1
|
Hendrawan VF, Mariyam D, Al Ichsan IFON. Effect of nanocurcumin administration on superoxide dismutase and progesterone level exposure to noise stress during pregnancy in mice. Open Vet J 2025; 15:1239-1243. [PMID: 40276195 PMCID: PMC12017715 DOI: 10.5455/ovj.2025.v15.i3.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/18/2025] [Indexed: 04/26/2025] Open
Abstract
Background Continuous noise with high decibels (dB) intensity continuously can cause psychological stress in a person. Stress during pregnancy can have a negative impact on fetal development; this is due to the narrowing of the placental artery and ends in the obstruction of the flow of nutrients and oxygen to the fetus. Increased cortisol levels during pregnancy stress will signal the placenta to reduce the production of progesterone and estradiol and stimulate the secretion of prostaglandins that activate contractions. Aim This study aims to determine the effect of nanocurcumin administration on pregnant mice under the stress of 135 dB disturbance for 40 minutes with a continuous pattern. Methods This experimental study used 25 female mice in five groups: K(-) with no treatment, K(+) with 135 dB disturbance induction for 40 minutes with a continuous pattern, P1 given disturbance and nanocurcumin dose 14 mg/kgBW, P2 given disturbance and nanocurcumin dose 21 mg/kgBW, and P3 given disturbance and nanocurcumin 24.5 mg/kgBW. SOD and progesterone were tested using ELISA. Result Data analysis using one-way ANOVA followed by the least significant difference. The result of this study conducted nanocurcumin dose of 24.5 mg/kgBW gave the most significant effect (P < 0.05) in reducing SOD levels and restoring progesterone levels in mice that had disorders during pregnancy compared with doses of 14 and 21 mg/kgBW, respectively. Conclusion The conclusion of this study, an administration of nanocurcumin at a dose of 24.5 mg/kgBW, was effective in reducing oxidative stress and increasing progesterone levels in mice that experienced stress due to disorders during pregnancy.
Collapse
Affiliation(s)
- Viski Fitri Hendrawan
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Malang, Indonesia
| | | | | |
Collapse
|
2
|
Campagna R, Cecati M, Vignini A. The Multifaceted Role of the Polyphenol Curcumin: A Focus on Type 2 Diabetes Mellitus. Curr Diabetes Rev 2025; 21:e15733998313402. [PMID: 39620334 DOI: 10.2174/0115733998313402240726080637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 04/23/2025]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disorder characterized by chronic hyperglycemia, which often co-exists with other metabolic impairments. This condition can damage various tissues and organs, resulting in the development of severe complications, both microvascular, such as retinopathy, nephropathy, and neuropathy, and macrovascular, responsible for an increased risk of cardiovascular diseases. Curcumin is the main bioactive molecule found in the rhizomes of turmeric. Many studies have reported curcumin to exhibit antioxidant, anti-inflammatory, anti-infectious, and anti-cancer properties; thus, there is an increasing interest in exploiting these properties in order to prevent the rise or the progression of T2DM, as well as its possible associated conditions. In this review, we have presented the current state-ofart regarding the clinical trials that have involved curcumin administration and analyzed the possible mechanisms by which curcumin might exert the beneficial effects observed in literature.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monia Cecati
- Scientific Direction, Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
3
|
Majumdar A, Prasad MAVV, Gandavarapu SR, Reddy KSK, Sureja V, Kheni D, Dubey V. Efficacy and safety evaluation of Boswellia serrata and Curcuma longa extract combination in the management of chronic lower back pain: A randomised, double-blind, placebo-controlled clinical study. Explore (NY) 2025; 21:103099. [PMID: 39700654 DOI: 10.1016/j.explore.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND AIM Chronic lower back pain (CLBP) is a major condition that leads to disability and reduced quality of life (QoL). This randomised, double-blind, placebo-controlled clinical study evaluated the efficacy and safety of a novel Boswellia serrata and Curcuma longa combination (CL20192) for the treatment of CLBP. MATERIAL AND METHODS Participants with CLBP were randomised to receive either a 300 mg CL20192 capsule (n = 45) or placebo capsule (n = 45) once daily for 90 days. Efficacy was evaluated using the Descriptor Differential Scale and Oswestry Disability Index scores for pain, unpleasantness, and disability. Additionally, the 36-item short form questionnaire was used for QoL evaluation. Frequency of painkiller use, serum levels of inflammatory biomarkers (tumour necrosis factor-α, interleukin-6, and high-sensitivity C-reactive protein), and phytoconstituents (total boswellic acids and curcuminoids) were determined. Therapy satisfaction was assessed using the Physician and Patient Global Assessment Scales. RESULTS All randomised participants completed the study. CL20192 supplementation significantly reduced Descriptor Differential Scale pain, unpleasantness, and Oswestry Disability Index scores compared with the placebo group (p < 0.001 for all parameters). Critical QoL scores greatly improved in the CL20192 group. Serum phytoconstituent levels were elevated in the CL20192-treated group. This group demonstrated a significant reduction in inflammatory biomarker levels (tumour necrosis factor-α, interleukin-6, and high-sensitivity C-reactive protein), confirming efficacy in abating CLBP compared with the placebo. Moreover, therapy satisfaction scores were significantly high in the CL20192-treated group, and intervention with CL20192 was well tolerated. CONCLUSION Intervention with 300 mg CL20192 capsules, containing a novel combination of Boswellia serrata and Curcuma longa extracts, effectively alleviated pain, unpleasantness, and disability in patients with CLBP compared with the placebo. This outcome was consistent with a decrease in serum inflammatory markers and improved therapy assessment scores.
Collapse
Affiliation(s)
- Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, India
| | | | - Satish Reddy Gandavarapu
- Aster Prime Hospital, Maitrivanam, Satyam Theatre Road, Srinivasa Nagar, Ameerpet, Hyderabad, Telangana, India
| | | | - Varun Sureja
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India.
| | - Dharmeshkumar Kheni
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| | - Vishal Dubey
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| |
Collapse
|
4
|
Schiavoni V, Emanuelli M, Sartini D, Salvolini E, Pozzi V, Campagna R. Curcumin and its Analogues in Oral Squamous Cell Carcinoma: State-of-the-art and Therapeutic Potential. Anticancer Agents Med Chem 2025; 25:313-329. [PMID: 38757321 DOI: 10.2174/0118715206297840240510063330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common cancer arising from squamous epithelium in the oral cavity and is characterized by high aggressiveness and metastatic potential, which together with a late diagnosis results in a 5-year survival rate of only 50% of patients. The therapeutic options for OSCC management are limited and largely influenced by the cancer stage. While radical surgery can be curative in early stage of disease, most cases require adjuvant therapies, including chemotherapy and radiotherapy which, however, often achieve poor curative rates and are associated with important negative effects. Therefore, there is an urgent need to discover new alternative treatment strategies to improve patients' outcomes. Several medicinal herbs are being studied for their preventive or therapeutic effect in several diseases, including cancer. In particular, the Indian spice curcumin, largely used in oriental countries, has been studied as a chemopreventive or adjuvant agent for different malignancies. Indeed, curcumin is characterized by important biological properties, including antioxidant, anti-inflammatory, and anticancer effects, which could also be exploited in OSCC. However, due to its limited bioavailability and poor aqueous solubility, this review is focused on studies designing new synthetic analogues and developing novel types of curcumin delivery systems to improve its pharmacokinetic and biological properties. Thus, this review analyses the potential therapeutic role of curcumin in OSCC by providing an overview of current in vitro and in vivo studies demonstrating the beneficial effects of curcumin and its analogues in OSCC.
Collapse
Affiliation(s)
- Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, 60131, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| |
Collapse
|
5
|
Jin Y, Dang H, Li M. The Essential Role of Traditional Chinese Medicine Compounds in Regulating Recurrent Spontaneous Abortion by Inhibiting Oxidative Stress. Endocr Metab Immune Disord Drug Targets 2025; 25:353-363. [PMID: 39082177 DOI: 10.2174/0118715303302424240724070133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 04/09/2025]
Abstract
Due to the lack of accurate registration of RSA and miscarriages, many early miscarriages are overlooked and not diagnosed or treated promptly in hospitals. This uncertainty in pathogenesis prevents clinicians from taking targeted therapeutic measures, leading to unsatisfactory treatment outcomes and placing a heavy burden on the patient's family and the healthcare system. Oxidative stress is present in embryonic development and affects the regulation of oxidative stress in pregnancy and the reproductive endocrine system. Oxidative stress injury is a significant pathogenesis of RSA, so improving the body's ability to resist oxidative stress injury is crucial in treating RSA. For patients with RSA, there is an urgent need for safe, efficient, and cost-effective anti-oxidative stress drugs, and there is growing evidence that treatment with Traditional Chinese medicine (TCM) can improve pregnancy success with fewer adverse effects. Many active ingredients for treating RSA are mainly derived from certain components of TCM, including flavonoids, phenols, and other compounds, which have been shown to treat RSA directly or indirectly by targeting anti-oxidative stress-related pathways. This article summarizes the experimental and clinical evidence of several common TCM compounds for treating RSA. It provides ideas and perspectives for further exploring the pathogenesis of RSA and TCM compounds for treating RSA.
Collapse
Affiliation(s)
- Yi Jin
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Meihe Li
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
6
|
Bokharaeian M, Kaki B, Najafi M, Toghdory A, Ghoorchi T. Effects of maternal curcumin nano-micelle supplementation on transitioning ewes and their offspring: Performance, health biomarkers, and environmental impacts during heat stress. J Therm Biol 2025; 127:104047. [PMID: 39826479 DOI: 10.1016/j.jtherbio.2025.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
This study examined the impact of curcumin nanomicelles (CNM) supplementation on transitioning ewes and their offspring. Thirty-two crossbred pregnant ewes [Ile-de-France × (Dalagh × Romanov)], confirmed to carry twins, were randomly assigned to a control group (CTRL) or a treatment group receiving 40 mg of CNM per ewe per day. Supplementation began before and continued after delivery. We assessed various parameters, including growth performance, metabolic health, inflammatory markers, hematological profiles, immunoglobulin levels, antioxidant status, and greenhouse gas emissions. CNM supplementation improved growth in both ewes and lambs, consistent with curcumin's known metabolic effects. Significant reductions in inflammatory markers were observed in both ewes and lambs, with decreased neutrophil-to-lymphocyte ratios indicating reduced systemic inflammation. Increased levels of IgG and IgA in both ewes and lambs suggested improved immune competence. Antioxidant biomarkers indicated better management of oxidative stress, with some benefits extended to offspring. CNM had varying effects on methanogen populations and nitrous oxide emissions. It significantly reduced methanogen numbers postpartum, but had no significant effect pre-partum. A slight increase in N2O emissions was observed before delivery, but was not sustained after delivery. These results underscore the complex interactions of metabolic, immunological, and environmental factors influenced by CNM supplementation during the transition period. More research is needed to refine supplementation strategies, evaluate long-term effects, and explore ways to mitigate increased greenhouse gas emissions while preserving health benefits.
Collapse
Affiliation(s)
- Mostafa Bokharaeian
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Barış Kaki
- Department of Animal Science, Usak University, Uşak, 64200, Türkiye.
| | - Mojtaba Najafi
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Abdolhakim Toghdory
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Taghi Ghoorchi
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
7
|
Costa B, Gouveia MJ, Vale N. Oxidative Stress Induced by Antivirals: Implications for Adverse Outcomes During Pregnancy and in Newborns. Antioxidants (Basel) 2024; 13:1518. [PMID: 39765846 PMCID: PMC11727424 DOI: 10.3390/antiox13121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress plays a critical role in various physiological and pathological processes, particularly during pregnancy, where it can significantly affect maternal and fetal health. In the context of viral infections, such as those caused by Human Immunodeficiency Virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), oxidative stress may exacerbate complications by disrupting cellular function and immune responses. Antiviral drugs, while essential in managing these infections, can also contribute to oxidative stress, potentially impacting both the mother and the developing fetus. Understanding the mechanisms by which antivirals can contribute to oxidative stress and examination of pharmacokinetic changes during pregnancy that influence drug metabolism is essential. Some research indicates that antiretroviral drugs can induce oxidative stress and mitochondrial dysfunction during pregnancy, while other studies suggest that their use is generally safe. Therefore, concerns about long-term health effects persist. This review delves into the complex interplay between oxidative stress, antioxidant defenses, and antiviral therapies, focusing on strategies to mitigate potential oxidative damage. By addressing gaps in our understanding, we highlight the importance of balancing antiviral efficacy with the risks of oxidative stress. Moreover, we advocate for further research to develop safer, more effective therapeutic approaches during pregnancy. Understanding these dynamics is essential for optimizing health outcomes for both mother and fetus in the context of viral infections during pregnancy.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
| | - Maria João Gouveia
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, 4051-401 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
8
|
Tossetta G, Fantone S, Togni L, Santarelli A, Olivieri F, Marzioni D, Rippo MR. Modulation of NRF2/KEAP1 Signaling by Phytotherapeutics in Periodontitis. Antioxidants (Basel) 2024; 13:1270. [PMID: 39456522 PMCID: PMC11504014 DOI: 10.3390/antiox13101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Periodontitis affects up to 40% of adults over 60 years old and is a consequence of gingivitis. Periodontitis is characterized by a chronic inflammation, periodontal damage, and alveolar bone resorption. The nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2)/Kelch-like ECH-Associated Protein 1 (KEAP1) (NRF2/KEAP1) signaling pathway plays a key role in periodontitis by modulating redox balance and inflammation of the periodontium. However, NRF2 expression is decreased in gingival tissues of patients with periodontitis while oxidative stress is significantly increased in this pathology. Oxidative stress and lipopolysaccharide (LPS) produced by gram-negative bacteria favor the production of inflammatory causing periodontal inflammation and favoring alveolar bone. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating the NRF2/KEAP1 pathway in in vitro and in vivo models of periodontitis in order to evaluate new potential treatments of periodontitis that can improve the outcome of this disease.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sonia Fantone
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
| | - Lucrezia Togni
- Department of Clinical Specialistic and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.T.); (A.S.)
| | - Andrea Santarelli
- Department of Clinical Specialistic and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.T.); (A.S.)
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, 60126 Ancona, Italy
| | - Fabiola Olivieri
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
- IRCCS INRCA, 60124 Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
9
|
Ciumărnean L, Sârb OF, Drăghici NC, Sălăgean O, Milaciu MV, Orășan OH, Vlad CV, Vlad IM, Alexescu T, Para I, Țărmure SF, Hirișcău EI, Dogaru GB. Obesity Control and Supplementary Nutraceuticals as Cofactors of Brain Plasticity in Multiple Sclerosis Populations. Int J Mol Sci 2024; 25:10909. [PMID: 39456690 PMCID: PMC11507128 DOI: 10.3390/ijms252010909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. Brain plasticity, the brain's ability to adapt its structure and function, plays a crucial role in mitigating MS's impact. This paper explores the potential benefits of lifestyle changes and nutraceuticals on brain plasticity in the MS population. Lifestyle modifications, including physical activity and dietary adjustments, can enhance brain plasticity by upregulating neurotrophic factors, promoting synaptogenesis, and reducing oxidative stress. Nutraceuticals, such as vitamin D, omega-3 fatty acids, and antioxidants like alpha lipoic acid, have shown promise in supporting brain health through anti-inflammatory and neuroprotective mechanisms. Regular physical activity has been linked to increased levels of brain-derived neurotrophic factor and improved cognitive function. Dietary interventions, including caloric restriction and the intake of polyphenols, can also positively influence brain plasticity. Integrating these lifestyle changes and nutraceuticals into the management of MS can provide a complementary approach to traditional therapies, potentially improving neurological outcomes and enhancing the quality of life for the MS population.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Oliviu-Florențiu Sârb
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Nicu-Cătălin Drăghici
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
- “IMOGEN” Institute, Centre of Advanced Research Studies, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Octavia Sălăgean
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Olga-Hilda Orășan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Călin-Vasile Vlad
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Irina-Maria Vlad
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Teodora Alexescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Ioana Para
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Simina-Felicia Țărmure
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Elisabeta-Ioana Hirișcău
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Gabriela-Bombonica Dogaru
- Department of Medical Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Chen ZX, Qin YS, Shi BH, Gao BY, Tao RC, Yong XZ. Effects of Curcumin on Radiation/Chemotherapy-Induced Oral Mucositis: Combined Meta-Analysis, Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Curr Issues Mol Biol 2024; 46:10545-10569. [PMID: 39329977 PMCID: PMC11431004 DOI: 10.3390/cimb46090625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
The study aims to investigate the effects of curcumin on radiation/chemotherapy-induced oral mucositis (R/CIOM) and preliminarily explore its mechanism. Randomized controlled trials were identified from the PubMed, Embase, Web of Science, Cochrane Library, Medline, and Google Scholar databases. RevMan 5.4 was used for statistical analysis to calculate the combined risk ratios (RRs). The mechanism was analyzed through network pharmacology, molecular docking, and a molecular dynamics simulation. The targets of curcumin were collected in HERB, PharmMapper, Targetnet, Swiss Target Prediction, and SuperPred. OMIM, GeneCards, and Disgenet were used to collect relevant targets for R/CIOM. Cytoscape software 3.8.0 was used to construct the component-target-pathway network. Protein-Protein Interaction (PPI) networks were constructed using the STRING database. GO and KEGG enrichment analyses were performed by Metascape. AutoDock Vina 4.2 software was used for molecular docking. The molecular dynamics simulation was performed by Gromacs v2022.03. It is found that 12 studies involving 565 patients were included. Meta-analyses showed that curcumin reduced the incidence of severe R/CIOM (RR 0.42 [0.24, 0.75]) and the mean severity of R/CIOM (MD -0.93 [-1.34, -0.52]). Eleven core target genes were identified in the treatment of R/CIOM with curcumin. The results of molecular docking and the molecular dynamics simulation showed that curcumin had strong binding energy and stability with target proteins including MAPK3, SRC, and TNF. Overall, these findings suggest curcumin can effectively improve severe R/CIOM, perhaps by affecting MAPK3, SRC, and TNF.
Collapse
Affiliation(s)
- Zhi-Xing Chen
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
| | - Ya-Shi Qin
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
| | - Bang-Hui Shi
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
| | - Bi-Yun Gao
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
| | - Ren-Chuan Tao
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning 530021, China
| | - Xiang-Zhi Yong
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning 530021, China
| |
Collapse
|
11
|
Zhang P, Liu H, Yu Y, Peng S, Zhu S. Role of Curcuma longae Rhizoma in medical applications: research challenges and opportunities. Front Pharmacol 2024; 15:1430284. [PMID: 39170702 PMCID: PMC11336575 DOI: 10.3389/fphar.2024.1430284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Curcuma longae Rhizoma, commonly known as turmeric, is extensively utilized not only in Traditional Chinese Medicine (TCM) but also across various traditional medicine systems worldwide. It is renowned for its effectiveness in removing blood stasis, promoting blood circulation, and relieving pain. The primary bioactive metabolites of Curcuma longae Rhizoma-curcumin, β-elemene, curcumol, and curdione-have been extensively studied for their pharmacological benefits. These include anti-tumor properties, cardiovascular and cerebrovascular protection, immune regulation, liver protection, and their roles as analgesics, anti-inflammatories, antivirals, antibacterials, hypoglycemics, and antioxidants. This review critically examines the extensive body of research regarding the mechanisms of action of Curcuma longae Rhizoma, which engages multiple molecular targets and signaling pathways such as NF-κB, MAPKs, and PI3K/AKT. The core objective of this review is to assess how the main active metabolites of turmeric interact with these molecular systems to achieve therapeutic outcomes in various clinical settings. Furthermore, we discuss the challenges related to the bioavailability of these metabolites and explore potential methods to enhance their therapeutic effects. By doing so, this review aims to provide fresh insights into the optimization of Curcuma longae Rhizoma for broader clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Zhang M, Yuan Q, Wang P, Zhang F, Wu D, Bai H, Liu J, Liu H, Yuan X. Bone Marrow Mesenchymal Stem Cell-Derived Nanovesicles Containing H8 Improve Hepatic Glucose and Lipid Metabolism and Exert Ameliorative Effects in Type 2 Diabetes. Int J Nanomedicine 2024; 19:6643-6658. [PMID: 38979532 PMCID: PMC11230129 DOI: 10.2147/ijn.s455021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Nanovesicles (NVs) derived from bone mesenchymal stem cells (BMSCs) as drug delivery systems are considered an effective therapeutic strategy for diabetes. However, its mechanism of action remains unclear. Here, we evaluated the efficacy and molecular mechanism of BMSC-derived NVs carrying the curcumin analog H8 (H8-BMSCs-NVs) on hepatic glucose and lipid metabolism in type 2 diabetes (T2D). Subjects and Methods Mouse BMSCs were isolated by collagenase digestion and H8-BMSCs-NVs were prepared by microvesicle extrusion. The effects of H8-BMSCs-NVs on hepatic glucose and lipid metabolism were observed in a T2D mouse model and a HepG2 cell insulin resistance model. To evaluate changes in potential signaling pathways, the PI3K/AKT/AMPK signaling pathway and expression levels of G6P and PEPCK were assessed by Western blotting. Results H8-BMSCs-NVs effectively improved lipid accumulation in liver tissues and restored liver dysfunction in T2D mice. Meanwhile, H8-BMSCs-NVs effectively inhibited intracellular lipid accumulation in the insulin resistance models of HepG2 cells. Mechanistic studies showed that H8-BMSCs-NVs activated the PI3K/AKT/AMPK signaling pathway and decreased the expression levels of G6P and PEPCK. Conclusion These findings demonstrate that H8-BMSCs-NVs improved hepatic glucose and lipid metabolism in T2D mice by activating the PI3K/AKT/AMPK signaling pathway, which provides novel evidence suggesting the potential of H8-BMSCs-NVs in the clinically treatment of T2D patients.
Collapse
Affiliation(s)
- Meng Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
- The First Hospital of Qiqihar, Qiqihar, People's Republic of China
| | - Qi Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Peiwen Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Fan Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Dan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - He Bai
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Haifeng Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| |
Collapse
|
13
|
Belcher S, Flores-Iga G, Natarajan P, Crummett G, Talavera-Caro A, Gracia-Rodriguez C, Lopez-Ortiz C, Das A, Adjeroh DA, Nimmakayala P, Balagurusamy N, Reddy UK. Dietary Curcumin Intake and Its Effects on the Transcriptome and Metabolome of Drosophila melanogaster. Int J Mol Sci 2024; 25:6559. [PMID: 38928266 PMCID: PMC11203963 DOI: 10.3390/ijms25126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin's effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools-transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer's, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.
Collapse
Affiliation(s)
- Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Garrett Crummett
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Alicia Talavera-Caro
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Donald A. Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| |
Collapse
|
14
|
Tossetta G. Special Issue "Physiology and Pathophysiology of Placenta 2.0". Int J Mol Sci 2024; 25:4586. [PMID: 38731805 PMCID: PMC11083717 DOI: 10.3390/ijms25094586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
We are pleased to present this Special Issue of the International Journal of Molecular Sciences, entitled "Physiology and Pathophysiology of Placenta 2 [...].
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
15
|
Haloub K, McNamara E, Yahya RH. An Unusual Case of Dietary-Induced Liver Injury during Pregnancy: A Case Report of Probable Liver Injury due to High-Dose Turmeric Intake and Literature Review. Case Reports Hepatol 2024; 2024:6677960. [PMID: 38352658 PMCID: PMC10864038 DOI: 10.1155/2024/6677960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Turmeric-induced liver injury is a controversial topic, and turmeric is safe to consume during pregnancy in small amounts; however, it might be an uncommon cause of liver injury if consumed in large amounts. We hereby report a case of a pregnant patient who demonstrated atypical signs and symptoms of dietary-induced liver injury during pregnancy. She presented with itching at 23 weeks 4 days of pregnancy and had deranged liver function tests and was diagnosed with dietary-induced liver injury. The patient was managed with a strict diet during the pregnancy which resulted in a significant improvement in the clinical and biochemical findings during the pregnancy.
Collapse
Affiliation(s)
- Kareem Haloub
- The University of Melbourne, Parkville, VIC 3052, Australia
| | - Elly McNamara
- The University of Melbourne, Parkville, VIC 3052, Australia
| | - Rani Haj Yahya
- The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
16
|
Patibandla S, Gallagher JJ, Patibandla L, Ansari AZ, Qazi S, Brown SF. Ayurvedic Herbal Medicines: A Literature Review of Their Applications in Female Reproductive Health. Cureus 2024; 16:e55240. [PMID: 38558676 PMCID: PMC10981444 DOI: 10.7759/cureus.55240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Ayurveda, an ancient holistic and personalized healing system originating from the Indian subcontinent, has been gaining increasing attention as a complementary and alternative medical practice for treating various health conditions, including those related to women's reproductive well-being. This comprehensive literature review examines a wide array of experimental and clinical studies exploring the diverse facets of Ayurvedic interventions in addressing issues such as menstrual irregularities, polycystic ovary syndrome (PCOS), infertility, and menopausal symptoms. The paper specifically focuses on discussing the available data regarding the efficacy of Tulsi (Ocimum tenuiflorum), ashwagandha (Withania somnifera), ginger (Zingiber officinale), cardamom (Elettaria cardamomum), turmeric (Curcuma longa), and Shatavari (Asparagus racemosus), which have traditionally been used in Ayurvedic medicine for centuries. The synthesis of literature not only highlights the potential benefits of these Ayurvedic interventions, but also critically assesses the methodological rigor of existing studies, identifying research gaps, and proposing directions for future investigations. While acknowledging the need for further rigorous research and clinical trials, the review emphasizes the benefits of collaborative and integrative healthcare. This review aims to serve as a valuable resource for healthcare practitioners, researchers, and individuals seeking holistic and natural alternatives for female reproductive health management.
Collapse
Affiliation(s)
- Srihita Patibandla
- Obstetrics and Gynecology, William Carey University College of Osteopathic Medicine, Hattiesburg, USA
| | - Joshua J Gallagher
- Obstetrics and Gynecology, William Carey University College of Osteopathic Medicine, Hattiesburg, USA
| | | | - Ali Z Ansari
- Obstetrics and Gynecology, William Carey University College of Osteopathic Medicine, Hattiesburg, USA
| | - Shayaan Qazi
- Obstetrics and Gynecology, University of South Florida, Tampa, USA
| | - Samuel F Brown
- Obstetrics and Gynecology, South Central Regional Medical Center, Laurel, USA
| |
Collapse
|
17
|
Fantone S, Piani F, Olivieri F, Rippo MR, Sirico A, Di Simone N, Marzioni D, Tossetta G. Role of SLC7A11/xCT in Ovarian Cancer. Int J Mol Sci 2024; 25:587. [PMID: 38203758 PMCID: PMC10779187 DOI: 10.3390/ijms25010587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic cancers worldwide and has a high fatality rate due to diagnosis at an advanced stage of the disease as well as a high recurrence rate due to the occurrence of chemotherapy resistance. In fact, chemoresistance weakens the therapeutic effects, worsening the outcome of this pathology. Solute Carrier Family 7 Member 11 (SLC7A11, also known as xCT) is the functional subunit of the Xc- system, an anionic L-cystine/L-glutamate antiporter expressed on the cell surface. SLC7A11 expression is significantly upregulated in several types of cancers in which it can inhibit ferroptosis and favor cancer cell proliferation, invasion and chemoresistance. SLC7A11 expression is also increased in ovarian cancer tissues, suggesting a possible role of this protein as a therapeutic target. In this review, we provide an overview of the current literature regarding the role of SLC7A11 in ovarian cancer to provide new insights on SLC7A11 modulation and evaluate the potential role of SLC7A11 as a therapeutic target.
Collapse
Affiliation(s)
- Sonia Fantone
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
| | - Federica Piani
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Fabiola Olivieri
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Angelo Sirico
- Obstetrics and Gynecology Unit, Sant’Anna e San Sebastiano Hospital, 81100 Caserta, Italy;
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
18
|
Magan P, Pratten M. Effects of the Herbal Product Curcumin on Cardiomyocytes in Micromass Culture and the Potential Role It May Play in Pregnancy and Development. Cureus 2023; 15:e51132. [PMID: 38149065 PMCID: PMC10751074 DOI: 10.7759/cureus.51132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Herbal medicine (HM) consumption during pregnancy has been on the rise in many parts of the world. Curcumin is a proven antioxidant and anti-inflammatory herb component, having demonstrated efficacy in alleviating various diseases. However, there is conflicting evidence with regards to its effect on pregnancy. We assess the safety profile of the main component of turmeric, curcumin, during pregnancy. Furthermore, to investigate curcumin in combination with known teratogen ethanol to identify any protective effect that curcumin might exert. Method Embryonic chick cardiomyocytes in micromass culture were treated with varying concentrations of curcumin. Three endpoints were used to determine the effect of curcumin on these cells: contractile activity (morphological score), cell viability (resazurin assay), and total protein content (kenacid blue assay). Results Curcumin demonstrated cytotoxicity at the highest tested concentrations (10-20μM) by significantly reducing cell activity and total protein. The results of morphological scoring suggest that repeated investigations would have revealed the teratogenic potential of curcumin. Lower concentrations (50nM) of curcumin were comparable to the control. The combination of a non-toxic concentration of curcumin with ethanol revealed additive toxicity. Conclusion It seems unlikely that curcumin will adversely affect the embryo at low doses due to issues of bioavailability. The findings of cytotoxicity and possible teratogenicity at high concentrations are a concern. Due to the limited information available regarding curcumin metabolism in human embryos, advancements in curcumin delivery systems, and the high likelihood of overconsumption, further in vivo research using animal models is required.
Collapse
Affiliation(s)
- Priyan Magan
- School of Life Sciences, University of Nottingham, Nottingham, GBR
| | - Margaret Pratten
- School of Life Sciences, University of Nottingham, Nottingham, GBR
| |
Collapse
|
19
|
Zhao L, Chang Q, Cong Z, Zhang Y, Liu Z, Zhao Y. Effects of dietary polyphenols on maternal and fetal outcomes in maternal diabetes. Food Funct 2023; 14:8692-8710. [PMID: 37724008 DOI: 10.1039/d3fo02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The incidences of short-term or long-term adverse maternal and fetal outcomes caused by maternal diabetes are increasing. Due to toxicity or side effects, economic pressures, and other problems associated with injections or oral hypoglycemic drugs, many researchers have investigated natural treatment methods. Polyphenols can protect against chronic pathologies by regulating numerous physiological processes and provide many health benefits. Moreover, polyphenols have anti-diabetic properties and can be used to treat diabetic complications. Diets rich in polyphenols are beneficial to pregnant women with diabetes. Here, we review the epidemiological and experimental evidence on the impact of dietary polyphenols on maternal and fetal outcomes in pregnant women with diabetes, and the effects of polyphenols on biological changes and possible mechanisms. Previous data (mainly from in vitro and animal experiments) showed that polyphenols can alleviate gestational diabetes mellitus and diabetic embryopathy by reducing maternal hyperglycemia and insulin resistance, alleviating inflammation and oxidative stress, and regulating related signaling pathways. Although polyphenols have shown many health benefits, further research is needed to better understand the complex interactions between polyphenols and maternal diabetes.
Collapse
Affiliation(s)
- Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qing Chang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhangzhao Cong
- Department of Teaching Affairs, China Medical University, Shenyang, China
| | - Yalin Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhuxi Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yuhong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Khosravi F, Hojati V, Mirzaei S, Hashemi M, Entezari M. Curcumin neuroprotective effects in Parkinson disease during pregnancy. Brain Res Bull 2023; 201:110726. [PMID: 37543296 DOI: 10.1016/j.brainresbull.2023.110726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Young onset Parkinson disease (YOPD) accounts for about 10% of PD patients, with the onset of symptoms between the ages of 21 and 40. At this age, the probability of pregnancy is high and there is a concern that the disease affects the fetuses. Therefore, in the present study, the effects of rotenone-induced PD on female mice as well as their fetuses and curcumin supplementation on the cerebral tissue of both female mice and their resulted fetuses were studied. METHODS The rotenone was injected subcutaneously to induce PD model of female mice. The different concentrations of curcumin were administrated every day i.p. for 3 weeks and the rotarod test was done on day 1 and 19. Cell viability was measured by MTT test and apoptosis and necrosis of cells were evaluate using flow cytometry technique. After primer design, the expressions of bax, bcl-2, miR-211 and circRNA 0001518 genes were measured using RT-PCR technique. RESULTS Curcumin administration were improved cerebral cell viability of both female PD mice and resulted fetuses by preventing cell apoptosis and necrosis. bax, miR-211 and circRNA 0001518 were downregulated and bcl-2 overexpressed in cerebral neurons of PD mice and their fetuses. CONCLUSION PD induction in mice affects their fetal brain, and curcumin can partially reduce the negative effects of PD on fetal brain cells by overexpressing bcl-2 and decreasing bax expression genes.
Collapse
Affiliation(s)
- Faramarz Khosravi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
21
|
Xu C, Wang M, Zandieh Doulabi B, Sun Y, Liu Y. Paradox: Curcumin, a Natural Antioxidant, Suppresses Osteosarcoma Cells via Excessive Reactive Oxygen Species. Int J Mol Sci 2023; 24:11975. [PMID: 37569346 PMCID: PMC10418684 DOI: 10.3390/ijms241511975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Osteosarcoma (OS) is an aggressive tumor with a rare incidence. Extended surgical resections are the prevalent treatment for OS, which may cause critical-size bone defects. These bone defects lead to dysfunction, weakening the post-surgical quality of patients' life. Hence, an ideal therapeutic agent for OS should simultaneously possess anti-cancer and bone repair capacities. Curcumin (CUR) has been reported in OS therapy and bone regeneration. However, it is not clear how CUR suppresses OS development. Conventionally, CUR is considered a natural antioxidant in line with its capacity to promote the nuclear translocation of a nuclear transcription factor, nuclear factor erythroid 2 (NRF2). After nuclear translocation, NRF2 can activate the transcription of some antioxidases, thereby circumventing excess reactive oxygen species (ROS) that are deleterious to cells. Intriguingly, this research demonstrated that, in vitro, 10 and 20 μM CUR increased the intracellular ROS in MG-63 cells, damaged cells' DNA, and finally caused apoptosis of MG-63 cells, although increased NRF2 protein level and the expression of NRF2-regulated antioxidase genes were identified in those two groups.
Collapse
Affiliation(s)
| | | | | | | | - Yuelian Liu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, 1081 LA Amsterdam, The Netherlands; (C.X.); (M.W.); (B.Z.D.); (Y.S.)
| |
Collapse
|
22
|
Ghosh H, Bhattacharyya S, Schobert R, Dandawate P, Biersack B. Fluorinated and N-Acryloyl-Modified 3,5-Di[( E)-benzylidene]piperidin-4-one Curcuminoids for the Treatment of Pancreatic Carcinoma. Pharmaceutics 2023; 15:1921. [PMID: 37514107 PMCID: PMC10385166 DOI: 10.3390/pharmaceutics15071921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Pancreatic carcinoma is a cancer disease with high mortality. Thus, new and efficient treatments for this disease are badly needed. Curcumin has previously shown promising effects in pancreatic cancer patients; however, this natural compound suffers from inadequate efficacy and bioavailability, preventing its clinical approval. The synthetic curcuminoid EF24 was developed with activities superior to curcumin against various cancer types. In this study, a series of analogs of EF24 were investigated for anticancer effects on pancreatic carcinoma models. A distinct activity boost was achieved by straightforward N-acrylation of EF24 analogs, in particular, of compounds bearing 3-fluoro-4-methoxybenzylidene, 3,4-difluorobenzylidene, and 4-trifluoromethylbenzylidene moieties, while no improvement was seen for N-acryloyl-modified EF24. Apoptosis induction and suppression of phospho-STAT3 levels were determined, the latter corroborated by docking of active curcuminoids into STAT3. Hence, promising new clues for the development of efficient and superior curcuminoids as valuable treatment options for one of the most lethal cancer diseases were discovered in this study.
Collapse
Affiliation(s)
- Hindole Ghosh
- Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Sangita Bhattacharyya
- Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Rainer Schobert
- Organic Chemistry 1, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Prasad Dandawate
- Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Bernhard Biersack
- Organic Chemistry 1, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
23
|
Tossetta G, Piani F, Borghi C, Marzioni D. Role of CD93 in Health and Disease. Cells 2023; 12:1778. [PMID: 37443812 PMCID: PMC10340406 DOI: 10.3390/cells12131778] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
CD93 (also known as complement protein 1 q subcomponent receptor C1qR1 or C1qRp), is a transmembrane glycoprotein encoded by a gene located on 20p11.21 and composed of 652 amino acids. CD93 can be present in two forms: soluble (sCD93) and membrane-bound (CD93). CD93 is mainly expressed on endothelial cells, where it plays a key role in promoting angiogenesis both in physiology and disease, such as age-related macular degeneration and tumor angiogenesis. In fact, CD93 is highly expressed in tumor-associated vessels and its presence correlates with a poor prognosis, poor immunotherapy response, immune cell infiltration and high tumor, node and metastasis (TNM) stage in many cancer types. CD93 is also expressed in hematopoietic stem cells, cytotrophoblast cells, platelets and many immune cells, i.e., monocytes, neutrophils, B cells and natural killer (NK) cells. Accordingly, CD93 is involved in modulating important inflammatory-associated diseases including systemic sclerosis and neuroinflammation. Finally, CD93 plays a role in cardiovascular disease development and progression. In this article, we reviewed the current literature regarding the role of CD93 in modulating angiogenesis, inflammation and tumor growth in order to understand where this glycoprotein could be a potential therapeutic target and could modify the outcome of the abovementioned pathologies.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Federica Piani
- Cardiovascular Medicine Unit, Heart, Chest and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (C.B.)
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Claudio Borghi
- Cardiovascular Medicine Unit, Heart, Chest and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (C.B.)
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
24
|
Malcangi G, Patano A, Ciocia AM, Netti A, Viapiano F, Palumbo I, Trilli I, Guglielmo M, Inchingolo AD, Dipalma G, Inchingolo F, Minetti E, Inchingolo AM. Benefits of Natural Antioxidants on Oral Health. Antioxidants (Basel) 2023; 12:1309. [PMID: 37372039 DOI: 10.3390/antiox12061309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, special attention has been paid to the correlation between oxidation-reduction mechanisms and human health. The free radicals produced via physiological cellular biochemical processes are major contributors to oxidation phenomena. Their instability is the major cause of cellular damage. Free radical reactive oxygen species containing oxygen are the best-known ones. The body neutralises the harmful effects of free radicals via the production of endogenous antioxidants (superoxide dismutase, catalase, glutathione, and melatonin). The field of study of nutraucetics has found antioxidant capacity in substances such as vitamins A, B, C, E, coenzyme Q-10, selenium, flavonoids, lipoic acid, carotenoids, and lycopene contained in some foods. There are several areas of investigation that aim to research the interaction between reactive oxygen species, exogenous antioxidants, and the microbiota to promote increased protection via the peroxidation of macromolecules (proteins, and lipids) by maintaining a dynamic balance among the species that make up the microbiota. In this scoping review, we aim to map the scientific literature on oxidative stress related to the oral microbiota, and the use of natural antioxidants to counteract it, to assess the volume, nature, characteristics, and type of studies available to date, and to suggest the possible gaps that will emerge from the analysis.
Collapse
Affiliation(s)
- Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Anna Maria Ciocia
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Anna Netti
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Irene Palumbo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | | | | | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Elio Minetti
- Department of Biomedical, Surgical and Dental Science, University of Milan, 20122 Milan, Italy
| | | |
Collapse
|
25
|
Tossetta G, Fantone S, Piani F, Crescimanno C, Ciavattini A, Giannubilo SR, Marzioni D. Modulation of NRF2/KEAP1 Signaling in Preeclampsia. Cells 2023; 12:1545. [PMID: 37296665 PMCID: PMC10252212 DOI: 10.3390/cells12111545] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Placentation is a key and tightly regulated process that ensures the normal development of the placenta and fetal growth. Preeclampsia (PE) is a hypertensive pregnancy-related disorder involving about 5-8% of all pregnancies and clinically characterized by de novo maternal hypertension and proteinuria. In addition, PE pregnancies are also characterized by increased oxidative stress and inflammation. The NRF2/KEAP1 signaling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. ROS activate NRF2, allowing its binding to the antioxidant response element (ARE) region present in the promoter of several antioxidant genes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase that neutralize ROS, protecting cells against oxidative stress damages. In this review, we analyze the current literature regarding the role of the NRF2/KEAP1 pathway in preeclamptic pregnancies, discussing the main cellular modulators of this pathway. Moreover, we also discuss the main natural and synthetic compounds that can regulate this pathway in in vivo and in vitro models.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.F.); (D.M.)
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.F.); (D.M.)
| | - Federica Piani
- Cardiovascular Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40128 Bologna, Italy;
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Caterina Crescimanno
- School of Human and Social Science, University “Kore” of Enna, 94100 Enna, Italy;
| | - Andrea Ciavattini
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy; (A.C.); (S.R.G.)
| | - Stefano Raffaele Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy; (A.C.); (S.R.G.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.F.); (D.M.)
| |
Collapse
|
26
|
Tossetta G, Fantone S, Marzioni D, Mazzucchelli R. Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15113037. [PMID: 37296999 DOI: 10.3390/cancers15113037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide. Prostate cancer can be treated by surgery or active surveillance when early diagnosed but, when diagnosed at an advanced or metastatic stage, radiation therapy or androgen-deprivation therapy is needed to reduce cancer progression. However, both of these therapies can cause prostate cancer resistance to treatment. Several studies demonstrated that oxidative stress is involved in cancer occurrence, development, progression and treatment resistance. The nuclear factor erythroid 2-related factor 2 (NRF2)/KEAP1 (Kelch-Like ECH-Associated Protein 1) pathway plays an important role in protecting cells against oxidative damage. Reactive oxygen species (ROS) levels and NRF2 activation can determine cell fate. In particular, toxic levels of ROS lead physiological cell death and cell tumor suppression, while lower ROS levels are associated with carcinogenesis and cancer progression. On the contrary, a high level of NRF2 promotes cell survival related to cancer progression activating an adaptive antioxidant response. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
27
|
Tossetta G. Physiology and Pathophysiology of the Placenta. Int J Mol Sci 2023; 24:ijms24109066. [PMID: 37240411 DOI: 10.3390/ijms24109066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
We are pleased to present this Special Issue of the International Journal of Molecular Sciences, entitled "Physiology and Pathophysiology of Placenta" [...].
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
28
|
Tossetta G, Fantone S, Goteri G, Giannubilo SR, Ciavattini A, Marzioni D. The Role of NQO1 in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24097839. [PMID: 37175546 PMCID: PMC10178676 DOI: 10.3390/ijms24097839] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic malignancies showing a high fatality rate because of late diagnosis and relapse occurrence due to chemoresistance onset. Several researchers reported that oxidative stress plays a key role in ovarian cancer occurrence, growth and development. The NAD(P)H:quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that, using NADH or NADPH as substrates to reduce quinones to hydroquinones, avoids the formation of the highly reactive semiquinones, then protecting cells against oxidative stress. In this review, we report evidence from the literature describing the effect of NQO1 on ovarian cancer onset and progression.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
29
|
Laube R, Selinger CP, Seow CH, Christensen B, Flanagan E, Kennedy D, Mountifield R, Seeho S, Shand A, Williams AJ, Leong RW. Australian inflammatory bowel disease consensus statements for preconception, pregnancy and breast feeding. Gut 2023; 72:1040-1053. [PMID: 36944479 DOI: 10.1136/gutjnl-2022-329304] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Because pregnancy outcomes tend to be worse in women with inflammatory bowel disease (IBD) than in those without, we aimed to update consensus statements that guide the clinical management of pregnancy in patients with IBD. DESIGN A multidisciplinary working group was established to formulate these consensus statements. A modified RAND/UCLA appropriateness method was used, consisting of a literature review, online voting, discussion meeting and a second round of voting. The overall agreement among the delegates and appropriateness of the statement are reported. RESULTS Agreement was reached for 38/39 statements which provide guidance on management of pregnancy in patients with IBD. Most medications can and should be continued throughout pregnancy, except for methotrexate, allopurinol and new small molecules, such as tofacitinib. Due to limited data, no conclusion was reached on the use of tioguanine during pregnancy. Achieving and maintaining IBD remission before conception and throughout pregnancy is crucial to optimise maternofetal outcomes. This requires a multidisciplinary approach to engage patients, allay anxieties and maximise adherence tomedication. Intestinal ultrasound can be used for disease monitoring during pregnancy, and flexible sigmoidoscopy or MRI where clinically necessary. CONCLUSION These consensus statements provide up-to-date, comprehensive recommendations for the management of pregnancy in patients with IBD. This will enable a high standard of care for patients with IBD across all clinical settings.
Collapse
Affiliation(s)
- Robyn Laube
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
- Department of Gastroenterology, Macquarie University Hospital, Sydney, New South Wales, Australia
| | | | - Cynthia H Seow
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Britt Christensen
- Gastroenterology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Emma Flanagan
- Department of Gastroenterology, University of Melbourne, Melbourne, Victoria, Australia
| | - Debra Kennedy
- MotherSafe, Royal Hospital for Women, Sydney, New South Wales, Australia
| | - Reme Mountifield
- Department of Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Sean Seeho
- Department of Obstetrics and Gynaecology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Antonia Shand
- Department of Maternal Foetal Medicine, Royal Hospital for Women, Sydney, New South Wales, Australia
| | - Astrid-Jane Williams
- Department of Gastroenterology, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Rupert W Leong
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
- Department of Gastroenterology, Macquarie University Hospital, Sydney, New South Wales, Australia
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Tossetta G, Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur J Pharmacol 2023; 941:175503. [PMID: 36641100 DOI: 10.1016/j.ejphar.2023.175503] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cervical and endometrial cancers are among the most dangerous gynaecological malignancies, with high fatality and recurrence rates due to frequent diagnosis at an advanced stage and chemoresistance onset. The NRF2/KEAP1 signalling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. NRF2, activated by ROS, induces the expression of antioxidant enzymes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase which neutralize ROS, protecting cells against oxidative stress damage. However, activation of NRF2/KEAP1 signalling in cancer cells results in chemoresistance, inactivating drug-mediated oxidative stress and protecting cancer cells from drug-induced cell death. We review the literature on the role of the NRF2/KEAP1 pathway in cervical and endometrial cancers, with a focus on the expression of its components and downstream genes. We also examine the role of the NRF2/KEAP1 pathway in chemotherapy resistance and how this pathway can be modulated by natural and synthetic modulators.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
31
|
Alba G, Dakhaoui H, Santa-Maria C, Palomares F, Cejudo-Guillen M, Geniz I, Sobrino F, Montserrat-de la Paz S, Lopez-Enriquez S. Nutraceuticals as Potential Therapeutic Modulators in Immunometabolism. Nutrients 2023; 15:411. [PMID: 36678282 PMCID: PMC9865834 DOI: 10.3390/nu15020411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Nutraceuticals act as cellular and functional modulators, contributing to the homeostasis of physiological processes. In an inflammatory microenvironment, these functional foods can interact with the immune system by modulating or balancing the exacerbated proinflammatory response. In this process, immune cells, such as antigen-presenting cells (APCs), identify danger signals and, after interacting with T lymphocytes, induce a specific effector response. Moreover, this conditions their change of state with phenotypical and functional modifications from the resting state to the activated and effector state, supposing an increase in their energy requirements that affect their intracellular metabolism, with each immune cell showing a unique metabolic signature. Thus, nutraceuticals, such as polyphenols, vitamins, fatty acids, and sulforaphane, represent an active option to use therapeutically for health or the prevention of different pathologies, including obesity, metabolic syndrome, and diabetes. To regulate the inflammation associated with these pathologies, intervention in metabolic pathways through the modulation of metabolic energy with nutraceuticals is an attractive strategy that allows inducing important changes in cellular properties. Thus, we provide an overview of the link between metabolism, immune function, and nutraceuticals in chronic inflammatory processes associated with obesity and diabetes, paying particular attention to nutritional effects on APC and T cell immunometabolism, as well as the mechanisms required in the change in energetic pathways involved after their activation.
Collapse
Affiliation(s)
- Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Hala Dakhaoui
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Marta Cejudo-Guillen
- Department of Pharmacology, Pediatry, and Radiology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Isabel Geniz
- Distrito Sanitario Seville Norte y Aljarafe, Servicio Andaluz de Salud, 41008 Seville, Spain
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
32
|
Marzioni D, Mazzucchelli R, Fantone S, Tossetta G. NRF2 modulation in TRAMP mice: an in vivo model of prostate cancer. Mol Biol Rep 2023; 50:873-881. [PMID: 36335520 DOI: 10.1007/s11033-022-08052-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most common cancers worldwide and oxidative stress is involved in its occurrence, development and progression. In fact, in transgenic adenocarcinoma of mouse prostate (TRAMP) mice, prostate cancer onset is associated with the methylation of the first five CpG in the nuclear factor erythroid 2-related factor 2 (NRF2) promoter, a key regulator of oxidative stress response, leading to its downregulation and accumulation of reactive oxygen species (ROS). It has been demonstrated that both natural and synthetic compounds can reactivate NRF2 expression inhibiting the methylation status of its promoter by downregulation of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). Interestingly, NRF2 re-expression significantly reduced prostate cancer onset in TRAMP mice highlighting an important role of NRF2 in prostate tumorigenesis. METHODS AND RESULTS We analysed the current literature regarding the role of natural and synthetic compounds in modulating NRF2 pathway in TRAMP mice, an in vivo model of prostate cancer, to give an overview on prostate carcinogenesis and its possible prevention. CONCLUSION We can conclude that specific natural and synthetic compounds can downregulate DNMTs and/or HDACs inhibiting the methylation status of NRF2 promoter, then reactivating the expression of NRF2 protecting normal prostatic cells from ROS damage and tumorigenesis.
Collapse
Affiliation(s)
- Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, School of Medicine, United Hospitals, Università Politecnica Delle Marche, Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy. .,Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica Delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| |
Collapse
|
33
|
Ju Y, Feng Y, Yang Y, Hou X, Zhang X, Zhu X, Wang Y, Yang M. Combining curcumin and aspirin ameliorates preeclampsia-like symptoms by inhibiting the placental TLR4/NF-κB signaling pathway in rats. J Obstet Gynaecol Res 2023; 49:128-140. [PMID: 36288911 DOI: 10.1111/jog.15473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/19/2023]
Abstract
AIM Preeclampsia (PE) is a common medical complication of pregnancy characterized by high blood pressure and proteinuria after the 20th gestational week. This study aimed to investigate the potency of the combination of curcumin and aspirin in the treatment of PE and explore the underlying mechanisms. MATERIAL AND METHODS The PE model was constructed in female rats by administering 0.5 mg/mL N-nitro-L-arginine methyl ester from gestational days (GDs) 6 to 16. The pregnant female rats were divided into five groups according to the drug treatment. The curcumin or aspirin was given to the rats by tail vein injection (0.36 mg/kg) or gavage treatment (1.5 mg/kg BW/day) from GD4 to GD18. RESULTS Treatment with curcumin and aspirin combination significantly reduced the systolic blood pressure and proteinuria in the PE rats. Meanwhile, in comparison to the PE rats treated with single-dose curcumin or aspirin, the rats treated with combined curcumin and aspirin showed significantly decreased sFlt-1, increased placental growth factor, and alleviated oxidative stress in both blood and placental tissues, which are abnormal in no-treated PE rats. Furthermore, dramatically decreased inflammatory cytokines secretion and TLR4 and NF-κB p65 expression in placental tissues were also observed in the PE rats with combined treatment compared to those of no-treated, signal-dose curcumin or aspirin-treated PE rats. CONCLUSIONS Our results suggested that the combined treatment of curcumin and aspirin significantly ameliorates the symptoms of PE in rats, which is most likely due to the inhibition of the placental TLR4/NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Yaru Ju
- Perinatal Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanjing Yang
- Perinatal Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xiaolin Hou
- Prenatal Diagnostic, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xiaofeng Zhang
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xihui Zhu
- Perinatal Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yage Wang
- Department of Obstetrics, Gaocheng District Hospital of Traditional Chinese and Western Medicine, Shijiazhuang, China
| | - Meiliu Yang
- Department of Biology, Hengshui University, Hengshui, China
| |
Collapse
|
34
|
Altomare A, Fiore M, D’Ercole G, Imperia E, Nicolosi RM, Della Posta S, Pasqua G, Cicala M, De Gara L, Ramella S, Guarino MPL. Protective Role of Natural Compounds under Radiation-Induced Injury. Nutrients 2022; 14:5374. [PMID: 36558533 PMCID: PMC9786992 DOI: 10.3390/nu14245374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, evidence has shown the potential therapeutic effects of different natural compounds for the prevention and treatment of radiotherapy-induced mucositis (RIOM). RIOM represents one of the most frequent side effects associated with anti-neoplastic treatments affecting patients' quality of life and treatment response due to radiation therapy discontinuation. The innate radio-protective ability of natural products obtained from plants is in part due to the numerous antioxidants possessed as a part of their normal secondary metabolic processes. However, oxygen presence is a key point for radiation efficacy on cancer cells. The aim of this review is to describe the most recent evidence on radiation-induced injury and the emerging protective role of natural compounds in preventing and treating this specific damage without compromising treatment efficacy.
Collapse
Affiliation(s)
- Annamaria Altomare
- Unit of Food Science and Nutrition, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Research Unit of Gastroenterology, Università Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Michele Fiore
- Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Research Unit of Radiation Oncology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Gabriele D’Ercole
- Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Elena Imperia
- Unit of Food Science and Nutrition, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Roberta Maria Nicolosi
- Department of Environmental Biology, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Susanna Della Posta
- Unit of Food Science and Nutrition, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Michele Cicala
- Research Unit of Gastroenterology, Università Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Nutrition, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Sara Ramella
- Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Research Unit of Radiation Oncology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Università Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
35
|
Tossetta G, Fantone S, Gesuita R, Di Renzo GC, Meyyazhagan A, Tersigni C, Scambia G, Di Simone N, Marzioni D. HtrA1 in Gestational Diabetes Mellitus: A Possible Biomarker? Diagnostics (Basel) 2022; 12:2705. [PMID: 36359548 PMCID: PMC9689498 DOI: 10.3390/diagnostics12112705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The high-temperature requirement A 1 (HtrA1) is a multidomain secretory protein with serine-protease activity, expressed in many tissues, including placenta, where its expression is higher in the first trimester, suggesting an association of this serine protease in early phases of human placenta development. In this study, we evaluated maternal serum HtrA1 levels in the first and third trimester of gestation. In particular, we evaluated a possible role of HtrA1 as an early marker of gestational diabetes mellitus (GDM) in the first trimester of gestation. METHODS We evaluated HtrA1 serum levels in the third trimester (36-40 weeks) in normal pregnancies (n = 20) and GDM pregnancies (n = 20) by using ELISA analysis. Secondly, we performed the same analysis by using the first trimester sera (10-12 weeks) of healthy pregnant women that will develop a normal pregnancy (n = 210) or GDM (n = 28) during pregnancy. RESULTS We found that HtrA1 serum levels in the third trimester were higher in pregnancies complicated by GDM. Interestingly, higher HtrA1 serum levels were also found in the first trimester in women developing GDM later during the second-third trimester. No significant differences in terms of maternal age and gestational age were found between cases and controls. Women with GDM shown significantly higher pre-pregnancy BMI values compared to controls. Moreover, the probability of GDM occurrence significantly increased with increasing HtrA1 levels and BMI values. The ROC curve showed a good accuracy in predicting GDM, with an AUC of 0.74 (95%CI: 0.64-0.92). CONCLUSIONS These results suggest an important role of HtrA1 as an early predictive marker of GDM in the first trimester of gestation, showing a significative clinical relevance for prevention of this disease.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Rosaria Gesuita
- Centre of Epidemiology and Biostatistics, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gian Carlo Di Renzo
- Department of Obstetrics, Gynecology and Perinatology, IE Sechenov First State University, 119991 Moscow, Russia
- Wayne State University Medical School and Perinatal Research Branch, NIH-NICHD, Detroit, MI 48201, USA
| | - Arun Meyyazhagan
- Wayne State University Medical School and Perinatal Research Branch, NIH-NICHD, Detroit, MI 48201, USA
| | - Chiara Tersigni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, 00168 Roma, Italy
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, 00168 Roma, Italy
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
36
|
Tossetta G. Metformin Improves Ovarian Cancer Sensitivity to Paclitaxel and Platinum-Based Drugs: A Review of In Vitro Findings. Int J Mol Sci 2022; 23:12893. [PMID: 36361682 PMCID: PMC9654053 DOI: 10.3390/ijms232112893] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic cancers worldwide, showing a high fatality rate and recurrence due to diagnosis at an advanced stage of the disease and the occurrence of chemoresistance, which weakens the therapeutic effects of the chemotherapeutic treatments. In fact, although paclitaxel and platinum-based drugs (carboplatin or cisplatin) are widely used alone or in combination to treat ovarian cancer, the occurrence of chemoresistance significantly reduces the effects of these drugs. Metformin is a hypoglycemic agent that is commonly used for the treatment of type 2 diabetes mellitus and non-alcoholic fatty liver disease. However, this drug also shows anti-tumor activity, reducing cancer risk and chemoresistance. This review analyzes the current literature regarding the role of metformin in ovarian cancer and investigates what is currently known about its effects in reducing paclitaxel and platinum resistance to restore sensitivity to these drugs.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; ; Tel.: +39-0712206270
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy
| |
Collapse
|
37
|
Sirotkin AV. The Influence of Turmeric and Curcumin on Female Reproductive Processes. PLANTA MEDICA 2022; 88:1020-1025. [PMID: 34416765 DOI: 10.1055/a-1542-8992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present review summarizes the available knowledge concerning the action of curcumin, the best-known polyphenol among the rhizomes of Curcumas, on female reproductive processes and their dysfunctions. Curcumin affects a number of physiological processes, including female reproduction (puberty, reproductive aging, ovarian follicullogenesis and oogenesis, and fecundity). Curcumin can affect these processes via changes in the release and reception of pituitary and ovarian hormones, growth factors and cytokines. Furthermore, it can influence the response of ovarian cells to these substances and external environmental factors. Finally, curcumin can affect oxidative processes within the ovary and numerous intracellular signalling pathways related to ovarian cell proliferation and apoptosis. These effects suggest the applicability of curcumin for stimulation of female reproductive processes in vivo and in vitro, as well as for the prevention, mitigation, and treatment of various reproductive disorders from ovarian insufficiency and infertility to polycystic ovarian syndrome and ovarian cancer.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| |
Collapse
|
38
|
Obaidi I, Blanco Fernández A, McMorrow T. Curcumin Sensitises Cancerous Kidney Cells to TRAIL Induced Apoptosis via Let-7C Mediated Deregulation of Cell Cycle Proteins and Cellular Metabolism. Int J Mol Sci 2022; 23:ijms23179569. [PMID: 36076967 PMCID: PMC9455736 DOI: 10.3390/ijms23179569] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022] Open
Abstract
Targeted therapies are the most attractive options in the treatment of different tumours, including kidney cancers. Such therapies have entered a golden era due to advancements in research, breakthroughs in scientific knowledge, and a better understanding of cancer therapy mechanisms, which significantly improve the survival rates and life expectancy of patients. The use of tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) as an anticancer therapy has attracted the attention of the scientific community and created great excitement due to its selectivity in targeting cancerous cells with no toxic impacts on normal tissues. However, clinical studies disappointingly showed the emergence of resistance against TRAIL. This study aimed to employ curcumin to sensitise TRAIL-resistant kidney cancerous ACHN cells, as well as to gain insight into the molecular mechanisms of TRAIL sensitization. Curcumin deregulated the expression of apoptosis-regulating micro Ribonucleic Acid (miRNAs), most notably, let-7C. Transfecting ACHN cells with a let-7C antagomir significantly increased the expression of several cell cycle protein, namely beta (β)-catenin, cyclin dependent kinase (CDK)1/2/4/6 and cyclin B/D. Further, it overexpressed the expression of the two key glycolysis regulating proteins including hypoxia-inducible factor 1-alpha (HIF-1α) and pyruvate dehydrogenase kinase 1 (PDK1). Curcumin also suppressed the expression of the overexpressed proteins when added to the antagomir transfected cells. Overall, curcumin targeted ACHN cell cycle and cellular metabolism by promoting the differential expression of let-7C. To the best of our knowledge, this is the first study to mechanistically report the cancer chemosensitisation potential of curcumin in kidney cancer cells via induction of let-7C.
Collapse
Affiliation(s)
- Ismael Obaidi
- NatPro Centre for Natural Product Research, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 W272 Dublin, Ireland
- College of Pharmacy, University of Babylon, Babylon 51002, Iraq
- Correspondence: (I.O.); (T.M.); Tel.: +353-8-6064-2626 (I.O.); +353-1-716-2317 (ext. 6819) (T.M.)
| | - Alfonso Blanco Fernández
- Flow Cytometry Core Technology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Tara McMorrow
- Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
- Correspondence: (I.O.); (T.M.); Tel.: +353-8-6064-2626 (I.O.); +353-1-716-2317 (ext. 6819) (T.M.)
| |
Collapse
|
39
|
Feduniw S, Gaca Z, Malinowska O, Brunets W, Zgliczyńska M, Włodarczyk M, Wójcikiewicz A, Ciebiera M. The Management of Pregnancy Complicated with the Previable Preterm and Preterm Premature Rupture of the Membranes: What about a Limit of Neonatal Viability?-A Review. Diagnostics (Basel) 2022; 12:2025. [PMID: 36010375 PMCID: PMC9407094 DOI: 10.3390/diagnostics12082025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Preterm premature rupture of the membranes (PPROM) at the limit of viability is associated with low neonatal survival rates and a high rate of neonatal complications in survivors. It carries a major risk of maternal morbidity and mortality. The limit of viability can be defined as the earliest stage of fetal maturity when a fetus has a reasonable chance, although not a high likelihood, for extra-uterine survival. The study reviews available data on preventing preterm delivery caused by the previable PPROM, pregnancy latency, therapeutic options including the use of antibiotics and steroids, neonatal outcomes, and future directions and opportunities.
Collapse
Affiliation(s)
- Stepan Feduniw
- Department of Reproductive Health, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland
| | | | - Olga Malinowska
- Faculty of Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | - Magdalena Zgliczyńska
- Department of Obstetrics, Perinatology and Neonatology, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| | - Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Wójcikiewicz
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| |
Collapse
|
40
|
Tossetta G, Marzioni D. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway. Pharmacol Res 2022; 183:106365. [PMID: 35901941 DOI: 10.1016/j.phrs.2022.106365] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022]
Abstract
Among gynecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumor occurrence, development and procession. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signaling inducing the expression of antioxidant enzymes such as heme oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance inactivating drug-mediated oxidative stress that normally leads cancer cells to death. In this review we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 (Kelch Like ECH Associated Protein 1) pathway in in vitro models of ovarian cancer. In particular, we reported how these compounds can modulate chemotherapy response.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
41
|
Leukotriene Receptor Antagonist, Montelukast Ameliorates L-NAME-Induced Pre-eclampsia in Rats through Suppressing the IL-6/Jak2/STAT3 Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:ph15080914. [PMID: 35893738 PMCID: PMC9332684 DOI: 10.3390/ph15080914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022] Open
Abstract
Aims: To investigate the potential protective role of montelukast (Mont) in the pre-eclampsia rat model induced by L-NG-Nitro arginine methyl ester (L-NAME). Methods and materials: Thirty-two pregnant female albino Wistar rats were assigned to four groups: the control group: pregnant rats received vehicles; the Mont group: pregnant rats received Mont (10 mg/kg/day, p.o.) from the 6th to the 18th day of gestation; the L-NAME group: pregnant rats received L-NAME (50 mg/kg/day, i.p.) from the 9th to the 18th day of gestation; the Mont/L-NAME group: pregnant rats received Mont (10 mg/kg/day, p.o.) from the 6th to the 18th day of gestation and L-NAME (50 mg/kg/day, i.p.) from the 9th to the 18th day of gestation. Placental, hepatic, and renal malondialdehyde (MDA), total nitrites (NOx), interleukin 6 (IL-6), and tumor necrosis factor (TNF)-α were determined. Serum alanine transaminase (ALT), aspartate transaminase (AST), creatinine, urea, 24-h urinary protein, and the placental growth factor (PGF) were measured. Histopathological examinations of the placental, hepatic, and renal tissues were also performed. In addition, placental, hepatic, and renal Janus kinase 2 (Jak2) and signal transducer and activator of transcription 3 (STAT3) immunoblotting were performed. Key findings: Mont improves oxidative stress, IL-6, TNF-α, ALT, AST, creatinine, urea, 24-h urinary protein, PGF, Jak2, and STAT3 which were all affected by L-NAME. Moreover, the histopathological assessment indicated that Mont restored the normal architecture that was markedly disturbed by L-NAME. Significance: Mont exerted the biochemical and histopathological amelioration of L-NAME-caused pre-eclampsia through its anti-inflammatory, anti-oxidant function and suppression of the IL-6/Jak2/STAT3 signaling pathway.
Collapse
|
42
|
Oliveira S, Monteiro-Alfredo T, Henriques R, Ribeiro CF, Seiça R, Cruz T, Cabral C, Fernandes R, Piedade F, Robalo MP, Matafome P, Silva S. Improvement of Glycaemia and Endothelial Function by a New Low-Dose Curcuminoid in an Animal Model of Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105652. [PMID: 35628465 PMCID: PMC9144453 DOI: 10.3390/ijms23105652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin has been suggested as a promising treatment for metabolic diseases, but the high doses required limit its therapeutic use. In this study, a new curcuminoid is synthesised to increase curcumin anti-inflammatory and antioxidant potential and to achieve hypoglycaemic and protective vascular effects in type 2 diabetic rats in a lower dose. In vitro, the anti-inflammatory effect was determined through the Griess reaction, and the antioxidant activity through ABTS and TBARS assays. In vivo, Goto-Kakizaki rats were treated for 2 weeks with the equimolar dose of curcumin (40 mg/kg/day) or curcuminoid (52.4 mg/kg/day). Fasting glycaemia, insulin tolerance, plasma insulin, insulin signalling, serum FFA, endothelial function and several markers of oxidative stress were evaluated. Both compounds presented a significant anti-inflammatory effect. Moreover, the curcuminoid had a marked hypoglycaemic effect, accompanied by higher GLUT4 levels in adipose tissue. Both compounds increased NO-dependent vasorelaxation, but only the curcuminoid exacerbated the response to ascorbic acid, consistent with a higher decrease in vascular oxidative and nitrosative stress. SOD1 and GLO1 levels were increased in EAT and heart, respectively. Altogether, these data suggest that the curcuminoid developed here has more pronounced effects than curcumin in low doses, improving the oxidative stress, endothelial function and glycaemic profile in type 2 diabetes.
Collapse
Affiliation(s)
- Sara Oliveira
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Tamaeh Monteiro-Alfredo
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados 79825-070, MS, Brazil
| | - Rita Henriques
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.H.); (T.C.)
| | - Carlos Fontes Ribeiro
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.H.); (T.C.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Célia Cabral
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Rosa Fernandes
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Fátima Piedade
- CQE, Complexo I, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (F.P.); (M.P.R.)
- Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria Paula Robalo
- CQE, Complexo I, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (F.P.); (M.P.R.)
- Instituto Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa, 1959-007 Lisbon, Portugal
| | - Paulo Matafome
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), 3046-854 Coimbra, Portugal
- Correspondence:
| | - Sónia Silva
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.H.); (T.C.)
| |
Collapse
|
43
|
Signaling Pathways in Pregnancy. Cells 2022; 11:cells11091385. [PMID: 35563691 PMCID: PMC9101431 DOI: 10.3390/cells11091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
|
44
|
Curcumae Radix Decreases Neurodegenerative Markers through Glycolysis Decrease and TCA Cycle Activation. Nutrients 2022; 14:nu14081587. [PMID: 35458149 PMCID: PMC9024545 DOI: 10.3390/nu14081587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (ND) are being increasingly studied owing to the increasing proportion of the aging population. Several potential compounds are examined to prevent neurodegenerative diseases, including Curcumae radix, which is known to be beneficial for inflammatory conditions, metabolic syndrome, and various types of pain. However, it is not well studied, and its influence on energy metabolism in ND is unclear. We focused on the relationship between ND and energy metabolism using Curcumae radix extract (CRE) in cells and animal models. We monitored neurodegenerative markers and metabolic indicators using Western blotting and qRT-PCR and then assessed cellular glycolysis and metabolic flux assays. The levels of Alzheimer’s disease-related markers in mouse brains were reduced after treatment with the CRE. We confirmed that neurodegenerative markers decreased in the cerebrum and brain tumor cells following low endoplasmic reticulum (ER) stress markers. Furthermore, glycolysis related genes and the extracellular acidification rate decreased after treatment with the CRE. Interestingly, we found that the CRE exposed mouse brain and cells had increased mitochondrial Tricarboxylic acid (TCA) cycle and Oxidative phosphorylation (OXPHOS) related genes in the CRE group. Curcumae radix may act as a metabolic modulator of brain health and help treat and prevent ND involving mitochondrial dysfunction.
Collapse
|
45
|
Role of NRF2 in Ovarian Cancer. Antioxidants (Basel) 2022; 11:antiox11040663. [PMID: 35453348 PMCID: PMC9027335 DOI: 10.3390/antiox11040663] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Among gynaecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumour occurrence, growth and development. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor, playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signalling, inducing the expression of antioxidant enzymes, such as haem oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance, inactivating drug-mediated oxidative stress that normally leads to cancer cells’ death. In this review, we report evidence from the literature describing the effect of NRF2 on ovarian cancer, with a focus on its function in drug resistance, NRF2 natural and synthetic modulators and its protective function in normal ovarian preservation.
Collapse
|
46
|
The Double-Edged Sword of Oxidative Stress in Skin Damage and Melanoma: From Physiopathology to Therapeutical Approaches. Antioxidants (Basel) 2022; 11:antiox11040612. [PMID: 35453297 PMCID: PMC9027913 DOI: 10.3390/antiox11040612] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
The skin is constantly exposed to exogenous and endogenous sources of reactive oxygen species (ROS). An adequate balance between ROS levels and antioxidant defenses is necessary for the optimal cell and tissue functions, especially for the skin, since it must face additional ROS sources that do not affect other tissues, including UV radiation. Melanocytes are more exposed to oxidative stress than other cells, also due to the melanin production process, which itself contributes to generating ROS. There is an increasing amount of evidence that oxidative stress may play a role in many skin diseases, including melanoma, being the primary cause or being a cofactor that aggravates the primary condition. Indeed, oxidative stress is emerging as another major force involved in all the phases of melanoma development, not only in the arising of the malignancy but also in the progression toward the metastatic phenotype. Furthermore, oxidative stress seems to play a role also in chemoresistance and thus has become a target for therapy. In this review, we discuss the existing knowledge on oxidative stress in the skin, examining sources and defenses, giving particular consideration to melanocytes. Therefore, we focus on the significance of oxidative stress in melanoma, thus analyzing the possibility to exploit the induction of oxidative stress as a therapeutic strategy to improve the effectiveness of therapeutic management of melanoma.
Collapse
|
47
|
Curcumin and Weight Loss: Does It Work? Int J Mol Sci 2022; 23:ijms23020639. [PMID: 35054828 PMCID: PMC8775659 DOI: 10.3390/ijms23020639] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a global health problem needing urgent research. Synthetic anti-obesity drugs show side effects and variable effectiveness. Thus, there is a tendency to use natural compounds for the management of obesity. There is a considerable body of knowledge, supported by rigorous experimental data, that natural polyphenols, including curcumin, can be an effective and safer alternative for managing obesity. Curcumin is a is an important compound present in Curcuma longa L. rhizome. It is a lipophilic molecule that rapidly permeates cell membrane. Curcumin has been used as a pharmacological traditional medicinal agent in Ayurvedic medicine for ∼6000 years. This plant metabolite doubtless effectiveness has been reported through increasingly detailed in vitro, in vivo and clinical trials. Regarding its biological effects, multiple health-promoting, disease-preventing and even treatment attributes have been remarkably highlighted. This review documents the status of research on anti-obesity mechanisms and evaluates the effectiveness of curcumin for management of obesity. It summarizes different mechanisms of anti-obesity action, associated with the enzymes, energy expenditure, adipocyte differentiation, lipid metabolism, gut microbiota and anti-inflammatory potential of curcumin. However, there is still a need for systematic and targeted clinical studies before curcumin can be used as the mainstream therapy for managing obesity.
Collapse
|
48
|
PPARγ Regulates Triclosan Induced Placental Dysfunction. Cells 2021; 11:cells11010086. [PMID: 35011648 PMCID: PMC8750171 DOI: 10.3390/cells11010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to the antibacterial agent triclosan (TCS) is associated with abnormal placenta growth and fetal development during pregnancy. Peroxisome proliferator-activated receptor γ (PPARγ) is crucial in placenta development. However, the mechanism of PPARγ in placenta injury induced by TCS remains unknown. Herein, we demonstrated that PPARγ worked as a protector against TCS-induced toxicity. TCS inhibited cell viability, migration, and angiogenesis dose-dependently in HTR-8/SVneo and JEG-3 cells. Furthermore, TCS downregulated expression of PPARγ and its downstream viability, migration, angiogenesis-related genes HMOX1, ANGPTL4, VEGFA, MMP-2, MMP-9, and upregulated inflammatory genes p65, IL-6, IL-1β, and TNF-α in vitro and in vivo. Further investigation showed that overexpression or activation (rosiglitazone) alleviated cell viability, migration, angiogenesis inhibition, and inflammatory response caused by TCS, while knockdown or inhibition (GW9662) of PPARγ had the opposite effect. Moreover, TCS caused placenta dysfunction characterized by the significant decrease in weight and size of the placenta and fetus, while PPARγ agonist rosiglitazone alleviated this damage in mice. Taken together, our results illustrated that TCS-induced placenta dysfunction, which was mediated by the PPARγ pathway. Our findings reveal that activation of PPARγ might be a promising strategy against the adverse effects of TCS exposure on the placenta and fetus.
Collapse
|
49
|
O'Connell AA, Abdalla TE, Radulovich AA, Best JC, Wood EG. Curcumin Supplementation and Endometrial Lining: Examining the Role and Pathophysiology of Use During Frozen-Thawed Embryo Transfer. Cureus 2021; 13:e20415. [PMID: 35036231 PMCID: PMC8754353 DOI: 10.7759/cureus.20415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/11/2021] [Indexed: 11/13/2022] Open
Abstract
Curcumin is a commonly used herbal supplement purported for its antioxidant, anti-inflammatory, and antineoplastic properties. The effects of curcumin supplementation on endometrial lining have been proposed; however, endometrial preparation in the case of frozen-thawed embryo transfer (FET) has not been established. This case series references two scenarios where turmeric was ingested by the patient, and endometrial thickness was subsequently reduced disrupting the FET cycle. Throughout this case series, curcumin's possible interactions with the uterine lining are summarized. Additionally, these cases highlight the importance of physicians’ awareness of taking a full history of any herbal remedies or supplements in addition to prescription or over-the-counter medications taken when undergoing treatment for controlled FET cycles or in-vitro fertilization (IVF). To our knowledge, no studies to date have investigated this relationship.
Collapse
|
50
|
Xia T, Li J, Ren X, Liu C, Sun C. Research progress of phenolic compounds regulating IL-6 to exert antitumor effects. Phytother Res 2021; 35:6720-6734. [PMID: 34427003 DOI: 10.1002/ptr.7258] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
Cytokine therapy, which activates the host immune system, has become an important and novel therapeutic approach to treat various cancers. Recent studies have shown that IL-6 is an important cytokine that regulates the homeostasis in vivo. However, excessive IL-6 plays a pathological role in a variety of acute and chronic inflammatory diseases, especially in cancer. IL-6 can transmit signals through JAK/STAT, RAS /MAPK, PI3K/ Akt, NF-κB, and other pathways to promote cancer progression. Phenolic compounds can effectively regulate the level of IL-6 in tumor cells and improve the tumor microenvironment. This article focuses on the phenolic compounds through the regulation of IL-6, participate in the prevention of cancer, inhibit the proliferation of cancer cells, reduce angiogenesis, improve therapeutic efficacy, and reduce side effects and other aspects. This will help to further advance research on cytokine therapy to reduce the burden of cancer and improve patient prognosis. However, current studies are mostly limited to animal and cellular experiments, and high-quality clinical studies are needed to further determine their antitumor efficacy in humans.
Collapse
Affiliation(s)
- Tingting Xia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Ren
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|