotics (P < 0.05). ALP and ALT levels dropped with low-CP × TVE and normal diet × probiotic, respectively (P < 0.05). Low-CP diets and TVE groups showed reduced litter nitrogen (P < 0.05). These results suggest that probiotics and TVE can alleviate the negative effects of low-CP diets on broiler performance. Additionally, probiotics and TVE improve blood biochemistry and litter quality in broiler chickens.
Collapse
Affiliation(s)
- Ali Golshahi
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmoud Shams Shargh
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Behrouz Dastar
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Enayat Rahmatnejad
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, 75169, Iran..
| |
Collapse
|
4
|
Wang Q, Fan D, Hu Y, Liu H, Tan B, Xie S, Chen Q. Effects of supplementation with freeze-dried Clostridium butyricum powder after replacement of fishmeal with cottonseed protein concentrate on growth performance, immune response, and intestinal microbiota of Litopenaeus vannamei. BMC Vet Res 2024; 20:519. [PMID: 39551754 PMCID: PMC11571666 DOI: 10.1186/s12917-024-04372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
The present study was designed to investigate the effects of supplementation with freeze-dried Clostridium butyricum (CB) powder on the growth, immune function and intestinal health of Litopenaeus vannamei after replacing fishmeal in the diet with cottonseed protein concentrate (CPC). Six treatment groups were designed, namely the control group (CON, 25% fish meal) and five alternative groups (CPC replacing 40% fishmeal protein in the control group). Based on the alternative group, 0%, 0.065%, 0.26%, 1.04%, and 4.16% of freeze-dried CB bacterial powder (4.6 × 108 CFU/g) were added, recorded as CB 0, CB 0.065, CB 0.26, CB 1.04, and CB 4.16, respectively. Each treatment had 3 replicates of 40 shrimps (0.29 ± 0.01 g) each and breeding for 8 weeks. After the experiment, serum enzyme activities, muscle amino acids, and intestinal parameters (short-chain fatty acids, digestive enzymes, gene expression, and microbiota) were tested to explore the effects of freeze-dried CB powder in shrimp aquaculture. The results showed that the CB1.04 group had the highest final body weight, weight gain rate, and specific growth ratio (P > 0.05). Freeze-dried CB powder increased the activity of serum superoxide dismutase, glutathione peroxidase, complement 3, and complement 4. Muscle tyrosine, proline, and total essential amino acids were remarkably increased in the CB 1.04 group (P < 0.05). Propionic acid levels were elevated in the CB 1.04 and CB4.16 groups (P < 0.001). The relative expression of Dorsal, Relish, and Target of Rapamycin (TOR) genes was significantly increased in the CB 1.04 group (P < 0.01). Actinobacteria and Demequina abundance was significantly higher in the CB 1.04 group (P < 0.01). The results of the Vibrio parahaemolyticus challenge test showed the highest cumulative mortality rate (43.33%) in the CB0 group and the lowest cumulative mortality rate (20%) in the CB1.04 group. This study confirmed that freeze-dried CB powder alleviated the negative effects of CPC replacement of fish meal protein in Litopenaeus vannamei, and the optimum additive level was 2.11% (9.71 × 109 CFU/kg) as indicated by binary regression analysis of specific growth ratio.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Yadong Hu
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China.
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
| | - Qiang Chen
- Bai Yang Industrial Investment Group Co., Ltd, Nanning, 530000, PR China
| |
Collapse
|
5
|
Selim S, Abdel-Megeid NS, Alhotan RA, Ebrahim A, Hussein E. Nutraceuticals vs. antibiotic growth promoters: differential impacts on performance, meat quality, blood lipids, cecal microbiota, and organ histomorphology of broiler chicken. Poult Sci 2024; 103:103971. [PMID: 38941788 PMCID: PMC11260365 DOI: 10.1016/j.psj.2024.103971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/30/2024] Open
Abstract
The main goal of this study was to evaluate the effect of nutraceuticals vs. in-feed antibiotics on performance, blood lipids, antioxidant capacity, cecal microbiota, and organ histomorphology of broiler chickens. A total of 320 one-day-old male broiler chickens were distributed into 5 treatment groups with 8 replicates each. The control group was fed on a basal diet without any additives (NC); the antibiotic group was fed on a basal diet supplemented with 100 mg kg-1 avilamycin (PC); the algal group was fed on a basal diet supplemented with a mixture of Spirulina platensis and Chlorella vulgaris (1.5 g + 1.5 g/kg feed) (SP+CV); the essential oil group was fed with a basal diet containing 300 mg/kg feed rosemary oil (REO); and the probiotics group (a mixture of 1 × 1011 CFU/g Bacillus licheniformis, 1 × 1011 CFU/g Enterococcus facieum, 1 × 1010 CFU/g Lactobacillus acidophilus, and 2 × 108 CFU /g Saccharomyces cerevisiae) was fed with a basal diet supplemented with 0.05% probiotics (PRO). The experiment lasted for 35 d. A beneficial effect of SP+CV and PRO (P < 0.01) was noticed on final body weight, body weight gain, feed conversion ratio, and breast yield. The dietary supplementation with SP+CV, REO, and PRO increased (P < 0.001) broilers' cecal lactic acid bacteria count compared to the control. Lower cecal Clostridium perfringens and Coliform counts (P < 0.001) were noticed in chickens fed the PC and supplemental diets. Malondialdehyde (MDA) concentration was decreased, while glutathione peroxidase (GPx), superoxide dismutase, and catalase enzymes were increased in the breast and thigh meat (P < 0.001) of broiler chickens fed SP+CV, REO, and PRO diets. Dietary SP+CV, REO, and PRO supplementation decreased (P < 0.001) serum total lipids, cholesterol, triglycerides, low-density lipoprotein, and MDA, but increased serum high-density lipoprotein and GPx compared to PC and NC. No pathological lesions were noticed in the liver, kidney, or breast muscle among broilers. The SP+CV, REO, and PRO groups had greater (P < 0.001) intestinal villi height and crypt depth while lower goblet cell densities (P < 0.01) than the control. The present findings suggest that PRO and SP+CV, followed by REO could be suitable alternatives to in-feed antibiotics for enhancing the performance, health, and meat quality of broiler chickens.
Collapse
Affiliation(s)
- Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom 32514, Egypt.
| | - Nazema S Abdel-Megeid
- Department of Cytology and Histology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Rashed A Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alia Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Eman Hussein
- Department of Poultry and Fish Production, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| |
Collapse
|
6
|
Yao J, Chen S, Li Y, Liao C, Shang K, Guo R, Chen J, Wang L, Xia X, Yu Z, Ding K. Unveiling a Novel Antidote for Deoxynivalenol Contamination: Isolation, Identification, Whole Genome Analysis and In Vivo Safety Evaluation of Lactobacillus rhamnosus MY-1. Foods 2024; 13:2057. [PMID: 38998563 PMCID: PMC11241047 DOI: 10.3390/foods13132057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Deoxynivalenol (DON) is a global contaminant found in crop residues, grains, feed, and animal and human food. Biodegradation is currently the best solution for addressing DON pollution. However, efficient detoxification bacteria or enzymes that can be applied in complex matrices are lacking. The aim of this study was to isolate a DON-detoxifying probiotic strain with a high degradation rate, a good safety profile, and a clear genetic background. One hundred and eight bacterial strains were isolated from 300 samples collected from a school farm and surrounding livestock farms. A new DON-degrading strain, Lactobacillus rhamnosus MY-1 (L. rhamnosus MY-1), with a degradation rate of 93.34% after 48 h and a comprehensive degradation method, was identified. Then, MY-1 at a concentration of 1 × 108 CFU/mL was administered to mice in a chronic intoxication experiment for 28 days. The experimental group showed significantly higher weight gain and exhibited good production performance compared to the control group. The length of the ileal villi in the experimental group was significantly longer than that in the control group. The expression of pro-inflammatory cytokines decreased, while the expression of anti-inflammatory factors increased in the experimental group. Whole-genome analysis revealed that most of the MY-1 genes were involved in carbohydrate metabolism and membrane transport, with a cluster of secondary metabolite genes encoding antimicrobial properties. In summary, this study successfully identified a Lactobacillus strain with good safety performance, high DON degradation efficiency, and a clear genetic background, providing a new approach for the treatment of DON contamination.
Collapse
Affiliation(s)
- Jie Yao
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| | - Yijia Li
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengshui Liao
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongxian Guo
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jian Chen
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaojing Xia
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
7
|
Gao M, Liao C, Fu J, Ning Z, Lv Z, Guo Y. Probiotic cocktails accelerate baicalin metabolism in the ileum to modulate intestinal health in broiler chickens. J Anim Sci Biotechnol 2024; 15:25. [PMID: 38369501 PMCID: PMC10874562 DOI: 10.1186/s40104-023-00974-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Baicalin and probiotic cocktails are promising feed additives with broad application prospects. While probiotic cocktails are known to enhance intestinal health, the potential synergistic impact of combining baicalin with probiotic cocktails on the gut health of broiler chickens remains largely unexplored. Therefore, this study aims to investigate the influence of the combined administration of baicalin and probiotic cocktails on the composition of ileal and cecal microbiota in broiler chickens to elucidate the underlying mechanisms responsible for the health-promoting effects. RESULTS A total of 320 1-day-old male Arbor Acres broilers were divided into 4 groups, each with 8 replicates of 10 chicks per replicate. Over a period of 42 d, the birds were fed a basal diet or the same diet supplemented with 37.5 g/t baicalin (BC), 1,000 g/t probiotic cocktails (PC), or a combination of both BC (37.5 g/t) and PC (1,000 g/t). The results demonstrated that BC + PC exhibited positive synergistic effects, enhancing intestinal morphology, immune function, and barrier function. This was evidenced by increased VH/CD ratio, sIgA levels, and upregulated expression of occludin and claudin-1 (P < 0.05). 16S rRNA analysis indicated that PC potentiated the effects of BC, particularly in the ileum, where BC + PC significantly increased the α-diversity of the ileal microbiota, altered its β-diversity, and increased the relative abundance of Flavonifractor (P < 0.05), a flavonoid-metabolizing bacterium. Furthermore, Flavonifractor positively correlated with chicken ileum crypt depth (P < 0.05). While BC + PC had a limited effect on cecal microbiota structure, the PC group had a very similar microbial composition to BC + PC, suggesting that the effect of PC at the distal end of the gut overshadowed those of BC. CONCLUSIONS We demonstrated the synergistic enhancement of gut health regulation in broiler chickens by combining baicalin and probiotic cocktails. Probiotic cocktails enhanced the effects of baicalin and accelerated its metabolism in the ileum, thereby influencing the ileal microbiota structure. This study elucidates the interaction mechanism between probiotic cocktails and plant extract additives within the host microbiota. These findings provide compelling evidence for the future development of feed additive combinations.
Collapse
Affiliation(s)
- Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoyong Liao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Ningsih N, Respati AN, Astuti D, Triswanto T, Purnamayanti L, Yano AA, Putra RP, Jayanegara A, Ratriyanto A, Irawan A. Efficacy of Bacillus subtilis to replace in-feed antibiotics of broiler chickens under necrotic enteritis-challenged experiments: a systematic review and meta-analysis. Poult Sci 2023; 102:102923. [PMID: 37494807 PMCID: PMC10393822 DOI: 10.1016/j.psj.2023.102923] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023] Open
Abstract
Necrotic enteritis (NE) and coccidiosis are among the most prevalent infectious diseases in broiler chickens, contributing to large profitability losses. Bacillus subtilis is a promising direct-fed probiotic to counter various pathogens infection in broiler chickens. Here, we performed a meta-analysis to investigate the effects of B. subtilis on broiler chickens performance. A total of 28 studies were selected according to a PRISMA checklist. Random-effect model and mixed-effect model of meta-analysis were fitted to estimate the overall effects of B. subtilis (BS) treatment compared to either the control group (CON) or NE-infected group (NEinf) as a baseline. Hedges' g effect size and its variance were used as estimators of standardized mean difference (SMD) calculation where the results were presented at a 95% confidence interval (95% CI) of the SMD. Overall, NEinf broiler chickens depressed (P < 0.01) body weight (BW), average daily gain (ADG), and feed intake, and elevated (P < 0.01) feed conversion ratio (FCR). Treatment with BS improved ADG and final BW of NEinf with no difference (P = 0.15) between BS and antibiotics (AB), indicating that they had comparable efficacy to treat NE in broiler chickens. BS supplemented to uninfected CON (BSS) improved (P < 0.01) final BW, ADG, and FCR. Compared to CON, BS, and AB failed to recover the FCR but these treatments decreased (P < 0.01) FCR when compared to the NEinf group with similar efficacy (P = 0.97). As expected, NEinf birds had a higher mortality rate (P < 0.01) and higher lesion score (P < 0.01) compared to CON, and treatment using AB and BS successfully decreased (P < 0.01) the mortality rate and lesion score. Compared to BS, AB was more effective to lower (P = 0.01) mortality rate, but comparable (P = 0.65) to minimize lesion score. To conclude, B. subtilis could be an effective natural additive to replace in-feed antibiotics in broiler chickens challenged with C. perfringens. However, the efficacy to reduce mortality rate was better with antibiotics treatment.
Collapse
Affiliation(s)
- Niati Ningsih
- Department of Animal Science, Politeknik Negeri Jember, Jember 68101, Indonesia
| | - Adib Norma Respati
- Department of Animal Science, Politeknik Negeri Jember, Jember 68101, Indonesia
| | - Dian Astuti
- Agrotechnology Innovation Center, Universitas Gadjah Mada, Sleman 55573, Indonesia
| | - T Triswanto
- Department of Feed Technology, PT. Charoen Pokphand Indonesia, Jakarta Utara 14350, Indonesia
| | - Lailatul Purnamayanti
- Animal Husbandry Study Program, Politeknik Selaparang Lombok, West Nusa Tenggara 83653, Indonesia
| | | | - Reza Pratama Putra
- Animal Health Vocational Program, Jambi University, Muaro Jambi 36361, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | | | - Agung Irawan
- Universitas Sebelas Maret, Surakarta 57126, Indonesia; Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
9
|
Feng Y, Wu X, Hu D, Wang C, Chen Q, Ni Y. Comparison of the Effects of Feeding Compound Probiotics and Antibiotics on Growth Performance, Gut Microbiota, and Small Intestine Morphology in Yellow-Feather Broilers. Microorganisms 2023; 11:2308. [PMID: 37764152 PMCID: PMC10535644 DOI: 10.3390/microorganisms11092308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This study was devoted to the comparison of the probiotic effect of compound probiotics to antibiotics as a feed additive for chicken. Two hundred and seventy newly hatched yellow-feather broilers were randomly divided into three groups: the control group (Con), probiotics (Pb), and antibiotics group (Ab). The Pb group received compound probiotics (Bifidobacterium, Lactobacillus acidophilus, Streptococcus faecalis, and yeast) via drinking water for 24 days. The Ab group received antibiotics (zinc bacitracin and colistin sulfate) in their diet for 24 days. All broilers were slaughtered on day 42. Compared with the Con group, the body weight was significantly increased on days 13, 28, and 42 in the Pb group (p < 0.05), and markedly increased on day 28 in the Ab group (p < 0.05). Compared with the Ab group, the body weight of the broilers in the Pb group increased significantly on day 13 (p < 0.05). Compared to the Con and Pb groups, the antibiotics treatment reduced the feed intake (p < 0.05), but there was no significant difference in the feed conversion ratio between the Ab and Pb groups (p > 0.05). The feed conversion ratio of the broilers treated with antibiotics or probiotics significantly decreased compared to the Con group (p < 0.05). The depth of duodenum, jejunum, and ileum crypts in the Pb group decreased significantly compared to the Con and Ab group (p < 0.05). The ratio of the villi length to crypt depth of duodenum, jejunum, and ileum epithelium was significantly increased in the Pb group compared to the Con group (p < 0.05). The genera Bacteroides and Barnesiella were the most significantly enriched bacteria in the Ab and Pb groups, respectively (p < 0.05). The expression of the genes related to antibiotic resistance was significantly decreased in the Pb group compared to the Ab group (p < 0.05). Although both compound probiotics and antibiotics can improve growth performance, antibiotics increased the abundance of harmful bacteria and drug-resistant genes, while probiotics increased Barnesiella abundance, which is related to a decrease in the drug-resistant gene expression. Moreover, the probiotics treatment improved small intestinal morphology and fecal emissions, while antibiotics have no significant effect on these indicators, indicating a bright future for probiotics as an alternative to feed antibiotics in the yellow-feather broiler industry.
Collapse
Affiliation(s)
- Yuyan Feng
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoting Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Hu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Canyang Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Zhao J, Zhao F, Li X, Yuan J, Zhang K, Liu H, Wang Y. Multi-omics reveals the mechanisms underlying Lactiplantibacillus plantarum P8-mediated attenuation of oxidative stress in broilers challenged with dexamethasone. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:281-302. [PMID: 37600839 PMCID: PMC10432922 DOI: 10.1016/j.aninu.2023.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 08/22/2023]
Abstract
Oxidative stress is a common phenomenon in poultry production. Several molecules, including antioxidant genes, miRNAs, and gut microbiota metabolites, have been reported to participate in redox regulation. Lactiplantibacillus plantarum P8 (P8) was shown to improve the antioxidant capacity of chickens, but the specific molecular mechanisms remain unclear. In this study, 400 broilers were allocated to 4 treatment groups: control diet (Con group), control diet + dexamethasone injection (DEX group), control diet containing 1 × 108 CFU/g P8 (P8 group), and control diet containing 1 × 108 CFU/g P8 + DEX injection (DEX_P8 group). Integrated analysis of the microbiome, metabolomics, and miRNAomics was conducted to investigate the roles of P8 in oxidative stress in broilers. Results demonstrated that P8 supplementation significantly improved growth performance, jejunal morphology, and antioxidant function in DEX-treated broilers. Analysis of the gut microbiota revealed a higher abundance of Barnesiella (P = 0.01) and Erysipelatoclostridium (P = 0.05) in the DEX_P8 group than in the DEX group. Functional prediction indicated that certain pathways, including the phenylacetate degradation pathway, were enriched in the DEX_P8 group compared to the DEX group. Metabolites in the cecal contents were distinct between the groups. P8 supplementation increased the content of metabolites with antioxidant capacity, e.g., urobilinogen (P < 0.01), and decreased that of metabolites related to oxidative stress, e.g., genistein (P < 0.01). Functional prediction indicated that metabolites that differed between the DEX_P8 and DEX groups were enriched in pathways including "tryptophan metabolism" and "primary bile acid biosynthesis". The miRNAomics analysis further showed that, compared to the DEX group, several miRNAs in the jejunum, such as gga-miR-21-3p (P = 0.03), were increased, whereas gga-miR-455-3p (P = 0.02) was decreased in the DEX_P8 group. The PI3K-Akt, Ras, and Rap1 signaling pathways were enriched in the DEX_P8 group compared to the DEX group through KEGG analysis. Correlation analysis revealed potential interactions between growth performance, oxidation/antioxidation, jejunal morphology, gut microbiota, cecal content metabolites, and jejunal miRNAs. Overall, our results indicate that P8 supplementation may improve the growth performance, jejunal morphology and antioxidant capacity of DEX-treated broilers by regulating gut microbiota, its metabolites, and intestinal miRNAs.
Collapse
Affiliation(s)
| | | | - Xuemin Li
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
11
|
Liang H, Tran NT, Deng T, Li J, Lei Y, Bakky MAH, Zhang M, Li R, Chen W, Zhang Y, Chen X, Li S. Identification and Characterization of a Potential Probiotic, Clostridium butyricum G13, Isolated from the Intestine of the Mud Crab (Scylla paramamosain). Microbiol Spectr 2023; 11:e0131723. [PMID: 37522814 PMCID: PMC10434012 DOI: 10.1128/spectrum.01317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
The butyrate-producing bacterium Clostridium butyricum has been proven to be important in improving the growth and health benefits of aquatic animals. In this study, C. butyricum G13 was isolated for the first time from the gut of the mud crab (Scylla paramamosain). The results of this study showed that C. butyricum G13 could produce a high concentration of butyric acid and grow well in a wide range of pHs (4 to 9) and NaCl (1 to 2.5%) and bile salt (0.2 to 1.0%) concentrations. In vitro characterization revealed that C. butyricum G13 is a Gram-positive and gamma-hemolytic bacterium sensitive to most antibiotics and shows hydrophobicity and the capacity to degrade starch. In vitro fermentation using mud crab gut contents showed that C. butyricum G13 alone or in combination with galactooligosaccharides (GOS) and/or resistant starch (RS) significantly increased butyric acid production and beneficially affected the abundance and diversity of intestinal microbiota. In addition, C. butyricum G13 can improve the survival rate of mud crabs and effectively maintain the normal structure of gut morphology after infection with Vibrio parahaemolyticus. In conclusion, C. butyricum G13 can be considered a potential probiotic that improves the immune capacity and confers health benefits on mud crabs. IMPORTANCE With the development of society, more and more aquatic animals are demanded. Intensification in the aquaculture scale is facing problems, such as disease outbreaks, eutrophication of water bodies, and misuse of antibiotics. Among these challenges, disease outbreak is the most important factor directly affecting aquaculture production. It is crucial to explore new approaches effective for the prevention and control of diseases. Probiotics have been widely used in aquaculture and have shown beneficial effects on the host. In this study, the butyrate-producing bacterium Clostridium butyricum G13 was isolated for the first time from the intestine of the mud crab through in vitro fermentation. The bacterium has probiotic properties and changes the gut microbiota to be beneficial to hosts in vitro as well as protecting hosts from Vibrio parahaemolyticus infection in vivo. The outcomes of this study indicate that C. butyricum G13 can be used as a potential probiotic in mud crab aquaculture.
Collapse
Affiliation(s)
- Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jinkun Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yifan Lei
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Mohammad Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Rui Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wenxuan Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
12
|
Liu L, Li L, Li C, Wang H, Zhang X, Ren Q, Zhang H, Jin N, Li C, Zhao C. Effects of Lactiplantibacillus plantarum LPJZ-658 Supplementation on the Production, Meat Quality, Intestinal Morphology, and Cecal Microbiota of Broilers Chickens. Microorganisms 2023; 11:1549. [PMID: 37375050 DOI: 10.3390/microorganisms11061549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the effects of L. plantarum LPJZ-658 on the production, meat quality, intestinal morphology, and cecal microbiota of broilers. White-feathered broilers (1 day old, n = 600) were randomly assigned to two groups and raised for six weeks. The individuals in the LPJZ-658 group were supplemented with 2.6 × 109 cfu/g LPJZ-658. The growth performance, meat quality, intestinal epithelium morphology, and cecal microbiota were observed. The results showed that the average daily gain, average daily feed intake, and feed conversion ratio of broilers in the LPJZ-658 group were significantly improved. In addition, the LPJZ-658 groups had a higher thigh muscle (TM) yield, TM color, TMpH24h, breast muscle (BM) pH24h, and BM color24h, while the BM cooking loss was significantly lower than the CON group. Moreover, supplementation with LPJZ-658 increased ileum and cecum length, duodenum and ileum villus height, and ileum villus height/crypt depth ratio. Furthermore, 16S rRNA sequencing revealed the dietary LPJZ-658 supplementation modulated the diversity and composition of cecal microflora. At the phylum level, the relative abundances of Proteobacteria, Actinobacteria, Verrucomicrobiota, and Acidobacteriota were significantly higher. In addition, LPJZ-658 substantially decreased the genus relative abundances of Streptococcus, Veillonella, Neisseria, and Haemophilus compared with the CON group and facilitated the growth and colonization of beneficial cecal bacteria, such as OBacteroides, Phascolarctobacterium, Bacillus, and Akkermansia. It was concluded that LPJZ-658 supplementation significantly increased growth production, improved meat quality and intestinal status, and modulated the intestinal microbiota in the broilers.
Collapse
Affiliation(s)
- Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Haiyang Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xiufeng Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Qingdan Ren
- Jilin Provincial Animal Husbandry General Station, Changchun 130062, China
| | - Heping Zhang
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010010, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| |
Collapse
|
13
|
Chen W, Du L, Cai C, Huang L, Zheng Q, Chen J, Wang L, Zhang X, Fang X, Wang L, Zhong Q, Zhong W, Wang J, Liao Z. Take chicks as an example: Rummeliibacillus stabekisii CY2 enhances immunity and regulates intestinal microbiota by degrading LPS to promote organism growth and development. J Funct Foods 2023; 105:105583. [DOI: 10.1016/j.jff.2023.105583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
14
|
Liu M, Uyanga VA, Cao X, Liu X, Lin H. Regulatory Effects of the Probiotic Clostridium butyricum on Gut Microbes, Intestinal Health, and Growth Performance of Chickens. J Poult Sci 2023; 60:2023011. [PMID: 37143616 PMCID: PMC10150032 DOI: 10.2141/jpsa.2023011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
Clostridium butyricum is an important probiotic for chickens and exerts various biological activities, including altering the composition of the intestinal microbiota, competing with other microorganisms for nutrients, improving the integrity of the intestinal mucosal system, changing the intestinal barrier, and improving overall host health. Intestinal microbes also play vital roles in maintaining the intestinal barrier, regulating intestinal health, and promoting chicken growth. During chicken production, chickens are vulnerable to various stressors that have detrimental effects on the intestinal barrier with significant economic consequences. C. butyricum is a known probiotic that promotes intestinal health and produces the short-chain fatty acid butyric acid, which is beneficial for the growth performance of chickens. This review elucidates the development and utilization of C. butyricum to improve intestinal barrier function and growth performance in chickens through its probiotic properties and interactions with intestinal microbes.
Collapse
Affiliation(s)
- Min Liu
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Victoria Anthony Uyanga
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Xikang Cao
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Xinyu Liu
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| |
Collapse
|
15
|
Khalid Shihab S, Hkmat Nafea H. Effect of Adding Cordyceps sinensis Extract and Probiotic to the Diet on Productive Performance of Broiler. ARCHIVES OF RAZI INSTITUTE 2023; 78:659-666. [PMID: 37396748 PMCID: PMC10314248 DOI: 10.22092/ari.2022.359478.2430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/13/2022] [Indexed: 07/04/2023]
Abstract
Following a substantial increase in poultry breeding, the demand for their meat has risen. Poultry meat is one of the primary sources of protein in human nutrition, which contributes to food security. However, implementing intensive breeding programs and exposing birds to multiple stressors have led to the overuse of antibiotics and worse poultry health. This study was carried out at the poultry farm of the Animal Production Department, College of Agriculture, University of Anbar, Ramadi, Iraq from 28/10/2021 to 8/12/2021 (42 days), to show the effect of the addition of Cordyceps sinensis extract and a probiotic to the diet of broilers on their productive performance. For this purpose, 210 one-day-old unsexed chicks of strain (Ross 308) were used with an average weight of 40 g. They were randomly divided into seven groups of treatments, and each treatment had three replicates (10 chicks per replicate). The treatments included T1, which was the control group without any addition to the diet, T2 and T3 with the addition of C. sinensis extract at a level of 300 and 600 mg/kg feed, respectively, T4 and T5 with the addition of a probiotic at the level of 3 and 6 g/kg feed, respectively, T6 with the addition of C. sinensis extract at a level of 300 mg/kg feed + the probiotic at a level of 3 g/kg feed, T7 with the addition of C. sinensis extract at a level of 600 mg/kg feed + the probiotic at a level of 3 g/kg fodder and 6 g/kg feed. The results showed a significant superiority (P≤0.05) in favor of the T6 and T7 treatments, which included the mixture of C. sinensis extract and the probiotic, in terms of the average body weight at the sixth week, over the rest of the treatments except for the T3 treatment which included the addition of C. sinensis extract at a level of 600 mg/kg feed. Regarding weight increase, the T3 treatment, which included the addition of . sinensis extract at a level of 600 mg/kg feed, was significantly superior (P≤0.05) to the T4 treatment, which included the addition of the booster at a level of 3 g/kg feed. Regarding the feed consumption rate, it was observed that all the added treatments significantly decreased it (P≤0.05), compared to the control T1 and the cumulative feed conversion factor (0-6 weeks). It was noticed that the treatments of the mixture T6 and T7 led to a significant (P≤0.05) improvement, compared to the other experimental treatments. It is concluded from this that the addition that C. sinensis extract and the probiotic improved the productive performance of broilers without any adverse effects.
Collapse
Affiliation(s)
- S Khalid Shihab
- Directorate of Agriculture of Anbar Province, Ministry of Agriculture, Republic of Iraq, Baghdad, Iraq
| | - H Hkmat Nafea
- Department of Animal Recourse, College of Agriculture, University of Anbar, Baghdad, Iraq
| |
Collapse
|
16
|
The effects of a Bacillus licheniformis and phytase mixture added to broiler diets on growth performance, nutrient digestibility, and cecal microecosystem. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
This study aims to evaluate the effects of Bacillus licheniformis and 6-phytase added alone or in combination to broiler chicken diets on the growth performance, apparent ileal digestibility coefficient (AID) of nutrients, microbial activity, and cecal bacterial communities. In total, 400 one-day-old female Ross 308 chicks were randomly allocated to 4 dietary treatments (10 replicate pens, 10 birds each). The following groups were defined: NC (negative control), basal diet without any feed additive supplementation; NC+Pro, basal diet with addition of the B. licheniformis preparation (500 g/t of diet); NC+Phy, basal diet with addition of phytase (200 g/t of diet); and NC+Pro+Phy, basal diet combined with both studied additives. B. licheniformis positively affected (P<0.05) the feed intake (FI) and feed conversion ratio (FCR) in the first 10 d of bird rearing. Moreover, phytase supplementation elevated the FCR from 21 to 35 d. In the entire experiment, an interaction between phytase and probiotic was observed only in terms of decreasing the bird FI (P=0.005) without a negative effect on the FCR (P>0.05). Furthermore, the AID of ether extract was improved by phytase supplementation. In terms of the cecal microecology, both separately administered factors promoted Lactobacillaceae in the ceca. Interactions between probiotic preparation and phytase were noted that indicated a decreased Clostridiales population and favored Ruminococcaceae proliferation. It can be concluded that for the first time in the available literature, the favorable interactions between B. licheniformis and phytase resulted in improved performance and cecal microbiota changes in broilers.
Collapse
|
17
|
Oladokun S, Adewole D. The effect of Bacillus subtilis and its delivery route on hatch and growth performance, blood biochemistry, immune status, gut morphology, and microbiota of broiler chickens. Poult Sci 2023; 102:102473. [PMID: 36736137 PMCID: PMC9898455 DOI: 10.1016/j.psj.2022.102473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
This study evaluated the effect of probiotics (Bacillus subtilis fermentation extract) and its delivery route (in-feed or in ovo) on hatch and growth performance, blood biochemistry, immune status, gut morphology, and microbiota of broiler chickens. Hatching eggs were incubated for 21 d. On d 12, viable eggs were randomly allotted to 4 groups: the noninjected, in ovo saline (S), in ovo Bacillus subtilis 1 (P1), and in ovo Bacillus subtilis 2 (P2). On d 18, S, P1, and P2 groups received 0.2 mL saline diluent, 10 × 106, and 20 × 106 CFU of the bacterium via the amnion, respectively. At hatch, chicks were re-allotted to 5 new treatment groups: P1, P2, 0.005% in-feed Bacillus subtilis extract (P3), 0.05% in-feed bacitracin methylene disalicylate (BMD,), and corn-wheat-soybean diet negative control (NC) in 9 replicate pens (22 birds/pen) and raised for 35 d. Hatch parameters were assessed on d 0, and growth performance indices measured weekly. On d 25, 1 bird/cage was euthanized, and samples collected for further analysis. Data were analyzed by generalized linear model. Treatments S and P2 recorded higher (P = 0.01) chick BW/ Egg Weight values compared to the non-injected eggs. P3 and P2 reduced (P = 0.02) FI at week 5 compared to the NC treatment. However, no change in average body weight gain (ABG) and feed conversion ratio (FCR) were observed during the same period. At d 35, while BMD treatment showed a tendency (P = 0.09) to increase FI compared to the NC treatment, ABG and FCR were similar for all treatments. Blood sodium and chloride levels were increased (P < 0.05) by the BMD treatment compared to the NC treatment. Compared to other treatments, BMD and P3 treatments increased (P < 0.001) jejunal and ileal villus height to crypt depth ratios, respectively. However, P1 and P2 increased (P < 0.001) villus height to crypt depth ratio in the duodenum compared to NC treatment. Treatments did not affect gut microbial diversity; however, BMD treatment increased (P < 0.05) the proportion of bacteria in the genus Enterococcus in the ileum and reduced (P < 0.05) the proportion of bacteria in the genus Streptococcus in the ceca. All probiotics treatments (irrespective of route and dose) reduced (P < 0.001) the levels of serum IgG compared to the NC treatment. However, P1 and P2 had the lowest numerical decrease in serum IgG concentrations, suggesting that Bacillus subtilis (especially in ovo delivered) might provide broiler chickens with better immunological protection by neutralizing pathogenic organisms that could result in the production of natural antibodies.
Collapse
Affiliation(s)
- Samson Oladokun
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
18
|
Wang Y, Wang Y, Wang L, Wei B, Lv X, Huang Y, Zhang H, Chen W. Dietary supplementation with Clostridium butyricum and its ferment substance improves the egg quality and ovarian function in laying hens from 50 to 58 weeks of age. Anim Sci J 2023; 94:e13877. [PMID: 37818858 DOI: 10.1111/asj.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 10/13/2023]
Abstract
The current study was conducted to explore the effects of dietary Clostridium butyricum (C. butyricum) and fermented calcium (Ca) butyrate produced by C. butyricum on the performance and egg quality of post-peak laying. A total of 384 50-week-old hens were fed a basal diet, the basal diet with 300 mg/kg of fermented Ca butyrate or 1 × 109 CFU/kg C. butyricum for 8 weeks. Hens received a C. butyricum exhibited higher yolk properties, albumen height, and Haugh unit. A diet with fermented Ca butyrate or C. butyricum increased the egg mass and the pre-grade yellow follicle number. RNA-sequencing (RNA-seq) data showed that these observations were associated with cytokine-cytokine receptor interaction and intestinal immune status. Accordingly, when compared with the basal diet group, Ca butyrate and C. butyricum addition decreased serum pro-inflammatory cytokine levels and increased the concentration of immunoglobulin A, along with improved intestinal barrier. In addition, dietary C. butyricum inclusion induced a higher abundance of Ruminococcaceae and Lachnospiraceae at the family level. In summary, dietary fermented Ca butyrate or C. butyricum supplementation improved egg quality and ovarian function, which might be related to the enhanced intestinal barrier and immunity in post-peak laying hens.
Collapse
Affiliation(s)
- Yongshuai Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yilu Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Leilei Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Bin Wei
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Xiangyun Lv
- Charoen Pokphand Group Co., Ltd., Zhumadian, Henan, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
19
|
Zou Q, Fan X, Xu Y, Wang T, Li D. Effects of dietary supplementation probiotic complex on growth performance, blood parameters, fecal harmful gas, and fecal microbiota in AA+ male broilers. Front Microbiol 2022; 13:1088179. [PMID: 36605508 PMCID: PMC9808919 DOI: 10.3389/fmicb.2022.1088179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis were made into a probiotic complex (PC). The PC was supplemented in AA+ male broilers' diets to investigate the effects of PC on broiler growth performance, carcass traits, blood indicators, harmful gas emissions in feces and microbiota. Three hundred and sixty 1-day-old AA+ male broilers with an average initial body weight (data) were randomly divided into 3 dietary treatments of 6 replicates each, with 20 birds per replicate. The control group (T0) was fed a basal diet, while the test groups (T1 and T2) were supplemented with 0.025 and 0.05% PC in the basal diet, respectively. The trail was 42 days. The results showed that the supplementation of 0.05% PC significantly (p < 0.05) improved average daily gain (ADG) and average daily feed intake (ADFI) of broilers from 22 to 42 days and 1-42 days. Compared to the control group, the breast rate was significantly higher in T2, and the thymic index was significantly higher than that in T1 treatment (p < 0.05). The addition of PC had no significant effects on antibody potency in broiler serum (p > 0.05), but significantly increased albumin and total protein content in serum (p < 0.05). The addition of PC reduced H2S and NH3 emissions in the feces; the levels of Escherichia coli and Salmonella in the feces were significantly reduced and the levels of Lactobacillus were increased. And the most significant results were achieved when PC was added at 0.05%. Correlation analysis showed a significant positive correlation (p < 0.05) between the levels of E. coli and Salmonella and the emissions of H2S and NH3. Conclusion: Dietary supplementation with a 0.05% probiotic complex could improve the growth performance of broilers and also reduced fecal H2S and NH3 emissions, as well as fecal levels of E. coli and Salmonella, and increased levels of Lactobacillus. Thus, PC made by Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis is expected to be an alternative to antibiotics. And based on the results of this trial, the recommended dose for use in on-farm production was 0.05%.
Collapse
|
20
|
Zou Q, Meng W, Wang T, Liu X, Li D. Effect of multi-strain probiotics on the performance of AA+ male broilers. Front Vet Sci 2022; 9:1098807. [PMID: 36590807 PMCID: PMC9797809 DOI: 10.3389/fvets.2022.1098807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of the experiment was to investigate the effects of a probiotic complex (PC) consisting of Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis on productive performance, carcass traits, immune organ indices, fecal microbiota counts and noxious gas emissions in AA+ male broilers. Three hundred and sixty 1-day-old AA+ male broilers with similar body weight (44.77 ± 0.25) were randomly divided into 3 treatment groups of 6 replicates each, with 20 broilers in each replicate. The experimental groups consisted of a group fed a basal diet and groups fed basal diet supplemented with 0.1 and 0.2% PC. The results showed that the addition of PC had no significant effect (P > 0.05) on growth performance, and carcass traits of AA+ broilers during the experimental period (1-42 days of age). Dietary addition of PC significantly increased the thymus index of AA+ broilers (P < 0.05), reduced the number of E. coli and Salmonella in feces (P < 0.01) and reduced the concentrations of fecal NH3 and H2S emissions (P < 0.01). Furthermore, birds fed 0.2% PC diet had the highest number of fecal Lactobacillus counts. Results indicate that probiotic complex consisting of Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis enhances immune organ development, reduces the number of E. coli and Salmonella in feces, increases the number of Lactobacillus and reduces NH3 and H2S emissions in feces. This trial provides a theoretical basis for the use of probiotic complexes in broiler production.
Collapse
Affiliation(s)
- Qiangqiang Zou
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Weishuang Meng
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tieliang Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Xiao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Xiao Liu
| | - Desheng Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China,Desheng Li
| |
Collapse
|
21
|
Chen J, Zhang J, Zhan L, Chen H, Zhang Z, Huang C, Yue M. Prevalence and antimicrobial-resistant characterization of Bacillus cereus isolated from ready-to-eat rice products in Eastern China. Front Microbiol 2022; 13:964823. [PMID: 35928146 PMCID: PMC9344136 DOI: 10.3389/fmicb.2022.964823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Bacillus cereus is a major food-borne bacterial pathogen in the world, which can cause diarrhea and emetic syndrome. This study aimed to reveal the quantitative prevalence of B. cereus in ready-to-eat (RTE) rice products in Eastern China and to gain essential information on the characteristics of B. cereus isolates. A total of 91 out of the 1071 samples were positive for B. cereus. The contamination level of B. cereus in 0.5 % of RTE rice product samples outnumbered 103 CFU/g. The number of B. cereus attained 105−106 CFU/g in one sample. The distribution patterns of virulence genes in B. cereus isolates were identified. 84.6% of the B. cereus isolates had at least one enterotoxin or emetic toxin gene. The predominant pattern was XXV. 9.9% of isolates belonged to it and possessed one enterotoxin gene entFM. The occurrence rate of hblACD and nheABC was 36.3% and 47.3%, respectively. Antimicrobial susceptibility tests revealed a high resistance rate toward penicillin, and 23.1% of the isolates were multi-drug resistant. B. cereus isolates were genotyped by using ERIC-PCR. 89 genotypes were determined. The Hunter Gaston Discriminatory Index (HGDI) attained 0.9995. Relationships analysis revealed that Group A B. cereus isolates tended to carry hblA, hblC, hblD, nheA, nheB, and show resistance to penicillin/trimethoprim/sulfamethoxazole. This study was useful for updating the knowledge of the contamination status of B. cereus in RTE rice products in China.
Collapse
Affiliation(s)
- Jiancai Chen
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Junyan Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Li Zhan
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Honghu Chen
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhen Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Cheng Huang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- *Correspondence: Cheng Huang,
| | - Min Yue
- Hainan Institute, Zhejiang University, Hangzhou, China
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Min Yue,
| |
Collapse
|
22
|
Mazanko MS, Popov IV, Prazdnova EV, Refeld AG, Bren AB, Zelenkova GA, Chistyakov VA, Algburi A, Weeks RM, Ermakov AM, Chikindas ML. Beneficial Effects of Spore-Forming Bacillus Probiotic Bacteria Isolated From Poultry Microbiota on Broilers' Health, Growth Performance, and Immune System. Front Vet Sci 2022; 9:877360. [PMID: 35711797 PMCID: PMC9194945 DOI: 10.3389/fvets.2022.877360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Probiotics are known for their beneficial effects on poultry health and wellbeing. One promising strategy for discovering Bacillus probiotics is selecting strains from the microbiota of healthy chickens and subsequent screening for potential biological activity. In this study, we focused on three probiotic strains isolated from the gastrointestinal tract of chickens bred in different housing types. In addition to the previously reported poultry probiotic Bacillus subtilis KATMIRA1933, three strains with antimutagenic and antioxidant properties Bacillus subtilis KB16, Bacillus subtilis KB41, and Bacillus amyloliquefaciens KB54, were investigated. Their potential effects on broiler health, growth performance, and the immune system were evaluated in vivo. Two hundred newly hatched Cobb500 broiler chickens were randomly divided into five groups (n = 40). Four groups received a standard diet supplemented with the studied bacilli for 42 days, and one group with no supplements was used as a control. Our data showed that all probiotics except Bacillus subtilis KATMIRA1933 colonized the intestines. Treatment with Bacillus subtilis KB54 showed a significant improvement in growth performance compared to other treated groups. When Bacillus subtilis KB41 and Bacillus amyloliquefaciens KB54 were applied, the most significant immune modulation was noticed through the promotion of IL-6 and IL-10. We concluded that Bacillus subtilis KB54 supplementation had the largest positive impact on broilers' health and growth performance.
Collapse
Affiliation(s)
- Maria S. Mazanko
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V. Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- *Correspondence: Igor V. Popov
| | - Evgeniya V. Prazdnova
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G. Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- ChemBio Cluster, ITMO University, Saint Petersburg, Russia
| | - Anzhelica B. Bren
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Galina A. Zelenkova
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A. Chistyakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Ammar Algburi
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Richard M. Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, Bridgeton, NJ, United States
| | - Alexey M. Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Michael L. Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, Bridgeton, NJ, United States
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
23
|
Effects of Bacillus amyloliquefaciens LFB112 on Growth Performance, Carcass Traits, Immune, and Serum Biochemical Response in Broiler Chickens. Antibiotics (Basel) 2021; 10:antibiotics10111427. [PMID: 34827365 PMCID: PMC8614806 DOI: 10.3390/antibiotics10111427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the effects of Bacillus amyloliquefaciens LFB112 on the growth performance, carcass traits, immune response, and serum biochemical parameters of broiler chickens. A total of 396 1 day old, mixed-sex commercial Ross 308 broilers with similar body weights were allotted into six treatment groups. The assigned groups were the CON group (basal diet with no supplement), AB (antibiotics) group (basal diet + 150 mg of aureomycin/kg), C+M group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 powder with vegetative cells + metabolites), C group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 vegetative cell powder with removed metabolites), M group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 metabolite powder with removed vegetative cells), and CICC group (basal diet + 5 × 108 CFU/kg Bacillus subtilis CICC 20179). Results indicated that chickens in the C+M, C, and M groups had higher body weight (BW) and average daily gain (ADG) (p < 0.05) and lower feed conversion ratio (FCR) (p = 0.02) compared to the CON group. The C+M group showed the lowest abdominal fat rate compared to those in the CON, AB, and CICC groups (p < 0.05). Compared to the CON group, serum IgA and IgG levels in the C+M, C, and M groups significantly increased while declining in the AB group (p < 0.05). B. amyloliquefaciens LFB112 supplementation significantly reduced the serum triglyceride, cholesterol, urea, and creatinine levels, while increasing the serum glucose and total protein (p < 0.05). In conclusion, B. amyloliquefaciens LFB112 significantly improved the growth performance, carcass traits, immunity, and blood chemical indices of broiler chickens and may be used as an efficient broiler feed supplement.
Collapse
|
24
|
Yu J, Dong B, Zhao M, Liu L, Geng T, Gong D, Wang J. Dietary Clostridium butyricum and Bacillus subtilis Promote Goose Growth by Improving Intestinal Structure and Function, Antioxidative Capacity and Microbial Composition. Animals (Basel) 2021; 11:3174. [PMID: 34827906 PMCID: PMC8614425 DOI: 10.3390/ani11113174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Probiotics are a substitute for antibiotics in the sense of intestinal health maintenance. Clostridium butyricum and Bacillus subtilis, as probiotic bacteria, have been widely used in animal production. The aim of this study was to investigate the effects of the two probiotic bacteria in geese. A total of 288 1-day old, healthy Yangzhou geese were randomly assigned into 4 groups (A, B, C and D) with 6 replicates of 12 birds each. Group A, as control, was fed a basal diet, and the treatment groups (B, C and D) were fed the basal diet supplemented with 250 mg/kg Clostridium butyricum (the viable count was 3.0 × 106 CFU/g), 250 mg/kg Bacillus subtilis (the viable count was 2.0 × 107 CFU/g), or a combination of the two probiotic bacteria for 70 days, respectively. The results indicated that: compared with the control group, dietary probiotics (1) promoted the growth and feed intake of the geese, (2) increased the absolute weight of duodenum, (3) increased the antioxidative capacity (total antioxidative capacity (T-AOC), total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX)) of intestinal mucosa, (4) improved intestinal morphology (the ratio of villus height to crypt depth), (5) but did not induce inflammation and changes of tight junction in the intestine, which was indicated by no induction of pro/inflammatory cytokines (IL-1β, IL-6, IL-10, TNFAIP3) and tight junction related genes (TJP1 and OCLN). Moreover, dietary probiotics increased the relative abundances of Firmicutes phylum and Lactobacillus genus and decreased the relative abundances of Proteobacteria phylum or Ralstonia genus in the intestinal content. In addition, the alpha diversity (observed species, Chao1, and estimate the number of OTUs in the community(ACE)) was reduced and the predicted functions of intestinal microflora, including peptidases, carbon fixation and metabolic function of starch and sugar, were enhanced by dietary probiotics. In conclusion, dietary probiotics promote the growth of geese by their positive effects on intestinal structure and function, the composition and functions of gut microflora, and intestinal antioxidative capacity.
Collapse
Affiliation(s)
- Jie Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.Y.); (M.Z.); (L.L.); (T.G.)
| | - Biao Dong
- Department of Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.Y.); (M.Z.); (L.L.); (T.G.)
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.Y.); (M.Z.); (L.L.); (T.G.)
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.Y.); (M.Z.); (L.L.); (T.G.)
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.Y.); (M.Z.); (L.L.); (T.G.)
| | - Jian Wang
- Department of Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| |
Collapse
|
25
|
Petrova P, Arsov A, Ivanov I, Tsigoriyna L, Petrov K. New Exopolysaccharides Produced by Bacillus licheniformis 24 Display Substrate-Dependent Content and Antioxidant Activity. Microorganisms 2021; 9:microorganisms9102127. [PMID: 34683448 PMCID: PMC8540526 DOI: 10.3390/microorganisms9102127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
Bacillus licheniformis is a soil bacterium with many industrial applications. In addition to enzymes, platform chemicals, antibiotics and phytohormones, the species produces exopolysaccharides (EPSs) of various biological activities. This study revealed that Bulgarian isolate B. licheniformis 24 produced EPSs consisting of galactose, glucose and mannose with substrate-dependent ratio. From glucose, B. licheniformis 24 secreted EPS1, consisting of 54% galactose, 39% glucose and 7% mannose. From fructose, the strain formed EPS2, containing 51% glucose, 30% mannose and 19% galactose. Batch cultivation in flasks yielded 2.2–2.6 g/L EPS1 and 1.90–2.11 g/L EPS2. Four to five times higher yields of EPS were obtained from both substrates during batch and fed-batch processes in a fermenter at 37.8 °C, pH 6.2 and aeration 3.68 vvm. The batch process with 200 g/L of starting substrates received 9.64 g/L EPS1 and 6.29 g/L EPS2, reaching maximum values at the 33rd and 24th h, respectively. Fed-batch fermentation resulted in the highest yields, 12.61 g/L EPS1 and 7.03 g/L EPS2. In all processes, EPSs were produced only in the exponential growth phase. Both EPSs exhibited antioxidant activity, but EPS2 was much more potent in this regard, reaching 811 μM Vitamin C Equivalent Antioxidant Capacity (versus 135 μM for EPS1). EPS1 displayed antibacterial activity against a non-O1 strain of Vibrio cholerae.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.); (I.I.)
- Correspondence: (P.P.); (K.P.)
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.); (I.I.)
| | - Ivan Ivanov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.); (I.I.)
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Correspondence: (P.P.); (K.P.)
| |
Collapse
|