1
|
Wareham-Mathiassen S, Nateqi M, Badrinarayanan SA, Glenting VP, Dragheim MB, Agner AR, Rasmussen TS, Bay L, Jelsbak L, Bengtsson H, Bjarnsholt T. Evaluating antimicrobial efficacy in medical devices: The critical role of simulating in use test conditions. BIOMATERIALS ADVANCES 2025; 172:214241. [PMID: 40010022 DOI: 10.1016/j.bioadv.2025.214241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Biofilm infections represent the greatest risk associated with medical devices and implants, constituting 65 %-70 % of all device associated infections. Efforts to develop antimicrobial technologies for biomedical applications aim to reduce infection rates, antibiotic use, and the induction of antimicrobial resistance. However, standard laboratory test conditions often overestimate efficacy, highlighting the need for experimental designs that simulate real-world settings. To this end, we evaluated four commercially available antimicrobial materials containing silver (AG1, AG2, AG3) or zinc (ZN1) to assess their ability to mitigate microbial proliferation in for longer duration or multi-use medical devices. The materials' homogeneity and surface topography were characterized through Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) and Atomic Force Microscopy (AFM). Antimicrobial efficacy was tested using a modified ISO 22196 protocol under clinically relevant conditions and a dry contact test developed to mimic in-use conditions for many extracorporeal medical devices. Results revealed homogeneous elemental distributions in AG1, AG2, and ZN1, and heterogeneous clusters for AG3. Surface roughness was highest for AG2 (170.1 nm), followed by TPE control (155.3 nm), ZN1 (83.51 nm) and silicone control (66.74 nm). All test materials demonstrated antimicrobial efficacies against S. aureus and E. coli, but not against C. albicans. In the dry contact assay, only AG2 proved effective against E. coli, and P. aeruginosa, underlining the role of humidity in antimicrobial action. Results were further corroborated by measurement of ion release by the materials at various temperatures, revealing greater release at higher temperatures. These outcomes emphasize the importance of testing antimicrobial materials under in use conditions to minimize discrepancies between laboratory results and clinical outcomes. Our findings provide a valuable framework for testing and integrating these materials into next-generation multi-use medical devices.
Collapse
Affiliation(s)
- Sofia Wareham-Mathiassen
- Department of Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark; Department of Technology Exploration, Devices & Delivery Solutions, Novo Nordisk A/S, Bagsværd, Denmark.
| | - Mohammed Nateqi
- Department of Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark; Department of Engineering, Devices & Delivery Solutions, Novo Nordisk A/S, Bagsværd, Denmark
| | - Sai Achyuth Badrinarayanan
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Vera Pinto Glenting
- Department of Microbiology, Devices & Delivery Solutions, Novo Nordisk A/S, Bagsværd, Denmark
| | | | | | - Tina Secher Rasmussen
- Leachables & Elemental Impurities, Department of Chemistry, Manufacturing, and Controls, Novo Nordisk A/S, Bagsværd, Denmark
| | - Lene Bay
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Henrik Bengtsson
- Bioinnovation Hub, Devices & Delivery Solutions, Novo Nordisk A/S, Bagsværd, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Jackson SJT, Andrews K, Droleskey RE, Banz WJ, Apgar GA, Rivenbark KJ, Wang M, Anderson RC, Harvey RB, Phillips TD. NutriClay Zn Binds Aflatoxin B1 and Suppresses Enterotoxigenic Salmonella and Escherichia coli. J Food Prot 2025; 88:100486. [PMID: 40113140 PMCID: PMC12044614 DOI: 10.1016/j.jfp.2025.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Salmonella Typhimurium and Escherichia coli represent foodborne pathogens that can trigger diarrhea and diminish weight gains in livestock, as well as cause gastroenteritis in humans. Although prophylactic antibiotics have been used historically on the farm to limit bacterial pathogens and promote animal growth, this practice may also foster antimicrobial resistant (AMR) strains of bacteria and deplete our arsenal of effective antibiotic therapies. Incorporation of free chemical zinc oxide (ZnO) into animal feed, at doses far above nutritional requirements, has largely replaced prophylactic antibiotics; however, environmental concerns are mounting around unabsorbed zinc (excreted in feces) impacting soil microbes and thereby contributing to the AMR threat. Here, NutriClayZn is introduced as an analog of montmorillonite (MMT) clay with potent efficacy against foodborne bacterial pathogens and slow release of low concentrations of zinc. Bacterial propagation was assessed in culture experiments using NutriClayZn dosages aligned with current dietary MMT clay practices for the control of aflatoxin in production animals. Zinc release was quantified by inductively coupled plasma mass spectrometry. Significant (p < 0.05) growth reduction of Salmonella Typhimurium was observed following NutriClayZn exposures releasing less zinc than that contained within free chemical ZnO positive controls. Moreover, NutriClayZn displayed dose-dependent efficacy against an AMR strain of Escherichia coli O157:H7, while also binding aflatoxin B1 with kinetics similar to its parent MMT clay. These findings suggest that NutriClayZn could serve as a dual-purpose dietary substance, binding aflatoxin B1 and suppressing enterotoxigenic bacteria that can compromise the food supply.
Collapse
Affiliation(s)
- Steven J T Jackson
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Kathleen Andrews
- Food and Feed Safety Research Unit, USDA Agricultural Research Service, College Station, Texas, United States
| | - Robert E Droleskey
- Food and Feed Safety Research Unit, USDA Agricultural Research Service, College Station, Texas, United States
| | - William J Banz
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States
| | - Gary A Apgar
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States
| | - Kelly J Rivenbark
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Meichen Wang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States
| | - Robin C Anderson
- Food and Feed Safety Research Unit, USDA Agricultural Research Service, College Station, Texas, United States
| | - Roger B Harvey
- Food and Feed Safety Research Unit, USDA Agricultural Research Service, College Station, Texas, United States
| | - Timothy D Phillips
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States.
| |
Collapse
|
3
|
Redfern J, Flint J, Zhang ZJ, Lamprou DA. The case for BioEffective Surfaces for Transport-a call for interdisciplinary action to further antimicrobial materials in the transport sector. Front Public Health 2025; 13:1576636. [PMID: 40270755 PMCID: PMC12014751 DOI: 10.3389/fpubh.2025.1576636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Affiliation(s)
- James Redfern
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jo Flint
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Zhenyu Jason Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
4
|
Hong Y, Wang S, Maimaiti A, Li J, Li D, Wang Q, Teng W. Constructing an Injectable Multifunctional Antibacterial Hydrogel Adhesive to Seal Complex Interfaces Post-Dental Implantation to Improve Soft Tissue Integration. Macromol Biosci 2025; 25:e2400503. [PMID: 39838594 DOI: 10.1002/mabi.202400503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Soft tissue integration (STI) around dental implants determines their long-term success, and the key is to immediately construct a temporary soft tissue-like barrier to prevent bacterial invasion after implantation and then, promote STI. In response to this need, an injectable multi-crosslinked hydrogel (MCH) with abilities of self-healing, anti-swelling, degradability, and dry/wet adhesion to soft tissue/titanium is developed using gallic acid-graft-chitosan, oxidized sodium alginate, gelatin, and Cu2+ with water and borax solution as solvents, whose properties can be controlled by adjusting its composition and ratio. MCH can not only immediately build a sealing barrier to block the bacterial invasion in the oral simulation environment but also deliver outstanding antibacterial efficacy through the synergism of trapping bacteria and releasing bactericidal agents such as chitosan, gallic acid, aldehyde, and Cu2+. Moreover, MCH has an adjustable ROS-scavenging ability imparted by gallic acid, chitosan, and gelatin to reduce inflammation and can control the release of Cu2+. Based on these, it is believed that by injecting MCH around implants (percutaneous/transmucosal) after surgery, a universal non-aggressive strategy to promote STI can be developed for long-term implant success.
Collapse
Affiliation(s)
- Yubing Hong
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
- Laboratory of Biomaterials, NHC Key Laboratory of Assisted Circulation, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Siwei Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| | - Abudusaimi Maimaiti
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| | - Jiarun Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| | - Dongying Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| | - Qinmei Wang
- Laboratory of Biomaterials, NHC Key Laboratory of Assisted Circulation, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| |
Collapse
|
5
|
Poelzl S, Dreisiebner D, Zarschenas E, Nokhbehzaeim R, Kittinger C. A new method for testing non-porous surfaces for their antimicrobial efficacy using an aerosol-generating spray chamber. Front Microbiol 2025; 15:1508596. [PMID: 39839100 PMCID: PMC11747154 DOI: 10.3389/fmicb.2024.1508596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
The application of antimicrobial surfaces requires proof of their effectivity by in vitro methods in laboratories. One of the most common test methods is ISO 22196:2011, which represents a simple and inexpensive protocol by applying the bacterial suspension with known volume and concentration covered under a polyethylene film on the surfaces. The incubation is then conducted under defined humidity conditions for 24 h. Another approach for testing non-porous surfaces is the newly published ISO 7581:2023. With this protocol, a "dry test" is achieved by spreading and drying 1 μL of a bacterial suspension on the surfaces. A comprehensive evaluation of both standard protocols was conducted. This showed that they have some limitations and often do not include realistic test conditions that refer to the final product. Accordingly, the objective of this study was to develop a novel testing procedure that uses the spraying of a suspension inside of a chamber to generate aerosols with a precisely defined bacterial or yeast load. The samples to be analyzed are covered with small droplets that dry up within a few minutes and thus enable very reproducible contamination of the surfaces. The test series was carried out with low-alloyed carbon steel and glass without antimicrobial substances against two different Escherichia coli and Staphylococcus epidermidis strains and one Candida albicans strain to evaluate the new method. The results provided reproducible and reliable results in the setup carried out. This test method represents a valuable alternative for the assessment of non-porous surfaces in a manner that more closely reflects real-world conditions (e.g., simulation of aerosol formation by sneezing).
Collapse
Affiliation(s)
| | | | | | | | - Clemens Kittinger
- Diagnostic and Research Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Luk AMY, Luk AMH, Chiou JA, Ho MY, Ngai CM, Kan CW. Rapid Antibacterial Assessments for Plastic and Textile Materials Against Escherichia coli. Antibiotics (Basel) 2024; 13:1156. [PMID: 39766546 PMCID: PMC11672696 DOI: 10.3390/antibiotics13121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Standard test methods for evaluating the antibacterial performance of plastic (non-porous) and textile (porous) materials are accurate and reliable, but completing a standard assessment generally requires at least several days to a week. Well-trained and experienced technicians are also required to conduct the standard tests consistently and analyse the samples and test results systemically. These costs are often not favourable for the performance assurance of antimicrobial products in industrial production, nor for meeting the fast-return demands in research and development of antimicrobial materials nowadays. Methods: In this study, "Rapid Tests" are developed to evaluate the antibacterial activities of plastic and textile materials. Results: The assessment results from Rapid Tests for plastics and textiles are highly correlated to those from the ISO 22196 and the AATCC Test Method 100, respectively, whereas the evaluation operation can be completed within one day. Based on bioluminescence technology, colony-forming units of E. coli from the inoculated specimens are determined via luminometry. Antibacterial efficacy of the treated plastic and textile samples can be examined effectively. Conclusions: By analysing antimicrobial artificial leather samples composed of hydrophilic polyurethane polymer using Rapid Tests for plastics and textiles, the applicability and scope of these tests were remarkedly recognised and verified.
Collapse
Affiliation(s)
- Anson M. Y. Luk
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; (A.M.Y.L.); (M.-Y.H.)
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China;
| | - Adrian M. H. Luk
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; (A.M.H.L.); (J.A.C.)
| | - Jiachi Amber Chiou
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; (A.M.H.L.); (J.A.C.)
| | - Man-Yi Ho
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; (A.M.Y.L.); (M.-Y.H.)
| | - Chi-Man Ngai
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China;
| | - Chi-Wai Kan
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; (A.M.Y.L.); (M.-Y.H.)
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China;
| |
Collapse
|
7
|
Caron B, Maresca M, Leroux A, Lemesle M, Coussegal J, Guillaneuf Y, Lefay C. Antibacterial Materials: Influence of the Type and Conditions of Biological Tests on the Measured Antibacterial Activity. Macromol Rapid Commun 2024; 45:e2400378. [PMID: 39437182 PMCID: PMC11628361 DOI: 10.1002/marc.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
In recent years, the growing problem of antibiotic resistance has highlighted the need for antibacterial materials to prevent the development of infections. Different types of tests exist to certify the antibacterial properties of materials. Variations in results can occur due to the unique requirements of each test technique. The antibacterial test result may be influenced, in particular, by the distinct modes of action of leaching and non-leaching compounds. Using antibacterial materials prepared by the dispersion of an amphiphilic cationic synthetic copolymer in a polyurethane matrix, the influence of the reaction medium and the contact time on the results obtained by two well-established tests: ISO 22196 and CERTIKA is investigated. This shows that the kinetics of killing is bacteria dependent and depending on the test conditions (concentration of salt, time of contact, or media), contradictory results could be obtained. Moreover, the influence of the ionic strength (called salt effect) in both free solution and antibacterial surface is highlighted.
Collapse
Affiliation(s)
- Baptiste Caron
- Aix‐Marseille UniversitéCNRSInstitut de Chimie Radicalaire UMR 7273Marseille13397France
| | - Marc Maresca
- Aix Marseille UnivCNRSCentrale Marseille, iSm2Marseille13397France
| | | | | | | | - Yohann Guillaneuf
- Aix‐Marseille UniversitéCNRSInstitut de Chimie Radicalaire UMR 7273Marseille13397France
| | - Catherine Lefay
- Aix‐Marseille UniversitéCNRSInstitut de Chimie Radicalaire UMR 7273Marseille13397France
| |
Collapse
|
8
|
Cheong YE, Weyandt R, Dewald W, Tolksdorf T, Müller L, Braun A. A realistic approach for evaluating antimicrobial surfaces for dry surface exposure scenarios. Appl Environ Microbiol 2024; 90:e0115024. [PMID: 39365048 PMCID: PMC11497783 DOI: 10.1128/aem.01150-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 pandemic has raised public awareness about the importance of hygiene, leading to an increased demand for antimicrobial surfaces to minimize microbial contamination on high-touch surfaces. This is particularly relevant in public and private transportation settings, where surfaces frequently touched by individuals pose a significant, yet preventable, risk of infection transmission. Typically, the antimicrobial activity of surfaces is tested using test methods of the International Standards Organization, American Society for Testing and Materials, or Japanese Industrial Standards, which involve complete submersion in liquid, elevated temperature (37°C), and prolonged (24 h) contact periods. However, these conditions do not accurately represent real-world scenarios where surfaces are exposed to air. In this study, we propose a modified test method designed to better reflect real-life conditions in the intended end-use setting. The modifications included using deionized water instead of nutrient broth while preparing bacterial inoculum, applying a small test inoculum to the surface and allowing it to dry, maintaining ambient temperature and relative humidity throughout the contact period, and reducing the contact period to 4 h. With this modified approach, the antimicrobial activity of 20 samples was reassessed. This screening revealed that out of 20 samples, only 2 samples were effective against all species, while 8 samples demonstrated partial effectiveness against selected species, and 10 samples showed no significant effect. These findings highlight the inadequacy of the current test standard and emphasize the urgent necessity for revised and adapted testing method to ensure a reliable and accurate evaluation.IMPORTANCEThe recent severe acute respiratory syndrome coronavirus 2 pandemic has sparked increased demand for antimicrobial surfaces to mitigate the risk of fomites-transmitted infection in both indoors and confined spaces. Commonly, the antimicrobial activity of these surfaces is assessed using test standards established by national standards bodies, which do not distinguish between different application scenarios. While these test standards are suitable for surfaces intended for submerged application, they are inappropriate for antimicrobial surfaces designed for dry surface exposure. The usage of these standards can lead to an overestimation of antimicrobial efficacy. Thus, this study introduces a modified dry exposure test method aimed at better reflecting real-life conditions in the intended end-use setting. Our results revealed the subpar antimicrobial performance of numerous samples, highlighting the necessity to revise and tailor the universal test standard to real-world scenarios in order to ensure a reliable and accurate evaluation.
Collapse
Affiliation(s)
| | - Ralph Weyandt
- Bioservices Department, SGS Institut Fresenius GmbH, Taunusstein, Germany
| | - Wilma Dewald
- Volkswagen AG, Group Innovation, Wolfsburg, Germany
| | | | - Laura Müller
- Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine – Hannover (Germany), Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network Hannover (Germany), Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD) and Institute of Immunology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Armin Braun
- Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine – Hannover (Germany), Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network Hannover (Germany), Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD) and Institute of Immunology, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
9
|
Rigo M, Khatami H, Mansi A, Marcelloni AM, Proietto AR, Chiominto A, Amori I, Bargellini A, Marchesi I, Frezza G, Lipani F, Cermelli C, Rossini A, Quaresimin M, Zappalorto M, Pontefisso A, Pastrello M, Rossetto D, Modesti M, Sgarbossa P, Bertani R. Revealing Commercial Epoxy Resins' Antimicrobial Activity: A Combined Chemical-Physical, Mechanical, and Biological Study. Polymers (Basel) 2024; 16:2571. [PMID: 39339035 PMCID: PMC11435071 DOI: 10.3390/polym16182571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
In our continuing search for new polymer composites with antimicrobial activity, we observed that even unmodified epoxy resins exhibit significant activity. Considering their widespread use as starting materials for the realization of multifunctional nanocomposites with excellent chemical and mechanical properties, it was deemed relevant to uncover these unexpected properties that can lead to novel applications. In fact, in places where the contact with human activities makes working surfaces susceptible to microbial contamination, thus jeopardizing the sterility of the environment, their biological activity opens the way to their successful application in minimizing healthcare-associated infections. To this end, three commercial and widely used epoxy resins (DGEBA/Elan-TechW 152LR, 1; EPIKOTETM Resin MGS®/EPIKURETM RIM H 235, 2 and MC152/EW101, 3) have been investigated to determine their antibacterial and antiviral activity. After 24 h, according to ISO 22196:2011, resins 1 and 2 showed a high antibacterial efficacy (R value > 6.0 log reduction) against Staphylococcus aureus and Escherichia coli. Resin 2, prepared according to the ratio epoxy/hardener indicated by the supplier (sample 2a) and with 10% w/w hardener excess (sample 2b), exhibited an intriguing virucidal activity against Herpes Simplex Virus type-1 and Human Coronavirus type V-OC43 as a surrogate of SARS-CoV-2.
Collapse
Affiliation(s)
- Mario Rigo
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (M.R.); (D.R.); (M.M.); (P.S.)
| | - Hamoun Khatami
- Faculty of Engineering, Urmia University, 11km Sero Road, Urmia 5756151818, Iran;
| | - Antonella Mansi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy; (A.M.M.); (A.R.P.); (A.C.); (I.A.)
| | - Anna Maria Marcelloni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy; (A.M.M.); (A.R.P.); (A.C.); (I.A.)
| | - Anna Rita Proietto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy; (A.M.M.); (A.R.P.); (A.C.); (I.A.)
| | - Alessandra Chiominto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy; (A.M.M.); (A.R.P.); (A.C.); (I.A.)
| | - Ilaria Amori
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy; (A.M.M.); (A.R.P.); (A.C.); (I.A.)
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (I.M.); (G.F.); (F.L.); (C.C.)
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (I.M.); (G.F.); (F.L.); (C.C.)
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (I.M.); (G.F.); (F.L.); (C.C.)
| | - Francesco Lipani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (I.M.); (G.F.); (F.L.); (C.C.)
| | - Claudio Cermelli
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (I.M.); (G.F.); (F.L.); (C.C.)
| | - Angelo Rossini
- Medical Services, Santa Lucia Foundation IRCCS, 00179 Rome, Italy;
| | - Marino Quaresimin
- Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, 36100 Vicenza, Italy; (M.Q.); (M.Z.); (A.P.); (M.P.)
| | - Michele Zappalorto
- Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, 36100 Vicenza, Italy; (M.Q.); (M.Z.); (A.P.); (M.P.)
| | - Alessandro Pontefisso
- Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, 36100 Vicenza, Italy; (M.Q.); (M.Z.); (A.P.); (M.P.)
| | - Matteo Pastrello
- Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, 36100 Vicenza, Italy; (M.Q.); (M.Z.); (A.P.); (M.P.)
| | - Daniele Rossetto
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (M.R.); (D.R.); (M.M.); (P.S.)
| | - Michele Modesti
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (M.R.); (D.R.); (M.M.); (P.S.)
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (M.R.); (D.R.); (M.M.); (P.S.)
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (M.R.); (D.R.); (M.M.); (P.S.)
| |
Collapse
|
10
|
Sarraj S, Szymiczek M, Mertas A, Soluch A, Jędrejek D, Jurczyk S. Development of Thyme-Infused Polydimethylsiloxane Composites for Enhanced Antibacterial Wound Dressings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4224. [PMID: 39274614 PMCID: PMC11396752 DOI: 10.3390/ma17174224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024]
Abstract
Polydimethylsiloxane (PDMS) is widely used in biomedical applications due to its biocompatibility and flexibility but faces challenges due to its hydrophobicity and limited mechanical strength. This study explores the incorporation of thyme (Thymus vulgaris L.) into PDMS to enhance its properties for wound dressing applications. PDMS composites containing 2.5 wt.% and 5 wt.% of thyme were prepared and evaluated for physical, chemical, mechanical, and biological properties. Scanning electron microscopy, contact angle measurements, absorption tests, Fourier-transform infrared spectroscopy, differential scanning calorimetry, hardness, tensile testing, antibacterial activity, and cell viability assays were conducted. Thyme integration improved mechanical properties with increased absorption and preserved hydrophobicity. FTIR and DSC analyses indicated minimally altered crystallinity and chemical interactions. Hardness decreased with higher thyme content due to terpene-induced polymerization inhibition. Tensile testing showed reduced stress at break but increased elongation, suitable for wound dressings. Enhanced antibacterial activity was observed, with composites meeting bacteriostatic standards. Cell viability exceeded 70%, with optimal results at 2.5 wt.% thyme, attributed to cytokine-inducing compounds. Thyme-incorporated PDMS composites exhibit improved antibacterial and mechanical properties, demonstrating the potential for advanced wound dressings.
Collapse
Affiliation(s)
- Sara Sarraj
- Department of Theoretical and Applied Mechanics, Silesian University of Technology, Konarskiego 18A Str., 44-100 Gliwice, Poland
| | - Małgorzata Szymiczek
- Department of Theoretical and Applied Mechanics, Silesian University of Technology, Konarskiego 18A Str., 44-100 Gliwice, Poland
| | - Anna Mertas
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19 Str., 41-808 Zabrze, Poland
| | - Agata Soluch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8 Str., 24-100 Puławy, Poland
| | - Dariusz Jędrejek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8 Str., 24-100 Puławy, Poland
| | - Sebastian Jurczyk
- Łukasieiwcz Research Network-Institute for Engineering of Polymer Materials and Dyes, M. Sklodowska-Curie 55 Str., 87-100 Toruń, Poland
| |
Collapse
|
11
|
Han S, Oh E, Shin H, Kumaran S, Ko DH, Choi HJ. Antimicrobial Face Masks and Mask Covers with a Salt-Coated Stacked Spunbond Polypropylene Fabric: Effective Inactivation of Resilient Pathogens and Prevention of Contact Transmission. ACS APPLIED BIO MATERIALS 2024; 7:5171-5187. [PMID: 39008660 DOI: 10.1021/acsabm.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In response to the ongoing threat posed by respiratory diseases, ensuring effective transmission protection is crucial for public health. To address the drawbacks of single-use face masks/respirators, which can be a potential source of contact-based transmission, we have designed an antimicrobial face mask and mask covering utilizing a stack of salt-coated spunbond (SB) fabric. This fabric acts as an outer layer for the face mask and as a covering over a conventional mask, respectively. We evaluated the universal antimicrobial performance of the salt-coated three-stacked SB fabric against enveloped/nonenveloped viruses and spore-forming/nonspore-forming bacteria. The distinctive pathogen inactivation efficiency was confirmed, including resistant pathogens such as human rhinovirus and Clostridium difficile. In addition, we tested other filter attributes, such as filtration efficiency and breathability, to determine the optimal layer for salt coating and its effects on performance. Our findings revealed that the outer layer of a conventional face mask plays a crucial role in contact transmission through contaminated face masks and respirators. Through contact transmission experiments using droplets involving three types of contaminants (fluorescent dyes, bacteria, and viruses), the salt-coated stacked SB fabric demonstrated a superior effect in preventing contact transmission compared to SB or meltblown polypropylene fabrics─an issue challenging to existing masks. Our results demonstrate that the use of salt-coated stacked SB fabrics as (i) the outer layer of a mask and (ii) a mask cover over a mask enhances overall filter performance against infectious droplets, achieving high pathogen inactivation and low contact-based transmission while maintaining breathability.
Collapse
Affiliation(s)
- Sumin Han
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Euna Oh
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Hyerin Shin
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Surjith Kumaran
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Dae-Hong Ko
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
12
|
Poelzl S, Augl S, Schwan AM, Chwatal S, Lackner JM, Kittinger C. Benefits of Core-Shell Particles over Single-Metal Coatings: Mechanical and Chemical Exposure and Antimicrobial Efficacy. Polymers (Basel) 2024; 16:2209. [PMID: 39125235 PMCID: PMC11314921 DOI: 10.3390/polym16152209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
One of the greatest challenges worldwide is containing the spread of problematic microorganisms. A promising approach is the use of antimicrobial coatings (AMCs). The antimicrobial potential of certain metals, including copper and zinc, has already been verified. In this study, polyethylene terephthalate and aluminum (PET-Al) foils were coated with copper, zinc, and a combination of these two metals, known as core-shell particles, respectively. The resistance of the three different types of coatings to mechanical and chemical exposure was evaluated in various ways. Further, the bacteria Staphylococcus aureus and the bacteriophage ϕ6 were used to assess the antimicrobial efficacy of the coatings. The best efficacy was achieved with the pure copper coating, which was not convincing in the abrasion tests. The result was a considerable loss of copper particles on the surfaces and reduced effectiveness against the microorganisms. The core-shell particles demonstrated better adhesion to the surfaces after abrasion tests and against most chemical agents. In addition, the antimicrobial efficiency remained more stable after the washability treatment. Thus, the core-shell particles had several benefits over the pure copper and zinc coatings. In addition, the best core-shell loading for durability and efficacy was determined in this study.
Collapse
Affiliation(s)
- Sabine Poelzl
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 2A, 8010 Graz, Austria;
| | - Stefan Augl
- Department of Materials Technology, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria;
| | - Alexander Michael Schwan
- MATERIALS—Institut für Sensorik, Photonik und Fertigungstechnologien, Joanneum Research Forschungsgesellschaft mbH, Leobner Strasse 94a, 8712 Niklasdorf, Austria (S.C.); (J.M.L.)
| | - Simon Chwatal
- MATERIALS—Institut für Sensorik, Photonik und Fertigungstechnologien, Joanneum Research Forschungsgesellschaft mbH, Leobner Strasse 94a, 8712 Niklasdorf, Austria (S.C.); (J.M.L.)
| | - Jürgen Markus Lackner
- MATERIALS—Institut für Sensorik, Photonik und Fertigungstechnologien, Joanneum Research Forschungsgesellschaft mbH, Leobner Strasse 94a, 8712 Niklasdorf, Austria (S.C.); (J.M.L.)
| | - Clemens Kittinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 2A, 8010 Graz, Austria;
| |
Collapse
|
13
|
Maitz S, Poelzl S, Dreisiebner D, Zarschenas E, Kittinger C. Antimicrobial non-porous surfaces: a comparison of the standards ISO 22196:2011 and the recently published ISO 7581:2023. Front Microbiol 2024; 15:1400265. [PMID: 39086648 PMCID: PMC11288859 DOI: 10.3389/fmicb.2024.1400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
The application of antimicrobial surfaces requires the proof of their effectivity by in vitro methods in laboratories. One of the most well-known test methods is ISO 22196:2011, which represents a simple and inexpensive protocol by applying the bacterial suspension with known volume and concentration covered under a polyethylene film on the surfaces. The incubation is then done under defined humidity conditions for 24 h. Another approach for testing of non-porous surfaces is the newly published ISO 7581:2023. A "dry test" is achieved through spreading and drying 1 μL of a bacterial suspension on the surface. In this study, low alloyed carbon steel, polyethylene terephthalate (PET), and glass specimens were tested uncoated (reference) and coated with zinc according to both ISOs to compare and to evaluate the advantages and disadvantages of each one of them. Although ISO 7581:2023 allows a more realistic test environment than ISO 22196:2011, the reproducibility of the results is not given due to the low application volume. In addition, not all bacterial strains are equally suitable for this testing type. Individual adaptations to the protocols, including incubation conditions (time, temperature, or relative humidity), testing strains and volume, seem necessary to generate conditions that simulate the final application. Nevertheless, both ISOs, if used correctly, provide a good basis for estimating the antimicrobial efficacy of non-porous surfaces.
Collapse
Affiliation(s)
| | | | | | | | - Clemens Kittinger
- Diagnostic and Research Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
14
|
Cunliffe AJ, Askew P, Iredale G, Marchant A, Redfern J. Methods to assess antibacterial, antifungal and antiviral surfaces in relation to touch and droplet transfer: a review, gap-analysis and suggested approaches. Access Microbiol 2024; 6:000804.v3. [PMID: 39130740 PMCID: PMC11316596 DOI: 10.1099/acmi.0.000804.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024] Open
Abstract
To help assess whether a potentially antimicrobial material, surface, or coating provides antimicrobial efficacy, a number of standardised test methods have been developed internationally. Ideally, these methods should generate data that supports the materials efficacy when deployed in the intended end-use application. These methods can be categorised based on their methodological approach such as suspension tests, agar plate/zone diffusion tests, surface inoculation tests, surface growth tests or surface adhesion tests. To support those interested in antimicrobial coating efficacy, this review brings together an exhaustive list of methods (for porous and non-porous materials), exploring the methodological and environmental parameters used to quantify antibacterial, antifungal, or antiviral activity. This analysis demonstrates that antimicrobial efficacy methods that test either fungi or viruses are generally lacking, whilst methods that test bacteria, fungi and viruses are not designed to simulate end-use/lack realistic conditions. As such, a number of applications for antimicrobial activity across medical touch screens, medical textiles and gloves and transport seat textiles are explored as example applications, providing guidance on modifications to existing methods that may better simulate the intended end-use of antimicrobial materials.
Collapse
Affiliation(s)
- Alexander J. Cunliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Peter Askew
- IMSL, Pale Lane, Hartley Whitney, Hants RG27 8DH, UK
| | | | - Abby Marchant
- IMSL, Pale Lane, Hartley Whitney, Hants RG27 8DH, UK
| | - James Redfern
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| |
Collapse
|
15
|
Arese M, Mania I, Brunella V, Lambertini VG, Gorra R. Evaluation of Aging Effect on the Durability of Antibacterial Treatments Applied on Textile Materials for the Automotive Industry. ACS OMEGA 2024; 9:27169-27176. [PMID: 38947847 PMCID: PMC11209923 DOI: 10.1021/acsomega.4c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 07/02/2024]
Abstract
The automotive industry is always seeking novel solutions to improve the durability and the performance of textile materials used in vehicles. Indeed, especially after the coronavirus pandemic, antibacterial treatments have gained interest for their potential of ensuring cleanliness and safety toward microbial contamination within vehicles. This study gives a panoramic view of the durability of antibacterial treatments applied on textile materials in the automotive industry, focusing on their performance after experiencing accelerated aging processes. Two different textile materials, a fabric and a synthetic leather, both treated with antibacterial agents, were tested according to ISO 22196 and ISO 20743 standards, respectively, using two model microorganisms, Escherichia coli and Staphylococcus aureus. The impact of mechanical, thermal, and solar aging on the antibacterial properties has been evaluated. In addition, scanning electron microscope (SEM) analysis was performed to investigate the surface morphology of the materials before and after aging. Furthermore, contact angle measurements were conducted. The results suggest that neither mechanical nor thermal aging processes determined diminished antibacterial action. It was determined, instead, that the most damaging stressor for both textile materials was UV aging, causing severe surface alterations and a reduction in antibacterial activity.
Collapse
Affiliation(s)
- Matilde Arese
- Department
of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
- Fiat
Research center SCPA (CRF), Stellantis, Corso Settembrini 40, 10135 Turin, Italy
| | - Ilaria Mania
- Department
of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Valentina Brunella
- Department
of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Vito Guido Lambertini
- Fiat
Research center SCPA (CRF), Stellantis, Corso Settembrini 40, 10135 Turin, Italy
| | - Roberta Gorra
- Department
of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| |
Collapse
|
16
|
Redfern J, Cunliffe A, Goeres D, Azevedo N, Verran J. Critical analysis of methods to determine growth, control and analysis of biofilms for potential non-submerged antibiofilm surfaces and coatings. Biofilm 2024; 7:100187. [PMID: 38481762 PMCID: PMC10933470 DOI: 10.1016/j.bioflm.2024.100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 11/02/2024] Open
Abstract
The potential uses for antibiofilm surfaces reach across different sectors with significant resultant economic, societal and health impact. For those interested in using antibiofilm surfaces in the built environment, it is important that efficacy testing methods are relevant, reproducible and standardised where possible, to ensure data outputs are applicable to end-use, and comparable across the literature. Using pre-defined keywords, a review of literature reporting on antimicrobial surfaces (78 articles), within which a potential application was described as non-submerged/non-medical surface or coating with antibiofilm action, was undertaken. The most used methods utilized the growth of biofilm in submerged and static systems. Quantification varied (from most to least commonly used) across colony forming unit counts, non-microscopy fluorescence or spectroscopy, microscopy analysis, direct agar-contact, sequencing, and ELISA. Selection of growth media, microbial species, and incubation temperature also varied. In many cases, definitions of biofilm and attempts to quantify antibiofilm activity were absent or vague. Assessing a surface after biofilm recovery or assessing potential regrowth of a biofilm after initial analysis was almost entirely absent. It is clear the field would benefit from widely agreed and adopted approaches or guidance on how to select and incorporate end-use specific conditions, alongside minimum reporting guidelines may benefit the literature.
Collapse
Affiliation(s)
- J. Redfern
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| | - A.J. Cunliffe
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| | - D.M. Goeres
- Center for Biofilm Engineering, Montana State University, MT, USA
| | - N.F. Azevedo
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - J. Verran
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| |
Collapse
|
17
|
Matijaković Mlinarić N, Wawrzaszek B, Kowalska K, Selmani A, Učakar A, Vidmar J, Kušter M, Van de Velde N, Trebše P, Sever Škapin A, Jerman I, Abram A, Zore A, Roblegg E, Bohinc K. Poly(Allylamine Hydrochloride) and ZnO Nanohybrid Coating for the Development of Hydrophobic, Antibacterial, and Biocompatible Textiles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:570. [PMID: 38607105 PMCID: PMC11013899 DOI: 10.3390/nano14070570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
In healthcare facilities, infections caused by Staphylococcus aureus (S. aureus) from textile materials are a cause for concern, and nanomaterials are one of the solutions; however, their impact on safety and biocompatibility with the human body must not be neglected. This study aimed to develop a novel multilayer coating with poly(allylamine hydrochloride) (PAH) and immobilized ZnO nanoparticles (ZnO NPs) to make efficient antibacterial and biocompatible cotton, polyester, and nylon textiles. For this purpose, the coated textiles were characterized with profilometry, contact angles, and electrokinetic analyzer measurements. The ZnO NPs on the textiles were analyzed by scanning electron microscopy and inductively coupled plasma mass spectrometry. The antibacterial tests were conducted with S. aureus and biocompatibility with immortalized human keratinocyte cells. The results demonstrated successful PAH/ZnO coating formation on the textiles, demonstrating weak hydrophobic properties. Furthermore, PAH multilayers caused complete ZnO NP immobilization on the coated textiles. All coated textiles showed strong growth inhibition (2-3-log reduction) in planktonic and adhered S. aureus cells. The bacterial viability was reduced by more than 99%. Cotton, due to its better ZnO NP adherence, demonstrated a slightly higher antibacterial performance than polyester and nylon. The coating procedure enables the binding of ZnO NPs in an amount (<30 µg cm-2) that, after complete dissolution, is significantly below the concentration causing cytotoxicity (10 µg mL-1).
Collapse
Affiliation(s)
- Nives Matijaković Mlinarić
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, 1000 Ljubljana, Slovenia; (N.M.M.); (P.T.); (A.Z.)
| | - Barbara Wawrzaszek
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland; (B.W.); (K.K.)
| | - Klaudia Kowalska
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland; (B.W.); (K.K.)
| | - Atiđa Selmani
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria; (A.S.); (E.R.)
| | - Aleksander Učakar
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (A.U.); (J.V.); (M.K.); (A.A.)
| | - Janja Vidmar
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (A.U.); (J.V.); (M.K.); (A.A.)
| | - Monika Kušter
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (A.U.); (J.V.); (M.K.); (A.A.)
| | - Nigel Van de Velde
- National Institute of Chemistry, Hajdrihova Ulica 19, 1000 Ljubljana, Slovenia; (N.V.d.V.); (I.J.)
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, 1000 Ljubljana, Slovenia; (N.M.M.); (P.T.); (A.Z.)
| | - Andrijana Sever Škapin
- Slovenian National Building and Civil Engineering Institute, Dimčeva Ulica 12, 1000 Ljubljana, Slovenia;
- Faculty of Polymer Technology—FTPO, Ozare 19, 2380 Slovenj Gradec, Slovenia
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova Ulica 19, 1000 Ljubljana, Slovenia; (N.V.d.V.); (I.J.)
| | - Anže Abram
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (A.U.); (J.V.); (M.K.); (A.A.)
| | - Anamarija Zore
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, 1000 Ljubljana, Slovenia; (N.M.M.); (P.T.); (A.Z.)
| | - Eva Roblegg
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria; (A.S.); (E.R.)
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, 1000 Ljubljana, Slovenia; (N.M.M.); (P.T.); (A.Z.)
| |
Collapse
|
18
|
Bento de Carvalho T, Barbosa JB, Teixeira P. Assessing Antimicrobial Efficacy on Plastics and Other Non-Porous Surfaces: A Closer Look at Studies Using the ISO 22196:2011 Standard. BIOLOGY 2024; 13:59. [PMID: 38275735 PMCID: PMC10813364 DOI: 10.3390/biology13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The survival and spread of foodborne and nosocomial-associated bacteria through high-touch surfaces or contamination-prone sites, in either healthcare, domestic or food industry settings, are not always prevented by the employment of sanitary hygiene protocols. Antimicrobial surface coatings have emerged as a solution to eradicate pathogenic bacteria and prevent future infections and even outbreaks. Standardised antimicrobial testing methods play a crucial role in validating the effectiveness of these materials and enabling their application in real-life settings, providing reliable results that allow for comparison between antimicrobial surfaces while assuring end-use product safety. This review provides an insight into the studies using ISO 22196, which is considered the gold standard for antimicrobial surface coatings and examines the current state of the art in antimicrobial testing methods. It primarily focuses on identifying pitfalls and how even small variations in methods can lead to different results, affecting the assessment of the antimicrobial activity of a particular product.
Collapse
Affiliation(s)
| | - Joana Bastos Barbosa
- Universidade Católica Portuguesa, Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.d.C.); (P.T.)
| | | |
Collapse
|
19
|
Chavez-Velado DR, Vargas DA, Sanchez-Plata MX. Bio-Mapping Salmonella and Campylobacter Loads in Three Commercial Broiler Processing Facilities in the United States to Identify Strategic Intervention Points. Foods 2024; 13:180. [PMID: 38254481 PMCID: PMC10813999 DOI: 10.3390/foods13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The poultry industry in the United States is one of the largest in the world. Poultry consumption has significantly increase since the COVID-19 pandemic and is predicted to increase over 16% between 2021 and 2030. Two of the most significant causes of hospitalizations and death in the United States are highly related to poultry consumption. The FSIS regulates poultry processing, enforcing microbial performance standards based on Salmonella and Campylobacter prevalence in poultry processing establishments. This prevalence approach by itself is not a good indicator of food safety. More studies have shown that it is important to evaluate quantification along with prevalence, but there is not much information about poultry mapping using quantification and prevalence. In this study, enumeration and prevalence of Salmonella and Campylobacter were evaluated throughout the process at three different plants in the United States. Important locations were selected in this study to evaluate the effect of differences interventions. Even though there were high differences between the prevalences in the processes, some of the counts were not significantly different, and they were effective in maintaining pathogens at safe levels. Some of the results showed that the intervention and/or process were not well controlled, and they were not effective in controlling pathogens. This study shows that every plant environment is different, and every plant should be encouraged to implement a bio-mapping study. Quantification of pathogens leads to appropriate risk assessment, where physical and chemical interventions can be aimed at specific processing points with higher pathogen concentrations using different concentrations of overall process improvement.
Collapse
Affiliation(s)
| | | | - Marcos X. Sanchez-Plata
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA; (D.R.C.-V.); (D.A.V.)
| |
Collapse
|
20
|
Kaur H, Rosenberg M, Kook M, Danilian D, Kisand V, Ivask A. Antibacterial activity of solid surfaces is critically dependent on relative humidity, inoculum volume, and organic soiling. FEMS MICROBES 2023; 5:xtad022. [PMID: 38213394 PMCID: PMC10781430 DOI: 10.1093/femsmc/xtad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
Antimicrobial surface materials potentially prevent pathogen transfer from contaminated surfaces. Efficacy of such surfaces is assessed by standard methods using wet exposure conditions known to overestimate antimicrobial activity compared to dry exposure. Some dry test formats have been proposed but semi-dry exposure scenarios e.g. oral spray or water droplets exposed to ambient environment, are less studied. We aimed to determine the impact of environmental test conditions on antibacterial activity against the model species Escherichia coli and Staphylococcus aureus. Surfaces based on copper, silver, and quaternary ammonium with known or claimed antimicrobial properties were tested in conditions mimicking microdroplet spray or larger water droplets exposed to variable relative air humidity in the presence or absence of organic soiling. All the environmental parameters critically affected antibacterial activity of the tested surfaces from no effect in high-organic dry conditions to higher effect in low-organic humid conditions but not reaching the effect size demonstrated in the ISO 22169 wet format. Copper was the most efficient antibacterial surface followed by silver and quaternary ammonium based coating. Antimicrobial testing of surfaces using small droplet contamination in application-relevant conditions could therefore be considered as one of the worst-case exposure scenarios relevant to dry use surfaces.
Collapse
Affiliation(s)
- Harleen Kaur
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Merilin Rosenberg
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Mati Kook
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Dmytro Danilian
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
21
|
Nefedova A, Rausalu K, Zusinaite E, Kisand V, Kook M, Smits K, Vanetsev A, Ivask A. Antiviral efficacy of nanomaterial-treated textiles in real-life like exposure conditions. Heliyon 2023; 9:e20067. [PMID: 37810009 PMCID: PMC10559815 DOI: 10.1016/j.heliyon.2023.e20067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the growing interest towards reducing the number of potentially infectious agents on critical high-touch surfaces, the popularity of antimicrobially and antivirally active surfaces, including textiles, has increased. The goal of this study was to create antiviral textiles by spray-depositing three different nanomaterials, two types of CeO2 nanoparticles and quaternary ammonium surfactant CTAB loaded SiO2 nanocontainers, onto the surface of a knitted polyester textile and assess their antiviral activity against two coronaviruses, porcine transmissible gastroenteritis virus (TGEV) and severe acute respiratory syndrome virus (SARS CoV-2). Antiviral testing was carried out in small droplets in semi-dry conditions and in the presence of organic soiling, to mimic aerosol deposition of viruses onto the textiles. In such conditions, SARS CoV-2 stayed infectious at least for 24 h and TGEV infected cells even after 72h of semi-dry deposition suggesting that textiles exhibiting sufficient antiviral activity before or at 24 h, can be considered promising. The antiviral efficacy of nanomaterial-deposited textiles was compared with the activity of the same nanomaterials in colloidal form and with positive control textiles loaded with copper nitrate and CTAB. Our results indicated that after deposition onto the textile, CeO2 nanoparticles lost most of their antiviral activity, but antiviral efficacy of CTAB-loaded SiO2 nanocontainers was retained also after deposition. Copper nitrate deposited textile that was used as a positive control, showed relatively high antiviral activity as expected. However, as copper was effectively washed away from the textile already during 1 h, the use of copper for creating antiviral textiles would be impractical. In summary, our results indicated that antiviral activity of textiles cannot be predicted from antiviral efficacy of the deposited compounds in colloid and attention should be paid on prolonged efficacy of antivirally coated textiles.
Collapse
Affiliation(s)
- Alexandra Nefedova
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Mati Kook
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Krisjanis Smits
- Institute Solid State Physics, University of Latvia, 8 Kengaraga street, Riga, LV-1063, Latvia
| | - Alexander Vanetsev
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| |
Collapse
|
22
|
El-Sayed M, Al-Mofty SED, Mahdy NK, Sarhan WA, Azzazy HMES. A novel long-acting antimicrobial nanomicelle spray. NANOSCALE ADVANCES 2023; 5:2517-2529. [PMID: 37143809 PMCID: PMC10153481 DOI: 10.1039/d2na00950a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/20/2023] [Indexed: 05/06/2023]
Abstract
Contaminated surfaces play a major role in disease transmission to humans. The vast majority of commercial disinfectants provide short-term protection of surfaces against microbial contamination. The Covid-19 pandemic has attracted attention to the importance of long-term disinfectants as they would reduce the need for staff and save time. In this study, nanoemulsions and nanomicelles containing a combination of benzalkonium chloride (BKC; a potent disinfectant and a surfactant) and benzoyl peroxide (BPO; a stable form of peroxide that is activated upon contact with lipid/membranous material) were formulated. The prepared nanoemulsion and nanomicelle formulas were of small sizes <80 nm and high positive charge >45 mV. They showed enhanced stability and prolonged antimicrobial efficacy. The antibacterial potency was evaluated in terms of long-term disinfection on surfaces as verified by repeated bacterial inoculums. Additionally, the efficacy of killing bacteria upon contact was also investigated. A nanomicelle formula (NM-3) consisting of 0.8% BPO in acetone and 2% BKC plus 1% TX-100 in distilled water (1 : 5 volume ratio) demonstrated overall surface protection over a period of 7 weeks upon a single spray application. Furthermore, its antiviral activity was tested by the embryo chick development assay. The prepared NM-3 nanoformula spray showed strong antibacterial activities against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus as well as antiviral activities against infectious bronchitis virus due to the dual effects of BKC and BPO. The prepared NM-3 spray shows great potential as an effective solution for prolonged surface protection against multiple pathogens.
Collapse
Affiliation(s)
- Mousa El-Sayed
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo Cairo 11835 Egypt
| | - Saif El-Din Al-Mofty
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo Cairo 11835 Egypt
| | - Noha Khalil Mahdy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo Cairo 11835 Egypt
| | - Wessam Awad Sarhan
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo Cairo 11835 Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo Cairo 11835 Egypt
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Jena 07745 Germany
| |
Collapse
|
23
|
Iskandar K, Pecastaings S, LeGac C, Salvatico S, Feuillolay C, Guittard M, Marchin L, Verelst M, Roques C. Demonstrating the In Vitro and In Situ Antimicrobial Activity of Oxide Mineral Microspheres: An Innovative Technology to Be Incorporated into Porous and Nonporous Materials. Pharmaceutics 2023; 15:pharmaceutics15041261. [PMID: 37111747 PMCID: PMC10144421 DOI: 10.3390/pharmaceutics15041261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The antimicrobial activity of surfaces treated with zinc and/or magnesium mineral oxide microspheres is a patented technology that has been demonstrated in vitro against bacteria and viruses. This study aims to evaluate the efficiency and sustainability of the technology in vitro, under simulation-of-use conditions, and in situ. The tests were undertaken in vitro according to the ISO 22196:2011, ISO 20473:2013, and NF S90-700:2019 standards with adapted parameters. Simulation-of-use tests evaluated the robustness of the activity under worst-case scenarios. The in situ tests were conducted on high-touch surfaces. The in vitro results show efficient antimicrobial activity against referenced strains with a log reduction of >2. The sustainability of this effect was time-dependent and detected at lower temperatures (20 ± 2.5 °C) and humidity (46%) conditions for variable inoculum concentrations and contact times. The simulation of use proved the microsphere's efficiency under harsh mechanical and chemical tests. The in situ studies showed a higher than 90% reduction in CFU/25 cm2 per treated surface versus the untreated surfaces, reaching a targeted value of <50 CFU/cm2. Mineral oxide microspheres can be incorporated into unlimited surface types, including medical devices, to efficiently and sustainably prevent microbial contamination.
Collapse
Affiliation(s)
- Katia Iskandar
- Department of Pharmacy, School of Pharmacy, Lebanese International University, Bekaa P.O. Box 146404, Lebanon
- National Institute of Public Health, Clinical Epidemiology, and Toxicology-Lebanon (INSPECT-LB), Beirut 6573, Lebanon
| | - Sophie Pecastaings
- Laboratoire de Génie Chimique, Faculté de Pharmacie, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Céline LeGac
- FONDEREPHAR, Faculté de Pharmacie, 31062 Toulouse, France
| | | | | | - Mylène Guittard
- Pylote SAS, 22 Avenue de la Mouyssaguèse, 31280 Drémil-Lafage, France
| | - Loïc Marchin
- Pylote SAS, 22 Avenue de la Mouyssaguèse, 31280 Drémil-Lafage, France
| | - Marc Verelst
- CEMES, UPR CNRS 8011, 29 Rue Jeanne Marvig, CEDEX, 31055 Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Faculté de Pharmacie, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
- FONDEREPHAR, Faculté de Pharmacie, 31062 Toulouse, France
| |
Collapse
|
24
|
Markowska-Szczupak A, Paszkiewicz O, Yoshiiri K, Wang K, Kowalska E. Can photocatalysis help in the fight against COVID-19 pandemic? CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2023; 40:100769. [PMID: 36846296 PMCID: PMC9942773 DOI: 10.1016/j.cogsc.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mould fungi are serious threats to humans and animals (allergen) and might be the main cause of COVID-19-associated pulmonary aspergillosis. The common methods of disinfection are not highly effective against fungi due to the high resistance of fungal spores. Recently, photocatalysis has attracted significant attention towards antimicrobial action. Outstanding properties of titania photocatalysts have already been used in many areas, e.g., for building materials, air conditioner filters, and air purifiers. Here, the efficiency of photocatalytic methods to remove fungi and bacteria (risk factors for Severe Acute Respiratory Syndrome Coronavirus 2 co-infection) is presented. Based on the relevant literature and own experience, there is no doubt that photocatalysis might help in the fight against microorganisms, and thus prevent the severity of COVID-19 pandemic.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Kenta Yoshiiri
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
| | - Kunlei Wang
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
| | - Ewa Kowalska
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
25
|
Mayr A, Knobloch JK, Hinterberger G, Seewald V, Wille I, Kaltseis J, Knobling B, Klupp EMT, Samardzic E, Lass-Flörl C. Interlaboratory reproducibility of a touch-transfer assay for the assessment of antimicrobial surfaces. J Hosp Infect 2023; 134:1-6. [PMID: 36758903 DOI: 10.1016/j.jhin.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Various assay methods have been developed to study antimicrobial activity based on contamination of surfaces with different amounts of liquid bacterial suspensions. Since surfaces with frequent hand contact are typically touched in a dry state in clinical settings, these tests may be inappropriate at assessing effectiveness to reduce pathogen transmission. AIM To investigate a surface previously confirmed to display antimicrobial activity even after drying of small volumes of bacterial suspension (Egger antimicrobial surfaces: EAS) under conditions modelling dry contamination using a touch-transfer method. METHODS EAS, an antimicrobial copper alloy, as well as a negative control were examined to assess interlaboratory test reproducibility. FINDINGS Significantly fewer bacteria on EAS after touch transfer and some differences in the touch transmission were detected between the two laboratories. However, an identical assessment of effectiveness for EAS came from both laboratories. Interestingly, despite previously detected antimicrobial efficacy of EAS and the antimicrobial copper alloy after liquid contamination, insufficient activity was observed under dry conditions during a contact time of 4 h by both laboratories. Experiments under standardized air humidity in one laboratory revealed at least for copper a strong influence of humidity on antimicrobial activity. These data indicate that procedures involving contamination of surfaces with organisms suspended in liquids are not directly comparable to dry contamination. CONCLUSION Since, in the real world of a hospital, organisms are typically transferred between dry surfaces, further standardization of the touch-transfer method is worthwhile for a better understanding of the efficacy of such surfaces.
Collapse
Affiliation(s)
- A Mayr
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Invasive Fungal Infections (Module 3 - Self-disinfecting Surfaces), Austria.
| | - J K Knobloch
- University Medical Center Hamburg-Eppendorf, Institute for Medical Microbiology, Virology and Hygiene, Department of Infection Prevention and Control, Hamburg, Germany.
| | - G Hinterberger
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - V Seewald
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - I Wille
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - J Kaltseis
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - B Knobling
- University Medical Center Hamburg-Eppendorf, Institute for Medical Microbiology, Virology and Hygiene, Department of Infection Prevention and Control, Hamburg, Germany
| | - E-M T Klupp
- University Medical Center Hamburg-Eppendorf, Institute for Medical Microbiology, Virology and Hygiene, Department of Infection Prevention and Control, Hamburg, Germany
| | - E Samardzic
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Invasive Fungal Infections (Module 3 - Self-disinfecting Surfaces), Austria
| | - C Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Invasive Fungal Infections (Module 3 - Self-disinfecting Surfaces), Austria
| |
Collapse
|
26
|
Municoy S, Antezana PE, Bellino MG, Desimone MF. Development of 3D-Printed Collagen Scaffolds with In-Situ Synthesis of Silver Nanoparticles. Antibiotics (Basel) 2022; 12:antibiotics12010016. [PMID: 36671217 PMCID: PMC9855044 DOI: 10.3390/antibiotics12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
UV-irradiation method has grown as an alternative approach to in situ synthetize silver nanoparticles (AgNPs) for avoiding the use of toxic reducing agents. In this work, an antimicrobial material by in situ synthesizing AgNPs within 3D-printed collagen-based scaffolds (Col-Ag) was developed. By modifying the concentration of AgNO3 (0.05 and 0.1 M) and UV irradiation time (2 h, 4 h, and 6 h), the morphology and size of the in situ prepared AgNPs could be controlled. As a result, star-like silver particles of around 23 ± 4 μm and spherical AgNPs of 220 ± 42 nm were obtained for Ag 0.05 M, while for Ag 0.1 M cubic particles from 0.3 to 1.0 μm and round silver precipitates of 3.0 ± 0.4 μm were formed in the surface of the scaffolds at different UV irradiation times. However, inside the material AgNPs of 10-28 nm were obtained. The DSC thermal analysis showed that a higher concentration of Ag stabilizes the 3D-printed collagen-based scaffolds, while a longer UV irradiation interval produces a decrease in the denaturation temperature of collagen. The enzymatic degradation assay also revealed that the in situ formed AgNPs act as stabilizing and reinforcement agent which also improve the swelling capacity of collagen-based material. Finally, antimicrobial activity of Col-Ag was studied, showing high bactericidal efficiency against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. These results showed that the UV irradiation method was really attractive to modulate the size and shape of in situ synthesized AgNPs to develop antimicrobial 3D-printed collagen scaffolds with different thermal, swelling and degradation properties.
Collapse
Affiliation(s)
- Sofia Municoy
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Pablo Edmundo Antezana
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Martín Gonzalo Bellino
- Instituto de Nanociencia y Nanotecnología, Comisión Nacional de Energía Atómica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín 1650, Argentina
| | - Martín Federico Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
- Correspondence:
| |
Collapse
|
27
|
Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022; 16:249-270. [PMID: 35415290 PMCID: PMC8965851 DOI: 10.1016/j.bioactmat.2022.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery. Recent developments in advanced antimicrobial nanotechnologies provide numerous opportunities to effective remove resistant bacteria and prevent resistance from occurring through unique mechanisms. With tunable physicochemical properties, nanomaterials can be designed to be bactericidal, antifouling, immunomodulating, and capable of delivering antibacterial compounds to the infection region with spatiotemporal accuracy. Despite its substantial advancement, an important, but under-explored area, is potential microbial resistance to nanomaterials and how this can impact the clinical use of antimicrobial nanotechnologies. This review aims to provide a better understanding of nanomaterial-associated microbial resistance to accelerate bench-to-bedside translations of emerging nanotechnologies for effective control of implant associated infections.
Collapse
Affiliation(s)
- Zhuoran Wu
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Brian Chan
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117547, Singapore
- Institute of Molecular and Cell Biology, 35 Agency for Science, Technology and Research, 138673, Singapore
| | - Hwee Weng Dennis Hey
- National University Health System, National University of Singapore, 119228, Singapore
| | - Andy Tay
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Tissue Engineering Programme, National University of Singapore, 117510, Singapore
| |
Collapse
|
28
|
Lazzini G, Romoli L, Fuso F. Fluid-driven bacterial accumulation in proximity of laser-textured surfaces. Colloids Surf B Biointerfaces 2022; 217:112654. [PMID: 35816878 DOI: 10.1016/j.colsurfb.2022.112654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
In this work we investigated the role of fluid in the initial phase of bacterial adhesion on textured surfaces, focusing onto the approach of the bacterial cells towards the surface. In particular, stainless steel surfaces textured via femtosecond laser interaction have been considered. The method combined a simulation routine, based on the numerical solution of Navier-Stokes equations, and the use of a theoretical model, based on the Smoluchowski's equation. Results highlighted a slowdown of the fluid velocity field in correspondence of the surface dales. In addition, a shear induced accumulation on the top of the surface protrusions was predicted for motile bacterial species, E. coli. In particular, we observed a role of the surface protrusions in increasing the range over which motile bacterial species are attracted towards the surface through a rheotactic mechanism. In other words, we found that, in certain conditions of fluid flow and textured surface morphology, surface protrusions act as a sort of "rheotactic antennas".
Collapse
Affiliation(s)
- Gianmarco Lazzini
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy.
| | - Luca Romoli
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy
| | - Francesco Fuso
- Dipartimento di Fisica "Enrico Fermi", Universitá di Pisa, 56127 Pisa, Italy
| |
Collapse
|
29
|
Cunliffe AJ, Wang R, Redfern J, Verran J, Ian Wilson D. Effect of environmental factors on the kinetics of evaporation of droplets containing bacteria or viruses on different surfaces. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Liu H, Ni Y, Hu J, Jin Y, Gu P, Qiu H, Chen K. Self-Healing and Antibacterial Essential Oil-Loaded Mesoporous Silica/Polyacrylate Hybrid Hydrogel for High-Performance Wearable Body-Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21509-21520. [PMID: 35500100 DOI: 10.1021/acsami.2c03406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flexible electronics have aroused great interest over the past few years due to their unique advantages of being wearable and lightweight. Introducing the self-healing function into wearable electronics will contribute to the practical applications of wearable electronics by prolonging the devices' lifetime. In this study, a flexible essential oil (EO)-loaded mesoporous silica (EO@AMS)/polyacrylate hybrid hydrogel with superb self-healing and antibacterial properties was prepared. The prepared hybrid hydrogel was found to have excellent piezoresistive sensing performance, which could be particularly suitable for human vital activity monitoring. Benefiting from the strong ionic bonding and multiple hydrogen bonds between polyacrylate and EO@AMS, the hybrid hydrogel could repair its damaged areas with restored sensing and mechanical properties, which suggested excellent self-healing ability. In addition, this hybrid hydrogel, when applied in wearable devices, was found to have high antibacterial ability owing to the slow release of the lemon EO from AMS to kill bacteria. This promising self-healing and antibacterial hybrid hydrogel shows a promising application in wearable electronics for posture monitoring, human-computer interaction, and artificial intelligence.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Yezhou Ni
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yameng Jin
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Peng Gu
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Qiu
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Kunlin Chen
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|