1
|
Hoerter A, Petrucciani A, Bonifacio J, Arnett E, Schlesinger LS, Pienaar E. Timing matters in macrophage/CD4+ T cell interactions: an agent-based model comparing Mycobacterium tuberculosis host-pathogen interactions between latently infected and naïve individuals. mSystems 2025; 10:e0129024. [PMID: 39918314 PMCID: PMC11915833 DOI: 10.1128/msystems.01290-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/17/2024] [Indexed: 03/19/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant health challenge. Clinical manifestations of TB exist across a spectrum with a majority of infected individuals remaining asymptomatic, commonly referred to as latent TB infection (LTBI). In vitro models have demonstrated that cells from individuals with LTBI can better control Mtb growth and form granuloma-like structures more quickly, compared to cells from uninfected (Mtb-naïve) individuals. These in vitro results agree with animal and clinical evidence that LTBI protects, to some degree, against reinfection. However, the mechanisms by which LTBI might offer protection against reinfection remain unclear, and quantifying the relative contributions of multiple control mechanisms is challenging using experimental methods alone. To complement in vitro models, we have developed an in silico agent-based model to help elucidate host responses that might contribute to protection against reinfection. Our simulations indicate that earlier contact between macrophages and CD4+ T cells leads to LTBI simulations having more activated CD4+ T cells and, in turn, more activated infected macrophages, all of which contribute to a decreased bacterial load early on. Our simulations also demonstrate that granuloma-like structures support this early macrophage activation in LTBI simulations. We find that differences between LTBI and Mtb-naïve simulations are driven by TNFα and IFNγ-associated mechanisms as well as macrophage phagocytosis and killing mechanisms. Together, our simulations show how important the timing of the first interactions between innate and adaptive immune cells is, how this impacts infection progression, and why cells from LTBI individuals might be faster to respond to reinfection.IMPORTANCETuberculosis (TB) remains a significant global health challenge, with millions of new infections and deaths annually. Despite extensive research, the mechanisms by which latent TB infection (LTBI) confers protection against reinfection remain unclear. In this study, we developed an in silico agent-based model to simulate early immune responses to Mycobacterium tuberculosis infection based on experimental in vitro infection of human donor cells. Our simulations reveal that early interactions between macrophages and CD4+ T cells, driven by TNFα and IFNγ, are critical for bacterial control and granuloma formation in LTBI. These findings offer new insights into the immune processes involved in TB, which could inform the development of targeted vaccines and host-directed therapies. By integrating experimental data with computational predictions, our research provides a robust framework for understanding TB immunity and guiding future interventions to mitigate the global TB burden.
Collapse
Affiliation(s)
- Alexis Hoerter
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Alexa Petrucciani
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | | - Eusondia Arnett
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Magalhães DWA, Sidrônio MGS, Nogueira NNA, Carvalho DCM, de Freitas MEG, Oliveira EC, de Frazao Lima GF, de Araújo DAM, Scavone C, de Souza TA, Villar JAFP, Barbosa LA, Mendonça-Junior FJB, Rodrigues-Junior VS, Rodrigues-Mascarenhas S. Evaluation of the Anti-Mycobacterial and Anti-Inflammatory Activities of the New Cardiotonic Steroid γ-Benzylidene Digoxin-15 in Macrophage Models of Infection. Microorganisms 2025; 13:269. [PMID: 40005637 PMCID: PMC11857721 DOI: 10.3390/microorganisms13020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiotonic steroids modulate various aspects of the inflammatory response. The synthetic cardiotonic steroid γ-benzylidene digoxin 15 (BD-15), a digoxin derivative, has emerged as a promising candidate with potential immunomodulatory effects. However, its biological activity remains largely unexplored. This study investigated the anti-mycobacterial and anti-inflammatory effects of BD-15 in an in vitro macrophage infection model with Mycobacterium spp. Unlike digoxin, which showed significant toxicity at higher concentrations, BD-15 exhibited no cytotoxicity in RAW 264.7 cells (a murine macrophage cell line). Both compounds were evaluated in Mycobacterium smegmatis-infected RAW 264.7 cells, reducing bacterial burden without direct bactericidal activity. Additionally, both modulated pro-inflammatory cytokine levels, notably by decreasing tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) levels. BD-15 specifically reduced NOD-, LRR-, and pyrin-domain-containing protein 3 (NLRP3) inflammasome expression and increased interleukin-10 (IL-10) production. Notably, BD-15 reduced colony-forming unit (CFU) counts in Mycobacterium tuberculosis-infected RAW 264.7 cells. Toxicity assays in HepG2 cells (a human liver cancer cell line) showed that BD-15 had minimal hepatotoxicity compared to digoxin, and both demonstrated negligible acute toxicity in an Artemia salina bioassay. These findings revealed the immunomodulatory effects of cardiotonic steroids in a bacterial infection model and highlighted BD-15 as a safer alternative to digoxin for therapeutic applications.
Collapse
Affiliation(s)
- Daniel Wilson A. Magalhães
- Postgraduate Program in Physiological Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (D.W.A.M.); (N.N.A.N.)
| | - Maria Gabriella S. Sidrônio
- Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Noêmia N. A. Nogueira
- Postgraduate Program in Physiological Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (D.W.A.M.); (N.N.A.N.)
| | - Deyse Cristina Madruga Carvalho
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (D.C.M.C.); (S.R.-M.)
| | - Maria Eugênia G. de Freitas
- Laboratory of Biotechnology in Microorganisms, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Ericke Cardoso Oliveira
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindu, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (E.C.O.); (G.F.d.F.L.); (J.A.F.P.V.); (L.A.B.)
| | - Gustavo F. de Frazao Lima
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindu, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (E.C.O.); (G.F.d.F.L.); (J.A.F.P.V.); (L.A.B.)
| | - Demétrius A. M. de Araújo
- Postgraduate Program in Biotechnology (Renorbio), Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Cristoforo Scavone
- Laboratory of Neuropharmacology Research, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, São Paulo 05508-900, SP, Brazil;
| | - Thalisson Amorim de Souza
- Postgraduate Program in Natural and Synthetic Bioactive Products, Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - José Augusto F. P. Villar
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindu, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (E.C.O.); (G.F.d.F.L.); (J.A.F.P.V.); (L.A.B.)
| | - Leandro A. Barbosa
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindu, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (E.C.O.); (G.F.d.F.L.); (J.A.F.P.V.); (L.A.B.)
| | - Francisco Jaime Bezerra Mendonça-Junior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraíba, João Pessoa 58071-160, PB, Brazil
| | - Valnês S. Rodrigues-Junior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (D.C.M.C.); (S.R.-M.)
| |
Collapse
|
3
|
Dasan B, Rajamanickam A, Pandiarajan AN, Shanmugam S, Nott S, Babu S. Immunological mechanisms of tuberculosis susceptibility in TB-infected individuals with type 2 diabetes mellitus: insights from mycobacterial growth inhibition assay and cytokine analysis. Microbiol Spectr 2025; 13:e0144524. [PMID: 39656000 PMCID: PMC11705871 DOI: 10.1128/spectrum.01445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
Several studies have highlighted the increased risk of active tuberculosis (TB) in individuals with diabetes mellitus (DM), especially in TB-endemic regions. This dual burden poses significant challenges for TB control efforts. However, there is a lack of reliable laboratory tools to identify individuals at higher risk, and the immunological mechanisms underlying this susceptibility are poorly understood. In this study, we utilized the mycobacterial growth inhibition assay (MGIA) to assess immune response capacity against Mycobacterium tuberculosis (M.tb) in TB infection (TBI) in individuals with type 2 DM (T2DM) (n = 11) compared to those without type 2 DM (NDM) (n = 23). Additionally, we measured various cytokines using multiplex ELISA to understand the immune profile. Our findings revealed that TBI-T2DM individuals exhibited a lower capacity to inhibit M.tb growth compared to TBI-NDM, as evidenced by MGIA results (P = 0.0029). Cytokine analysis further demonstrated diminished production of key cytokines involved in protection, including type 1 (IFNγ, TNFα, IL-2), type 17 (IL-17A), and proinflammatory (IL-1α, IL-1β, IL-6, IL-12p70) cytokines in the TBI-T2DM group compared to TBI-NDM, upon M.tb infection. These findings suggest that MGIA holds promise as an in vitro marker for assessing M.tb immunological control in TBI individuals, particularly those with T2DM. The observed cytokine profile in TBI-T2DM individuals indicates a compromised immune response against M.tb activation, potentially explaining the heightened risk of active TB in this population. IMPORTANCE This study is important because it sheds light on the impaired immune response in individuals with type 2 diabetes mellitus (T2DM) who are infected with Mycobacterium tuberculosis (M.tb), offering critical insights into why they are at higher risk of developing active tuberculosis (TB). By demonstrating that T2DM individuals exhibit a weakened ability to control M.tb growth and a compromised cytokine profile, the research underscores the need for better diagnostic tools, such as the mycobacterial growth inhibition assay (MGIA), to identify those at greater risk of progression to active TB. The findings also highlight the importance of integrated care strategies for managing both T2DM and TB, particularly in TB-endemic regions, and point to the need for further research to develop more effective interventions tailored to this vulnerable population.
Collapse
Affiliation(s)
- Bindu Dasan
- Department of ICER, National Institute of Health-National Institute of Allergy and Infectious Diseases-International Center for Excellence in Research, Chennai, India
| | - Anuradha Rajamanickam
- Department of ICER, National Institute of Health-National Institute of Allergy and Infectious Diseases-International Center for Excellence in Research, Chennai, India
| | - Arul Nancy Pandiarajan
- Department of ICER, National Institute of Health-National Institute of Allergy and Infectious Diseases-International Center for Excellence in Research, Chennai, India
| | - Sivakumar Shanmugam
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Sujatha Nott
- Infectious Diseases, Dignity Health, Chandler, Arizona, USA
| | - Subash Babu
- Department of ICER, National Institute of Health-National Institute of Allergy and Infectious Diseases-International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Raqib R, Sarker P. Repurposed Drugs and Plant-Derived Natural Products as Potential Host-Directed Therapeutic Candidates for Tuberculosis. Biomolecules 2024; 14:1497. [PMID: 39766204 PMCID: PMC11673177 DOI: 10.3390/biom14121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death due to infectious disease. It is a treatable disease; however, conventional treatment requires a lengthy treatment regimen with severe side effects, resulting in poor compliance among TB patients. Intermittent drug use, the non-compliance of patients, and prescription errors, among other factors, have led to the emergence of multidrug-resistant TB, while the mismanagement of multidrug-resistant TB (MDR-TB) has eventually led to the development of extensively drug-resistant tuberculosis (XDR-TB). Thus, there is an urgent need for new drug development, but due to the enormous expenses and time required (up to 20 years) for new drug research and development, new therapeutic approaches to TB are required. Host-directed therapies (HDT) could be a most attractive strategy, as they target the host defense processes instead of the microbe and thereby may prevent the alarming rise of MDR- and XDR-TB. This paper reviews the progress in HDT for the treatment of TB using repurposed drugs which have been investigated in clinical trials (completed or ongoing) and plant-derived natural products that are in clinical or preclinical trial stages. Additionally, this review describes the existing challenges to the development and future research directions in the implementation of HDT.
Collapse
Affiliation(s)
- Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh;
| | | |
Collapse
|
5
|
Li X, Luo X, Wang B, Fu L, Chen X, Lu Y. Clofazimine inhibits innate immunity against Mycobacterium tuberculosis by NF-κB. mSphere 2024; 9:e0025424. [PMID: 39046230 PMCID: PMC11351037 DOI: 10.1128/msphere.00254-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Tuberculosis (TB) remains one of the infectious diseases with high incidence and high mortality. About a quarter of the population has been latently infected with Mycobacterium tuberculosis. At present, the available TB treatment strategies have the disadvantages of too long treatment duration and serious adverse reactions. The sustained inflammatory response leads to permanent tissue damage. Unfortunately, the current selection of treatment regimens does not consider the immunomodulatory effects of various drugs. In this study, we preliminarily evaluated the effects of commonly used anti-tuberculosis drugs on innate immunity at the cellular level. The results showed that clofazimine (CFZ) has a significant innate immunosuppressive effect. CFZ significantly inhibited cytokines and type I interferons (IFNα and IFNβ) expression under both lipopolysaccharide stimulation and CFZ-resistant strain infection. In further mechanistic studies, CFZ strongly inhibited the phosphorylation of nuclear factor kappa B (NF-κB) p65 and had no significant effect on the phosphorylation of p38. In conclusion, our study found that CFZ suppresses innate immunity against Mycobacterium tuberculosis by NF-κB, which should be considered in future regimen development. IMPORTANCE The complete elimination of Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, from TB patients is a complicated process that takes a long time. The excessive immune inflammatory response of the host for a long time causes irreversible organic damage to the lungs and liver. Current antibiotic-based treatment options involve multiple complex drug combinations, often targeting different physiological processes of Mtb. Given the high incidence of post-tuberculosis lung disease, we should also consider the immunomodulatory properties of other drugs when selecting drug combinations.
Collapse
Affiliation(s)
- Xinda Li
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoyi Luo
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Bin Wang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Lei Fu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xi Chen
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
6
|
Yu Z, Liang YC, Berton S, Liu L, Zou J, Chen L, Xu Z, Luo C, Sun J, Yang W. Small Molecule Targeting PPM1A Activates Autophagy for Mycobacterium tuberculosis Host-Directed Therapy. J Med Chem 2024; 67:11917-11936. [PMID: 38958057 DOI: 10.1021/acs.jmedchem.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the infectious agent of tuberculosis (TB), causes over 1.5 million deaths globally every year. Host-directed therapies (HDT) for TB are desirable for their potential to shorten treatment and reduce the development of antibiotic resistance. Previously, we described a modular biomimetic strategy to identify SMIP-30, targeting PPM1A (IC50 = 1.19 μM), a metal-dependent phosphatase exploited by Mtb to survive intracellularly. SMIP-30 restricted the survival of Mtb in macrophages and lungs of infected mice. Herein, we redesigned SMIP-30 to create SMIP-031, which is a more potent inhibitor for PPM1A (IC50 = 180 nM). SMIP-031 efficiently increased the level of phosphorylation of S403-p62 and the expression of LC3B-II to activate autophagy, resulting in the dose-dependent clearance of Mtb in infected macrophages. SMIP-031 possesses a good pharmacokinetic profile and oral bioavailability (F = 74%). In vivo, SMIP-031 is well tolerated up to 50 mg/kg and significantly reduces the bacteria burden in the spleens of infected mice.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yi Chu Liang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Liping Liu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Zou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Lu Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jim Sun
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
7
|
Khanna H, Gupta S, Sheikh Y. Cell-Mediated Immune Response Against Mycobacterium tuberculosis and Its Potential Therapeutic Impact. J Interferon Cytokine Res 2024; 44:244-259. [PMID: 38607324 DOI: 10.1089/jir.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Cell-mediated immune response is critical for Mycobacterium tuberculosis (M.tb) control. Understanding of pathophysiology and role played by different cell mediators is essential for vaccine development and better management of patients with M.tb. A complex array of cytokines and chemokines are involved in the immune response against M.tb; however, their relative contribution in protection remains to be further explored. The purpose of this review is to summarize the current understanding regarding the cytokine and chemokine profiles in M.tb infection in order to assist research in the field to pursue new direction in prevention and control. We have also summarized recent findings on vaccine trials that have been developed and or are under trials that are targeting these molecules.
Collapse
Affiliation(s)
- Harshika Khanna
- Department of Pediatrics, King George's Medical University, Lucknow, India
| | | | - Yasmeen Sheikh
- Department of Pediatrics, King George's Medical University, Lucknow, India
| |
Collapse
|
8
|
Naik L, Patel S, Kumar A, Ghosh A, Mishra A, Das M, Nayak DK, Saha S, Mishra A, Singh R, Behura A, Dhiman R. 4-(Benzyloxy)phenol-induced p53 exhibits antimycobacterial response triggering phagosome-lysosome fusion through ROS-dependent intracellular Ca 2+ pathway in THP-1 cells. Microbiol Res 2024; 282:127664. [PMID: 38422860 DOI: 10.1016/j.micres.2024.127664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Drug-resistant tuberculosis (TB) outbreak has emerged as a global public health crisis. Therefore, new and innovative therapeutic options like host-directed therapies (HDTs) through novel modulators are urgently required to overcome the challenges associated with TB. In the present study, we have investigated the anti-mycobacterial effect of 4-(Benzyloxy)phenol. Cell-viability assay asserted that 50 μM of 4-(Benzyloxy)phenol was not cytotoxic to phorbol 12-myristate 13-acetate (PMA) differentiated THP-1 (dTHP-1) cells. It was observed that 4-(Benzyloxy)phenol activates p53 expression by hindering its association with KDM1A. Increased ROS, intracellular Ca2+ and phagosome-lysosome fusion, were also observed upon 4-(Benzyloxy)phenol treatment. 4-(Benzyloxy)phenol mediated killing of intracellular mycobacteria was abrogated in the presence of specific inhibitors of ROS, Ca2+ and phagosome-lysosome fusion like NAC, BAPTA-AM, and W7, respectively. We further demonstrate that 4-(Benzyloxy)phenol mediated enhanced ROS production is mediated by acetylation of p53. Blocking of p53 acetylation by Pifithrin-α (PFT- α) enhanced intracellular mycobacterial growth by blocking the mycobactericidal effect of 4-(Benzyloxy)phenol. Altogether, the results showed that 4-(Benzyloxy)phenol executed its anti-mycobacterial effect by modulating p53-mediated ROS production to regulate phagosome-lysosome fusion through Ca2+ production.
Collapse
Affiliation(s)
- Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abhirupa Ghosh
- Divison of Bioinformatics, Bose Institute Kolkata, West Bengal 700054, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sudipto Saha
- Divison of Bioinformatics, Bose Institute Kolkata, West Bengal 700054, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad-Gurugram Expressway, 3rd Milestone, PO Box # 4, Faridabad, Haryana 121001, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
9
|
Diedericks B, Kok AM, Mandiwana V, Lall N. A Review of the Potential of Poly-(lactide-co-glycolide) Nanoparticles as a Delivery System for an Active Antimycobacterial Compound, 7-Methyljuglone. Pharmaceutics 2024; 16:216. [PMID: 38399270 PMCID: PMC10893214 DOI: 10.3390/pharmaceutics16020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
7-Methyljuglone (7-MJ) is a pure compound isolated from the roots of Euclea natalensis A. DC., a shrub indigenous to South Africa. It exhibits significant promise as a potential treatment for the highly communicable disease tuberculosis (TB), owing to its effective antimycobacterial activity against Mycobacterium tuberculosis. Despite its potential therapeutic benefits, 7-MJ has demonstrated in vitro cytotoxicity against various cancerous and non-cancerous cell lines, raising concerns about its safety for consumption by TB patients. Therefore, this review focuses on exploring the potential of poly-(lactide-co-glycolic) acid (PLGA) nanoparticles as a delivery system, which has been shown to decrease in vitro cytotoxicity, and 7-MJ as an effective antimycobacterial compound.
Collapse
Affiliation(s)
- Bianca Diedericks
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
| | - Anna-Mari Kok
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- Research Fellow, South African International Maritime Institute (SAIMI), Nelson Mandela University, Gqeberha 6019, South Africa
| | - Vusani Mandiwana
- Chemicals Cluster, Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 643001, India
- Senior Research Fellow, Bio-Tech R&D Institute, University of the West Indies, Kingston IAU-016615, Jamaica
| |
Collapse
|
10
|
Kumar V, Yasmeen N, Pandey A, Ahmad Chaudhary A, Alawam AS, Ahmad Rudayni H, Islam A, Lakhawat SS, Sharma PK, Shahid M. Antibiotic adjuvants: synergistic tool to combat multi-drug resistant pathogens. Front Cell Infect Microbiol 2023; 13:1293633. [PMID: 38179424 PMCID: PMC10765517 DOI: 10.3389/fcimb.2023.1293633] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
The rise of multi-drug resistant (MDR) pathogens poses a significant challenge to the field of infectious disease treatment. To overcome this problem, novel strategies are being explored to enhance the effectiveness of antibiotics. Antibiotic adjuvants have emerged as a promising approach to combat MDR pathogens by acting synergistically with antibiotics. This review focuses on the role of antibiotic adjuvants as a synergistic tool in the fight against MDR pathogens. Adjuvants refer to compounds or agents that enhance the activity of antibiotics, either by potentiating their effects or by targeting the mechanisms of antibiotic resistance. The utilization of antibiotic adjuvants offers several advantages. Firstly, they can restore the effectiveness of existing antibiotics against resistant strains. Adjuvants can inhibit the mechanisms that confer resistance, making the pathogens susceptible to the action of antibiotics. Secondly, adjuvants can enhance the activity of antibiotics by improving their penetration into bacterial cells, increasing their stability, or inhibiting efflux pumps that expel antibiotics from bacterial cells. Various types of antibiotic adjuvants have been investigated, including efflux pump inhibitors, resistance-modifying agents, and compounds that disrupt bacterial biofilms. These adjuvants can act synergistically with antibiotics, resulting in increased antibacterial activity and overcoming resistance mechanisms. In conclusion, antibiotic adjuvants have the potential to revolutionize the treatment of MDR pathogens. By enhancing the efficacy of antibiotics, adjuvants offer a promising strategy to combat the growing threat of antibiotic resistance. Further research and development in this field are crucial to harness the full potential of antibiotic adjuvants and bring them closer to clinical application.
Collapse
Affiliation(s)
- Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Aishwarya Pandey
- INRS, Eau Terre Environnement Research Centre, Québec, QC, Canada
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sudarshan S. Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K. Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
11
|
Pavlova EN, Lepekha LN, Rybalkina EY, Tarasov RV, Sychevskaya KA, Voronezhskaya EE, Masyutin AG, Ergeshov AE, Erokhina MV. High and Low Levels of ABCB1 Expression Are Associated with Two Distinct Gene Signatures in Lung Tissue of Pulmonary TB Patients with High Inflammation Activity. Int J Mol Sci 2023; 24:14839. [PMID: 37834286 PMCID: PMC10573207 DOI: 10.3390/ijms241914839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
P-glycoprotein (encoded by the ABCB1 gene) has a dual role in regulating inflammation and reducing chemotherapy efficacy in various diseases, but there are few studies focused on pulmonary TB patients. In this study, our objective was to identify a list of genes that correlate with high and low levels of ABCB1 gene expression in the lungs of pulmonary TB patients with different activity of chronic granulomatous inflammation. We compared gene expression in two groups of samples (with moderate and high activity of tuberculomas) to identify their characteristic gene signatures. Gene expression levels were determined using quantitative PCR in samples of perifocal area of granulomas, which were obtained from 65 patients after surgical intervention. Subsequently, two distinct gene signatures associated with high inflammation activity were identified. The first signature demonstrated increased expression of HIF1a, TGM2, IL6, SOCS3, and STAT3, which correlated with high ABCB1 expression. The second signature was characterized by high expression of TNFa and CD163 and low expression of ABCB1. These results provide insight into various inflammatory mechanisms and association with P-gp gene expression in lung tissue of pulmonary TB patients and will be useful in the development of a host-directed therapy approach to improving the effectiveness of anti-TB treatment.
Collapse
Affiliation(s)
- Ekaterina N. Pavlova
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Larisa N. Lepekha
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
| | - Ekaterina Yu. Rybalkina
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
- FSBI N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Ruslan V. Tarasov
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
| | - Ksenia A. Sychevskaya
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
- FSBI N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Elena E. Voronezhskaya
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander G. Masyutin
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Atadzhan E. Ergeshov
- Director of the Institute, Central Tuberculosis Research Institute, 2 Yauzskaya Alleya, 107564 Moscow, Russia;
| | - Maria V. Erokhina
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
12
|
Swanson RV, Gupta A, Foreman TW, Lu L, Choreno-Parra JA, Mbandi SK, Rosa BA, Akter S, Das S, Ahmed M, Garcia-Hernandez MDLL, Singh DK, Esaulova E, Artyomov MN, Gommerman J, Mehra S, Zuniga J, Mitreva M, Scriba TJ, Rangel-Moreno J, Kaushal D, Khader SA. Antigen-specific B cells direct T follicular-like helper cells into lymphoid follicles to mediate Mycobacterium tuberculosis control. Nat Immunol 2023; 24:855-868. [PMID: 37012543 PMCID: PMC11133959 DOI: 10.1038/s41590-023-01476-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/24/2023] [Indexed: 04/05/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.
Collapse
Affiliation(s)
- Rosemary V Swanson
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ananya Gupta
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Taylor W Foreman
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
- AstraZeneca, Washington DC-Baltimore, MD, USA
| | - Lan Lu
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jose Alberto Choreno-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Sadia Akter
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Maria de la Luz Garcia-Hernandez
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dhiraj K Singh
- Southwest National Primate Research Centre (SNPRC) at Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Smriti Mehra
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
- Southwest National Primate Research Centre (SNPRC) at Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Joaquin Zuniga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Mexico City, Mexico
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Deepak Kaushal
- Southwest National Primate Research Centre (SNPRC) at Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Jeong EK, Lee HJ, Jung YJ. Host-Directed Therapies for Tuberculosis. Pathogens 2022; 11:1291. [PMID: 36365041 PMCID: PMC9697779 DOI: 10.3390/pathogens11111291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 02/04/2024] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, consistently threatening public health. Conventional tuberculosis treatment requires a long-term treatment regimen and is associated with side effects. The efficacy of antitubercular drugs has decreased with the emergence of drug-resistant TB; therefore, the development of new TB treatment strategies is urgently needed. In this context, we present host-directed therapy (HDT) as an alternative to current tuberculosis therapy. Unlike antitubercular drugs that directly target Mycobacterium tuberculosis (Mtb), the causative agent of TB, HDT is an approach for treating TB that appropriately modulates host immune responses. HDT primarily aims to enhance the antimicrobial activity of the host in order to control Mtb infection and attenuate excessive inflammation in order to minimize tissue damage. Recently, research based on the repositioning of drugs for use in HDT has been in progress. Based on the overall immune responses against Mtb infection and the immune-evasion mechanisms of Mtb, this review examines the repositioned drugs available for HDT and their mechanisms of action.
Collapse
Affiliation(s)
- Eui-Kwon Jeong
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 24341, Korea
| | - Hyo-Ji Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Yu-Jin Jung
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 24341, Korea
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
14
|
Cubillos-Angulo JM, Nogueira BMF, Arriaga MB, Barreto-Duarte B, Araújo-Pereira M, Fernandes CD, Vinhaes CL, Villalva-Serra K, Nunes VM, Miguez-Pinto JP, Amaral EP, Andrade BB. Host-directed therapies in pulmonary tuberculosis: Updates on anti-inflammatory drugs. Front Med (Lausanne) 2022; 9:970408. [PMID: 36213651 PMCID: PMC9537567 DOI: 10.3389/fmed.2022.970408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis (TB) is a lethal disease and remains one of the top ten causes of mortality by an infectious disease worldwide. It can also result in significant morbidity related to persistent inflammation and tissue damage. Pulmonary TB treatment depends on the prolonged use of multiple drugs ranging from 6 months for drug-susceptible TB to 6-20 months in cases of multi-drug resistant disease, with limited patient tolerance resulting from side effects. Treatment success rates remain low and thus represent a barrier to TB control. Adjunct host-directed therapy (HDT) is an emerging strategy in TB treatment that aims to target the host immune response to Mycobacterium tuberculosis in addition to antimycobacterial drugs. Combined multi-drug treatment with HDT could potentially result in more effective therapies by shortening treatment duration, improving cure success rates and reducing residual tissue damage. This review explores the rationale and challenges to the development and implementation of HDTs through a succinct report of the medications that have completed or are currently being evaluated in ongoing clinical trials.
Collapse
Affiliation(s)
- Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Betânia M. F. Nogueira
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - María B. Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Beatriz Barreto-Duarte
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Araújo-Pereira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Catarina D. Fernandes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Caian L. Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, Brazil
| | - Klauss Villalva-Serra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
| | | | | | - Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, Brazil
| |
Collapse
|
15
|
Meca AD, Turcu-Stiolica A, Bogdan M, Subtirelu MS, Cocoș R, Ungureanu BS, Mahler B, Pisoschi CG. Screening performance of C-reactive protein for active pulmonary tuberculosis in HIV-positive patients: A systematic review with a meta-analysis. Front Immunol 2022; 13:891201. [PMID: 36090970 PMCID: PMC9453225 DOI: 10.3389/fimmu.2022.891201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is the leading infectious cause of mortality worldwide. In the last years, resistant strains of the etiological agent, Mycobacterium tuberculosis, have emerged, thus demanding more triage tests to identify active pulmonary TB (PTB) patients and to evaluate their disease severity. Therefore, acute-phase reaction serum tests are required for monitoring TB patients, among WHO symptom screening recommendations. C-reactive protein (CRP) is a non-specific inflammatory biomarker that has been recently proposed for TB screening and can be quantitatively analyzed through cost-effective point-of-care assays. A previous meta-analysis found CRP to be highly sensitive and moderately specific for active PTB with confirmed HIV infection. METHODS We performed a meta-analysis update of diagnostic tests, pooling sensitivities, and specificities in order to assess the accuracy of CRP as a potential test for the screening of HIV-associated PTB in outpatients. We searched MEDLINE, Web of Science, and SCOPUS for eligible articles before 19 October 2021. RESULTS We identified 13 eligible studies with HIV-positive patients with PTB. At a CRP threshold of 10 mg/L, CRP pooled sensitivity was 87% (76%-93%) and pooled specificity was 67% (49%-81%), with an area under the curve (AUC) of 0.858. Using a CRP threshold of 8 mg/L, pooled sensitivity was 82% (72%-89%) and pooled specificity was 82% (67%-92%), with an AUC of 0.879. We found that CRP has a high sensitivity in the screening of PTB in HIV-positive outpatients, consistent with findings reported previously. CONCLUSIONS Regardless of pooled specificity, better results were found using the CRP threshold of 8 mg/L as a test screening of PTB, meeting the need of further approaching specific TB diagnostic methods and reducing resource consumption.
Collapse
Affiliation(s)
- Andreea-Daniela Meca
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Maria Bogdan
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Mihaela-Simona Subtirelu
- Department of Pharmacoeconomics, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Relu Cocoș
- Department of Medical Genetics, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Marius Nasta Institute of Pneumology, Bucharest, Romania
| | - Bogdan Silviu Ungureanu
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Beatrice Mahler
- Marius Nasta Institute of Pneumology, Bucharest, Romania
- Pneumology Department (II), University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | | |
Collapse
|
16
|
Chung WY, Zhu Y, Mahamad Maifiah MH, Hawala Shivashekaregowda NK, Wong EH, Abdul Rahim N. Exogenous metabolite feeding on altering antibiotic susceptibility in Gram-negative bacteria through metabolic modulation: a review. Metabolomics 2022; 18:47. [PMID: 35781167 DOI: 10.1007/s11306-022-01903-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The rise of antimicrobial resistance at an alarming rate is outpacing the development of new antibiotics. The worrisome trends of multidrug-resistant Gram-negative bacteria have enormously diminished existing antibiotic activity. Antibiotic treatments may inhibit bacterial growth or lead to induce bacterial cell death through disruption of bacterial metabolism directly or indirectly. In light of this, it is imperative to have a thorough understanding of the relationship of bacterial metabolism with antimicrobial activity and leverage the underlying principle towards development of novel and effective antimicrobial therapies. OBJECTIVE Herein, we explore studies on metabolic analyses of Gram-negative pathogens upon antibiotic treatment. Metabolomic studies revealed that antibiotic therapy caused changes of metabolites abundance and perturbed the bacterial metabolism. Following this line of thought, addition of exogenous metabolite has been employed in in vitro, in vivo and in silico studies to activate the bacterial metabolism and thus potentiate the antibiotic activity. KEY SCIENTIFIC CONCEPTS OF REVIEW Exogenous metabolites were discovered to cause metabolic modulation through activation of central carbon metabolism and cellular respiration, stimulation of proton motive force, increase of membrane potential, improvement of host immune protection, alteration of gut microbiome, and eventually facilitating antibiotic killing. The use of metabolites as antimicrobial adjuvants may be a promising approach in the fight against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Wan Yean Chung
- School of Pharmacy, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection and Immunity Program, Department of Microbiology, Monash University, 3800, Victoria, Australia
| | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), 53100, Jalan Gombak, Selangor, Malaysia
| | - Naveen Kumar Hawala Shivashekaregowda
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| | | |
Collapse
|
17
|
Song L, Hu X, Ren X, Liu J, Liu X. Antibacterial Modes of Herbal Flavonoids Combat Resistant Bacteria. Front Pharmacol 2022; 13:873374. [PMID: 35847042 PMCID: PMC9278433 DOI: 10.3389/fphar.2022.873374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The increasing dissemination of multidrug resistant (MDR) bacterial infections endangers global public health. How to develop effective antibacterial agents against resistant bacteria is becoming one of the most urgent demands to solve the drug resistance crisis. Traditional Chinese medicine (TCM) with multi-target antibacterial actions are emerging as an effective way to combat the antibacterial resistance. Based on the innovative concept of organic wholeness and syndrome differentiation, TCM use in antibacterial therapies is encouraging. Herein, advances on flavonoid compounds of heat-clearing Chinese medicine exhibit their potential for the therapy of resistant bacteria. In this review, we focus on the antibacterial modes of herbal flavonoids. Additionally, we overview the targets of flavonoid compounds and divide them into direct-acting antibacterial compounds (DACs) and host-acting antibacterial compounds (HACs) based on their modes of action. We also discuss the associated functional groups of flavonoid compounds and highlight recent pharmacological activities against diverse resistant bacteria to provide the candidate drugs for the clinical infection.
Collapse
Affiliation(s)
- Lianyu Song
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Xin Hu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaomin Ren
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Jing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
- *Correspondence: Xiaoye Liu,
| |
Collapse
|
18
|
Nwongbouwoh Muefong C, Owolabi O, Donkor S, Charalambous S, Bakuli A, Rachow A, Geldmacher C, Sutherland JS. Neutrophils Contribute to Severity of Tuberculosis Pathology and Recovery From Lung Damage Pre- and Posttreatment. Clin Infect Dis 2022; 74:1757-1766. [PMID: 34427644 PMCID: PMC9155606 DOI: 10.1093/cid/ciab729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Despite microbiological cure, about 50% of tuberculosis (TB) patients have poor lung recovery. Neutrophils are associated with lung pathology; however, CD16/CD62L-defined subsets have not been studied in TB. Using flow cytometry, we monitored frequencies, phenotype, and function of neutrophils following stimulation with Mycobacterium tuberculosis (Mtb) whole cell lysate (WCL) and ESAT-6/CFP-10 fusion protein (EC) in relation to lung pathology. METHODS Fresh blood from 42 adult, human immunodeficiency virus (HIV)-negative TB patients were analyzed pre- and post-therapy, with disease severity determined using chest radiography and bacterial load. Flow cytometry was used to monitor frequencies, phenotype, and function (generation of reactive oxygen species [ROS], together with CD11b, tumor necrosis factor, and interleukin 10 [IL-10] expression) of neutrophils following 2-hour stimulation with Mtb-specific antigens. RESULTS Total neutrophils decreased by post-treatment compared to baseline (P = .0059); however, CD16brCD62Lbr (segmented) neutrophils increased (P = .0031) and CD16dimCD62Lbr (banded) neutrophils decreased (P = .038). Banded neutrophils were lower in patients with severe lung damage at baseline (P = .035). Following WCL stimulation, ROS from segmented neutrophils was higher in patients with low Mtb loads even after adjusting for sex (P = .038), whereas IL-10-expressing CD16dimCD62Llo cells were higher in patients with mild damage (P = .0397) at baseline. CONCLUSIONS High ROS generation, low levels of banded neutrophils, and high levels of IL-10-expressing CD16dimCD62Llo neutrophils are associated with reduced lung pathology at diagnosis. Hence, neutrophils are potential early indicators of TB severity and promising targets for TB host-directed therapy.
Collapse
Affiliation(s)
- Caleb Nwongbouwoh Muefong
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- University of Munich, Munich, Germany
| | - Olumuyiwa Owolabi
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Simon Donkor
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Abhishek Bakuli
- Division of Infectious Diseases and Tropical Medicine, University Hospital, University of Munich, Munich, Germany
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, University Hospital, University of Munich, Munich, Germany
- German Centre for Infection Research, partner site Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, University of Munich, Munich, Germany
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
19
|
Liu H, Gui X, Chen S, Fu W, Li X, Xiao T, Hou J, Jiang T. Structural Variability of Lipoarabinomannan Modulates Innate Immune Responses within Infected Alveolar Epithelial Cells. Cells 2022; 11:cells11030361. [PMID: 35159170 PMCID: PMC8834380 DOI: 10.3390/cells11030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen persisting in phagosomes that has the ability to escape host immune surveillance causing tuberculosis (TB). Lipoarabinomannan (LAM), as a glycolipid, is one of the complex outermost components of the mycobacterial cell envelope and plays a critical role in modulating host responses during M. tb infection. Different species within the Mycobacterium genus exhibit distinct LAM structures and elicit diverse innate immune responses. However, little is known about the mechanisms. In this study, we first constructed a LAM-truncated mutant with fewer arabinofuranose (Araf) residues named M. sm-ΔM_6387 (Mycobacterium smegmatis arabinosyltransferase EmbC gene knockout strain). It exhibited some prominent cell wall defects, including tardiness of mycobacterial migration, loss of acid-fast staining, and increased cell wall permeability. Within alveolar epithelial cells (A549) infected by M. sm-ΔM_6387, the uptake rate was lower, phagosomes with bacterial degradation appeared, and microtubule-associated protein light chain 3 (LC3) recruitment was enhanced compared to wild type Mycobacterium smegmatis (M. smegmatis). We further confirmed that the variability in the removal capability of M. sm-ΔM_6387 resulted from host cell responses rather than the changes in the mycobacterial cell envelope. Moreover, we found that M. sm-ΔM_6387 or its glycolipid extracts significantly induced expression changes in some genes related to innate immune responses, including Toll-like receptor 2 (TLR2), class A scavenger receptor (SR-A), Rubicon, LC3, tumor necrosis factor alpha (TNF-α), Bcl-2, and Bax. Therefore, our studies suggest that nonpathogenic M. smegmatis can deposit LC3 on phagosomal membranes, and the decrease in the quantity of Araf residues for LAM molecules not only impacts mycobacterial cell wall integrity but also enhances host defense responses against the intracellular pathogens and decreases phagocytosis of host cells.
Collapse
Affiliation(s)
- Hanrui Liu
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Xuwen Gui
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Shixing Chen
- Key Laboratory of Science and Technology on Microsystem, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| | - Weizhe Fu
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Xiang Li
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Tingyuan Xiao
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Jie Hou
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Tao Jiang
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
- Correspondence: ; Tel.: +86-411-8611-0350
| |
Collapse
|
20
|
Mvubu NE, Chiliza TE. Exploring the Use of Medicinal Plants and Their Bioactive Derivatives as Alveolar NLRP3 Inflammasome Regulators during Mycobacterium tuberculosis Infection. Int J Mol Sci 2021; 22:ijms22179497. [PMID: 34502407 PMCID: PMC8431520 DOI: 10.3390/ijms22179497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful intracellular pathogen that is responsible for the highest mortality rate among diseases caused by bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to contribute to the early inflammatory response that is needed for an effective anti-TB response through production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. However, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation that is pathological to the host. Several studies have explored the use of medicinal plants and/or their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated factors, thus reducing immunopathological response in the host. This review describes the molecular mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection. Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their derivatives will also be explored, thus offering a novel perspective on the alternative control strategies of M. tuberculosis-induced immunopathology.
Collapse
|
21
|
The Oral Delivery of Water-Soluble Phenol TS-13 Ameliorates Granuloma Formation in an In Vivo Model of Tuberculous Granulomatous Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6652775. [PMID: 34093961 PMCID: PMC8140857 DOI: 10.1155/2021/6652775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
The redox-sensitive signaling system Keap1/Nrf2/ARE is a premier protective mechanism against oxidative stress that plays a key role in the pathogenesis and development of various diseases, including tuberculous granulomatous inflammation. We have previously reported that novel water-soluble phenolic antioxidant TS-13 (sodium 3-(4'-methoxyphenyl)propyl thiosulfonate) induces Keap1/Nrf2/ARE and attenuates inflammation. The aim of this study is the examination of the effect of TS-13 on tuberculous granulomatous inflammation. BALB/c mice were administered TS-13 (100 mg kg-1 day-1) through their drinking water starting immediately after Bacillus Calmette-Guérin (BCG) intravenous injection. Histological changes, production of reactive oxygen species (ROS) (activity of free-radical oxidation processes), and mRNA expression of Nrf2-driven, NF-κB-, AP-1-, and autophagy-dependent signal pathway genes in the liver and peritoneal exudate were evaluated 30 days later. After the 30th day of infection, the activity of the Keap1/Nrf2/ARE system was decreased and its effector genes entailed increasing ROS production in the liver. Therapeutic intervention with TS-13 is aimed at activating the Keap1/Nrf2/ARE system that leads to an increase in Nrf2 and Nrf2-mediated gene expression and a decrease in NF-κB expression. Changes in these pathways resulted in a decline of ROS production and a decrease in the number and the size of granulomas. In total, the results indicate that the Keap1/Nrf2/ARE system can be an effective pharmacological target in host-adjunctive treatment of tuberculosis.
Collapse
|
22
|
Chauhan A, Kumar M, Kumar A, Kanchan K. Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs. Life Sci 2021; 274:119301. [PMID: 33675895 DOI: 10.1016/j.lfs.2021.119301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
Tuberculosis is one of the deadliest infectious diseases existing in the world since ancient times and still possesses serious threat across the globe. Each year the number of cases increases due to high drug resistance shown by Mycobacterium tuberculosis (Mtb). Available antimycobacterial drugs have been classified as First line, Second line and Third line antibiotics depending on the time of their discoveries and their effectiveness in the treatment. These antibiotics have a broad range of targets ranging from cell wall to metabolic processes and their non-judicious and uncontrolled usage in the treatment for years has created a significant problem called multi-drug resistant (MDR) tuberculosis. In this review, we have summarized the mechanism of action of all the classified antibiotics currently in use along with the resistance mechanisms acquired by Mtb. We have focused on the new drug candidates/repurposed drugs, and drug in combinations, which are in clinical trials for either treating the MDR tuberculosis more effectively or involved in reducing the time required for the chemotherapy of drug sensitive TB. This information is not discussed very adequately on a single platform. Additionally, we have discussed the recent technologies that are being used to discover novel resistance mechanisms acquired by Mtb and for exploring novel drugs. The story of intrinsic resistance mechanisms and evolution in Mtb is far from complete. Therefore, we have also discussed intrinsic resistance mechanisms of Mtb and their evolution with time, emphasizing the hope for the development of novel antimycobacterial drugs for effective therapy of tuberculosis.
Collapse
Affiliation(s)
- Aditi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India
| | - Manoj Kumar
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Awanish Kumar
- Department of Bio Technology, National Institute of Technology, Raipur, India
| | - Kajal Kanchan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
23
|
Minias A, Żukowska L, Lechowicz E, Gąsior F, Knast A, Podlewska S, Zygała D, Dziadek J. Early Drug Development and Evaluation of Putative Antitubercular Compounds in the -Omics Era. Front Microbiol 2021; 11:618168. [PMID: 33603720 PMCID: PMC7884339 DOI: 10.3389/fmicb.2020.618168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. According to the WHO, the disease is one of the top 10 causes of death of people worldwide. Mycobacterium tuberculosis is an intracellular pathogen with an unusually thick, waxy cell wall and a complex life cycle. These factors, combined with M. tuberculosis ability to enter prolonged periods of latency, make the bacterium very difficult to eradicate. The standard treatment of TB requires 6-20months, depending on the drug susceptibility of the infecting strain. The need to take cocktails of antibiotics to treat tuberculosis effectively and the emergence of drug-resistant strains prompts the need to search for new antitubercular compounds. This review provides a perspective on how modern -omic technologies facilitate the drug discovery process for tuberculosis treatment. We discuss how methods of DNA and RNA sequencing, proteomics, and genetic manipulation of organisms increase our understanding of mechanisms of action of antibiotics and allow the evaluation of drugs. We explore the utility of mathematical modeling and modern computational analysis for the drug discovery process. Finally, we summarize how -omic technologies contribute to our understanding of the emergence of drug resistance.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Lidia Żukowska
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and the Institutes of the Polish Academy of Sciences in Lodz, Lodz, Poland
| | - Ewelina Lechowicz
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Filip Gąsior
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and the Institutes of the Polish Academy of Sciences in Lodz, Lodz, Poland
| | - Agnieszka Knast
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Krakow, Poland
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Daria Zygała
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
24
|
Necelis MR, Santiago-Ortiz LE, Caputo GA. Investigation of the Role of Aromatic Residues in the Antimicrobial Peptide BuCATHL4B. Protein Pept Lett 2021; 28:388-402. [PMID: 32798369 PMCID: PMC8259864 DOI: 10.2174/0929866527666200813202918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Antimicrobial Peptides (AMPs) are an attractive alternative to traditional small molecule antibiotics as AMPs typically target the bacterial cell membrane. A Trp-rich peptide sequence derived from water buffalo (Bubalus bubalis), BuCATHL4B was previously identified as a broad-spectrum antimicrobial peptide. OBJECTIVE In this work, native Trp residues were replaced with other naturally occurring aromatic amino acids to begin to elucidate the importance of these residues on peptide activity. METHODS Minimal Inhibitory Concentration (MIC) results demonstrated activity against seven strains of bacteria. Membrane and bilayer permeabilization assays were performed to address the role of bilayer disruption in the activity of the peptides. Lipid vesicle binding and quenching experiments were also performed to gain an understanding of how the peptides interacted with lipid bilayers. RESULTS MIC results indicate the original, tryptophan-rich sequence, and the phenylalanine substituted sequences exhibit strong inhibition of bacterial growth. In permeabilization assays, peptides with phenylalanine substitutions have higher levels of membrane permeabilization than those substituted with tyrosine. In addition, one of the two-tyrosine substituted sequence, YWY, behaves most differently in the lowest antimicrobial activity, showing no permeabilization of bacterial membranes. Notably the antimicrobial activity is inherently species dependent, with varying levels of activity against different bacteria. CONCLUSION There appears to be little correlation between membrane permeabilization and activity, indicating these peptides may have additional mechanisms of action beyond membrane disruption. The results also identify two sequences, denoted FFF and YYW, which retain antibacterial activity but have markedly reduced hemolytic activity.
Collapse
Affiliation(s)
- Matthew R Necelis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | | | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| |
Collapse
|
25
|
Silwal P, Paik S, Kim JK, Yoshimori T, Jo EK. Regulatory Mechanisms of Autophagy-Targeted Antimicrobial Therapeutics Against Mycobacterial Infection. Front Cell Infect Microbiol 2021; 11:633360. [PMID: 33828998 PMCID: PMC8019938 DOI: 10.3389/fcimb.2021.633360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen causing human tuberculosis, an infectious disease that still remains as a global health problem. Autophagy, a lysosomal degradative process, has emerged as a critical pathway to restrict intracellular Mtb growth through enhancement of phagosomal maturation. Indeed, several autophagy-modulating agents show promise as host-directed therapeutics for Mtb infection. In this Review, we discuss recent progress in our understanding the molecular mechanisms underlying the action of autophagy-modulating agents to overcome the immune escape strategies mediated by Mtb. The factors and pathways that govern such mechanisms include adenosine 5'-monophosphate-activated protein kinase, Akt/mammalian TOR kinase, Wnt signaling, transcription factor EB, cathelicidins, inflammation, endoplasmic reticulum stress, and autophagy-related genes. A further understanding of these mechanisms will facilitate the development of host-directed therapies against tuberculosis as well as infections with other intracellular bacteria targeted by autophagic degradation.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Eun-Kyeong Jo,
| |
Collapse
|
26
|
De Siena B, Campolattano N, D'Abrosca G, Russo L, Cantillon D, Marasco R, Muscariello L, Waddell SJ, Sacco M. Characterization of the Mycobacterial MSMEG-3762/63 Efflux Pump in Mycobacterium smegmatis Drug Efflux. Front Microbiol 2020; 11:575828. [PMID: 33343518 PMCID: PMC7744416 DOI: 10.3389/fmicb.2020.575828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/10/2020] [Indexed: 01/06/2023] Open
Abstract
Multi-drug resistant tuberculosis (MDR-TB) represents a major health problem worldwide. Drug efflux and the activity of efflux transporters likely play important roles in the development of drug-tolerant and drug-resistant mycobacterial phenotypes. This study is focused on the action of a mycobacterial efflux pump as a mechanism of drug resistance. Previous studies demonstrated up-regulation of the TetR-like transcriptional regulator MSMEG_3765 in Mycobacterium smegmatis and its ortholog Rv1685c in Mycobacterium tuberculosis (Mtb) in acid-nitrosative stress conditions. MSMEG-3765 regulates the expression of the MSMEG_3762/63/65 operon, and of the orthologous region in Mtb (Rv1687c/86c/85c). MSMEG-3762 and Rv1687c are annotated as ATP-binding proteins, while MSMEG-3763 and Rv1686c are annotated as trans-membrane polypeptides, defining an ABC efflux pump in both M. smegmatis and Mtb. The two putative efflux systems share a high percentage of identity. To examine the role of the putative efflux system MSMEG-3762/63, we constructed and characterized a MSMEG-3763 deletion mutant in M. smegmatis (∆MSMEG_3763). By comparative analysis of wild type, knockout, and complemented strains, together with structural modeling and molecular docking bioinformatics analyses of the MSMEG-3763 trans-membrane protein, we define the protein complex MSMEG-3762/63 as an efflux pump. Moreover, we demonstrate involvement of this pump in biofilm development and in the extrusion of rifampicin and ciprofloxacin (CIP), antimicrobial drugs used in first- and second-line anti-TB therapies.
Collapse
Affiliation(s)
- Barbara De Siena
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Nicoletta Campolattano
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Gianluca D'Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Luigi Russo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Daire Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Rosangela Marasco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Lidia Muscariello
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Margherita Sacco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
27
|
Di Natale C, De Benedictis I, De Benedictis A, Marasco D. Metal-Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9060337. [PMID: 32570779 PMCID: PMC7344629 DOI: 10.3390/antibiotics9060337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
In metal-peptide interactions, cations form stable complexes through bonds with coordinating groups as side chains of amino acids. These compounds, among other things, exert a wide variety of antimicrobial activities through structural changes of peptides upon metal binding and redox chemistry. They exhibit different mechanisms of action (MOA), including the modification of DNA/RNA, protein and cell wall synthesis, permeabilization and modulation of gradients of cellular membranes. Nowadays, the large increase in antibiotic resistance represents a crucial problem to limit progression at the pandemic level of the diseases that seemed nearly eradicated, such as tuberculosis (Tb). Mycobacterium tuberculosis (Mtb) is intrinsically resistant to many antibiotics due to chromosomal mutations which can lead to the onset of novel strains. Consequently, the maximum pharmaceutical effort should be focused on the development of new therapeutic agents and antimicrobial peptides can represent a valuable option as a copious source of potential bioactive compounds. The introduction of a metal center can improve chemical diversity and hence specificity and bioavailability while, in turn, the coordination to peptides of metal complexes can protect them and enhance their poor water solubility and air stability: the optimization of these parameters is strictly required for drug prioritization and to obtain potent inhibitors of Mtb infections with novel MOAs. Here, we present a panoramic review of the most recent findings in the field of metal complex-peptide conjugates and their delivery systems with the potential pharmaceutical application as novel antibiotics in Mtb infections.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Arianna De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Correspondence:
| |
Collapse
|
28
|
Muefong CN, Sutherland JS. Neutrophils in Tuberculosis-Associated Inflammation and Lung Pathology. Front Immunol 2020; 11:962. [PMID: 32536917 PMCID: PMC7266980 DOI: 10.3389/fimmu.2020.00962] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Protective immunity to Mycobacterium tuberculosis (Mtb)—the causative agent of tuberculosis (TB)—is not fully understood but involves immune responses within the pulmonary airways which can lead to exacerbated inflammation and immune pathology. In humans, this inflammation results in lung damage; the extent of which depends on specific host pro-inflammatory processes. Neutrophils, though increasingly linked to the development of inflammatory disorders, have been less well studied in relation to TB-induced lung pathology. Neutrophils mode of action and their specialized functions can be directly linked to TB-specific lung tissue damage observed on patient chest X-rays at diagnosis and contribute to long-term pulmonary sequelae. This review discusses aspects of neutrophil activity associated with active TB, including the resulting inflammation and pulmonary impairment. It highlights the significance of neutrophil function on TB disease outcome and underlines the necessity of monitoring neutrophil function for better assessment of the immune response and severity of lung pathology associated with TB. Finally, we propose that some MMPs, ROS, MPO, S100A8/A9 and Glutathione are neutrophil-related inflammatory mediators with promising potential as targets for developing host-directed therapies for TB.
Collapse
Affiliation(s)
- Caleb N Muefong
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
29
|
Luo P, Qiu L, Liu Y, Liu XL, Zheng JL, Xue HY, Liu WH, Liu D, Li J. Metformin Treatment Was Associated with Decreased Mortality in COVID-19 Patients with Diabetes in a Retrospective Analysis. Am J Trop Med Hyg 2020; 103:69-72. [PMID: 32446312 PMCID: PMC7356425 DOI: 10.4269/ajtmh.20-0375] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metformin was proposed to be a candidate for host-directed therapy for COVID-19. However, its efficacy remains to be validated. In this study, we compared the outcome of metformin users and nonusers in hospitalized COVID-19 patients with diabetes. Hospitalized diabetic patients with confirmed COVID-19 in the Tongji Hospital of Wuhan, China, from January 27, 2020 to March 24, 2020, were grouped into metformin and no-metformin groups according to the diabetic medications used. The demographics, characteristics, laboratory parameters, treatments, and clinical outcome in these patients were retrospectively assessed. A total of 283 patients (104 in the metformin and 179 in the no-metformin group) were included in this study. There were no significant differences between the two groups in gender, age, underlying diseases, clinical severity, and oxygen-support category at admission. The fasting blood glucose level of the metformin group was higher than that of the no-metformin group at admission and was under effective control in both groups after admission. Other laboratory parameters at admission and treatments after admission were not different between the two groups. The length of hospital stay did not differ between the two groups (21.0 days for metformin versus 19.5 days for no metformin, P = 0.74). However, in-hospital mortality was significantly lower in the metformin group (3/104 (2.9%) versus 22/179 (12.3%), P = 0.01). Antidiabetic treatment with metformin was associated with decreased mortality compared with diabetics not receiving metformin. This retrospective analysis suggests that metformin may offer benefits in patients with COVID-19 and that further study is indicated.
Collapse
Affiliation(s)
- Pan Luo
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Qiu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu-Lan Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Ling Zheng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Ying Xue
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Hua Liu
- Clinical Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|