1
|
Lu Y, Wang K, Hu L. Advancements in delivery systems for dietary polyphenols in enhancing radioprotection effects: challenges and opportunities. NPJ Sci Food 2025; 9:51. [PMID: 40229284 PMCID: PMC11997175 DOI: 10.1038/s41538-025-00419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Radiotherapy, a widely employed cancer treatment, often triggers diverse inflammatory responses such as radiation enteritis, pulmonary injury, pelvic inflammation, dermatitis, and osteitis. Dietary polyphenols have recently emerged as promising agents for mitigating radiation-induced inflammation. However, their clinical application faced challenges related to variable bioavailability, individual pharmacokinetics, optimal dosing, and limited clinical evidence. Current researches revealed the efficacy of bioactive small molecule polyphenols in addressing radiation-induced inflammation. In this review, along with a comprehensive examination of the etiology and categories of radiation-induced inflammatory conditions, the diversity of polyphenols and elucidating their anti-inflammatory mechanisms are explored. This study emphasizes the recent progresses in delivery systems for dietary polyphenols, aiming to enhance radioprotection effects. The optimized utilization of polyphenols, with a theoretical framework and reference guide, is of paramount relevance. Through diverse delivery mechanisms, the more effective and safer radioprotective strategies become achievable. This endeavor aspires to contribute to breakthroughs in the dietary polyphenols' application, significantly enhancing human health protection during radiotherapy. These comprehensive insights presented here also support (pre)-clinical practices in navigating the complexities of utilizing dietary polyphenols for radioprotection, fostering advancements in the field and improving patient outcomes.
Collapse
Affiliation(s)
- Yuxuan Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Taşkın T, Yılmaz BN, Hasan Niari Niar S, Ermanoğlu M, Taşkın D, Şenkardeş İ, Şahin T, Çalışkan Salihi E, Sezer AD, Kerimoğlu O, Elçioğlu HK. Biological activities and phytochemical characterization of Sideritis germanicopolitana subsp. viridis and S. libanotica subsp. linearis extracts and extract-loaded nanoparticles. Front Pharmacol 2025; 16:1508762. [PMID: 40170726 PMCID: PMC11959306 DOI: 10.3389/fphar.2025.1508762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction The current study focuses on evaluating the biological activity and analysis of phytochemical content of extracts and extract-loaded nanoparticles from Sideritis germanicopolitana subsp. viridis (endemic, SGV) and S. libanotica subsp. linearis (SLL). Methods Antioxidant activities of extracts and nanoparticles were investigated by DPPH, FRAP and CUPRAC methods. Enzyme inhibition potentials of extracts and nanoparticles were evaluated by Ellman and indophenol methods. Phytochemical contents were analyzed by HPLC-DAD. Plant extracts were encapsulated by the ionic gelation method which was modified in our laboratory using the green chemistry approach. Results and Discussion It was found that the 70% ethanol extracts of SGV and SLL exhibited the highest antioxidant activity in terms of DPPH, FRAP and CUPRAC compared to other extracts. The findings showed that both 70% ethanol extract-loaded nanoparticles obtained from SGV and SLL showed lower DPPH radical scavenging, iron (III) reducing and copper (II) reducing activities compared to crude extracts. It was determined that the 70% extracts of SGV and SLL exhibited a higher potential to inhibit the enzyme urease than other extracts. The anti-urease activity of the nanoparticle loaded with SLL 70% ethanol extract was found to be greater than that of the nanoparticle made with SGV 70% ethanol extract. Furthermore, an analysis of the acetylcholinesterase enzyme inhibition capacity of various extracts from both plants revealed that the 70% ethanol extracts of each plant species had a greater potential for enzyme inhibition than the other extracts. The anticholinesterase activity of the nanoparticle loaded with SLL 70% extract was found to be higher than that of the nanoparticle loaded with SGV 70% ethanol extract. In this study the phenolic metabolites were examined, luteolin (27.44 μg/mg extract) and p-coumaric acid (20.03 μg/mg extract) were found at the highest concentration in the SGV plant while rosmarinic acid (8.70 μg/mg extract), caffeic acid (6.46 μg/mg extract) and p-coumaric acid (4.42 μg/mg extract) were found at the highest concentration in the SLL plant. However, the data demonstrated that the nanoparticles had lesser biological activity potential than crude extracts. Conclusion The substantial biological activities of the nanoparticles developed as a result of this work showed that these formulations are suitable for use as antioxidant, anti-urease and anticholinesterase medicines in the future due to the benefits of using nanoparticles in the therapeutics such as the controlled release of the active agents and the diminished side effects.
Collapse
Affiliation(s)
- Turgut Taşkın
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Beyza Nur Yılmaz
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharnacognosy, Institute of Health Sciences, Marmara University Istanbul, Istanbul, Türkiye
| | - Shalaleh Hasan Niari Niar
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Basic Pharmaceutical Sciences, Institute of Health Sciences, Marmara University Istanbul, Istanbul, Türkiye
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Mizgin Ermanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharnacognosy, Institute of Health Sciences, Marmara University Istanbul, Istanbul, Türkiye
| | - Duygu Taşkın
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Health Sciences, Istanbul, Türkiye
| | - İsmail Şenkardeş
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Talip Şahin
- Department of Biology, Institute of Science, Adıyaman University, Adıyaman, Türkiye
| | - Elif Çalışkan Salihi
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Ali Demir Sezer
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Oya Kerimoğlu
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Hatice Kübra Elçioğlu
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| |
Collapse
|
3
|
Atacan K, Güy N, Semerci AB, Özacar M. Development of immobilized peroxidase on amino-functionalized magnetic MgFe 2O 4 nanoparticles for antioxidant activity and decolorization. Biophys Chem 2025; 318:107366. [PMID: 39644714 DOI: 10.1016/j.bpc.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
This investigation aims to immobilize peroxidase onto 3-aminopropyltriethoxysilane (APTES)-functionalized MgFe2O4 magnetic nanoparticles to increase enzyme stability, efficiency, and recyclability. The synthesized samples were analyzed using X-ray diffraction, Fourier transform infrared spectroscopy, Thermogravimetric analysis, Vibrating sample magnetometer, and Scanning electron microscopy. The free and immobilized peroxidase were examined against different pH and temperatures as well as storage time and reuse. The immobilized peroxidase maintained 52 % of its initial activity after 10 consecutive measurements thanks to easy magnetic separation. In addition, antioxidant activity was increased by immobilizing the peroxidase to the MgFe2O4 magnetic nanoparticles. Congo red dye removal for peroxidase immobilized MgFe2O4-APTES was found to be 98.6 % for 240 min. Also, it showed approximately two times more dye decolorization efficiency compared to MgFe2O4 and APTES modified MgFe2O4. Finally, the immobilized peroxidase was studied by a decolorization study of congo red. So, we believe that the immobilized peroxidase on magnetic nanoparticles reported in this study may be utilized in diverse biotechnology, industrial, and environmental practices.
Collapse
Affiliation(s)
- Keziban Atacan
- Sakarya University of Applied Sciences, Faculty of Technology, Department of Engineering Fundamental Sciences, 54050 Sakarya, Türkiye.
| | - Nuray Güy
- Sakarya University, Faculty of Science, Department of Chemistry, 54187 Sakarya, Türkiye
| | - Alican Bahadir Semerci
- Sakarya University, Faculty of Science, Department of Biology, 54187 Sakarya, Türkiye; Necmettin Erbakan University, Ereğli Vocational School of Health Services, 42310, Konya, Türkiye
| | - Mahmut Özacar
- Sakarya University, Faculty of Science, Department of Chemistry, 54187 Sakarya, Türkiye
| |
Collapse
|
4
|
Karunakar KK, Edwin ER, Gopalakrishnan M, Cheriyan BV, Ramaiyan V, Karthikha VS, Justin JP. Advances in nephroprotection: the therapeutic role of selenium, silver, and gold nanoparticles in renal health. Int Urol Nephrol 2025; 57:479-510. [PMID: 39312019 DOI: 10.1007/s11255-024-04212-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 01/29/2025]
Abstract
Renal toxicity is a disorder that causes considerable issues in healthcare systems world, highlighting the critical importance of creating alternative treatments. Metallic nanoparticles have recently emerged as promising therapeutic agents for nephroprotection because of their remarkable properties. Numerous disciplines, including medicine, biotechnology, and the food industry, are currently investigating and exploring metallic nanoparticles, such as selenium, silver, and gold, with promising outcomes. In this overview, we provide the most current findings on cutting-edge nephroprotection through metallic nanoparticles, especially selenium, silver, and gold nanoparticles. While outlining the benefits, we outline possible methods for developing metallic nanoparticles, characterization techniques, and nephroprotection therapies. Selenium nanoparticles (SeNPs) minimize oxidative stress, a primary cause of nephrotoxicity through cell regeneration which protects kidneys. Silver nanoparticles (AgNPs) have anti-inflammatory capabilities that help alleviate kidney damage and nephrotoxicity. Gold nanoparticles (AuNPs), which are biocompatible and immune-modifying, reduce inflammation and promote renal cell regeneration, indicating nephroprotective advantages. Renal protection via the use of metallic nanoparticles represents a promising new frontier in the fight against kidney disease and other renal disorders. Metallic nanoparticles of selenium, silver, and gold can protect the kidneys by lowering oxidative stress, reducing inflammation, and improving cell repair. Through their mechanisms, these nanoparticles effectively safeguard and repair kidney function, making them suitable for treating renal diseases. The potential applications of selenium, silver, and gold nanoparticles, as well as their complex modes of action and renal penetration, provide fresh hope for improving renal health and quality of life in patients with kidney disease. The current study highlights therapeutic ability, stability, nephroprotection, and toxicity profiles, as well as the importance of continuous research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Karthik K Karunakar
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Elizabeth Rani Edwin
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Meenaloshini Gopalakrishnan
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India.
| | - Velmurugan Ramaiyan
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - V S Karthikha
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Jerry Peliks Justin
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| |
Collapse
|
5
|
Karimi Z, Asadi K, Ghahramani P, Gholami A. Trinitroglycerine-loaded chitosan nanoparticles attenuate renal ischemia-reperfusion injury by modulating oxidative stress. Sci Rep 2024; 14:32112. [PMID: 39738455 PMCID: PMC11685805 DOI: 10.1038/s41598-024-83886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is a common clinical factor for acute kidney injury (AKI). A current study investigated the renoprotective effects of the trinitroglycerine (TNG) combination with chitosan nanoparticles (CNPs) on renal I/R-induced AKI. Rats were randomly assigned to five groups (n = 8/group): Sham, I/R, TNG (50 mg/kg) + I/R, CNPs (60 mg/kg) + I/R, and TNG-CNPs + I/R. Bilateral renal pedicles were occluded for 60 min to induce ischemia. TNG, CNPs, or TNG-CNPs were administered intraperitoneally 30 min before renal ischemia. After 24 h of reperfusion, blood samples were collected, and both kidneys were removed. The left kidney was used for oxidative stress analysis. The right kidney was preserved in 10% formalin for histopathological examination via H&E staining. After renal ischemia-reperfusion injury, there was an observed increase in plasma creatinine (Cr) and blood urea nitrogen (BUN), accompanied by a decrease in glomerular filtration rate (GFR) in rats. Total oxidative stress (TOS) levels were also significantly higher in the I/R group, whereas total antioxidative capacity (TAC) was reduced. Histopathological examination revealed damage in the kidneys of rats in the I/R group. Pretreatment with the TNG-CNP formulation before I/R increased plasma and tissue TAC levels in rats. It also corrected the renal histopathological changes and functional disorders induced by I/R injury, as evidenced by reduced Cr and BUN, increased GFR, and attenuated oxidative stress. The results suggest that the TNG-CNP combination provides renoprotective effects against I/R-induced AKI by improving antioxidant status and minimizing renal injury.
Collapse
Affiliation(s)
- Zeinab Karimi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khatereh Asadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooran Ghahramani
- Department of Biology Faculty of Sciences, Shiraz University, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Alam MW, Junaid PM, Gulzar Y, Abebe B, Awad M, Quazi SA. Advancing agriculture with functional NM: "pathways to sustainable and smart farming technologies". DISCOVER NANO 2024; 19:197. [PMID: 39636344 PMCID: PMC11621287 DOI: 10.1186/s11671-024-04144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
The integration of nanotechnology in agriculture offers a transformative approach to improving crop yields, resource efficiency, and ecological sustainability. This review highlights the application of functional NM, such as nano-formulated agrochemicals, nanosensors, and slow-release fertilizers, which enhance the effectiveness of fertilizers and pesticides while minimizing environmental impacts. By leveraging the unique properties of NM, agricultural practices can achieve better nutrient absorption, reduced chemical runoff, and improved water conservation. Innovations like nano-priming can enhance seed germination and drought resilience, while nanosensors enable precise monitoring of soil and crop health. Despite the promising commercial potential, significant challenges persist regarding the safety, ecological impact, and regulatory frameworks for nanomaterial use. This review emphasizes the need for comprehensive safety assessments and standardized risk evaluation protocols to ensure the responsible implementation of nanotechnology in agriculture.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
| | - Pir Mohammad Junaid
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Yonis Gulzar
- Department of Management Information Systems, College of Business Administration, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia.
| | - Mohammed Awad
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - S A Quazi
- Bapumiya Sirajoddin Patel Arts, Commerce and Science College, Pimpalgaon Kale, Jalgaon Jamod Dist, Buldhana, Maharashtra, India
| |
Collapse
|
7
|
Chowdhury MFM, Khan MN, Rahman MM. Metal nanoparticles incorporated chitosan-based electrospun nanofibre mats for wound dressing applications: A review. Int J Biol Macromol 2024; 282:137352. [PMID: 39522916 DOI: 10.1016/j.ijbiomac.2024.137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Wound healing is a dynamic physiological process essential for regenerating skin and maintaining coherence in hypodermic tissues. Chitosan-based electrospun nanofibre wound dressings show great promise for expediting the integration of skin and tissues due to their nano-topographic, biodegradable, biocompatible, and antimicrobial properties. However, their moderate bactericidal efficacy and limited mechanical strength hinder their widespread clinical application. The incorporation of specific metal nanoparticles (MNPs) and the functionalization of chitosan have brought attention to their crucial role in wound healing applications, yielding promising results by enhancing antibacterial properties, cell proliferation, cell signaling, and the mechanical robustness of the materials. Chitosan naturally mitigates the cytotoxicity of the incorporated metal nanoparticles within the nanofibers. Chitosan and modified chitosan-based electrospun mats incorporated with metal nanoparticles demonstrate substantial potential for expediting wound healing. This review offers a comprehensive overview of recent advancements in electrospun chitosan-based mats containing MNPs aimed at enhancing wound healing. It covers various aspects, including modification techniques, fabrication methods, wound closure mechanisms, MNP release profiles, histological considerations, addresses existing challenges, and outlines potential future developments.
Collapse
Affiliation(s)
- Mohammed Farhad Mahmud Chowdhury
- Bangladesh University of Textiles, Dhaka, Bangladesh; Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Nuruzzaman Khan
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Mohammad Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
8
|
Tunkaew K, Liewhiran C, Vaddhanaphuti CS. Functionalized metal oxide nanoparticles: A promising intervention against major health burden of diseases. Life Sci 2024; 358:123154. [PMID: 39433083 DOI: 10.1016/j.lfs.2024.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Metal oxide nanoparticles (MONPs) is one of the most effective materials for medical applications with their substantial surface metallic ions and high surface area-volume ratio. Over decades, MONPs have been considered potential treatments due to their demonstrated ability and reactivity to target diverse cellular signaling pathways implicated in antimicrobial effects, as well as in the amelioration of oxidative stress, inflammation, cancer progression, and glucose together with lipid dysregulation. Based on their unique characteristics, MONPs have shown to be biodegradable and biocompatible vehicles for drugs, which have recently been applied in drug delivery as nanocarriers to enhance their delivery capacity for mechanistic membrane transport. However, little is known about the precise cellular responses, molecular mechanisms, and potential use of MONPs in the medical field. This review emphasizes on elaborating the biochemical reactivities of MONPs on molecular and cellular reactions, highlighting the physiological responses, mechanisms of action, certain drawbacks, and remediation of these functionalized materials. The significant goal of this literature is to shed light on the new perspectives of MONPs in pre-clinical application to pursue for clinical research as alternative-personalized medicines to prevent individuals from drastic diseases.
Collapse
Affiliation(s)
- Kornwalai Tunkaew
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Thailand
| | - Chaikarn Liewhiran
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chutima S Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Thailand.
| |
Collapse
|
9
|
Adhavan R, Selvam K, Prakash P, Manimegalai P, Kirubakaran D, Shivakumar MS. Bioefficacy of Zinc oxide nanoparticle synthesis and their Biological, Environmental applications from Eranthemum roseum. Toxicol Rep 2024; 13:101758. [PMID: 39484638 PMCID: PMC11526060 DOI: 10.1016/j.toxrep.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Synthesis of metal oxide nanoparticles using medicinal plants increasing rapidly due to its eco-friendly to environment. In this study Zinc oxide nanoparticle is synthesized using the leaf extract of plant E. roseum. Synthesized NPs was characterized using UV- Vis Spectroscopy analysis where the peak observed at 374 nm with band gap of 2.5 eV, FTIR and XRD analysis validate pure hexagonal structure, Spherical shape of NPs was confirmed by SEM with EDX analysis and main compounds are zinc 75 % and oxygen 22 %. Transmission Electron Microscopy Analysis confirms the oval shaped ZnO NPs Biological activity of E. roseum ZnO NPs such as antioxidant assay DPPH, ABTS, hydroxyl radical activity shows good inhibition against free radicals. The In-vitro Hypoglycemic effects has maximum inhibition of 96 % on α- amylase activity and 87 % on α- Glycosidase activity. Anti-inflammatory activity recorded 93 % maximum inhibition at Albumin denaturation assay and 75 % at Membrane stabilization assay. E. roseum ZnO NPs shows 67.79 % on HepG2 Anti-proliferative cells line. AO/EtBr staining assays confirms the apoptosis effect. Larvicidal activity shows highest mortality of 98.44 % on species C. quinquefasciatus. Photocatalytic dyedegradation of Methylene blue dye shows 65 % of dye degradation.
Collapse
|
10
|
Duman H, Akdaşçi E, Eker F, Bechelany M, Karav S. Gold Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1805. [PMID: 39591046 PMCID: PMC11597081 DOI: 10.3390/nano14221805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas. Gold NPs' ability to transfer heat and electricity positions them as valuable materials for advancing thermal management and electronic systems. Moreover, their inherent characteristics, such as inertness, give rise to the synthesis of novel antibacterial and antioxidant agents as they provide a biocompatible and low-toxicity approach. Chemical and physical synthesis methods are utilized to produce gold NPs. The pursuit of more ecologically sustainable and economically viable large-scale technologies, such as environmentally benign biological processes referred to as green/biological synthesis, has garnered increasing interest among global researchers. Green synthesis methods are more favorable than other synthesis techniques as they minimize the necessity for hazardous chemicals in the reduction process due to their simplicity, cost-effectiveness, energy efficiency, and biocompatibility. This article discusses the importance of gold NPs, their optical, conductivity, antibacterial, antioxidant, and anticancer properties, synthesis methods, contemporary uses, and biosafety, emphasizing the need to understand toxicology principles and green commercialization strategies.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| |
Collapse
|
11
|
Djanaguiraman M, Anbazhagan V, Dhankher OP, Prasad PVV. Uptake, Translocation, Toxicity, and Impact of Nanoparticles on Plant Physiological Processes. PLANTS (BASEL, SWITZERLAND) 2024; 13:3137. [PMID: 39599346 PMCID: PMC11597231 DOI: 10.3390/plants13223137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The application of nanotechnology in agriculture has increased rapidly. However, the fate and effects of various nanoparticles on the soil, plants, and humans are not fully understood. Reports indicate that nanoparticles exhibit positive and negative impacts on biota due to their size, surface property, concentration within the system, and species or cell type under test. In plants, nanoparticles are translocated either by apoplast or symplast pathway or both. Also, it is not clear whether the nanoparticles entering the plant system remain as nanoparticles or are biotransformed into ionic forms or other organic compounds. Controversial results on the toxicity effects of nanomaterials on the plant system are available. In general, the nanomaterial toxicity was exerted by producing reactive oxygen species, leading to damage or denaturation of various biomolecules. The intensity of cyto- and geno-toxicity depends on the physical and chemical properties of nanoparticles. Based on the literature survey, it is observed that the effects of nanoparticles on the growth, photosynthesis, and primary and secondary metabolism of plants are both positive and negative; the response of these processes to the nanoparticle was associated with the type of nanoparticle, the concentration within the tissue, crop species, and stage of growth. Future studies should focus on addressing the key knowledge gaps in understanding the responses of plants to nanoparticles at all levels through global transcriptome, proteome, and metabolome assays and evaluating nanoparticles under field conditions at realistic exposure concentrations to determine the level of entry of nanoparticles into the food chain and assess the impact of nanoparticles on the ecosystem.
Collapse
Affiliation(s)
- Maduraimuthu Djanaguiraman
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Veerappan Anbazhagan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA;
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
Yalçın MS, Özdemir S, Prokopiuk V, Virych P, Onishchenko A, Tollu G, Pavlenko V, Kutsevol N, Dizge N, Tkachenko A, Ocakoglu K. Toxicity, Antibacterial, Antioxidant, Antidiabetic, and DNA Cleavage Effects of Dextran-Graft-Polyacrylamide/Zinc Oxide Nanosystems. Curr Microbiol 2024; 81:437. [PMID: 39487865 DOI: 10.1007/s00284-024-03953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024]
Abstract
Synthesis of metal oxide nanoparticles-polymer nanocomposites is an emerging strategy in nanotechnology to improve targeted delivery and reduce the toxicity of nanoparticles. In this study, we report biological effects of previously described hybrid nanocomposites containing dextran-graft-polyacrylamide/zinc oxide nanoparticles (D-PAA/ZnO NPs) prepared from zinc sulfate (D-PAA/ZnONPs(SO42-)) and zinc acetate (D-PAA/ZnONPs(-OAc)) focusing primarily on their antimicrobial activity. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems were tested in a complex way to assess their antioxidant activity (DPPH assay), antidiabetic potential (α-amylase inhibition), DNA cleavage activity, antimicrobial, and antibiofilm activity. In addition, the toxicity of D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems against primary murine splenocytes was tested using MTT assay. The studied nanosystems inhibited E.coli growth. For all the investigated strains, minimum inhibitory concentrations (MICs) of D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) were in the range of 8 mg/L-128 mg/L and 16 mg/L-128 mg/L, respectively. The nanocomposites demonstrated effective antibiofilm properties as 94.27% and 86.43%. The compounds showed good antioxidant, anti-α-amylase, and DNA cleavage activities. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems reduced cell viability and promoted cell death of primary murine spleen cells at concentrations higher than those that proved to be antibacterial indicating the presence of therapeutic window. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems show antioxidant, antidiabetic, DNA cleavage, antimicrobial, and antibiofilm activity against the background of good biocompatibility suggesting the presence of therapeutic potential, which should be further investigated in vivo.
Collapse
Affiliation(s)
- M Serkan Yalçın
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343, Yenisehir, Mersin, Turkey
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Pavlo Virych
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Anatolii Onishchenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Gülşah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, Yenisehir, TR-33343, Mersin, Turkey
| | - Vadim Pavlenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Nataliya Kutsevol
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Yenişehir, 33343, Mersin, Turkey
| | - Anton Tkachenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine.
| | - Kasim Ocakoglu
- Department of Eng. Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400, Tarsus, Turkey
| |
Collapse
|
13
|
Guo Q, Zhai Q, Ji P. The Role of Mitochondrial Homeostasis in Mesenchymal Stem Cell Therapy-Potential Implications in the Treatment of Osteogenesis Imperfecta. Pharmaceuticals (Basel) 2024; 17:1297. [PMID: 39458939 PMCID: PMC11510265 DOI: 10.3390/ph17101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary disorder characterized by bones that are fragile and prone to breaking. The efficacy of existing therapies for OI is limited, and they are associated with potentially harmful side effects. OI is primarily due to a mutation of collagen type I and hence impairs bone regeneration. Mesenchymal stem cell (MSC) therapy is an attractive strategy to take advantage of the potential benefits of these multipotent stem cells to address the underlying molecular defects of OI by differentiating osteoblasts, paracrine effects, or immunomodulation. The maintenance of mitochondrial homeostasis is an essential component for improving the curative efficacy of MSCs in OI by affecting the differentiation, signaling, and immunomodulatory functions of MSCs. In this review, we highlight the MSC-based therapy pathway in OI and introduce the MSC regulation mechanism by mitochondrial homeostasis. Strategies aiming to modulate the metabolism and reduce the oxidative stress, as well as innovative strategies based on the use of compounds (resveratrol, NAD+, α-KG), antioxidants, and nanomaterials, are analyzed. These findings may enable the development of new strategies for the treatment of OI, ultimately resulting in improved patient outcomes.
Collapse
Affiliation(s)
- Qingling Guo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| |
Collapse
|
14
|
Chen F, Jiang Q, Xu B, Huang Y, Xu K, Xu X, Yu D, Chen Y, Wang X. Ototoxicity-Alleviating and Cytoprotective Allomelanin Nanomedicine for Efficient Sensorineural Hearing Loss Treatment. ACS NANO 2024. [PMID: 39259947 DOI: 10.1021/acsnano.4c10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a significant clinical challenge, predominantly attributed to oxidative stress-related mechanisms. In this work, we report an innovative antioxidant strategy for mitigating SNHL, utilizing synthetically engineered allomelanin nanoparticles (AMNPs). Empirical evidence elucidates AMNPs' profound capability in free radical neutralization, substantiated by a significant decrement in reactive oxygen species (ROS) levels within HEI-OC1 auditory cells exposure to cisplatin or hydrogen peroxide (H2O2). Comparative analyses reveal that AMNPs afford protection against cisplatin-induced and noise-induced auditory impairments, mirroring the effect of dexamethasone (DEX), a standard pharmacological treatment for acute SNHL. AMNPs exhibit notable cytoprotective properties for auditory hair cells (HCs), effectively preventing ototoxicity from cisplatin or H2O2 exposure, as confirmed by both in vitro assays and cultured organ of Corti studies. Further in vivo research corroborates AMNPs' ability to reverse auditory brainstem response (ABR) threshold shifts resulting from acoustic injury, concurrently reducing HCs loss, ribbon synapse depletion, and spiral ganglion neuron degeneration. The therapeutic benefits of AMNPs are attributed to mitigating oxidative stress and inflammation within the cochlea, with transcriptome analysis indicating downregulated gene expression related to these processes post-AMNPs treatment. The pronounced antioxidative and anti-inflammatory effects of AMNPs position them as a promising alternative to DEX for SNHL treatment.
Collapse
Affiliation(s)
- Fengqiu Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Qingjun Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Xiaoju Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| |
Collapse
|
15
|
Summer M, Ashraf R, Ali S, Bach H, Noor S, Noor Q, Riaz S, Khan RRM. Inflammatory response of nanoparticles: Mechanisms, consequences, and strategies for mitigation. CHEMOSPHERE 2024; 363:142826. [PMID: 39002651 DOI: 10.1016/j.chemosphere.2024.142826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Numerous nano-dimensioned materials have been generated as a result of several advancements in nanoscale science such as metallic nanoparticles (mNPs) which have aided in the advancement of related research. As a result, several significant nanoscale materials are being produced commercially. It is expected that in the future, products that are nanoscale, like mNPs, will be useful in daily life. Despite certain benefits, widespread use of metallic nanoparticles and nanotechnology has negative effects and puts human health at risk because of their continual accumulation in closed biological systems, along with their complex and diverse migratory and transformation pathways. Once within the human body, nanoparticles (NPs) disrupt the body's natural biological processes and trigger inflammatory responses. These NPs can also affect the immune system by activating separate pathways that either function independently or interact with one another. Cytotoxic effects, inflammatory response, genetic material damage, and mitochondrial dysfunction are among the consequences of mNPs. Oxidative stress and reactive oxygen species (ROS) generation caused by mNPs depend upon a multitude of factors that allow NPs to get inside cells and interact with biological macromolecules and cell organelles. This review focuses on how mNPs cause inflammation and oxidative stress, as well as disrupt cellular signaling pathways that support these effects. In addition, possibilities and problems to be reduced are addressed to improve future research on the creation of safer and more environmentally friendly metal-based nanoparticles for commercial acceptance and sustainable use in medicine and drug delivery.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Rana Rashad Mahmood Khan
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Pakistan
| |
Collapse
|
16
|
Shineh G, Mobaraki M, Afzali E, Alakija F, Velisdeh ZJ, Mills DK. Antimicrobial Metal and Metal Oxide Nanoparticles in Bone Tissue Repair. BIOMEDICAL MATERIALS & DEVICES 2024; 2:918-941. [DOI: 10.1007/s44174-024-00159-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/06/2024] [Indexed: 01/06/2025]
|
17
|
Bessa IA, D’Amato DL, C. Souza AB, Levita DP, Mello CC, da Silva AFM, dos Santos TC, Ronconi CM. Innovating Leishmaniasis Treatment: A Critical Chemist's Review of Inorganic Nanomaterials. ACS Infect Dis 2024; 10:2485-2506. [PMID: 39001837 PMCID: PMC11320585 DOI: 10.1021/acsinfecdis.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Leishmaniasis, a critical Neglected Tropical Disease caused by Leishmania protozoa, represents a significant global health risk, particularly in resource-limited regions. Conventional treatments are effective but suffer from serious limitations, such as toxicity, prolonged treatment courses, and rising drug resistance. Herein, we highlight the potential of inorganic nanomaterials as an innovative approach to enhance Leishmaniasis therapy, aligning with the One Health concept by considering these treatments' environmental, veterinary, and public health impacts. By leveraging the adjustable properties of these nanomaterials─including size, shape, and surface charge, tailored treatments for various diseases can be developed that are less harmful to the environment and nontarget species. We review recent advances in metal-, oxide-, and carbon-based nanomaterials for combating Leishmaniasis, examining their mechanisms of action and their dual use as standalone treatments or drug delivery systems. Our analysis highlights a promising yet underexplored frontier in employing these materials for more holistic and effective disease management.
Collapse
Affiliation(s)
- Isabela
A. A. Bessa
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Dayenny L. D’Amato
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Ana Beatriz C. Souza
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Daniel P. Levita
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Camille C. Mello
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Aline F. M. da Silva
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Thiago C. dos Santos
- Instituto
de Química, Universidade Federal
do Rio de Janeiro. Av. Athos da Silveira Ramos 149, CT, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Célia M. Ronconi
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| |
Collapse
|
18
|
Lin YC, Liang YJ, Zhang CH, Liu LJ, Lin FH. Characterization and Therapeutic Potential of Curcumin-Loaded Cerium Oxide Nanoparticles for Interstitial Cystitis Management. Antioxidants (Basel) 2024; 13:826. [PMID: 39061895 PMCID: PMC11273629 DOI: 10.3390/antiox13070826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Oxidative stress resulting from reactive oxygen species (ROS) is often considered to be the leading cause of interstitial cystitis (IC), which is a chronic inflammatory disease. Antioxidants have been proven to have promising therapeutic effects on IC. In this study, we present an antioxidant intervention for IC by introducing curcumin-loaded cerium oxide nanoparticles (Cur-CONPs). Recognizing oxidative stress as the primary contributor to IC, our research builds on previous work utilizing cerium oxide nanoparticles (CONPs) for their outstanding antioxidant and anti-inflammatory properties. However, given the need to effectively relieve acute inflammation, we engineered Cur-CONPs to harness the short-term radical-scavenging antioxidant prowess of curcumin. Through in vitro studies, we demonstrate that the Cur-CONPs exhibit not only robust antioxidant capabilities but also superior anti-inflammatory properties over CONPs alone. Furthermore, in vivo studies validate the therapeutic effects of Cur-CONPs on IC. Mice with IC subjected to the Cur-CONP treatment exhibited improved micturition behaviors, relief from pelvic pain sensitivity, and reduced expression of inflammatory proteins (IL-6, IL-1β, TNF-α, Cox2). These findings suggest that the synergistic antioxidant properties of the Cur-CONPs that combine the sustained antioxidant properties of CONPs and acute anti-inflammatory capabilities of curcumin hold promise as a novel treatment strategy for IC.
Collapse
Affiliation(s)
- Yang-Chen Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (Y.-C.L.); (Y.-J.L.)
| | - Ya-Jyun Liang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (Y.-C.L.); (Y.-J.L.)
| | - Chun-Hong Zhang
- Yantai Research Institute, Harbin Engineering University, 145 Nantong Street, Nangang District, Harbin 150009, China; (C.-H.Z.); (L.-J.L.)
| | - Li-Jia Liu
- Yantai Research Institute, Harbin Engineering University, 145 Nantong Street, Nangang District, Harbin 150009, China; (C.-H.Z.); (L.-J.L.)
| | - Feng-Huei Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (Y.-C.L.); (Y.-J.L.)
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
19
|
Shanmugam R, Tharani M, Abullais SS, Patil SR, Karobari MI. Black seed assisted synthesis, characterization, free radical scavenging, antimicrobial and anti-inflammatory activity of iron oxide nanoparticles. BMC Complement Med Ther 2024; 24:241. [PMID: 38902620 PMCID: PMC11191246 DOI: 10.1186/s12906-024-04552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Iron nanoparticles comprise a significant class of inorganic nanoparticles, which discover applications in various zones by prudence of their few exciting properties. This study achieved the green synthesis of iron oxide nanoparticles (IONPs) by black cumin seed (Nigella sativa) extract, which acts as a reducing and capping agent. The iron nanoparticles and black cumin extract were synthesized in three different concentrations: (01:01, 02:04,01:04). UV-visible spectroscopy, XRD, FTIR, and AFM characterized the synthesized iron oxide nanoparticles. UV-visible spectra show the maximum absorbance peak of 01:01 concentration at 380 nm. The other concentrations, such as 02:04, peaked at 400 nm and 01:04 at 680 nm, confirming the formation of iron oxide nanoparticles. AFM analysis reveals the spherical shape of iron oxide nanoparticles. The XRD spectra reveal the (fcc) cubic crystal structure of the iron oxide nanoparticles. The FTIR analysis's peaks at 457.13, 455.20, and 457.13 cm-1 depict the characteristic iron nanoparticle synthesis. The black cumin extract-mediated iron oxide nanoparticles show substantial antibacterial, antifungal, antioxidant and anti-inflammatory activity in a dose-dependent manner.
Collapse
Affiliation(s)
- Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - M Tharani
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Shahabe Saquib Abullais
- Department of Periodontics, College of Dentistry, King Khalid University, Abha, 62529, Saudi Arabia
| | - Santosh R Patil
- Department of Oral Medicine and Radiology, Chhattisgarh Dental College & Research Institute, Chhattisgarh, India
- Department of Dental Research, Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Mohmed Isaqali Karobari
- Department of Dental Research, Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh, 12211, Cambodia.
| |
Collapse
|
20
|
Naik CC, Kamat DP, Gaonkar SK. Assessment of the catalytic and biological potential of yttrium and samarium-modified copper ferrite nanomaterials. Int J Biol Macromol 2024; 268:131752. [PMID: 38657936 DOI: 10.1016/j.ijbiomac.2024.131752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The present study reports the preparation of crystalline and nanosized copper ferrite (CuFe2O4), Y3+ substituted CuFe2O4 (CuFe1.95Y0.05O4), and Sm3+ substituted CuFe2O4 (CuFe1.95Sm0.05O4) using a simple co-precipitation method. The XRD analysis confirmed the formation of the cubic spinel phase, while XPS studies validated the presence of Cu and Fe in 2+ and 3+ oxidation states respectively. Transmission electron microscopy (TEM) analysis revealed the nanoparticles with a diameter in the range of 10-60 nm. The introduction of fractional amounts of Y3+ and Sm3+ ions in the CuFe2O4 lattice enhanced the reduction of 4-nitrophenol, attributed to decreased particle size facilitating the reduction process. In the case of antimicrobial activity, Candida albican was found to be maximally sensitive to CuFe2O4 and CuFe1.95Y0.05O4, while Pseudomonas aeruginosa was inhibited by CuFe1.95Sm0.05O4. Moreover, a maximum of 61.9 ± 1.91 % anti-Pseudomonas biofilm activity and 75.7 ± 1.28 % DPPH radical scavenging activity was observed for CuFe1.95Y0.05O4 at 200 μg/ml concentration. The improvement in biological activities was attributed to the reduced particle size, crystal structure modification, and increased stability of the CuFe2O4 lattice with substitution. The enhancement in catalytic and biological performance highlighted the effectiveness of minimal Y3+ and Sm3+ concentrations in modulating the properties of CuFe2O4 nanomaterials.
Collapse
Affiliation(s)
- Chandan C Naik
- Department of Chemistry, Dhempe College of Arts & Science, Miramar, Panaji, Goa 403001, India.
| | - Durga P Kamat
- Department of Chemistry, Dhempe College of Arts & Science, Miramar, Panaji, Goa 403001, India
| | - Sanket K Gaonkar
- Department of Microbiology, P.E.S's R.S.N College of Arts and Science, Farmagudi, Ponda, Goa, India
| |
Collapse
|
21
|
Joshi NC, Negi PB, Gururani P. A review on metal/metal oxide nanoparticles in food processing and packaging. Food Sci Biotechnol 2024; 33:1307-1322. [PMID: 38585561 PMCID: PMC10991644 DOI: 10.1007/s10068-023-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 04/09/2024] Open
Abstract
Consuming hygienic and secure food has become challenging for everyone. The preservation of excess food without negatively affecting its nutritional values, shelf life, freshness, or effectiveness would undoubtedly strengthen the food industry. Nanotechnology is a new and intriguing technology that is currently being implemented in the food industry. Metal-based nanomaterials have considerable potential for use in packaging and food processing. These materials have many advanced physical and chemical characteristics. Since these materials are increasingly being used in food applications, there are certain negative health consequences related to their toxicity when swallowed through food. In this article, we have addressed the introduction and applications of metal/metal oxide nanoparticles (MNPs), food processing and food packaging, applications of MNPs-based materials in food processing and food packaging, health hazards, and future perspectives.
Collapse
Affiliation(s)
| | - Pushpa Bhakuni Negi
- Department of Chemistry, Graphic Era Hill University, Bhimtal Campus, Nainital, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| |
Collapse
|
22
|
Eshaghi R, Mohsenzadeh M, Ayala-Zavala JF. Bio-nanocomposite active packaging films based on carboxymethyl cellulose, myrrh gum, TiO 2 nanoparticles and dill essential oil for preserving fresh-fish (Cyprinus carpio) meat quality. Int J Biol Macromol 2024; 263:129991. [PMID: 38331078 DOI: 10.1016/j.ijbiomac.2024.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
This study developed a composite film for packaging refrigerated common carp fillets using carboxymethyl cellulose (CMC) (1.5 % w/v)/Myrrh gum (MG) (0.25 % w/v) base with the addition of titanium dioxide nanoparticles (TiO2 NPs) (0.25 %, 0.5 %, and 1 %) and Dill essential oil (DEO) (1.5 %, 2.25 %, and 3 %). The film was produced using a casting method and optimized for mechanical and barrier properties. The incorporation of DEO and TiO2 NPs into CMC/MG composite films significantly reduced moisture content (MC) and water vapor permeability (WVP), improved their tensile strength (TS), and increased their antimicrobial and antioxidant properties. Moreover, MG can improve the physicomechanical properties of the CMC/MG composite films. The film components had good compatibility without significant aggregation or cracks. In conclusion, the optimized CMC/MG (1.5 %/0.25 %) film containing TiO2 NPs (0.5 %), and DEO (2.25 %) has the best overall performance and can be a good source for making edible film. Functionally, this bioactive nanocomposite film significantly increased the shelf life of refrigerated fish fillet samples for 12 days by inhibiting microbial growth and reducing the oxidation rate compared to the control sample. The knowledge obtained from this study can guide the development of bio-nanocomposite and biodegradable food packaging films based on CMC/MG to increase the shelf life of food products and environmental protection.
Collapse
Affiliation(s)
- Reza Eshaghi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mohsenzadeh
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carr. Gustavo E. Astiazarán Rosas No. 46, Col. La Victoria, C.P. 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
23
|
Li S, Chen Y, Cao X, Yang C, Li W, Shen B. The application of nanotechnology in kidney transplantation. Nanomedicine (Lond) 2024; 19:413-429. [PMID: 38275168 DOI: 10.2217/nnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Kidney transplantation is a crucial treatment option for end-stage renal disease patients, but challenges related to graft function, rejection and immunosuppressant side effects persist. This review highlights the potential of nanotechnology in addressing these challenges. Nanotechnology offers innovative solutions to enhance organ preservation, evaluate graft function, mitigate ischemia-reperfusion injury and improve drug delivery for immunosuppressants. The integration of nanotechnology holds promise for improving outcomes in kidney transplantation.
Collapse
Affiliation(s)
- Shengzhou Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Yiming Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Wei Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, 200433, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
- Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| |
Collapse
|
24
|
Yang Y, Wang P, Zhang G, He S, Xu B. Inorganic-Nanomaterial-Composited Hydrogel Dressings for Wound Healing. JOURNAL OF COMPOSITES SCIENCE 2024; 8:46. [DOI: 10.3390/jcs8020046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Wound management heavily relies on the vital contribution of wound dressings, emphasizing the significance of finding an ideal dressing that can fulfill the intricate requirements of the wound healing process with multiple functions. A promising strategy is combining several materials and therapies to create multifunctional wound dressings. Nanocomposite hydrogel dressings based on nanomaterials, combining the advantages of nanomaterials and hydrogels in wound treatment, can significantly improve their respective performance and compensate for their shortcomings. A variety of nanocomposite wound dressings with diverse structures and synergistic functions have been developed in recent years, achieving ideal results in wound management applications. In this review, the multiple functions, advantages, and limitations of hydrogels as wound dressings are first discussed. Additionally, the application of inorganic nanomaterials in wound healing is also elaborated on. Furthermore, we focused on summarizing and analyzing nanocomposite hydrogel dressings for wound healing, which contain various inorganic nanomaterials, including metals, metal oxides, metal sulfides, carbon-based nanomaterials, and silicon-based nanoparticles. Finally, prospects for nanocomposite hydrogel wound dressings are envisaged, providing insights for further research in wound management.
Collapse
Affiliation(s)
- Ying Yang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Pingfei Wang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Guiju Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Shan He
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Baocai Xu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
25
|
Mondal NJ, Sonkar R, Boro B, Ghosh MP, Chowdhury D. Nanocrystalline Ni-Zn spinel ferrites: size-dependent physical, photocatalytic and antioxidant properties. NANOSCALE ADVANCES 2023; 5:5460-5475. [PMID: 37822912 PMCID: PMC10563843 DOI: 10.1039/d3na00446e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023]
Abstract
The physical properties of nanomagnetic particles are expected to be highly dependent on their size. In this study, besides the promising applications of nanocrystalline Ni-Zn spinel ferrites in the area of photocatalysis and free radical scavenging, we present a detailed study with appropriate scientific explanations on the role of size change in modifying and tuning the microstructural, optical and magnetic properties. Three nanostructured Zn0.3Ni0.7Fe2O4 samples of different particle sizes were prepared via the chemical co-precipitation method. Crystallographic phase purity and formation of the spinel cubic phase for all the samples were tested by X-ray diffraction studies. The magnetic properties of the as-synthesized ferrite nanoparticles have been examined thoroughly at 5 K and 300 K. Emergence of superparamagnetic behavior has been observed for the sample with the smallest size ferrite nanoparticles (ZNF-1). The photocatalytic efficiency of all the nanocatalysts was tested on methylene blue (MB) dye and the smallest sized nanocatalyst (ZNF-1) was identified as the most efficient catalyst in degrading MB dye under light illumination. The degradation efficiency was found to decrease with increasing mean particle size of the prepared samples. The antioxidant properties of the prepared ferrite samples were also studied. Here, too, the ZNF-1 sample with the smallest sized nanoparticles exhibited maximum scavenging of free radicals compared to other samples. Hence, the present study clearly demonstrates that smaller-sized Ni-Zn spinel ferrites are efficient materials for tuning the physical properties as well as for use in photocatalytic and antioxidant applications.
Collapse
Affiliation(s)
- Nur Jalal Mondal
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rahul Sonkar
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Bitopan Boro
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Mritunjoy Prasad Ghosh
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 Assam India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
26
|
El-Derany MO, Hanna DMF, Youshia J, Elmowafy E, Farag MA, Azab SS. Metabolomics-directed nanotechnology in viral diseases management: COVID-19 a case study. Pharmacol Rep 2023; 75:1045-1065. [PMID: 37587394 PMCID: PMC10539420 DOI: 10.1007/s43440-023-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently regarded as the twenty-first century's plague accounting for coronavirus disease 2019 (COVID-19). Besides its reported symptoms affecting the respiratory tract, it was found to alter several metabolic pathways inside the body. Nanoparticles proved to combat viral infections including COVID-19 to demonstrate great success in developing vaccines based on mRNA technology. However, various types of nanoparticles can affect the host metabolome. Considering the increasing proportion of nano-based vaccines, this review compiles and analyses how COVID-19 and nanoparticles affect lipids, amino acids, and carbohydrates metabolism. A search was conducted on PubMed, ScienceDirect, Web of Science for available information on the interrelationship between metabolomics and immunity in the context of SARS-CoV-2 infection and the effect of nanoparticles on metabolite levels. It was clear that SARS-CoV-2 disrupted several pathways to ensure a sufficient supply of its building blocks to facilitate its replication. Such information can help in developing treatment strategies against viral infections and COVID-19 based on interventions that overcome these metabolic changes. Furthermore, it showed that even drug-free nanoparticles can exert an influence on biological systems as evidenced by metabolomics.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., P.B. 11562, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
27
|
Bardi G, Boselli L, Pompa PP. Anti-inflammatory potential of platinum nanozymes: mechanisms and perspectives. NANOSCALE 2023; 15:14284-14300. [PMID: 37584343 DOI: 10.1039/d3nr03016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Inflammation is a complex process of the body in response to pathogen infections or dysregulated metabolism, involving the recruitment and activation of immune system components. Repeated dangerous stimuli or uncontrolled immune effector mechanisms can result in tissue injury. Reactive Oxygen Species (ROS) play key roles in physiological cell signaling as well as in the destruction of internalized pathogens. However, aberrant ROS production and release have deleterious effects on the surrounding environment, making ROS regulation a priority to reduce inflammation. Most of the current anti-inflammatory therapies rely on drugs that impair the release of pro-inflammatory mediators. Nevertheless, increasing the enzymatic activity to reduce ROS levels could be an alternative or complementary therapeutic approach to decrease inflammation. Nanozymes are nanomaterials with high catalytic activity that mimic natural enzymes, allowing biochemical reactions to take place. Such functional particles typically show different and regenerable oxidation states or catalytically reactive surfaces offering long-term activity and stability. In this scenario, platinum-based nanozymes (PtNZs) exhibit broad and efficient catalytic functionalities and can reduce inflammation mainly through ROS scavenging, e.g. by catalase and superoxide dismutase reactions. Dose-dependent biocompatibility and immune compatibility of PtNZs have been shown in different cells and tissues, both in vitro and in vivo. Size/shape/surface engineering of the nanozymes could also potentiate their efficacy to act at different sites and/or steps of the inflammation process, such as cytokine removal or specific targeting of activated leukocytes. In the present review, we analyze key inflammation triggering processes and the effects of platinum nanozymes under exemplificative inflammatory conditions. We further discuss potential platinum nanozyme design and improvements to modulate and expand their anti-inflammatory action.
Collapse
Affiliation(s)
- Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
28
|
Allogmani AS, Mohamed RM, Hasanin MS. Green, Eco-Friendly, Highly Biocompatible and Bioactive Nanocomposite-Based Biopolymers Loaded with ZnO@Fe 3O 4 Nanoparticles. Polymers (Basel) 2023; 15:3641. [PMID: 37688268 PMCID: PMC10490337 DOI: 10.3390/polym15173641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Biocompatibility is a major concern for promising multifunctional bioactive materials. Unfortunately, bioactive materials lack biocompatibility in some respects, so active ingredient formulations are urgently needed. Bimetallic nanoparticles have demonstrated drawbacks in stabilized biocompatible formulations. This study examined the preparation of biomaterial-based multifunctional biopolymers via an eco-friendly formulation method using ultrasound. Bimetallic zinc oxide/iron oxide (magnetic form) nanoparticles (ZnO@Fe3O4NPs) were formulated using casein and starch as capping agents and stabilizers. The formulated nanocomposite was characterized using ultraviolet-visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM). Herein, the formulated nanocomposite was shown to have a thermally stable nanostructure, and the bimetallic ZnO@Fe3O4 NPs were measured as 85 nm length and 13 nm width. Additionally, the biocompatibility test showed its excellent cytocompatibility with Wi 38 and Vero normal cell lines, with IC50 550 and 650 mg/mL, respectively. Moreover, the antimicrobial activity was noted against six pathogens that are represent to the most common pathogenic microbes, with the time required for killing of bacteria and unicellular fungi being 19 h and 61 h for filamentous fungi with remarket an excellent antioxidant activity.
Collapse
Affiliation(s)
- Ayed S. Allogmani
- University of Jeddah, College of Science and Arts at Khulis, Department of Biology, Jeddah, Saudi Arabia
| | - Roushdy M. Mohamed
- University of Jeddah, College of Science and Arts at Khulis, Department of Biology, Jeddah, Saudi Arabia
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
29
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Yin X, Lai Y, Du Y, Zhang T, Gao J, Li Z. Metal-Based Nanoparticles: A Prospective Strategy for Helicobacter pylori Treatment. Int J Nanomedicine 2023; 18:2413-2429. [PMID: 37192898 PMCID: PMC10182771 DOI: 10.2147/ijn.s405052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 05/18/2023] Open
Abstract
Helicobacter pylori (H. pylori) is an infectious pathogen and the leading cause of gastrointestinal diseases, including gastric adenocarcinoma. Currently, bismuth quadruple therapy is the recommended first-line treatment, and it is reported to be highly effective, with >90% eradication rates on a consistent basis. However, the overuse of antibiotics causes H. pylori to become increasingly resistant to antibiotics, making its eradication unlikely in the foreseeable future. Besides, the effect of antibiotic treatments on the gut microbiota also needs to be considered. Therefore, effective, selective, antibiotic-free antibacterial strategies are urgently required. Due to their unique physiochemical properties, such as the release of metal ions, the generation of reactive oxygen species, and photothermal/photodynamic effects, metal-based nanoparticles have attracted a great deal of interest. In this article, we review recent advances in the design, antimicrobial mechanisms and applications of metal-based nanoparticles for the eradication of H. pylori. Additionally, we discuss current challenges in this field and future perspectives that may be used in anti-H. pylori strategies.
Collapse
Affiliation(s)
- Xiaojing Yin
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongkang Lai
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Department of Gastroenterology, Ganzhou People’s Hospital Affiliated to Nanchang University, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Yiqi Du
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
31
|
Shan H, Zhao Q, Guo Y, Gao M, Xu X, McClements DJ, Cao C, Yuan B. Impact of pH on the Formation and Properties of Whey Protein Coronas around TiO 2 Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5756-5769. [PMID: 37013898 DOI: 10.1021/acs.jafc.3c00073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In aqueous media, titanium dioxide (TiO2) nanoparticles can interact with proteins in their environment and form a protein corona. The pH of the aqueous media affects the structure and properties of the protein corona, and currently there is a lack of understanding of the effects of pH on the characteristics of protein coronas. In this study, we examined the impact of pH (2-11) on the structural and physicochemical properties of whey protein coronas formed around TiO2 nanoparticles. The pH of the solution influenced the structure of whey protein molecules, especially around their isoelectric point. Thermogravimetric and quartz crystal microbalance analyses showed that the adsorption capacity of the whey proteins was the largest at their isoelectric points and the lowest under highly acidic or alkaline conditions. The majority of the proteins were tightly bound to the nanoparticle surfaces, forming a hard corona. The influence of solution pH on protein corona properties was mainly attributed to its impact on the electrostatic forces in the system, which impacted the protein conformation and interactions. This study provides useful insights into the influence of pH on the formation and properties of protein coronas around inorganic nanoparticles, which may be important for understanding the gastrointestinal and environmental fates.
Collapse
Affiliation(s)
- Honghong Shan
- School of Life Science, Shaoxing University, Shaoxing 312000, Zhejiang, China
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Qiaorun Zhao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Ying Guo
- School of Life Science, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Mengchao Gao
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| |
Collapse
|
32
|
Pourmadadi M, Yazdian F, Koulivand A, Rahmani E. Green synthesized polyvinylpyrrolidone/titanium dioxide hydrogel nanocomposite modified with agarose macromolecules for sustained and pH-responsive release of anticancer drug. Int J Biol Macromol 2023; 240:124345. [PMID: 37054860 DOI: 10.1016/j.ijbiomac.2023.124345] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Cancer, as one of the most challenging diseases of the last century, has a significant number of patients and deaths every year. Various strategies have been explored for the treatment of cancer. Chemotherapy is one of the methods of treating cancer. Doxorubicin is one of the compounds used in chemotherapy to kill cancer cells. Due to their unique properties and low toxicity, metal oxide nanoparticles are effective in combination therapy and increase the effectiveness of anti-cancer compounds. The limited in vivo circulatory period, poor solubility, and inadequate penetration of doxorubicin (DOX) restrict its use in cancer treatment, notwithstanding its attractive characteristics. It is possible to circumvent some of the difficulties in cancer therapy by using green synthesized pH-responsive nanocomposite consisting of polyvinylpyrrolidone (PVP), titanium dioxide (TiO2) modified with agarose (Ag) macromolecules. TiO2 incorporation into the PVP-Ag nanocomposite resulted in limited increased loading and encapsulation efficiencies from 41 % to 47 % and 84 % to 88.5 %, respectively. DOX diffusion among normal cells is prevented by the PVP-Ag-TiO2 nanocarrier at pH = 7.4, though the acidic intracellular microenvironments activate the PVP-Ag-TiO2 nanocarrier at pH = 5.4. Characterization of the nanocarrier was performed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrophotometry, field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS), and zeta potential. The average particle size and the zeta potential of the particles showed values of 349.8 nm and +57 mV, respectively. In vitro release after 96 h showed a release rate of 92 % at pH 7.4 and a release rate of 96 % at pH 5.4. Meanwhile, the initial release after 24 h was 42 % for pH 7.4 and 76 % for pH 5.4. As shown by an MTT analysis on MCF-7 cells, the toxicity of DOX-loaded PVP-Ag-TiO2 nanocomposite was substantially greater than that of unbound DOX and PVP-Ag-TiO2. After integrating TiO2 nanomaterials into the PVP-Ag-DOX nanocarrier, flow cytometry data showed a greater stimulation of cell death. These data indicate that the DOX-loaded nanocomposite is a suitable alternative for drug delivery systems.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Ali Koulivand
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
33
|
Rajeshkumar S, Parameswari RP, Sandhiya D, Al-Ghanim KA, Nicoletti M, Govindarajan M. Green Synthesis, Characterization and Bioactivity of Mangifera indica Seed-Wrapped Zinc Oxide Nanoparticles. Molecules 2023; 28:molecules28062818. [PMID: 36985789 PMCID: PMC10056584 DOI: 10.3390/molecules28062818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
In the realm of nanoparticles, metal-based nanoparticles have traditionally been regarded as the pioneering category. Compared to other nanoparticles, zinc oxide nanoparticles have several advantages, including optical and biological properties, which provide them a significant competitive advantage in clinical and biological applications. In the current investigation, we used an aqueous Mangifera indica seed extract to synthesize nanoparticles of zinc oxide (ZnO NPs). UV-Vis spectroscopy, Fourier transform infrared spectroscopy analysis, atomic force spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the synthesized ZnO NPs. The nanoparticles were assessed for their potential to inhibit bacterial growth and protect cells from free radical damage. According to the current study's findings, zinc oxide nanoparticles that had been modified with the aid of mango seeds were very efficient in preventing the development of the tested bacteria and were also powerful antioxidants.
Collapse
Affiliation(s)
- Shanmugam Rajeshkumar
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha University, SIMATS, Chennai 600077, TN, India
| | | | - Dayalan Sandhiya
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608002, TN, India
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612001, TN, India
| |
Collapse
|
34
|
Samrot AV, Noel Richard Prakash LX. Nanoparticles Induced Oxidative Damage in Reproductive System and Role of Antioxidants on the Induced Toxicity. Life (Basel) 2023; 13:life13030767. [PMID: 36983922 PMCID: PMC10059981 DOI: 10.3390/life13030767] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Nanotechnology is used in a variety of scientific, medical, and research domains. It is significant to mention that there are negative and severe repercussions of nanotechnology on both individuals and the environment. The toxic effect of nanoparticles exerted on living beings is termed as nanotoxicity. Nanoparticles are synthesized by various methods such as chemical, biological, physical, etc. These nanoparticles’ nanotoxicity has been observed to vary depending on the synthesis process, precursors, size of the particles, etc. Nanoparticles can enter the cell in different ways and can cause cytotoxic effects. In this review, the toxicity caused in the reproductive system and the role of the antioxidants against the nanotoxicity are briefly explained.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
- Correspondence:
| | - Lawrence Xavier Noel Richard Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| |
Collapse
|
35
|
Ngcongco K, Krishna SBN, Pillay K. Biogenic metallic nanoparticles as enzyme mimicking agents. Front Chem 2023; 11:1107619. [PMID: 36959878 PMCID: PMC10027806 DOI: 10.3389/fchem.2023.1107619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
The use of biological systems such as plants, bacteria, and fungi for the synthesis of nanomaterials has emerged to fill the gap in the development of sustainable methods that are non-toxic, pollution-free, environmentally friendly, and economical for synthesizing nanomaterials with potential in biomedicine, biotechnology, environmental science, and engineering. Current research focuses on understanding the characteristics of biogenic nanoparticles as these will form the basis for the biosynthesis of nanoparticles with multiple functions due to the physicochemical properties they possess. This review briefly describes the intrinsic enzymatic mimetic activity of biogenic metallic nanoparticles, the cytotoxic effects of nanoparticles due to their physicochemical properties and the use of capping agents, molecules acting as reducing and stability agents and which aid to alleviate toxicity. The review also summarizes recent green synthetic strategies for metallic nanoparticles.
Collapse
Affiliation(s)
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Karen Pillay
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
36
|
Vardakas P, Kartsonakis IA, Kyriazis ID, Kainourgios P, Trompeta AFA, Charitidis CA, Kouretas D. Pristine, carboxylated, and hybrid multi-walled carbon nanotubes exert potent antioxidant activities in in vitro-cell free systems. ENVIRONMENTAL RESEARCH 2023; 220:115156. [PMID: 36574796 DOI: 10.1016/j.envres.2022.115156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are tubular-shaped carbon allotropes, composed of multiple concentric graphene cylinders. The extended systems of conjugated double bonds, that MWCNTs are constituted by, provide them with high electron affinities, enabling them to act as electron donors or acceptors. Consequently, their potential biomedical applications, as synthetic antioxidant agents, are of particular interest. Based on the above, the purpose of the present study was to evaluate the intrinsic antioxidant properties of pristine and carboxylated MWCNTs, as well as of novel hybrid nanocomposites of MWCNTs and inorganic nanoparticles. To this end, after the synthesis and characterization of MWCNTs, their antiradical, reducing, and antigenotoxic properties were assessed in cell-free assays, using a methodological approach that has been recently proposed by our research group. According to our results, most of the tested MWCNTs exhibited strong antioxidant activities. More elaborately, the hybrid material of MWCNTs and ferrous oxide nanoparticles, i.e., CNTs@Fe3O4, showed robust scavenging capacities in all free-radical scavenging assays examined. As regards reducing properties, the pristine MWCNTs, i.e., CNTs-Ref, exhibited the greater electron donating capacity. Finally, in terms of antigenotoxic properties, the hybrid material of MWCNTs and silicon carbide nanoparticles, i.e., CNTs@SiC, exhibited potent ability to inhibit the formation of peroxyl radicals, thus preventing from the oxidative DNA damage. Conclusively, our findings suggest that the MWCNTs of the study could be considered as promising broad-spectrum antioxidants, however, further investigations are required to evaluate their toxicological profile in cell-based and in vivo systems.
Collapse
Affiliation(s)
- Periklis Vardakas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Ioannis A Kartsonakis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Ioannis D Kyriazis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Panagiotis Kainourgios
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Aikaterini Flora A Trompeta
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Constantinos A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece.
| |
Collapse
|
37
|
Alam MW, BaQais A, Mir TA, Nahvi I, Zaidi N, Yasin A. Effect of Mo doping in NiO nanoparticles for structural modification and its efficiency for antioxidant, antibacterial applications. Sci Rep 2023; 13:1328. [PMID: 36693936 PMCID: PMC9873629 DOI: 10.1038/s41598-023-28356-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Novel molybdenum (Mo)-doped nickel oxide (NiO) Nanoparticles (NPs) were synthesized by using a simple sonochemical methodology and the synthesized NPs were investigated for antioxidant, and antibacterial applications. The X-ray diffraction (XRD) analysis revealed that the crystal systems of rhombohedral (21.34 nm) and monoclinic (17.76 nm) were observed for pure NiO and Mo-doped NiO NPs respectively. The scanning electron microscopy (SEM) results show that the pure NiO NPs possess irregular spherical shape with an average particle size of 93.89 nm while the Mo-doped NiO NPs exhibit spherical morphology with an average particle size of 85.48 nm. The ultraviolet-visible (UV-Vis) spectrum further indicated that the pure and Mo-doped NiO NPs exhibited strong absorption band at the wavelengths of 365 and 349 nm, respectively. The free radical scavenging activity of NiO and Mo-doped NiO NPs was also investigated by utilizing several biochemical assays. The Mo-doped NiO NPs showed better antioxidant activity (84.2%) towards ABTS. + at 200 µg/mL in comparison to their pure counterpart which confirmed that not only antioxidant potency of the doped NPs was better than pure NPs but this efficacy was also concentration dependant as well. The NiO and Mo-doped NiO NPs were further evaluated for their antibacterial activity against gram-positive (Staphylococcus aureus and Bacillus subtilis) and gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The Mo-doped NiO NPs displayed better antibacterial activity (25 mm) against E. coli in comparison to the pure NPs. The synthesized NPs exhibited excellent aptitude for multi-dimensional applications.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering and BioMEMS, Transplantation Research & Innovation (Dpt)-R, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Insha Nahvi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Noushi Zaidi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Amina Yasin
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
38
|
Alkahtani S, AL-Johani NS, Alarifi S. Mechanistic Insights, Treatment Paradigms, and Clinical Progress in Neurological Disorders: Current and Future Prospects. Int J Mol Sci 2023; 24:1340. [PMID: 36674852 PMCID: PMC9865061 DOI: 10.3390/ijms24021340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Neurodegenerative diseases (NDs) are a major cause of disability and are related to brain development. The neurological signs of brain lesions can vary from mild clinical shortfalls to more delicate and severe neurological/behavioral symptoms and learning disabilities, which are progressive. In this paper, we have tried to summarize a collective view of various NDs and their possible therapeutic outcomes. These diseases often occur as a consequence of the misfolding of proteins post-translation, as well as the dysfunctional trafficking of proteins. In the treatment of neurological disorders, a challenging hurdle to cross regarding drug delivery is the blood-brain barrier (BBB). The BBB plays a unique role in maintaining the homeostasis of the central nervous system (CNS) by exchanging components between the circulations and shielding the brain from neurotoxic pathogens and detrimental compounds. Here, we outline the current knowledge about BBB deterioration in the evolving brain, its origin, and therapeutic interventions. Additionally, we summarize the physiological scenarios of the BBB and its role in various cerebrovascular diseases. Overall, this information provides a detailed account of BBB functioning and the development of relevant treatments for neurological disorders. This paper will definitely help readers working in the field of neurological scientific communities.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
39
|
Samrot AV, Ram Singh SP, Deenadhayalan R, Rajesh VV, Padmanaban S, Radhakrishnan K. Nanoparticles, a Double-Edged Sword with Oxidant as Well as Antioxidant Properties—A Review. OXYGEN 2022; 2:591-604. [DOI: https:/doi.org/10.3390/oxygen2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The usage of nanoparticles became inevitable in medicine and other fields when it was found that they could be administered to hosts to act as oxidants or antioxidants. These oxidative nanoparticles act as pro-oxidants and induce oxidative stress-mediated toxicity through the generation of free radicals. Some nanoparticles can act as antioxidants to scavenge these free radicals and help in maintaining normal metabolism. The oxidant and antioxidant properties of nanoparticles rely on various factors including size, shape, chemical composition, etc. These properties also help them to be taken up by cells and lead to further interaction with cell organelles/biological macromolecules, leading to either the prevention of oxidative damage, the creation of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. It is important to know the properties that make these nanoparticles act as oxidants/antioxidants and the mechanisms behind them. In this review, the roles and mechanisms of nanoparticles as oxidants and antioxidants are explained.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Sanjay Preeth Ram Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Rajalakshmi Deenadhayalan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Vinod Vincent Rajesh
- MSU College, Naduvakurichi, Sankarankovil Taluk, Tenkasi District, Tirunelveli 627012, Tamil Nadu, India
| | - Sathiyamoorthy Padmanaban
- Department of Medical Nanotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Kamalakannan Radhakrishnan
- Combinatorial Cancer Immunotherapy MRC, Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| |
Collapse
|