1
|
Wu N, Li S, Kuang Y, He W, Zhu H, Gao Q, Liu L, Cheng S, Liu Y, Cong X, Wang D. Effect of Cardamine violifolia on muscle protein degradation and anti-oxidative capacity in weaned piglets after Lipopolysaccharide challenge. Innate Immun 2025; 31:17534259251322589. [PMID: 39967238 PMCID: PMC11837137 DOI: 10.1177/17534259251322589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
This study aimed to investigate the impact of Cardamine violifolia on muscle protein degradation, the inflammatory response and antioxidant function in weaned piglets following LPS challenge. Twenty-four weaned piglets were used in a 2 × 2 factorial experiment with dietary treatment (sodium selenite or Cardamine violifolia) and LPS challenge. After 28 days of feeding, pigs were injected intraperitoneally with 100 μg/kg LPS or saline. Dietary supplementation with Cardamine violifolia mitigated the reduction in insulin and growth hormone levels induced by LPS. It also curbed the LPS-induced elevation of plasma glucagon, urea nitrogen, and creatinine concentrations. Cardamine violifolia reduced muscle damage caused by LPS, as evidenced by increased protein content and protein/DNA ratio and decreased TNF-α and IL-1β mRNA expression. Furthermore, Cardamine violifolia modulated the expression of FOXO1, FOXO4, and MuRF1 in muscle, indicative of the protective effect against muscle protein degradation. Enhanced muscle antioxidant function was observed in the form of increased T-AOC, reduced MDA concentration, and decreased mRNA expression of GPX3, DIO3, TXNRD1, SELENOS, SELENOI, SELENOO, and SEPHS2 in LPS-treated piglets. The findings suggest that Cardamine violifolia supplementation can effectively alleviate muscle protein degradation induced by LPS and enhance the antioxidant capacity in piglets.
Collapse
Affiliation(s)
- Nianbang Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Shunkang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yanling Kuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Wensheng He
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Qingyu Gao
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, China
| | - Liping Liu
- Beijng Center for Disease Prevention and Control, Beijing, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, China
| | - Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Dou L, Liu C, Su R, Corazzin M, Jin Z, Yang Z, Hu G, Zhang M, Sun L, Zhao L, Jin Y, Su L. Effects of dietary arginine supplementation on muscle structure, meat characteristics and lipid oxidation products in lambs and its potential mechanisms of action. Meat Sci 2024; 216:109581. [PMID: 38970933 DOI: 10.1016/j.meatsci.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
This study aimed to assess the effect of dietary arginine supplementation on muscle structure and meat characteristics of lambs also considering lipid oxidation products and to contribute to reveal its mechanisms of action using tandem mass tagging (TMT) proteomics. Eighteen lambs were allocated to two dietary treatment groups: control diet or control diet with the addition of 1% L-arginine. The results revealed that dietary arginine supplementation increased muscle fibre diameter and cross-sectional area (P < 0.05), which was attributable to protein deposition, as evidenced by increased RNA content, RNA/DNA ratio, inhibition of apoptotic enzyme activity, and alterations in the IGF-1/Akt signaling pathway (P < 0.05). In addition, dietary arginine elevated pH24h, a* values, and IMF content, decreased shear force value and backfat thickness (P < 0.05), as well as decreased the formation of lipid oxidation products involved in meat flavor including hexanal, heptanal, octanal, nonanal and 1-octen-3-ol by increasing the antioxidant capacity of the muscle (P < 0.05). The proteomics results suggested that seven enrichment pathways may be potential mechanisms by which arginine affected the muscle structure and meat characteristics of lambs. In summary, arginine supplementation in lamb diets provides a safe and effective way to improve meat quality, and antioxidant capacity of muscle of lamb.
Collapse
Affiliation(s)
- Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Chang Liu
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010018, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010018, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Zhimin Jin
- Inner Mongolia Autonomous Region Administration of Market Supervision Evaluation & Inspection Center, Hohhot 010018, China
| | - Zhihao Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China.
| |
Collapse
|
3
|
Yao H, Jiang W, Liao X, Wang D, Zhu H. Regulatory mechanisms of amino acids in ferroptosis. Life Sci 2024; 351:122803. [PMID: 38857653 DOI: 10.1016/j.lfs.2024.122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis, an iron-dependent non-apoptotic regulated cell death process, is associated with the pathogenesis of various diseases. Amino acids, which are indispensable substrates of vital activities, significantly regulate ferroptosis. Amino acid metabolism is involved in maintaining iron and lipid homeostasis and redox balance. The regulatory effects of amino acids on ferroptosis are complex. An amino acid may exert contrasting effects on ferroptosis depending on the context. This review systematically and comprehensively summarized the distinct roles of amino acids in regulating ferroptosis and highlighted the emerging opportunities to develop clinical therapeutic strategies targeting amino acid-mediated ferroptosis.
Collapse
Affiliation(s)
- Heying Yao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Wei Jiang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
4
|
Karafoulidou E, Kesidou E, Theotokis P, Konstantinou C, Nella MK, Michailidou I, Touloumi O, Polyzoidou E, Salamotas I, Einstein O, Chatzisotiriou A, Boziki MK, Grigoriadis N. Systemic LPS Administration Stimulates the Activation of Non-Neuronal Cells in an Experimental Model of Spinal Muscular Atrophy. Cells 2024; 13:785. [PMID: 38727321 PMCID: PMC11083572 DOI: 10.3390/cells13090785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.
Collapse
Affiliation(s)
- Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Chrystalla Konstantinou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Maria-Konstantina Nella
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Olga Touloumi
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Eleni Polyzoidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Ilias Salamotas
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| | - Athanasios Chatzisotiriou
- Department of Physiology, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Marina-Kleopatra Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| |
Collapse
|
5
|
Zhao GP, Cheng WL, Zhang ZH, Li YX, Li YQ, Yang FW, Wang YB. The use of amino acids and their derivates to mitigate against pesticide-induced toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116340. [PMID: 38636261 DOI: 10.1016/j.ecoenv.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Exposure to pesticides induces oxidative stress and deleterious effects on various tissues in non-target organisms. Numerous models investigating pesticide exposure have demonstrated metabolic disturbances such as imbalances in amino acid levels within the organism. One potentially effective strategy to mitigate pesticide toxicity involves dietary intervention by supplementing exogenous amino acids and their derivates to augment the body's antioxidant capacity and mitigate pesticide-induced oxidative harm, whose mechanism including bolstering glutathione synthesis, regulating arginine-NO metabolism, mitochondria-related oxidative stress, and the open of ion channels, as well as enhancing intestinal microecology. Enhancing glutathione synthesis through supplementation of substrates N-acetylcysteine and glycine is regarded as a potent mechanism to achieve this. Selection of appropriate amino acids or their derivates for supplementation, and determining an appropriate dosage, are of the utmost importance for effective mitigation of pesticide-induced oxidative harm. More experimentation is required that involves large population samples to validate the efficacy of dietary intervention strategies, as well as to determine the effects of amino acids and their derivates on long-term and low-dose pesticide exposure. This review provides insights to guide future research aimed at preventing and alleviating pesticide toxicity through dietary intervention of amino acids and their derivates.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Wei-Long Cheng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhi-Hui Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yi-Xuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; National Center of Technology Innovation for Dairy, Inner Mongolia 013757, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Fang-Wei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan-Bo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
6
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Egbujor MC, Olaniyan OT, Emeruwa CN, Saha S, Saso L, Tucci P. An insight into role of amino acids as antioxidants via NRF2 activation. Amino Acids 2024; 56:23. [PMID: 38506925 PMCID: PMC10954862 DOI: 10.1007/s00726-024-03384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024]
Abstract
Oxidative stress can affect the protein, lipids, and DNA of the cells and thus, play a crucial role in several pathophysiological conditions. It has already been established that oxidative stress has a close association with inflammation via nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Amino acids are notably the building block of proteins and constitute the major class of nitrogen-containing natural products of medicinal importance. They exhibit a broad spectrum of biological activities, including the ability to activate NRF2, a transcription factor that regulates endogenous antioxidant responses. Moreover, amino acids may act as synergistic antioxidants as part of our dietary supplementations. This has aroused research interest in the NRF2-inducing activity of amino acids. Interestingly, amino acids' activation of NRF2-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway exerts therapeutic effects in several diseases. Therefore, the present review will discuss the relationship between different amino acids and activation of NRF2-KEAP1 signaling pathway pinning their anti-inflammatory and antioxidant properties. We also discussed amino acids formulations and their applications as therapeutics. This will broaden the prospect of the therapeutic applications of amino acids in a myriad of inflammation and oxidative stress-related diseases. This will provide an insight for designing and developing new chemical entities as NRF2 activators.
Collapse
Affiliation(s)
- Melford C Egbujor
- Department of Chemistry, Federal University Otuoke, Otuoke, Bayelsa, Nigeria
| | | | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| |
Collapse
|
8
|
Dai J, Wang H, Jiang L, Zhang F, Lin J, Wang L, Yang J, Wang X. Exploring the therapeutic mechanisms of Sijunzi decoction in the treatment of sarcopenia: Key targets and signaling pathways. Biomed Chromatogr 2023; 37:e5722. [PMID: 37609865 DOI: 10.1002/bmc.5722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/29/2023] [Indexed: 08/24/2023]
Abstract
Sarcopenia, an age-associated condition, negatively impacts the quality of life. This study investigates the mechanism of Sijunzi decoction (SJZD), a traditional Chinese formula, against sarcopenia. Active compounds and potential targets of SJZD for sarcopenia were gathered from databases. Hub targets were identified using protein-protein interaction networks, with GO and KEGG analyses suggesting potential pathways. Molecular docking was used to assess compound-target affinity. A lipopolysaccharide-induced sarcopenia rat model was used to verify the targets. Sijunzi decoction contains 92 compounds and 47 targets for sarcopenia. The top 10 hub targets comprise AKT1, ALB, INS, IL6, TNF, TP53, VEGFA, SIRT1, CAT and FOS. GO and KEGG analyses indicate involvement in steroid hormone response, vesicle lumen, receptor agonist activity, and FoxO and HIF-1 signaling pathways. Validation experiments showed that SJZD alleviates sarcopenia by downregulating SIRT1, IL-6, TNF and AKT1. Sijunzi decoction treats sarcopenia by targeting SIRT1, IL-6, TNF and AKT1, potentially involving FoxO and HIF-1 signaling pathways. This highlights SJZD's potential for sarcopenia treatment.
Collapse
Affiliation(s)
- Jin Dai
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Haifeng Wang
- Department of Geriatrics, Tongji Hospital of Tongji University, Shanghai, China
| | - Libin Jiang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fuying Zhang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jin Lin
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ling Wang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jun Yang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xiao Wang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Han K, Singh K, Meadows AM, Sharma R, Hassanzadeh S, Wu J, Goss-Holmes H, Huffstutler RD, Teague HL, Mehta NN, Griffin JL, Tian R, Traba J, Sack MN. Boosting NAD preferentially blunts Th17 inflammation via arginine biosynthesis and redox control in healthy and psoriasis subjects. Cell Rep Med 2023; 4:101157. [PMID: 37586364 PMCID: PMC10518596 DOI: 10.1016/j.xcrm.2023.101157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
To evaluate whether nicotinamide adenine dinucleotide-positive (NAD+) boosting modulates adaptive immunity, primary CD4+ T cells from healthy control and psoriasis subjects were exposed to vehicle or nicotinamide riboside (NR) supplementation. NR blunts interferon γ (IFNγ) and interleukin (IL)-17 secretion with greater effects on T helper (Th) 17 polarization. RNA sequencing (RNA-seq) analysis implicates NR blunting of sequestosome 1 (sqstm1/p62)-coupled oxidative stress. NR administration increases sqstm1 and reduces reactive oxygen species (ROS) levels. Furthermore, NR activates nuclear factor erythroid 2-related factor 2 (Nrf2), and genetic knockdown of nrf2 and the Nrf2-dependent gene, sqstm1, diminishes NR amelioratory effects. Metabolomics analysis identifies that NAD+ boosting increases arginine and fumarate biosynthesis, and genetic knockdown of argininosuccinate lyase ameliorates NR effects on IL-17 production. Hence NR via amino acid metabolites orchestrates Nrf2 activation, augments CD4+ T cell antioxidant defenses, and attenuates Th17 responsiveness. Oral NR supplementation in healthy volunteers similarly increases serum arginine, sqstm1, and antioxidant enzyme gene expression and blunts Th17 immune responsiveness, supporting evaluation of NAD+ boosting in CD4+ T cell-linked inflammation.
Collapse
Affiliation(s)
- Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA
| | - Komudi Singh
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA
| | - Allison M Meadows
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Rahul Sharma
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA
| | - Shahin Hassanzadeh
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA
| | - Jing Wu
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA
| | - Haley Goss-Holmes
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA
| | | | - Heather L Teague
- Laboratory of Cardiometabolic Disease and Inflammation, NHLBI, NIH, Bethesda, MD, USA
| | - Nehal N Mehta
- Laboratory of Cardiometabolic Disease and Inflammation, NHLBI, NIH, Bethesda, MD, USA
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; The Rowett Institute, School of Medicine, Medical Sciences and Nutrition, Foresterhill Campus, Aberdeen, UK
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Javier Traba
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA; Instituto Universitario de Biología Molecular-UAM (IUBM-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Triamcinolone acetonide induces the autophagy of Ag85B-treated WI-38 cells via SIRT1/FOXO3 pathway. Allergol Immunopathol (Madr) 2023; 51:27-35. [PMID: 36916085 DOI: 10.15586/aei.v51i2.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 03/07/2023]
Abstract
BACKGROUND Tracheobronchial stenosis due to tuberculosis (TSTB) seriously threatens the health of tuberculosis patients. The inflammation and autophagy of fibroblasts affect the development of TSTB. Triamcinolone acetonide (TA) can regulate the autophagy of fibroblasts. Nevertheless, the impact of TA on TSTB and underlying mechanism has remained unclear. OBJECTIVE To study the impact of TA on TSTB and underlying mechanism. MATERIAL AND METHODS In order to simulate the TSTB-like model in vitro, WI-38 cells were exposed to Ag85B protein. In addition, the cell counting kit (CCK)-8 assay was applied to assess the function of TA in Ag85B-treated WI-38 cells. Quantitative real-time polymerase chain reaction was applied to detect the mRNA level of sirtuin 1 (SIRT1) and forkhead box O3 (FOXO3a), and autophagy-related proteins were evaluated by Western blot analysis. Vascular endothelial growth factor (VEGF) level was investigated by immunohistochemical staining. Enzyme-linked immunosorbent serologic assay was applied to detect the secretion of inflammatory cytokines. Furthermore, hematoxylin and eosin staining was applied to observe tissue injuries. RESULTS Ag85B affected WI-38 cell viability in a limited manner, while TA notably suppressed Ag85B-treated WI-38 cell viability. TA induced the apoptosis of Ag85B-treated WI-38 cells in a dose-dependent manner. In addition, Ag85B-treated WI-38 cells demonstrated the upregulation of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), interferon gamma (IFN-γ), and fibrotic proteins (transforming growth factor-beta [TGF-β] and vascular endothelial growth factor [VEGF]), which can be significantly destroyed by the TA. Meanwhile, TA reversed Ag85-induced inhibition of cell autophagy by mediation of p62, LC3, and Beclin1. Furthermore, silencing of SIRT1/FOXO3a pathway could reverse the effect of TA on the autophagy of Ag85B-treated cells. CONCLUSION TA significantly induced the autophagy of fibroblasts in Ag85B-treated cells by mediation of SIRT1/FOXO3 pathway. This study established a new theoretical basis for exploring strategies against TSTB.
Collapse
|
11
|
XueXia L, YaNan L, Zi T, YuSheng Z, ZeLin W, Peng Z, MeiNa X, FuJun L. Di-2-ethylhexyl phthalate (DEHP) exposure induces sperm quality and functional defects in mice. CHEMOSPHERE 2023; 312:137216. [PMID: 36372335 DOI: 10.1016/j.chemosphere.2022.137216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) harms mammalian testis development, yet the specific mechanism of its effect on sperm quality and function is unclear. In this study, male mice were administrated DEHP (200 mg/kg/day) via intragastric (i.g.) injection for 35 days. The sperm quality and function of DEHP-exposed mice were evaluated. DEHP exposure reduced the relative testis weight and serum testosterone levels. In addition, sperm count and motility parameters decreased significantly, which led to reduced sperm fertility characterized by reduced acrosome reaction rate, sperm-egg binding capacity and blastocyte formation. DEHP exposure decreased anti-oxidant indicators and the expressions of Cat, Sod1, Prdx6 and Sirt1 in the testis. DEHP-exposure also resulted in decreased proliferating cell nuclear antigen (PCNA) expression in mice testis, as well as the dose-dependent inhibition of the proliferation of GC-1 and GC-2 cells. These phenotypes may be related to increased cell apoptosis characterized by BAX/BCL2 and P53 up-regulation. DEHP exposure resulted in the down-regulation of SIRT1 and p-AKT in mice testis and decreased levels of GC-1and GC-2 cells. DEHP co-incubation with sperm in vitro resulted in decreased tyrosine phosphorylation and progressive motility, as well as p-AKT expression in capacitated sperm. Differential sperm proteomics identified 495 differentially expressed proteins, including 257 proteins down-regulated in the DEHP-exposure group. Bioinformatics analysis showed that proteins involved in sperm-egg interaction and fertilization processes were significantly down-regulated. Pathway analysis demonstrated that the adhesion pathway was enriched in down-regulated proteins, while the pathway associated with ribosomes was enriched in up-regulated proteins. Conclusively, DEHP exposure impaired male fertility by affecting sperm quality and function, and a pathway mediating the DEHP-induced decline in sperm quality and function was identified. The study provides additional information for understanding the molecular mechanisms of DEHP exposure and its effects on male reproduction.
Collapse
Affiliation(s)
- Liu XueXia
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China; School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Liu YaNan
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Teng Zi
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhang YuSheng
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Wang ZeLin
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhu Peng
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xie MeiNa
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Liu FuJun
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China; School of Bioscience and Technology, Weifang Medical University, Weifang, China.
| |
Collapse
|
12
|
Yan J, Tang X, Zhou ZQ, Zhang J, Zhao Y, Li S, Luo A. Sirtuins functions in central nervous system cells under neurological disorders. Front Physiol 2022; 13:886087. [PMID: 36111151 PMCID: PMC9468898 DOI: 10.3389/fphys.2022.886087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
The sirtuins (SIRTs), a class of NAD+ -dependent deacylases, contain seven SIRT family members in mammals, from SIRT1 to SIRT7. Extensive studies have revealed that SIRT proteins regulate virous cell functions. Central nervous system (CNS) decline resulted in progressive cognitive impairment, social and physical abilities dysfunction. Therefore, it is of vital importance to have a better understanding of potential target to promote homeostasis of CNS. SIRTs have merged as the underlying regulating factors of the process of neurological disorders. In this review, we profile multiple functions of SIRT proteins in different cells during brain function and under CNS injury.
Collapse
Affiliation(s)
- Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaole Tang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-qiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|