1
|
Chen T, Zheng W, Zhang Y, Xu Q. The relationship between triglyceride-glucose index and serum neurofilament light chain: Findings from NHANES 2013-2014. PLoS One 2025; 20:e0321226. [PMID: 40208889 PMCID: PMC11984729 DOI: 10.1371/journal.pone.0321226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/03/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND The Triglyceride-Glucose (TyG) index has become a reliable indicator for evaluating the level of insulin resistance, a pivotal factor in both metabolic and neurodegenerative disorders. Serum neurofilament light chain (sNfL) serves as a responsive biomarker for detecting neuroaxonal injury. Despite this, the interplay between the TyG index and sNfL levels has not been sufficiently investigated. The aim of this research is to scrutinize the correlation between TyG index and sNfL levels across a substantial, population-based cohort. METHODS Our study involved an examination of the dataset from the 2013-2014 round of the National Health and Nutrition Examination Survey (NHANES), encompassing a total of 2029 enrolled subjects. The TyG index was calculated using fasting triglycerides and glucose levels. Multivariable linear regression models were conducted to evaluate the relationship between TyG index and sNfL levels, adjusting for potential confounders such as age, sex, race, BMI, hypertension, stroke, congestive heart failure, alcohol consumption and NHHR (Non-High-Density Lipoprotein Cholesterol to High-Density Lipoprotein Cholesterol Ratio). Nonlinear associations were investigated using regression models based on restricted cubic splines (RCS). RESULTS Both the unadjusted and adjusted regression analyses revealed a substantial positive correlation between the TyG index and ln-sNfL levels. After accounting for all covariates, each unit increase in the TyG index was associated with a 0.15 (95% CI: 0.02-0.27, p = 0.04) increase in ln-sNfL levels. RCS analysis revealed a nonlinear relationship, with a threshold around a TyG index value of 9.63, beyond which ln-sNfL levels increased more rapidly. The association was consistent across subgroups. CONCLUSION Our study links higher TyG index with increased sNfL levels, indicating insulin resistance's role in neuroaxonal injury. The nonlinear relationship implies a heightened risk of neurodegeneration beyond a certain insulin resistance threshold. This underscores the need for early metabolic interventions to prevent neurodegenerative processes.
Collapse
Affiliation(s)
- Tong Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Zheng
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yan Zhang
- Department of Outpatient, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Xu
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Shi X, Xu L, Ren J, Jing L, Zhao X. Triglyceride-glucose index: a novel prognostic marker for sepsis-associated encephalopathy severity and outcomes. Front Neurol 2025; 16:1468419. [PMID: 40242624 PMCID: PMC12000067 DOI: 10.3389/fneur.2025.1468419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Background Sepsis-associated encephalopathy (SAE) is a complex condition with variable outcomes. This study investigates the potential of the Triglyceride-glucose (TyG) index as a marker for disease severity and prognosis in SAE patients. Methods We conducted a retrospective cohort study using data from the Medical Information Mart for Intensive Care (MIMIC-IV) database. Patients with sepsis who were admitted to the intensive care unit (ICU) were categorized into two groups based on the occurrence of SAE. Key clinical outcomes were 90-day survival (primary outcome) and length of ICU and hospital stays, as well as the use of vasoactive medications (secondary outcomes). The TyG index was calculated, and its association with disease severity scores and patient outcomes was analyzed using statistical methods, including survival analysis, Cox regression, and correlation analyses. Results The study population's median age was 65.96 years, predominantly male (60.1%). Higher TyG index scores correlated with elevated clinical severity scores (APSIII, LODS, OASIS, SAPSII, and CCI) and increased ICU and hospital stay durations. TyG index categorization revealed significant differences in 90-day survival probabilities, with "high TyG" associated with a 25% increased mortality risk compared to "low TyG." Furthermore, TyG index showed a moderate positive correlation with ICU stay duration and use of norepinephrine and vasopressin, but not with dopamine and epinephrine use. Conclusion The TyG index is a significant independent predictor of disease severity and prognosis in SAE patients. High TyG levels correlate with worse clinical outcomes and increased mortality risk, suggesting its potential as a valuable tool in managing SAE.
Collapse
|
3
|
Ivanović A, Petrović J, Stanić D, Nedeljković J, Ilić M, Jukić MM, Pejušković B, Pešić V. Single subanesthetic dose of ketamine exerts antioxidant and antidepressive-like effect in ACTH-induced preclinical model of depression. Mol Cell Neurosci 2025; 133:104006. [PMID: 40157469 DOI: 10.1016/j.mcn.2025.104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and oxidative stress represent important mechanisms that have been implicated in etiopathology of depression. Although first antidepressants were introduced in clinical practice more than six decades ago, approximately 30 % of patients with a diagnosis of depression show treatment resistance. A noncompetitive N-methyl-d-aspartate receptor antagonist ketamine has shown promising rapid antidepressant effects and has been approved for treatment-resistant depression (TRD). In the present study, we investigated antioxidant and antidepressant-like activity of a single subanesthetic dose of ketamine (10 mg/kg, ip) in a rodent model of TRD induced by adrenocorticotropic hormone (10 μg ACTH/day, sc, 21 days). Behavioral assessment was performed, and plasma biomarkers of oxidative stress and DNA damage in peripheral blood lymphocytes (PBLs) were determined. We observed that ACTH produced depressive-like behavior and significant increase in superoxide anion (O2·-), advanced oxidation protein products (AOPP), malondialdehyde (MDA) and total oxidant status (TOS) in male Wistar rats. This effect was accompanied by reduced activity of antioxidant enzymes - superoxide dismutase (SOD) and paraoxonase1 (PON1) in plasma and increase in DNA damage in PBLs. In the described model of TRD, we have demonstrated antidepressant effects of ketamine for the first time. Our results reveal that ketamine was effective in reducing O2.-, AOPP, MDA and TOS, while enhancing SOD and PON1 activity in ACTH-rats. Collectively, our study sheds light on molecular mechanisms implicated in antioxidant activity of ketamine, thus incentivizing further investigation of its effects on ROS metabolism and antioxidant defenses in clinical trials, particularly in depression.
Collapse
Affiliation(s)
- Ana Ivanović
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Jelena Petrović
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Dušanka Stanić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia.
| | - Jelena Nedeljković
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Miloš Ilić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Marin M Jukić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia; Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Bojana Pejušković
- Institute of Mental Health, School of Medicine, University of Belgrade, Palmotićeva 37, 11000 Belgrade, Serbia
| | - Vesna Pešić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| |
Collapse
|
4
|
Jawad M, Uthirapathy S, Altalbawy FMA, Oghenemaro EF, Rizaev J, Lal M, Eldesoqui M, Sharma N, Pramanik A, Al-Hamairy AK. Examining the role of antioxidant supplementation in mitigating oxidative stress markers in Alzheimer's disease: a comprehensive review. Inflammopharmacology 2025; 33:573-592. [PMID: 39699843 DOI: 10.1007/s10787-024-01622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024]
Abstract
Alzheimer's disease is a devastating neurodegenerative disorder that affects millions of people worldwide. One of the key pathological features of Alzheimer's disease is oxidative stress, which is characterized by an imbalance between the production of reactive oxygen species and the body's ability to neutralize them with antioxidants. In recent years, there has been growing interest in the potential role of antioxidant supplementation in mitigating oxidative stress markers in Alzheimer's disease. This review paper aims to provide a comprehensive overview of the current research on antioxidant supplementation in Alzheimer's disease and its effects on oxidative stress markers. The paper will examine the underlying mechanisms of oxidative stress in Alzheimer's disease, the potential benefits of antioxidant supplementation, and the challenges and limitations of using antioxidants as a therapeutic strategy.
Collapse
Affiliation(s)
- Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Subasini Uthirapathy
- Pharmacology Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, PMB 1, Abraka, Delta State, Nigeria
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Madan Lal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ahmed Khudhair Al-Hamairy
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, Iraq
| |
Collapse
|
5
|
Huang C, Zhang Y, Li M, Gong Q, Yu S, Li Z, Ren M, Zhou X, Zhu X, Sun Z. Genetically predicted brain cortical structure mediates the causality between insulin resistance and cognitive impairment. Front Endocrinol (Lausanne) 2025; 15:1443301. [PMID: 39882263 PMCID: PMC11774689 DOI: 10.3389/fendo.2024.1443301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
Background Insulin resistance is tightly related to cognition; however, the causal association between them remains a matter of debate. Our investigation aims to establish the causal relationship and direction between insulin resistance and cognition, while also quantifying the mediating role of brain cortical structure in this association. Methods The publicly available data sources for insulin resistance (fasting insulin, homeostasis model assessment beta-cell function and homeostasis model assessment insulin resistance, proinsulin), brain cortical structure, and cognitive phenotypes (visual memory, reaction time) were obtained from the MAGIC, ENIGMA, and UK Biobank datasets, respectively. We first conducted a bidirectional two-sample Mendelian randomization (MR) analysis to examine the susceptibility of insulin resistance on cognitive phenotypes. Additionally, we applied a two-step MR to assess the mediating role of cortical surficial area and thickness in the pathway from insulin resistance to cognitive impairment. The primary Inverse-variance weighted, accompanied by robust sensitivity analysis, was implemented to explore and verify our findings. The reverse MR analysis was also performed to evaluate the causal effect of cognition on insulin resistance and brain cortical structure. Results This study identified genetically determined elevated level of proinsulin increased reaction time (beta=0.03, 95% confidence interval [95%CI]=0.01 to 0.05, p=0.005), while decreasing the surface area of rostral middle frontal (beta=-49.28, 95%CI=-86.30 to -12.27, p=0.009). The surface area of the rostral middle frontal mediated 20.97% (95%CI=1.44% to 40.49%) of the total effect of proinsulin on reaction time. No evidence of heterogeneity, pleiotropy, or reverse causality was observed. Conclusions Briefly, our study noticed that elevated level of insulin resistance adversely affected cognition, with a partial mediation effect through alterations in brain cortical structure.
Collapse
Affiliation(s)
- Chaojuan Huang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuyang Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingxu Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiuju Gong
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Siqi Yu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhiwei Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengmeng Ren
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xia Zhou
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoqun Zhu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhongwu Sun
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Kim S, Jung UJ, Kim SR. The Crucial Role of the Blood-Brain Barrier in Neurodegenerative Diseases: Mechanisms of Disruption and Therapeutic Implications. J Clin Med 2025; 14:386. [PMID: 39860392 PMCID: PMC11765772 DOI: 10.3390/jcm14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The blood-brain barrier (BBB) is a crucial structure that maintains brain homeostasis by regulating the entry of molecules and cells from the bloodstream into the central nervous system (CNS). Neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as well as ischemic stroke, compromise the integrity of the BBB. This leads to increased permeability and the infiltration of harmful substances, thereby accelerating neurodegeneration. In this review, we explore the mechanisms underlying BBB disruption, including oxidative stress, neuroinflammation, vascular dysfunction, and the loss of tight junction integrity, in patients with neurodegenerative diseases. We discuss how BBB breakdown contributes to neuroinflammation, neurotoxicity, and the abnormal accumulation of pathological proteins, all of which exacerbate neuronal damage and facilitate disease progression. Furthermore, we discuss potential therapeutic strategies aimed at preserving or restoring BBB function, such as anti-inflammatory treatments, antioxidant therapies, and approaches to enhance tight junction integrity. Given the central role of the BBB in neurodegeneration, maintaining its integrity represents a promising therapeutic approach to slow or prevent the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
7
|
Saad MA, Rastanawi AA, El-Sahar AE, A Z El-Bahy A. Ascorbic acid Mitigates behavioural disturbances associated with letrozole-induced PCOS via switching-off JAK2/STAT5 and JAK2/ERK1/2 pathways in rat hippocampus. Steroids 2025; 213:109528. [PMID: 39528020 DOI: 10.1016/j.steroids.2024.109528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is an endocrine disorder with the highest prevalence among other disorders in sexually-active women. It is associated with broad-spectrum hormonal and metabolic disturbances with behavioural difficulties. Experimentally, letrozole administration causes similar findings. Ascorbic acid is powerful anti-oxidant; and its cellular levels decrease with "hyperglycemic and poor anti-oxidative" status, which is, a main hallmark of PCOS. Thus, ascorbic acid administration may prevent the induction of PCOS and its consequences. BASIC PROCEDURES Forty female rats were divided into four groups (n = 10 in each): normal control (CTRL), ascorbic acid (ASC), letrozole (LTZ), and ascorbic acid + letrozole (ASC + LTZ) group. Behavioural tests (Y-maze spontaneous alteration, tail suspension test, forced swimming test) were performed. In serum, hormones (testosterone, estradiol, progesterone), glycemia (blood glucose, insulin and HOMA-IR) and oxidative stress (SOD activity, GSH) markers were measured. In hippocampus, inflammation and apoptosis indicators (p-JAK2, p-STAT5, p-ERK1/2, NF-κB, BAX, Bcl2, BAX/Bcl2 ratio) and neurotransmitters (DA, 5-HT, NE, BDNF) were determined. Lastly, ovary histopathological investigation was conducted to confirm PCOS induction. PRINCIPAL RESULTS Letrozole induced PCOS with subsequent disturbances. Testosterone levels were augmented while estradiol and progesterone were declined. Fasting blood glucose, insulin, HOMA-IR and oxidative stress markers were elevated. The expression of p-JAK2, p-STAT5, p-ERK1/2, BAX and the levels of NF-κB were increased, but Bcl2 expression, monoamines and BDNF levels were lowered. Importantly, ASC restored the last mentioned parameters markedly. MAJOR CONCLUSIONS Ascorbic acid mitigated the behavioural difficulties of PCOS possibly by switching-off JAK2/STAT5 and JAK2/ERK1/2 pathways in hippocampus along with its neurotransmission-improving, hormonal-normalizing, anti-hyperglycemic and anti-oxidative effects.
Collapse
Affiliation(s)
- Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates.
| | - Alyasaa A Rastanawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Wataniya Private University, Hama, Syria.
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, School of Pharmacy, New Giza University, Egypt.
| | - Alshaymaa A Z El-Bahy
- Department of Pharmacology and Toxicology, School of Pharmaceutical Science, University of Hertfordshire (LMS)-Hosted by Global Academic Foundation (UH-GAF), Cairo, Egypt.
| |
Collapse
|
8
|
Chipofya E, Docrat TF, Marnewick JL. The Neuroprotective Effect of Rooibos Herbal Tea Against Alzheimer's Disease: A Review. Mol Nutr Food Res 2025; 69:e202400670. [PMID: 39703045 PMCID: PMC11704843 DOI: 10.1002/mnfr.202400670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
The world is experiencing a demographic shift toward an increasing proportion of elderly persons. Alzheimer's disease (AD) and other neurological disorders are far more likely to develop as people age. AD is a gradual, irreversible, and degenerative brain disorder that progressively deteriorates memory and cognitive function, eventually leading to death. Treatment for AD is the most significant unmet clinical need in neurology. There are no effective treatment options to prevent or reverse the degenerative process. The current medical management focuses primarily on temporarily easing symptoms, with little or no overall improvement. Although genetic predisposition and lifestyle factors influence the risk of neurodegenerative disorders, recent research suggests that dietary polyphenols with solid antioxidant capacities play crucial roles in determining brain health and aging. Aspalathus linearis is used to produce Rooibos, a popular South African herbal tea, which may modulate neurodegenerative mechanisms such as oxidative stress, tau protein, amyloid plaques, inflammation, and metals, all of which have been associated with AD. We reviewed the literature to evaluate the potential neuroprotective effects of Rooibos and its major flavonoids and to understand the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Elias Chipofya
- Applied Microbial and Health Biotechnology InstituteCape Peninsula University of TechnologyCape TownSouth Africa
- Department of Biomedical SciencesFaculty of Health Sciences and Wellness SciencesCape Peninsula University of TechnologyCape TownSouth Africa
| | - Taskeen F. Docrat
- Applied Microbial and Health Biotechnology InstituteCape Peninsula University of TechnologyCape TownSouth Africa
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology InstituteCape Peninsula University of TechnologyCape TownSouth Africa
| |
Collapse
|
9
|
Piatkowska-Chmiel I, Gawronska-Grzywacz M, PawLowski K, Dudka J, Slaska B, Tkaczyk-Wlizlo A, Kowal K, Herbet M. Restoring Brain Pathways Involved in Diabetes-Associated Neurocognitive Disorders: The Potential of Dipeptidyl Peptidase 4 Inhibitors as a Therapeutic Strategy. Curr Neuropharmacol 2025; 23:426-438. [PMID: 38860903 DOI: 10.2174/1570159x22666240517094428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Diabetes, a widespread chronic metabolic disease, is projected to affect 783 million people globally by 2045. Recent studies emphasize the neuroprotective potential of dipeptidyl peptidase 4 (DPP4i) inhibitors, pointing toward a promising avenue for intervention in addressing cognitive challenges associated with diabetes. Due to limited data on the effect of DPP4i on brain pathways involvedin diabetes-related neurocognitive disorders, the decision was made to conduct this study to fill existing knowledge gaps on this topic. METHODS The primary aim of our study was to evaluate the potential of DPP4 inhibitors (DPP4i) in preventing cognitive decline in mice with type 2 diabetes (T2D), placing special emphasis on gaining insight into the complex molecular mechanisms underlying this action. RESULTS We examined drug efficacy in modulating neurotrophic factors, calcium levels, and the expression of key genes (HIF1α, APP, Arc) crucial for neural plasticity. Conducting cognitive assessments with the hole board and passive avoidance tests, we discerned a remarkable influence of shortterm gliptin usage on the limiting progress of cognitive dysfunction in diabetic mice. The administration of DPP4 inhibitors ledto heightened neurotrophin levels, increased HIF1α in the prefrontal cortex, and a significant elevation in Arc mRNA levels. CONCLUSION Our findings reveal that DPP4 inhibitors effectively limit the progression of diabetesrelated cognitive disorders. This breakthrough discovery not only opens new research avenues but also constitutes a potential starting point for creating innovative strategies for the treatment of central nervous system disorders focused on improving cognitive abilities.
Collapse
Affiliation(s)
- Iwona Piatkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | | | - Kamil PawLowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jaroslaw Dudka
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Brygida Slaska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Angelika Tkaczyk-Wlizlo
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Krzysztof Kowal
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
10
|
Tu W, Xu F, Li J, Tian X, Cao L, Wang L, Qu Y. Studying targeted oxidation in diabetic cognitive dysfunction based on scientometrics analysis: research progress of natural product approaches. Front Endocrinol (Lausanne) 2024; 15:1445750. [PMID: 39758348 PMCID: PMC11695123 DOI: 10.3389/fendo.2024.1445750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025] Open
Abstract
PURPOSE The aim is to provide new insights for researchers studying the pathogenesis of diabetic cognitive dysfunction and promoting the wider use of natural products in their treatment. METHOD First, the Web of Science Core Collection was selected as the data source for a computerized literature search on oxidative stress and diabetic cognitive dysfunction (DCD). Next, Biblimetrix and VOSviewer performed statistical analysis focusing on publication countries, institutions, authors, research hotspots, and emerging directions in the field. Then, through the analysis of keywords and key articles, the forefront of the field is identified. Finally, we discussed the pathogenesis of DCD, the influence of oxidative stress on DCD and the antioxidant effect of natural products on DCD. RESULT 293 valid papers were obtained. Bibliometrics showed that oxidative stress, diabetes, Alzheimer's disease (AD), cognitive decline, insulin resistance and quercetin were the key words of the symbiotic network. CONCLUSION The antioxidant effects of natural products in improving DCD have been extensively studied in preclinical studies, providing potential for their treatment in DCD, but their evaluation in clinical trials is currently uncommon.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University,
Hangzhou, China
| | - Yiqian Qu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University,
Hangzhou, China
| |
Collapse
|
11
|
Liu Y, Wang Z, Zhang Z, Lu Z, Zhang L, Ding W, Fang K, Pan X, Ni M, Liu J. Correlation between triglyceride-glucose index and early neurological deterioration in patients with acute mild ischemic stroke. Front Neurol 2024; 15:1441116. [PMID: 39669108 PMCID: PMC11635647 DOI: 10.3389/fneur.2024.1441116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/17/2024] [Indexed: 12/14/2024] Open
Abstract
Objective The Triglyceride-glucose Index (TyG) index is a dependable metric for assessing the degree of insulin resistance, serving as a standalone predictor of ischemic stroke risk, but its precise relationship with early neurological deterioration (END) remains incompletely expounded within the context of acute mild ischemic stroke patients. This research is to examine the correlation of the TyG index with END among patients experiencing acute mild ischemic stroke in China. Methods This retrospective analysis was conducted to systematically gather data regarding patients experiencing their maiden episode of acute mild ischemic stroke and hospitalized at the Neurology Department of Nanjing Meishan Hospital, located in Nanjing, Jiangsu Province, China, over the period extending from January 2020 to December 2022. The severity of stroke was determined through the utilization of the National Institutes of Health Stroke Scale (NIHSS) scores upon their admission. Demographic characteristics were collected, and measurements of fasting blood glucose, blood lipids, and glycosylated hemoglobin Alc levels were taken. END was defined as a one-point rise in the motor item function score on the NIHSS or a two-point increase in the overall score during the initial 72 h of hospitalization. For evaluating the correlation of the TyG index with END, a multivariate logistic regression analysis was carried out. To investigate whether there is a nonlinear relationship between the TyG index and END, smoothed curves were utilized. Results The study included 402 patients diagnosed with acute mild ischemic stroke, with a mean age of 66.15 ± 10.04 years. Within this population, 205 were males (51.00%) and 197 were females (49.00%). Among these patients, 107 (26.62%) experienced END within 72 h of admission. Patients who developed END showed higher levels of the TyG index in comparison to those who remained stable (9.18 ± 0.46 vs. 8.87 ± 0.46, p < 0.001). In a comprehensive multivariate logistic regression analysis, the TyG index positively correlates with END (OR = 3.63, 95% CI: 1.75-7.54, p = 0.001). Furthermore, individuals in the fourth TyG index quartile exhibited a 2.36-fold heightened risk of END compared to those in the first quartile (95% CI: 1.38-8.19, p = 0.008). TyG index has a linear correlation with END in the generalized additive model (Log likelihood ratio test, p = 0.525). Conclusion Our findings demonstrate that TyG index has a significant, independent, and positive correlation with END in Chinese individuals diagnosed with acute mild ischemic stroke. This underscores the TyG index's potential usefulness as a valuable risk stratification tool for stroke patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology, Nanjing Meishan Hospital, Nanjing, China
| | - Zhiye Wang
- Department of Neurology, Nanjing Meishan Hospital, Nanjing, China
| | - Zuonian Zhang
- Department of Neurology, Nanjing Meishan Hospital, Nanjing, China
| | - Zhaomin Lu
- Department of Neurology, Nanjing Meishan Hospital, Nanjing, China
| | - Lihua Zhang
- Department of Neurology, Nanjing Meishan Hospital, Nanjing, China
| | - Wei Ding
- Department of Neurology, Nanjing Meishan Hospital, Nanjing, China
| | - Kai Fang
- Department of Neurology, Nanjing Meishan Hospital, Nanjing, China
| | - Xijin Pan
- Department of Neurology, Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Mengyuan Ni
- Department of Neurology, Nanjing Meishan Hospital, Nanjing, China
| | - Junjun Liu
- Department of Neuropsychiatry, Nanjing Meishan Hospital, Nanjing, China
| |
Collapse
|
12
|
Kim S, Jung UJ, Kim SR. Role of Oxidative Stress in Blood-Brain Barrier Disruption and Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:1462. [PMID: 39765790 PMCID: PMC11673141 DOI: 10.3390/antiox13121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Upregulation of reactive oxygen species (ROS) levels is a principal feature observed in the brains of neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). In these diseases, oxidative stress can disrupt the blood-brain barrier (BBB). This disruption allows neurotoxic plasma components, blood cells, and pathogens to enter the brain, leading to increased ROS production, mitochondrial dysfunction, and inflammation. Collectively, these factors result in protein modification, lipid peroxidation, DNA damage, and, ultimately, neural cell damage. In this review article, we present the mechanisms by which oxidative damage leads to BBB breakdown in brain diseases. Additionally, we summarize potential therapeutic approaches aimed at reducing oxidative damage that contributes to BBB disruption in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
13
|
Zhang L, Zhu W. Screening Antioxidant Components in Yiwei Decoction Using Spectrum-Effect Relationship and Network Pharmacology. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:5514265. [PMID: 39445127 PMCID: PMC11498994 DOI: 10.1155/2024/5514265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Yiwei decoction (YWD) is a classic prescription with the function of nourishing stomach yin. In this study, the effective components of antioxidant activity of YWD and its possible mechanism were discussed from the point of view of spectral effect relationship and network pharmacology. Firstly, the fingerprints of 10 batches of YWD were established by UPLC-PDA technique, and the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) scavenging rate and total antioxidant capacity (T-AOC) were used as the indicators for antioxidant activity in vitro. Then, the spectral effect relationship between the fingerprint profiles and antioxidant capacity was analyzed through grey relational analysis (GRA) and orthogonal projections to latent structures (OPLS). In addition, network pharmacology was employed to predict the potential mechanisms of YWD in the treatment of antioxidant-related diseases. The spectrum-effect relationship indicated that three common peaks were likely to be the most decisive active components, identified as verbascoside, psoralen, and vitexin, respectively. Based on network pharmacology analysis, a total of 83 target genes shared by the active components and antioxidant-related diseases were collected. AKT1, HSP90AA1, SRC, CASP3, and MTOR were closely related to antioxidant therapy and considered as core therapeutic targets. The potential mechanisms of YWD were obtained through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, molecular docking simulations were conducted to evaluate the binding activities between the core therapeutic targets and corresponding compounds. The excellent core protein-compound complexes obtained by molecular docking were simulated by molecular dynamics simulation. The results showed that the active compounds had good binding ability with the selected targets. This study successfully identified the effective components of YWD and predicted the potential targets and pathways, which provided a new idea for the application of YWD in the treatment of antioxidant stress in the future. In addition, the potential active components provide valuable implications for drug screening of related diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Wei Zhu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| |
Collapse
|
14
|
Liao J, Zhu Y, Zhang A, Wu D, Yan X, He Q, Song F, Chen J, Li Y, Li L, Chen Z, Li W, Yang Q, Fang Z, Wu M. Association Apo B/Apo a-1 Ratio and Prognostic Nutritional Index with 90-Day Outcomes of Acute Ischemic Stroke. Diabetes Metab Syndr Obes 2024; 17:3009-3018. [PMID: 39155912 PMCID: PMC11330243 DOI: 10.2147/dmso.s473385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
Background The relationship between insulin resistance-related indices and the outcomes of acute ischemic stroke (AIS) is still unclear. This study aimed to explore the association between the Apo B/Apo A-1 ratio and the Prognostic Nutritional Index (PNI) with the 90-day outcomes of AIS. Methods A total of 2011 AIS patients with a 3-month follow-up were enrolled in the present study from January 2017 to July 2021. Multivariate logistic regression modeling was performed to analyze the relationship between Apo B/Apo A-1 ratio, PNI, and AIS poor outcomes. The mediating effect between the three was analyzed using the Bootstrap method with PNI as the mediating variable. Results Among the 2011 included AIS patients, 20.3% had a poor outcome. Patients were categorized according to quartiles of Apo B/Apo A-1 ratio and PNI. Multivariate logistic regression revealed that the fourth Apo B/Apo A-1 ratio quartile had poorer outcomes than the first quartile (OR 1.75,95%CL 1.21-2.53, P=0.003), and the fourth PNI quartile exhibited a lower risk of poor outcomes than the first quartile (OR 0.40, 95%CL 0.27-0.61, P<0.001). PNI displayed a significant partially mediating effect (21.4%) between the Apo B/Apo A-1 ratio and poor AIS outcomes. Conclusion The Apo B/Apo A-1 ratio is a risk factor for poor AIS outcomes, whereas PNI acts as a protective factor. The association between the ApoB/ApoA-1 ratio and poor AIS outcomes was partially mediated by PNI.
Collapse
Affiliation(s)
- Junqi Liao
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Yuan Zhu
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, CA, USA
| | - Aimei Zhang
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Dan Wu
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Xiaohui Yan
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Qiuhua He
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Fantao Song
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Jingyi Chen
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Yunze Li
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Li Li
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Zhaoyao Chen
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Wenlei Li
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, CA, USA
| | - Zhuyuan Fang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Minghua Wu
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
15
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
16
|
Arozal W, Safutra MS, Barinda AJ, Hardi H, Dwita NC, Lee HJ. Comparative Neuroprotective Effects of Moringa oleifera Seed Oil and Aqueous Extract on Cognitive Functions on a High-Fat, High-Fructose Diet Mice: Focus on Senescence Markers. ScientificWorldJournal 2024; 2024:8034401. [PMID: 38633104 PMCID: PMC11022517 DOI: 10.1155/2024/8034401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
Several studies have demonstrated that Moringa oleifera (MO) has different pharmacological properties, including neuroprotective effects. However, the role of MO in preventing brain impairment in high-fat, high-fructose diet (HFFD) remains unknown. This study aimed to investigate the neuroprotective effects of MO leaves aqueous extract (MOE) and moringa seed oil (MOO) against brain impairment in mice with HFFD. Twenty-eight male mice were randomly divided into four groups: normal diet, HFFD, HFFD + MOE 500 mg/kgBW, and HFFD + MOO 2 mL/kgBW. Cognitive function was assessed using the Y-maze and novel object recognition (NOR) tests. The p16, p21, and BDNF expressions were analyzed using the RT-PCR method. Senescence-associated beta-galactosidase (SA-β-gal) staining in the brain was also performed. The results showed that administration of MOE or MOO could increase the percentage of alternation and recognition of new objects, prevent the increase of p16 and p21 expression, and ameliorate SA-β-Gal activity in the brain. MOO, but not MOE, increased BDNF expression in senescence brains isolated from HFFD mice. The findings indicate that MOO and MOE possess neuroprotective properties, with MOO demonstrating a greater ability to inhibit the brain senescence process compared to MOE.
Collapse
Affiliation(s)
- Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic Cardiovascular and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Harri Hardi
- Clinical Pharmacology Specialist Study Program, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nounik Cheri Dwita
- Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Hee J. Lee
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
17
|
Jiménez-Maldonado A, Rentería I, Johnson DK, Moncada-Jiménez J, García-Suárez PC. Physical exercise and cognition in older adults, a scientific approach scanty reported in Latin America and Caribbean populations. Front Sports Act Living 2024; 6:1368593. [PMID: 38606115 PMCID: PMC11007137 DOI: 10.3389/fspor.2024.1368593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
The advancement of public services, including the increased accessibility of health services, has led to a rise in life expectancy globally. As a result, aging populations are becoming more prevalent, raising concerns about cognitive decline. Fortunately, non-pharmacological methods, such as physical exercise, have been shown to mitigate the effects of aging on the brain. In this perspective article, we examined meta-analyses on the impact of physical exercise on cognition in older adults. The results indicate that combined exercise (i.e., aerobic plus strength training), has a significant positive effect on overall cognition and executive function. However, we found a lack of scientific studies on this topic in Latin American and Caribbean countries. Therefore, there is a pressing need for research to identify the feasibility of physical exercise interventions to improve cognitive skills in older adults from these regions.
Collapse
Affiliation(s)
| | - Iván Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, México
| | - David K. Johnson
- Department of Neurology, University of California, Davis, CA, United States
| | - José Moncada-Jiménez
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San Jose, Costa Rica
| | - Patricia C. García-Suárez
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, México
- Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
18
|
Memari E, Khan D, Alkins R, Helfield B. Focused ultrasound-assisted delivery of immunomodulating agents in brain cancer. J Control Release 2024; 367:283-299. [PMID: 38266715 DOI: 10.1016/j.jconrel.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Focused ultrasound (FUS) combined with intravascularly circulating microbubbles can transiently increase the permeability of the blood-brain barrier (BBB) to enable targeted therapeutic delivery to the brain, the clinical testing of which is currently underway in both adult and pediatric patients. Aside from traditional cancer drugs, this technique is being extended to promote the delivery of immunomodulating therapeutics to the brain, including antibodies, immune cells, and cytokines. In this manner, FUS approaches are being explored as a tool to improve and amplify the effectiveness of immunotherapy for both primary and metastatic brain cancer, a particularly challenging solid tumor to treat. Here, we present an overview of the latest groundbreaking research in FUS-assisted delivery of immunomodulating agents to the brain in pre-clinical models of brain cancer, and place it within the context of the current immunotherapy approaches. We follow this up with a discussion on new developments and emerging strategies for this rapidly evolving approach.
Collapse
Affiliation(s)
- Elahe Memari
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada
| | - Dure Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Brandon Helfield
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada; Department of Biology, Concordia University, Montreal H4B 1R6, Canada.
| |
Collapse
|
19
|
Chen S, Miao Q, Liu Y, Xiao Q, Lin Y, Yang Y, Guo F. Construction and functional evaluation of oral long-acting insulin hydrogel microparticles based on physical and chemical double crosslinking. Int J Biol Macromol 2023; 253:126915. [PMID: 37730004 DOI: 10.1016/j.ijbiomac.2023.126915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
The objective of this study was to enhance the convenience and effectiveness of diabetes treatment by developing hydrogel microparticles as an oral insulin delivery system, aiming to reduce the necessity for frequent treatments. The hydrogel microparticles were prepared with polysaccharides through a combination of physical and chemical crosslinking method, they achieved good results in insulin loading efficiency (70 %), insulin release efficiency (98 %) and sustained release time (>20 h). The effective transmembrane transport was validated using an intestinal epithelial cell model, which demonstrated a continuous hypoglycemic effect lasting from 6 to 26 h in a type 2 diabetes mouse model. Additionally, the relative bioavailability of insulin reached 30.14 ± 2.62 %, representing a significant breakthrough in the field of oral insulin delivery carriers. Furthermore, oral insulin hydrogel exhibited a substantial improvement in insulin resistance, organ damage, and diabetes-related complications stemming from hyperglycemia. These compelling findings underscore the potential of hydrogel microparticles as a cost-effective and valuable strategy for oral drug delivery in diabetes treatment.
Collapse
Affiliation(s)
- ShengQin Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - QingYa Miao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Qiao Xiao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - YuKai Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yu Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - FengBiao Guo
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
20
|
Acharya R, Shetty SS, Pavan G, Monteiro F, Munikumar M, Naresh S, Kumari NS. AI-Based Homology Modelling of Fatty Acid Transport Protein 1 Using AlphaFold: Structural Elucidation and Molecular Dynamics Exploration. Biomolecules 2023; 13:1670. [PMID: 38002353 PMCID: PMC10669040 DOI: 10.3390/biom13111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Fatty acid transport protein 1 (FATP1) is an integral transmembrane protein that is involved in facilitating the translocation of long-chain fatty acids (LCFA) across the plasma membrane, thereby orchestrating the importation of LCFA into the cell. FATP1 also functions as an acyl-CoA ligase, catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and VLCFA (very-long-chain fatty acids) as substrates. It is expressed in various types of tissues and is involved in the regulation of crucial signalling pathways, thus playing a vital role in numerous physiological and pathological conditions. Structural insight about FATP1 is, thus, extremely important for understanding the mechanism of action of this protein and developing efficient treatments against its anomalous expression and dysregulation, which are often associated with pathological conditions such as breast cancer. As of now, there has been no prior prediction or evaluation of the 3D configuration of the human FATP1 protein, hindering a comprehensive understanding of the distinct functional roles of its individual domains. In our pursuit to unravel the structure of the most commonly expressed isoforms of FATP1, we employed the cutting-edge ALPHAFOLD 2 model for an initial prediction of the entire protein's structure. This prediction was complemented by molecular dynamics simulations, focusing on the most promising model. We predicted the structure of FATP1 in silico and thoroughly refined and validated it using coarse and molecular dynamics in the absence of the complete crystal structure. Their relative dynamics revealed the different properties of the characteristic FATP1.
Collapse
Affiliation(s)
- Ranjitha Acharya
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Shilpa S. Shetty
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (S.S.S.); (G.P.)
| | - Gollapalli Pavan
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (S.S.S.); (G.P.)
| | - Flama Monteiro
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Manne Munikumar
- Clinical Division, ICMR-National Institute of Nutrition, Jamai-Osmania (Post), Hyderabad 500007, India;
| | - Sriram Naresh
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Nalilu Suchetha Kumari
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| |
Collapse
|
21
|
Tan X, Yang X, Xu X, Peng Y, Li X, Deng Y, Zhang X, Qiu W, Wu D, Ruan Y, Zhi C. Investigation of anti-diabetic effect of a novel coenzyme Q10 derivative. Front Chem 2023; 11:1280999. [PMID: 37927560 PMCID: PMC10620959 DOI: 10.3389/fchem.2023.1280999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: The rising incidence of type 2 diabetes has seriously affected international public health. The search for more drugs that can effectively treat diabetes has become a cutting-edge trend in research. Coenzyme Q10 (CoQ10) has attracted much attention in the last decade due to its wide range of biological activities. Many researchers have explored the clinical effects of CoQ10 in patients with type 2 diabetes. However, CoQ10 has low bio-availability due to its high lipophilicity. Therefore, we have structurally optimized CoQ10 in an attempt to exploit the potential of its pharmacological activity. Methods: A novel coenzyme Q10 derivative (L-50) was designed and synthesized by introducing a group containing bromine atom and hydroxyl at the terminal of coenzyme Q10 (CoQ10), and the antidiabetic effect of L-50 was investigated by cellular assays and animal experiments. Results: Cytotoxicity results showed that L-50 was comparatively low toxicity to HepG2 cells. Hypoglycemic assays indicated that L-50 could increase glucose uptake in IR-HepG2 cells, with significantly enhanced hypoglycemic capacity compared to the CoQ10. In addition, L-50 improved cellular utilization of glucose through reduction of reactive oxygen species (ROS) accumulated in insulin-resistant HepG2 cells (IR-HepG2) and regulation of JNK/AKT/GSK3β signaling pathway, resulting in hypoglycemic effects. Furthermore, the animal experiments demonstrated that L-50 could restore the body weight of HFD/STZ mice. Notably, the findings suggested that L-50 could improve glycemic and lipid metabolism in HFD/STZ mice. Moreover, L-50 could increase fasting insulin levels (FINS) in HFD/STZ mice, leading to a decrease in fasting blood glucose (FBG) and hepatic glycogen. Furthermore, L-50 could recover triglycerides (TG), total cholesterol (T-CHO), lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) levels in HFD/STZ mice. Discussion: The addition of a bromine atom and a hydroxyl group to CoQ10 could enhance its anti-diabetic activity. It is anticipated that L-50 could be a promising new agent for T2DM.
Collapse
Affiliation(s)
- Xiaojun Tan
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xinyi Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xun Xu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yuwei Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xin Li
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongxing Deng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xueyang Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wenlong Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Dudu Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Chen Zhi
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
22
|
Zhao X, Bie LY, Pang DR, Li X, Yang LF, Chen DD, Wang YR, Gao Y. The role of autophagy in the treatment of type II diabetes and its complications: a review. Front Endocrinol (Lausanne) 2023; 14:1228045. [PMID: 37810881 PMCID: PMC10551182 DOI: 10.3389/fendo.2023.1228045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a chronic metabolic disease characterized by prolonged hyperglycemia and insulin resistance (IR). Its incidence is increasing annually, posing a significant threat to human life and health. Consequently, there is an urgent requirement to discover effective drugs and investigate the pathogenesis of T2DM. Autophagy plays a crucial role in maintaining normal islet structure. However, in a state of high glucose, autophagy is inhibited, resulting in impaired islet function, insulin resistance, and complications. Studies have shown that modulating autophagy through activation or inhibition can have a positive impact on the treatment of T2DM and its complications. However, it is important to note that the specific regulatory mechanisms vary depending on the target organ. This review explores the role of autophagy in the pathogenesis of T2DM, taking into account both genetic and external factors. It also provides a summary of reported chemical drugs and traditional Chinese medicine that target the autophagic pathway for the treatment of T2DM and its complications.
Collapse
Affiliation(s)
- Xuan Zhao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu-Yao Bie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dao-Ran Pang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Long-Fei Yang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan-Dan Chen
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Rui Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
23
|
Brandl S, Reindl M. Blood-Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. Int J Mol Sci 2023; 24:12699. [PMID: 37628879 PMCID: PMC10454051 DOI: 10.3390/ijms241612699] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The blood-brain barrier, which is formed by tightly interconnected microvascular endothelial cells, separates the brain from the peripheral circulation. Together with other central nervous system-resident cell types, including pericytes and astrocytes, the blood-brain barrier forms the neurovascular unit. Upon neuroinflammation, this barrier becomes leaky, allowing molecules and cells to enter the brain and to potentially harm the tissue of the central nervous system. Despite the significance of animal models in research, they may not always adequately reflect human pathophysiology. Therefore, human models are needed. This review will provide an overview of the blood-brain barrier in terms of both health and disease. It will describe all key elements of the in vitro models and will explore how different compositions can be utilized to effectively model a variety of neuroinflammatory conditions. Furthermore, it will explore the existing types of models that are used in basic research to study the respective pathologies thus far.
Collapse
Affiliation(s)
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
24
|
Jiang H, Zuo J, Li B, Chen R, Luo K, Xiang X, Lu S, Huang C, Liu L, Tang J, Gao F. Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol 2023; 63:102754. [PMID: 37224697 DOI: 10.1016/j.redox.2023.102754] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Oxidative stress (OS), defined as redox imbalance in favor of oxidant burden, is one of the most significant biological events in cancer progression. Cancer cells generally represent a higher oxidant level, which suggests a dual therapeutic strategy by regulating redox status (i.e., pro-oxidant therapy and/or antioxidant therapy). Indeed, pro-oxidant therapy exhibits a great anti-cancer capability, attributing to a higher oxidant accumulation within cancer cells, whereas antioxidant therapy to restore redox homeostasis has been claimed to fail in several clinical practices. Targeting the redox vulnerability of cancer cells by pro-oxidants capable of generating excessive reactive oxygen species (ROS) has surfaced as an important anti-cancer strategy. However, multiple adverse effects caused by the indiscriminate attacks of uncontrolled drug-induced OS on normal tissues and the drug-tolerant capacity of some certain cancer cells greatly limit their further applications. Herein, we review several representative oxidative anti-cancer drugs and summarize their side effects on normal tissues and organs, emphasizing that seeking a balance between pro-oxidant therapy and oxidative damage is of great value in exploiting next-generation OS-based anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Hao Jiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jing Zuo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bowen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Chen
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Kangjia Luo
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xionghua Xiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Shuaijun Lu
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Liu
- Ningbo Women & Children's Hospital, Ningbo, 315012, China.
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Feng Gao
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
25
|
Knopp RC, Erickson MA, Rhea EM, Reed MJ, Banks WA. Cellular senescence and the blood-brain barrier: Implications for aging and age-related diseases. Exp Biol Med (Maywood) 2023; 248:399-411. [PMID: 37012666 PMCID: PMC10281623 DOI: 10.1177/15353702231157917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The blood-brain barrier (BBB) is a critical physiochemical interface that regulates communication between the brain and blood. It is comprised of brain endothelial cells which regulate the BBB's barrier and interface properties and is surrounded by supportive brain cell types including pericytes and astrocytes. Recent reports have suggested that the BBB undergoes dysfunction during normative aging and in disease. In this review, we consider the effect of cellular senescence, one of the nine hallmarks of aging, on the BBB. We first characterize known normative age-related changes at the BBB, and then evaluate changes in neurodegenerative diseases, with an emphasis on if/how cellular senescence is influencing these changes. We then discuss what insight has been gained from in vitro and in vivo studies of cellular senescence at the BBB. Finally, we evaluate mechanisms by which cellular senescence in peripheral pathologies can indirectly or directly affect BBB function.
Collapse
Affiliation(s)
- Rachel C Knopp
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Michelle A Erickson
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - May J Reed
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| |
Collapse
|
26
|
Phoswa WN, Mokgalaboni K. Immunological Imbalances Associated with Epileptic Seizures in Type 2 Diabetes Mellitus. Brain Sci 2023; 13:brainsci13050732. [PMID: 37239204 DOI: 10.3390/brainsci13050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE OF THE REVIEW Type 2 diabetes mellitus (T2DM) is a global health burden that leads to an increased morbidity and mortality rate arising from microvascular and macrovascular complications. Epilepsy leads to complications that cause psychological and physical distress to patients and carers. Although these conditions are characterized by inflammation, there seems to be a lack of studies that have evaluated inflammatory markers in the presence of both conditions (T2DM and epilepsy), especially in low-middle-income countries where T2DM is epidemic. Summary findings: In this review, we describe the role of immunity in the seizure generation of T2DM. Current evidence shows an increase in the levels of biomarkers such as interleukin (IL-1β, IL-6, and IL-8), tumour necrosis factor-α (TNF-α), high mobility group box-1 (HMGB1), and toll-like receptors (TLRs) in epileptic seizures and T2DM. However, there is limited evidence to show a correlation between inflammatory markers in the central and peripheral levels of epilepsy. CONCLUSIONS Understanding the pathophysiological mechanism behind epileptic seizures in T2DM through an investigation of immunological imbalances might improve diagnosis and further counter the risks of developing complications. This might also assist in delivering safe and effective therapies to T2DM patients affected, thus reducing morbidity and mortality by preventing or reducing associated complications. Moreover, this review also provides an overview approach on inflammatory cytokines that can be targeted when developing alternative therapies, in case these conditions coexist.
Collapse
Affiliation(s)
- Wendy N Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| | - Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| |
Collapse
|
27
|
Molecular and neural roles of sodium-glucose cotransporter 2 inhibitors in alleviating neurocognitive impairment in diabetic mice. Psychopharmacology (Berl) 2023; 240:983-1000. [PMID: 36869919 PMCID: PMC10006050 DOI: 10.1007/s00213-023-06341-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023]
Abstract
Diabetes causes a variety of molecular changes in the brain, making it a real risk factor for the development of cognitive dysfunction. Complex pathogenesis and clinical heterogeneity of cognitive impairment makes the efficacy of current drugs limited. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) gained our attention as drugs with potential beneficial effects on the CNS. In the present study, these drugs ameliorated the cognitive impairment associated with diabetes. Moreover, we verified whether SGLT2i can mediate the degradation of amyloid precursor protein (APP) and modulation of gene expression (Bdnf, Snca, App) involved in the control of neuronal proliferation and memory. The results of our research proved the participation of SGLT2i in the multifactorial process of neuroprotection. SGLT2i attenuate the neurocognitive impairment through the restoration of neurotrophin levels, modulation of neuroinflammatory signaling, and gene expression of Snca, Bdnf, and App in the brain of diabetic mice. The targeting of the above-mentioned genes is currently seen as one of the most promising and developed therapeutic strategies for diseases associated with cognitive dysfunction. The results of this work could form the basis of a future administration of SGLT2i in diabetics with neurocognitive impairment.
Collapse
|
28
|
Li J, Zhang Z, Zhang B, Yan X, Fan K. Transferrin receptor 1 targeted nanomedicine for brain tumor therapy. Biomater Sci 2023; 11:3394-3413. [PMID: 36847174 DOI: 10.1039/d2bm02152h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Achieving effective drug delivery to traverse the blood-brain barrier (BBB) and target tumor cells remains the greatest challenge for brain tumor therapy. Importantly, the overexpressed membrane receptors on the brain endothelial cells, especially transferrin receptor 1 (TfR1), which mediate their ligands/antibodies to overcome the BBB by transcytosis, have been emerging as promising targets for brain tumor therapy. By employing ligands (e.g., transferrin, H-ferritin), antibodies or targeting peptides of TfR1 or aptamers, various functional nano-formulations have been developed in the last decade. These agents showed great potential for the treatment of brain diseases due to their ideal size, high loading capacity, controlled drug release and suitable pharmacokinetics. Herein, we summarize the latest advances on TfR1-targeted nanomedicine for brain tumor therapy. Moreover, we also discuss the strategies of improving stability, targeting ability and accumulation of nano-formulations in brain tumors for better outcomes. In this review, we hope to provide inspiration for the rational design of TfR1-targeted nanomedicine against brain tumors.
Collapse
Affiliation(s)
- Jianru Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Zixia Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Baoli Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China. .,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China. .,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
29
|
Wang Y, Zhu Y, Wang J, Dong L, Liu S, Li S, Wu Q. Purinergic signaling: A gatekeeper of blood-brain barrier permeation. Front Pharmacol 2023; 14:1112758. [PMID: 36825149 PMCID: PMC9941648 DOI: 10.3389/fphar.2023.1112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
This review outlined evidence that purinergic signaling is involved in the modulation of blood-brain barrier (BBB) permeability. The functional and structural integrity of the BBB is critical for maintaining the homeostasis of the brain microenvironment. BBB integrity is maintained primarily by endothelial cells and basement membrane but also be regulated by pericytes, neurons, astrocytes, microglia and oligodendrocytes. In this review, we summarized the purinergic receptors and nucleotidases expressed on BBB cells and focused on the regulation of BBB permeability by purinergic signaling. The permeability of BBB is regulated by a series of purinergic receptors classified as P2Y1, P2Y4, P2Y12, P2X4, P2X7, A1, A2A, A2B, and A3, which serve as targets for endogenous ATP, ADP, or adenosine. P2Y1 and P2Y4 antagonists could attenuate BBB damage. In contrast, P2Y12-mediated chemotaxis of microglial cell processes is necessary for rapid closure of the BBB after BBB breakdown. Antagonists of P2X4 and P2X7 inhibit the activation of these receptors, reduce the release of interleukin-1 beta (IL-1β), and promote the function of BBB closure. In addition, the CD39/CD73 nucleotidase axis participates in extracellular adenosine metabolism and promotes BBB permeability through A1 and A2A on BBB cells. Furthermore, A2B and A3 receptor agonists protect BBB integrity. Thus, the regulation of the BBB by purinergic signaling is complex and affects the opening and closing of the BBB through different pathways. Appropriate selective agonists/antagonists of purinergic receptors and corresponding enzyme inhibitors could modulate the permeability of the BBB, effectively delivering therapeutic drugs/cells to the central nervous system (CNS) or limiting the entry of inflammatory immune cells into the brain and re-establishing CNS homeostasis.
Collapse
Affiliation(s)
| | | | - Junmeng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Longcong Dong
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuqing Liu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | |
Collapse
|
30
|
Zhang Z, Li J, Jiang S, Xu M, Ma T, Sun Z, Zhang J. Lactobacillus fermentum HNU312 alleviated oxidative damage and behavioural abnormalities during brain development in early life induced by chronic lead exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114543. [PMID: 36640575 DOI: 10.1016/j.ecoenv.2023.114543] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Lead exposure is a global public health safety issue that severely disrupts brain development and causes damage to the nervous system in early life. Probiotics and gut microbes have been highlighted for their critical roles in mitigating lead toxicity. However, the underlying mechanisms by which they work yet to be fully explored. Here, we designed a two-stage experiment using the probiotic Lactobacillus fermentum HNU312 (Lf312) to uncover how probiotics alleviate lead toxicity to the brain during early life. First, we explored the tolerance and adsorption of Lf312 to lead in vitro. Second, the adsorption capacity of the strain was determined and confirmed in vivo. The shotgun metagenome sequencing showed lead exposure-induced imbalance and dysfunction of the gut microbiome. In contrast, Lf312 intake significantly modulated the structure of the microbiome, increased the abundance of beneficial bacteria and short-chain fatty acids (SCFAs)-producing bacteria, and upregulated function-related metabolic pathways such as antioxidants. Notably, Lf312 enhanced the integrity of the blood-brain barrier by increasing the levels of SCFAs in the gut, alleviated inflammation in the brain, and ultimately improved anxiety-like and depression-like behaviours induced by lead exposure in mice. Subsequently, the effective mechanism was confirmed, highlighting that Lf312 worked through integrated strategies, including ionic adsorption and microbiota-gut-brain axis regulation. Collectively, this work elucidated the mechanism by which the gut microbiota mitigates the toxic effects of lead in the brain and provides preventive measures and intervention measures for brain damage due to mass lead poisoning in children.
Collapse
Affiliation(s)
- Zeng Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Jiahe Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Shuaiming Jiang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Meng Xu
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Jiachao Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
31
|
Lin L, Chen Z, Huang C, Wu Y, Huang L, Wang L, Ke S, Liu L. Mito-TEMPO, a Mitochondria-Targeted Antioxidant, Improves Cognitive Dysfunction due to Hypoglycemia: an Association with Reduced Pericyte Loss and Blood-Brain Barrier Leakage. Mol Neurobiol 2023; 60:672-686. [PMID: 36357613 DOI: 10.1007/s12035-022-03101-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022]
Abstract
Hypoglycemia is associated with cognitive dysfunction, but the exact mechanisms have not been elucidated. Our previous study found that severe hypoglycemia could lead to cognitive dysfunction in a type 1 diabetes (T1D) mouse model. Thus, the aim of this study was to further investigate whether the mechanism of severe hypoglycemia leading to cognitive dysfunction is related to oxidative stress-mediated pericyte loss and blood-brain barrier (BBB) leakage. A streptozotocin T1D model (150 mg/kg, one-time intraperitoneal injection), using male C57BL/6J mice, was used to induce hypoglycemia. Brain tissue was extracted to examine for neuronal damage, permeability of BBB was investigated through Evans blue staining and electron microscopy, reactive oxygen species and adenosine triphosphate in brain tissue were assayed, and the functional changes of pericytes were determined. Cognitive function was tested using Morris water maze. Also, an in vitro glucose deprivation model was constructed. The results showed that BBB leakage after hypoglycemia is associated with excessive activation of oxidative stress and mitochondrial dysfunction due to glucose deprivation/reperfusion. Interventions using the mitochondria-targeted antioxidant Mito-TEMPO in both in vivo and in vitro models reduced mitochondrial oxidative stress, decreased pericyte loss and apoptosis, and attenuated BBB leakage and neuronal damage, ultimately leading to improved cognitive function.
Collapse
Affiliation(s)
- Lu Lin
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhou Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Cuihua Huang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yubin Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lishan Huang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sujie Ke
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
32
|
Liu Q, Wang Z, Cao J, Dong Y, Chen Y. Insulin ameliorates dim blue light at night-induced apoptosis in hippocampal neurons via the IR/IRS1/AKT/GSK3β/β-catenin signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114488. [PMID: 36586168 DOI: 10.1016/j.ecoenv.2022.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
In recent years, the damaging effects of night light pollution, one of the environmental pollutions, on memory has been attracting attention. However, the underlying molecular mechanisms by which light at night, especially blue light at night, impairs memory remains unclear. Here, a total of 42 C57BL6/J mice that exposed to no light at night, dim white light at night (dLAN-WL), or dim blue light at night (dLAN-BL) for 28 days. Behavioral data indicated that exposure to dLAN-BL resulted in severe recognition memory impairment, as evidenced by the reduced recognition index and discrimination index in the novel object recognition test. At the same time, we observed a decrease in plasma insulin levels. Consistent with these changes, we also observed that dLAN-BL reduced the number of neurons in the CA1, CA3 and DG regions of the hippocampus, up-regulated the mRNA expression levels of Bax, down-regulated the mRNA expression levels of Bcl-2, Bcl-xl and the protein expression level of pIRS1, pAKT, pGSK3β, β-catenin in the hippocampus. In vitro experiments, we found that insulin (10 nM) inhibited apoptosis and up-regulated the protein expression levels of pAKT, pGSK3β, β-catenin of HT22 cells induced by H2O2 (200 μM). However, these changes disappeared when the insulin receptors (IR) in HT22 cells were silenced. Taken together, our findings suggested that the impairment of memory in mice induced by dLAN-BL was mediated by insulin via the IR/IRS1/AKT/GSK3β/β-catenin pathway. DATA AVAILABILITY: All data generated or analyzed during this study are included in this published article.
Collapse
Affiliation(s)
- Qi Liu
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
33
|
Yang Y, Huang X, Wang Y, Leng L, Xu J, Feng L, Jiang S, Wang J, Yang Y, Pan G, Jiang B, Wang Y, Chen L. The impact of triglyceride-glucose index on ischemic stroke: a systematic review and meta-analysis. Cardiovasc Diabetol 2023; 22:2. [PMID: 36609319 PMCID: PMC9825038 DOI: 10.1186/s12933-022-01732-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Strokes significantly impair quality of life and incur high economic and societal burdens. The triglyceride and glucose (TyG) index is a biochemical marker of insulin resistance (IR) and may have important value in the prediction of strokes, especially ischemic stroke (IS). Our study aims to investigate the relationship between TyG index and IS and ascertain whether TyG index is independently associated with IS adverse outcomes. METHODS The Cochrane, Embase, Medline, Web of Science, PubMed, and other relevant English databases and related websites were systematically searched for articles on ''TyG index'' and "stroke" published from inception to April 4, 2022. We reviewed the available literature on the TyG index and its relation to predicting IS occurrence in the general population and adverse clinical outcomes. We calculated odds ratios (OR) of TyG index and its predictability of IS occurrence and adverse outcomes. Statistical analyses were performed using the Meta Package in STATA, version 12.0. RESULTS A total of 18 studies and 592,635 patients were included in our analysis. The pooled effect values of all stroke types showed that higher TyG index was associated with increased the risk of IS in the general population (OR 1.37; 95% CI 1.22-1.54) in a total sample of 554,334 cases with a high level of heterogeneity (P = 0.000, I2 = 74.10%). In addition, compared to IS patients with a lower TyG index, IS patients with a higher TyG index was associated with higher risk of stroke recurrence (OR: 1.50; 95% CI 1.19-1.89) and increased risk of mortality (OR 1.40 95% CI 1.14-1.71). No correlation was found in the effect value combinations of poor functional outcomes (OR 1.12; 95% CI 0.88-1.43) and neurological worsening (OR: 1.76; 95% CI 0.79-3.95) in a total sample of 38,301 cases with a high level of heterogeneity (P = 0.000; I2 = 77.20%). CONCLUSIONS TyG index has potential value in optimizing risk stratification for IS in the general population. Furthermore, there is a significant association between high TyG index and many adverse outcomes of stroke, especially stroke recurrence and high mortality. Future studies should focus on multi-center and multi-regional designs in order to further explore the relationship between IS and TyG index.
Collapse
Affiliation(s)
- Ying Yang
- grid.415440.0Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Neurology, Chengdu Fifth People’s Hospital, (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China ,grid.411587.e0000 0001 0381 4112School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiangting Huang
- grid.440809.10000 0001 0317 5955Department of Medicine, Jinggangshan University, Ji’an, Jiangxi China ,grid.13291.380000 0001 0807 1581The Centre of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuge Wang
- grid.440809.10000 0001 0317 5955Department of Medicine, Jinggangshan University, Ji’an, Jiangxi China
| | - Lin Leng
- grid.459428.6Department of Nephrology, Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jiapei Xu
- grid.415440.0Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Neurology, Chengdu Fifth People’s Hospital, (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Lei Feng
- grid.415440.0Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Neurology, Chengdu Fifth People’s Hospital, (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Shixie Jiang
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA USA
| | - Jiang Wang
- grid.440809.10000 0001 0317 5955Department of Medicine, Jinggangshan University, Ji’an, Jiangxi China
| | - Yanrong Yang
- grid.415440.0Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Neurology, Chengdu Fifth People’s Hospital, (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Gaofeng Pan
- grid.415440.0Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Neurology, Chengdu Fifth People’s Hospital, (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Bing Jiang
- grid.415440.0Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Neurology, Chengdu Fifth People’s Hospital, (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yan Wang
- Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Neurology, Chengdu Fifth People's Hospital, (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China.
| | - Lan Chen
- Department of Neurology, Affiliated Hospital of Jinggangshan University, JingGangshan University, Ji'an, Jiangxi province, 343000, China, .
| |
Collapse
|
34
|
Jia R, Yuan X, Zhang X, Song P, Han S, Wang S, Li Y, Zhang S, Zhao X, Zhang Y, Cheng J, Song X. Oxidative stress impairs cognitive function by affecting hippocampal fimbria volume in drug-naïve, first-episode schizophrenia. Front Neurosci 2023; 17:1153439. [PMID: 37139526 PMCID: PMC10149877 DOI: 10.3389/fnins.2023.1153439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Objective The aim of the present study was to explore influencing factors of cognitive impairments and their interrelationships in drug-naïve, first-episode schizophrenia (SCZ). Methods Patients with drug naïve, first episode SCZ and healthy controls (HCs) were enrolled. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB). Serum levels of oxidative stress indices, including folate, superoxide dismutase (SOD), uric acid (UA) and homocysteine (Hcy), were determined after an overnight fast. Hippocampal subfield volumes were measured using FreeSurfer. Mediation models were conducted using the SPSS PROCESS v3.4 macro. A false discovery rate (FDR) correction was applied for multiple comparisons. Results Sixty-seven patients with SCZ and 65 HCs were enrolled in our study. The patient group had significantly lower serum levels of folate and SOD and higher serum levels of HCY compared with the HCs (all p < 0.05). The patient group had a significantly smaller volume of the whole hippocampus than the HC group (p < 0.05). We also found significant volume differences between the two groups in the following subfields: CA1, molecular layer, GC-ML-DG and fimbria (all p < 0.05, uncorrected). The partial correlation analysis controlling for age and sex showed that the fimbria volume in the patient group was significantly positively associated with NAB scores (r = 0.382, pFDR = 0.024); serum levels of SOD in the patient group showed a significantly positive correlation with fimbria volume (r = 0.360, pFDR = 0.036). Mediation analyses controlling for age and sex showed that the serum levels of SOD in patients with SCZ had significant indirect effects on the NAB scores which were mediated by the fimbria volume [indirect effect = 0.0565, 95% CI from the bootstrap test excluding zero (0.0066 to 0.0891)]. Conclusion Oxidative stress, a reduction in hippocampal subfield volumes and cognitive impairments occur in early SCZ. Oxidative stress impairs cognitive function by affecting hippocampal subfield volumes.
Collapse
Affiliation(s)
- Rufei Jia
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoyun Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Peilun Song
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuying Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yajun Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Siwei Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xinyi Zhao
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jingliang Cheng, ;10
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xueqin Song,
| |
Collapse
|
35
|
Chen S, E Y, Zhang X, Wei B, Wang S, Xu Z, Gong P, Xie Y, Qin C, Zhang Y. A Novel Metabolic Score for Insulin Resistance and Symptomatic Intracranial Hemorrhage in Ischemic Stroke Patients After Endovascular Thrombectomy. Neuropsychiatr Dis Treat 2023; 19:321-328. [PMID: 36778533 PMCID: PMC9910208 DOI: 10.2147/ndt.s394438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Insulin resistance plays a pivotal role in the pathophysiology of ischemic stroke. This study aimed to determine the relationship between the novel metabolic score for insulin resistance (METS-IR) and symptomatic intracranial hemorrhage (sICH) after endovascular thrombectomy (EVT) in stroke patients. METHODS We retrospectively included patients with large artery occlusion in the anterior circulation and treated by EVT from 2 stroke centers (Nanjing First Hospital from September 2019 to April 2022, and Jinling Hospital from September 2019 to July 2021). The METS-IR was used as an alternative marker of insulin resistance and calculated using laboratory data after admission. sICH was diagnosed according to the Heidelberg Bleeding Classification. RESULTS Of the 410 enrolled patients (mean age, 69.8 ± 11.7 years; 60.7% men), 50 (12.2%) were diagnosed as sICH. After adjusting for demographic characteristics, poor collateral status, and other potential confounders, higher METS-IR was revealed to be independently associated with sICH (odds ratio, 1.076; 95% confidence interval, 1.034-1.120; P = 0.001). Similar significant results were obtained when defining METS-IR as a categorical variable. The restricted cubic spline uncovered a linear relationship between METS-IR and sICH (P < 0.001 for linearity). Furthermore, adding METS-IR to the conventional model significantly improved the risk prediction for sICH (net reclassification improvement = 15.8%, P = 0.035; integrated discrimination index = 2.6%; P = 0.017). CONCLUSION This study demonstrated a significant association between METS-IR score and sICH in ischemic stroke patients treated with EVT. It could help monitor and manage sICH in patients after EVT.
Collapse
Affiliation(s)
- Shuaiyu Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaohao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bin Wei
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Siyu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhaohan Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Pengyu Gong
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Chunhua Qin
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
36
|
Cui Y, Song HT, Zhang P, Yin X, Wang Y, Wei X, Jia XJ. Curcumin protects PC12 cells from a high glucose-induced inflammatory response by regulating the miR-218-5p/TLR4 axis. Medicine (Baltimore) 2022; 101:e30967. [PMID: 36221434 PMCID: PMC9543010 DOI: 10.1097/md.0000000000030967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Curcumin exerts a protective effect on diabetic encephalopathy (DN), It is known for its potent neuroprotective, anti-inflammatory, antioxidant, and anticancer properties. However, the underlying mechanisms of curcumin's neuroprotective effects resulting from high glucose (HG)-induced injuries remain unknown. The purpose of this study is to identify the protective mechanism of Curcumin in the DN. METHODS In this study, pheochromocytoma cells (PC12 cells) were pretreated with different concentrations of Curcumin and then co-treated with Curcumin and glucose for 48 hours, and the cell viability was evaluated by CCK-8, the expression of the inflammatory mediators were detected by ELISA, the miR-218-5p and toll-like receptors (TLR4) level were examined by both quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting, the potential target genes of miR-218-5p were identified using luciferase reporter assay. RESULTS The viability of PC12 cells treated with HG was significantly reduced in a dose- and time-dependent manner. Cotreatment of curcumin with HG significantly increased cell viability. Curcumin inhibited the expression of the inflammatory mediators, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), and induced the expression of the anti-inflammatory mediator interleukin-10 (IL-10). Curcumin upregulated the levels of miR-218-5p and downregulated the expression of TLR4 in HG-treated PC12 cells. The curcumin-induced anti-inflammatory effect was abrogated by a miR-218-5p inhibitor and overexpression of TLR4. The results suggest that curcumin ameliorates the inflammatory response by upregulating miR-218-5p levels in PC12 cells. CONCLUSIONS Our results indicate a protective role for curcumin in PC12 cells and suggest that it should be considered for the prophylactic treatment of DN in the future.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Neurology, Affiliated Hospital of Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Hong-Tao Song
- Department of Vascular surgery, Shijiazhuang Second Hospital, Shijiazhuang, Hebei Province, China
| | - Pei Zhang
- Department of Diabetes Screening Centre, Shijiazhuang Second Hospital, Shijiazhuang, Hebei Province, China
| | - Xiao Yin
- Department of Traditional Chinese Medicine, Shijiazhuang Yuxi Community Health Service Center, Shijiazhuang, Hebei Province, China
| | - Ying Wang
- Department of Hemodialysis, Shijiazhuang Second Hospital, Shijiazhuang, Hebei Province, China
| | - Xuan Wei
- Department of Endocrinology, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Xin-Ju Jia
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- *Correspondence: Xin-Ju Jia, Department of Endocrinology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei Province, China. (e-mail: )
| |
Collapse
|
37
|
Rhea EM, Banks WA, Raber J. Insulin Resistance in Peripheral Tissues and the Brain: A Tale of Two Sites. Biomedicines 2022; 10:1582. [PMID: 35884888 PMCID: PMC9312939 DOI: 10.3390/biomedicines10071582] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The concept of insulin resistance has been around since a few decades after the discovery of insulin itself. To allude to the classic Charles Dicken's novel published 62 years before the discovery of insulin, in some ways, this is the best of times, as the concept of insulin resistance has expanded to include the brain, with the realization that insulin has a life beyond the regulation of glucose. In other ways, it is the worst of times as insulin resistance is implicated in devastating diseases, including diabetes mellitus, obesity, and Alzheimer's disease (AD) that affect the brain. Peripheral insulin resistance affects nearly a quarter of the United States population in adults over age 20. More recently, it has been implicated in AD, with the degree of brain insulin resistance correlating with cognitive decline. This has led to the investigation of brain or central nervous system (CNS) insulin resistance and the question of the relation between CNS and peripheral insulin resistance. While both may involve dysregulated insulin signaling, the two conditions are not identical and not always interlinked. In this review, we compare and contrast the similarities and differences between peripheral and CNS insulin resistance. We also discuss how an apolipoprotein involved in insulin signaling and related to AD, apolipoprotein E (apoE), has distinct pools in the periphery and CNS and can indirectly affect each system. As these systems are both separated but also linked via the blood-brain barrier (BBB), we discuss the role of the BBB in mediating some of the connections between insulin resistance in the brain and in the peripheral tissues.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA; (E.M.R.); (W.A.B.)
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - William A. Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA; (E.M.R.); (W.A.B.)
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
38
|
Girolamo F, Errede M, Bizzoca A, Virgintino D, Ribatti D. Central Nervous System Pericytes Contribute to Health and Disease. Cells 2022; 11:1707. [PMID: 35626743 PMCID: PMC9139243 DOI: 10.3390/cells11101707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022] Open
Abstract
Successful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk. Due to sharing the same basement membrane with endothelial cells, PCs have a crucial role in the control of endothelial, astrocyte, and oligodendrocyte precursor functions and hence blood-brain barrier stability. Both cerebrovascular and neurodegenerative diseases impair oxygen delivery and functionally impair the NVU. In this review, the role of PCs in central nervous system health and disease is discussed, considering their origin, multipotency, functions and also dysfunction, focusing on new possible avenues to modulate neuroprotection. Dysfunctional PC signalling could also be considered as a potential biomarker of NVU pathology, allowing us to individualize therapeutic interventions, monitor responses, or predict outcomes.
Collapse
Affiliation(s)
- Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Antonella Bizzoca
- Physiology Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| |
Collapse
|
39
|
Schreiner TG, Romanescu C, Popescu BO. The Blood-Brain Barrier-A Key Player in Multiple Sclerosis Disease Mechanisms. Biomolecules 2022; 12:538. [PMID: 35454127 PMCID: PMC9025898 DOI: 10.3390/biom12040538] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, multiple sclerosis (MS), a chronic neuroinflammatory disease with severe personal and social consequences, has undergone a steady increase in incidence and prevalence rates worldwide. Despite ongoing research and the development of several novel therapies, MS pathology remains incompletely understood, and the prospect for a curative treatment continues to be unpromising in the near future. A sustained research effort, however, should contribute to a deeper understanding of underlying disease mechanisms, which will undoubtedly yield improved results in drug development. In recent years, the blood-brain barrier (BBB) has increasingly become the focus of many studies as it appears to be involved in both MS disease onset and progression. More specifically, neurovascular unit damage is believed to be involved in the critical process of CNS immune cell penetration, which subsequently favors the development of a CNS-specific immune response, leading to the classical pathological and clinical hallmarks of MS. The aim of the current narrative review is to merge the relevant evidence on the role of the BBB in MS pathology in a comprehensive and succinct manner. Firstly, the physiological structure and functions of the BBB as a component of the more complex neurovascular unit are presented. Subsequently, the authors review the specific alteration of the BBB encountered in different stages of MS, focusing on both the modifications of BBB cells in neuroinflammation and the CNS penetration of immune cells. Finally, the currently accepted theories on neurodegeneration in MS are summarized.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Constantin Romanescu
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Section IV, “St. Parascheva” Infectious Disease Hospital, 700116 Iași, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
40
|
Azab A. D-Pinitol-Active Natural Product from Carob with Notable Insulin Regulation. Nutrients 2022; 14:nu14071453. [PMID: 35406064 PMCID: PMC9003036 DOI: 10.3390/nu14071453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Carob is one of the major food trees for peoples of the Mediterranean basin, but it has also been traditionally used for medicinal purposes. Carob contains many nutrients and active natural products, and D-Pinitol is clearly one of the most important of these. D-Pinitol has been reported in dozens of scientific publications and its very diverse medicinal properties are still being studied. Presently, more than thirty medicinal activities of D-Pinitol have been reported. Among these, many publications have reported the strong activities of D-Pinitol as a natural antidiabetic and insulin regulator, but also as an active anti-Alzheimer, anticancer, antioxidant, and anti-inflammatory, and is also immune- and hepato-protective. In this review, we will present a brief introduction of the nutritional and medicinal importance of Carob, both traditionally and as found by modern research. In the introduction, we will present Carob’s major active natural products. The structures of inositols will be presented with a brief literature summary of their medicinal activities, with special attention to those inositols in Carob, as well as D-Pinitol’s chemical structure and its medicinal and other properties. D-Pinitol antidiabetic and insulin regulation activities will be extensively presented, including its proposed mechanism of action. Finally, a discussion followed by the conclusions and future vision will summarize this article.
Collapse
|
41
|
Chen W, Cai W, Hoover B, Kahn CR. Insulin action in the brain: cell types, circuits, and diseases. Trends Neurosci 2022; 45:384-400. [PMID: 35361499 PMCID: PMC9035105 DOI: 10.1016/j.tins.2022.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Since its discovery over 100 years ago, insulin has been recognized as a key hormone in control of glucose homeostasis. Deficiencies of insulin signaling are central to diabetes and many other disorders. The brain is among the targets of insulin action, and insulin resistance is a major contributor to many diseases, including brain disorders. Here, we summarize key roles of insulin action in the brain and how this involves different brain cell types. Disordered brain insulin signaling can also contribute to neuropsychiatric diseases, affecting brain circuits involved in mood and cognition. Understanding of insulin signaling in different brain cell types/circuits and how these are altered in disease may lead to the development of new therapeutic approaches to these challenging disorders.
Collapse
|
42
|
Antioxidants in Alzheimer's Disease: Current Therapeutic Significance and Future Prospects. BIOLOGY 2022; 11:biology11020212. [PMID: 35205079 PMCID: PMC8869589 DOI: 10.3390/biology11020212] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) rate is accelerating with the increasing aging of the world's population. The World Health Organization (WHO) stated AD as a global health priority. According to the WHO report, around 82 million people in 2030 and 152 million in 2050 will develop dementia (AD contributes 60% to 70% of cases), considering the current scenario. AD is the most common neurodegenerative disease, intensifying impairments in cognition, behavior, and memory. Histopathological AD variations include extracellular senile plaques' formation, tangling of intracellular neurofibrils, and synaptic and neuronal loss in the brain. Multiple evidence directly indicates that oxidative stress participates in an early phase of AD before cytopathology. Moreover, oxidative stress is induced by almost all misfolded protein lumps like α-synuclein, amyloid-β, and others. Oxidative stress plays a crucial role in activating and causing various cell signaling pathways that result in lesion formations of toxic substances, which foster the development of the disease. Antioxidants are widely preferred to combat oxidative stress, and those derived from natural sources, which are often incorporated into dietary habits, can play an important role in delaying the onset as well as reducing the progression of AD. However, this approach has not been extensively explored yet. Moreover, there has been growing evidence that a combination of antioxidants in conjugation with a nutrient-rich diet might be more effective in tackling AD pathogenesis. Thus, considering the above-stated fact, this comprehensive review aims to elaborate the basics of AD and antioxidants, including the vitality of antioxidants in AD. Moreover, this review may help researchers to develop effectively and potentially improved antioxidant therapeutic strategies for this disease as it also deals with the clinical trials in the stated field.
Collapse
|
43
|
Rizzo MR, Di Meo I, Polito R, Auriemma MC, Gambardella A, di Mauro G, Capuano A, Paolisso G. Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment. Pharmacol Res 2022; 176:106062. [PMID: 35017046 DOI: 10.1016/j.phrs.2022.106062] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/09/2023]
Abstract
Gliflozins are a novel class of oral anti-diabetic drugs, acting as inhibitors of sodium-glucose co-transporters (SGLTs) through the proximal convoluted tubules (PCT) and intestinal epithelium. The sodium-glucose co-transporters 2 (SGLT2) are mainly expressed in S1 and S2 segments of the proximal convoluted tubule in the kidneys. Clinical guidelines recommend their use especially in Type 2 Diabetes mellitus (T2DM) patients with vascular complications and/or heart failure highlighting the importance of sodium-glucose co-transporter 2 inhibitors (SGLT2i) pleiotropic effects. Interestingly, cognitive decline is a widely recognized complication of T2DM and, in addition, to clarify its pathophysiology, there is an urgent need to understand how and if diabetes therapies can control diabetes-related cognitive dysfunction. At the time, although SGLT2 proteins are present in the Central Nervous System (CNS), the SGLT2i effects on cognitive impairments remain partly unknown. In pre-clinical studies, SGLT2i ameliorates cognitive dysfunction in obese and T2DM mice, reducing oxidative stress, neuroinflammation and improving neuronal plasticity and mitochondrial brain pathway. In addition, SGLT2i could bring back mTOR to a physiological state of activation, stopping neurodegenerative diseases' onset or progression. Instead, clinical studies on T2DM-related cognitive dysfunction treated by SGLT2i are much more limited. For these reasons, further studies are needed to better elucidate if SGLT2i therapy can affect T2DM-related cognitive decline. In this scenario, this review aims to summarize the state of knowledge on the role of SGLT2i in T2DM-related cognitive dysfunction and stimulate new clinical trials.
Collapse
Affiliation(s)
- Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences - University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences - University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Rita Polito
- Department of Advanced Medical and Surgical Sciences - University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Chiara Auriemma
- Department of Advanced Medical and Surgical Sciences - University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Antonio Gambardella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gabriella di Mauro
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences - University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
44
|
Teng Z, Feng J, Dong Y, Xu J, Jiang X, Chen H, Qi Q, Li R, Chen W, Lv P. Triglyceride glucose index is associated with cerebral small vessel disease burden and cognitive impairment in elderly patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:970122. [PMID: 35992100 PMCID: PMC9390881 DOI: 10.3389/fendo.2022.970122] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the relations of Triglyceride glucose (TyG) index with cerebral small vessel disease (CSVD) burden and cognitive function in aged patients with type 2 diabetes mellitus (T2DM). METHODS A total of 308 elderly patients with T2DM were included in this retrospective study. The standardized Chinese version of Mini-Mental State Examination was used to assess cognitive function. The total CSVD burden score was assessed by combining four imaging markers of CSVD, including the presence of white matter hyperintensity, cerebral microbleeds in the deep, lacunes and enlarged perivascular spaces in the basal ganglia. The TyG index was calculated as the formula of ln [fasting triglyceride (mg/dl) × fasting plasma glucose (mg/dl)/2]. We used logistic regression analysis and mediation analysis to investigate the relations of TyG index with CSVD and cognitive function. RESULTS Multivariate binary logistic regression analysis showed that increased TyG index (OR: 2.241; 95% Confidence Interval(CI): 1.439 to 3.490; P <0.001), or severe CSVD burden (OR: 2.198; 95% CI: 1.283 to 3.763; P = 0.004) was associated with an increased risk of cognitive impairment in elderly patients with T2DM after adjusting for potential confounders. In addition, TyG index was an independent risk factor of severe CSVD burden (OR: 1.472; 95% CI: 1.003 to 2.160; P = 0.048) after controlling for potential confounders. Compared with the lowest TyG index tertile, the multivariable-adjusted OR of the highest tertile was 3.298 (95% CI: 1.685 to 6.452; P for trend <0.001) for cognitive impairment, 1.933 (95% CI: 1.010 to 3.698; P for trend = 0.047) for severe CSVD burden. Mediation analysis found a significant moderating effect of the severe CSVD burden on the association between higher TyG index levels and cognitive impairment. CONCLUSIONS The increased TyG index is an independent risk factor for cognitive impairment and severe CSVD burden in clinical practice. A proportion of the effect of increased TyG index on cognitive impairment may be due to the aggravation of CSVD burden.
Collapse
Affiliation(s)
- Zhenjie Teng
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jing Feng
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Xin Jiang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Huifang Chen
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Qianqian Qi
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Rui Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Weihong Chen
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Peiyuan Lv,
| |
Collapse
|