1
|
Amiri R, Fallah F, Ghorbanzadeh B, Oroojan AA, Behmanesh MA, Alboghobeish S. Mitigating Morphine Dependence and Withdrawal: The Role of Venlafaxine and Calcium Channel Blockers in Mitochondrial Damage and Oxidative Stress in the Brain. Brain Res Bull 2025:111364. [PMID: 40300656 DOI: 10.1016/j.brainresbull.2025.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND The reasons for morphine dependence and withdrawal symptoms are oxidative stress and dysfunction of cell mitochondria in the brain. Venlafaxine, a serotonin-norepinephrine reuptake inhibitor (SNRI), mitigates oxidative stress, while calcium channel blockers (nimodipine/diltiazem) prevent Ca²⁺-mediated mitochondrial dysfunction. In the present study, the effects of simultaneous administration of venlafaxine and calcium channel blockers on dependence and withdrawal syndrome of morphine and the role of mitochondrial damage and oxidative stress were assessed. METHODS In this experimental study, the analgesic effect of venlafaxine, nimodipine, and diltiazem was investigated using the hot plate test to determine the optimal doses of drugs to use in subsequent experiments. To induce morphine dependence and withdrawal syndrome, male NMRI mice were treated with 50mg/kg S.C. morphine for three consecutive days and 5mg/kg S.C. morphine on the fourth day. 2hours after the last dose of morphine, naloxone (5mg/kg) was injected intraperitoneally, and the signs of jumping and standing were evaluated for 0.5hours. Venlafaxine (20mg/kg) alone or in combination with nimodipine (10mg/kg) and diltiazem (40mg/kg) was administered half an hour before morphine 50mg/kg for three days. Brain slides were stained and examined under a light microscope. Brain mitochondria were isolated using a repeated centrifugation method to investigate mitochondrial oxidative stress. The dehydrogenase activity (MTT), membrane potential (MMP), ROS production rate, glutathione (GSH), and malondialdehyde (MDA) contents of the brain mitochondria were measured. The data were expressed as mean±standard deviation, and a p-value less than 0.05 was considered statistically significant. RESULTS The administration of naloxone following repeated morphine injection increased withdrawal symptoms compared to the control group (morphine followed by solvent of naloxone) (P<0.01). Administration of venlafaxine-nimodipine and venlafaxine-diltiazem before morphine reduced these symptoms compared to the morphine + naloxone group (P<0.01). The injection of morphine followed by naloxone decreased MTT and GSH and increased MDA, MMP, and ROS compared to the control group (P<0.01), and the injection of venlafaxine-nimodipine and venlafaxine-diltiazem half an hour before morphine reduced these alterations when compared to morphine + naloxone group (P<0.05). CONCLUSION Coadministration of venlafaxine with calcium channel blockers could reduce morphine withdrawal symptoms and prevent its pathological damage. The suggested mechanism of this event is preventing mitochondrial damage and oxidative stress induced by morphine.
Collapse
Affiliation(s)
- Radman Amiri
- School of Medicine, Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Faezeh Fallah
- School of Medicine, Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Ali Akbar Oroojan
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
2
|
Yang Y, Shen Z, Shen Z, Meng Z, Gong S, Liang Y, Wang Z, Wang S. A novel carbazole-pyrimidine-based dual mode fluorescent probe for detection of acidic and basic pH in biological systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125709. [PMID: 39798511 DOI: 10.1016/j.saa.2025.125709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/25/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
pH balance is an important factor in regulating the internal environment of body and maintaining the normal physiological activities, but pH cannot be detected in vivo without damaging the tissue. It is important to develop a pH probe with low toxicity, high sensitivity and targeting of organelles. In this research, a novel carbazole-pyrimidine-based probe PKZP was designed from 2-hydroxyl-3-pinanone which was derived from natural monoterpene α-pinene for detecting both acidic and basic pH in vivo. Probe PKZP demonstrated a response characterized by ratiometric fluorescence under acidic pH conditions, while exhibiting a quenching fluorescence effect under alkaline pH conditions. In addition, the two different assay performances demonstrated that probe PKZP possessed the outstanding merits including fast response (within 1 s), good photostability and excellent anti-interference performance. Furthermore, probe PKZP can be used as an efficient tool to detect exogenous acidic and basic pH in living organisms.
Collapse
Affiliation(s)
- Yixin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China
| | - Zijun Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China
| | - Zheyu Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China
| | - Zhiyuan Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China
| | - Shuai Gong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China
| | - Yueyin Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China.
| | - Shifa Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China.
| |
Collapse
|
3
|
Xu L, Zhang T, Zhu B, Tao H, Liu Y, Liu X, Zhang Y, Meng X. Mitochondrial quality control disorder in neurodegenerative disorders: Potential and advantages of traditional Chinese medicines. J Pharm Anal 2025; 15:101146. [PMID: 40291018 PMCID: PMC12032916 DOI: 10.1016/j.jpha.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 04/30/2025] Open
Abstract
Neurodegenerative disorders (NDDs) are prevalent chronic conditions characterized by progressive synaptic loss and pathological protein alterations. Increasing evidence suggested that mitochondrial quality control (MQC) serves as the key cellular process responsible for clearing misfolded proteins and impaired mitochondria. Herein, we provided a comprehensive analysis of the mechanisms through which MQC mediates the onset and progression of NDDs, emphasizing mitochondrial dynamic stability, the clearance of damaged mitochondria, and the generation of new mitochondria. In addition, traditional Chinese medicines (TCMs) and their active monomers targeting MQC in NDD treatment have been demonstrated. Consequently, we compiled the TCMs that show great potential in the treatment of NDDs by targeting MQC, aiming to offer novel insights and a scientific foundation for the use of MQC stabilizers in NDD prevention and treatment.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baojie Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
4
|
Mao X, Fei X, Cai T, Xu S, Zhang D, Pu S, Li Z. A turn-on mitochondria-targeted iridium (Ⅲ) Complex-Based probe for glutathione detection and photodynamic therapy of cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125579. [PMID: 39689545 DOI: 10.1016/j.saa.2024.125579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
As one of the most abundant biothiols in cells, glutathione (GSH) usually exists in a dynamic equilibrium of oxidized glutathione (GSSG) and reduces glutathione redox, and plays an essential reducing substance to maintain the REDOX balance of the microenvironment. So, the development of a reliable GSH sensor will be important for living cells and organisms. We fabricated a mitochondria targeted "turn-on" fluorescent sensor based on Ir (III) complex and successfully detected endogenous and exogenous GSH in living cells and zebrafish. For the probe Ir-DINI, a robust electron-withdrawing group 2,4-dinitrobenzoyl was introduced to quench the fluorescence, which could be broken through electrostatic interaction with GSH, following exposing a strong fluorescent Ir (Ⅲ) complex Ir-OH. On the other hand, photodynamic therapy (PDT) has attracted much attention in recent years due to its minimally invasive treatment. We found that singlet oxygen yields of probe Ir-DINI displayed an enhancement before and after the detection of GSH. Additionally, photodynamic studies in living cells illustrated that after reacting with GSH, probe Ir-DINI exhibited more obvious phototoxicity than before the detection of GSH. So the probe Ir-DINI could be served as a GSH sensor and potential GSH-activated photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Xueting Mao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xiao Fei
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Tangxuan Cai
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Sha Xu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Daobin Zhang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Shouzhi Pu
- Institute of Carbon Neutral New Energy Research, Yuzhang Normal University, Nanchang 330031, China.
| | - Zhijian Li
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
5
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
6
|
Xi Y, Tao K, Wen X, Feng D, Mai Z, Ding H, Mao H, Wang M, Yang Q, Xiang J, Zhang J, Wu S. SIRT3-Mediated Deacetylation of DRP1 K711 Prevents Mitochondrial Dysfunction in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411235. [PMID: 39976201 DOI: 10.1002/advs.202411235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/08/2025] [Indexed: 02/21/2025]
Abstract
Dysregulation of mitochondrial dynamics is a key contributor to the pathogenesis of Parkinson's disease (PD). Aberrant mitochondrial fission induced by dynamin-related protein 1 (DRP1) causes mitochondrial dysfunction in dopaminergic (DA) neurons. However, the mechanism of DRP1 activation and its role in PD progression remain unclear. In this study, Mass spectrometry analysis is performed and identified a significant increased DRP1 acetylation at lysine residue 711 (K711) in the mitochondria under oxidative stress. Enhanced DRP1K711 acetylation facilitated DRP1 oligomerization, thereby exacerbating mitochondrial fragmentation and compromising the mitochondrial function. DRP1K711 acetylation also affects mitochondrial DRP1 recruitment and fission independent of canonical S616 phosphorylation. Further analysis reveals the critical role of sirtuin (SIRT)-3 in deacetylating DRP1K711, thereby regulating mitochondrial dynamics and function. SIRT3 agonists significantly inhibit DRP1K711 acetylation, rescue DA neuronal loss, and improve motor function in a PD mouse model. Conversely, selective knockout of SIRT3 in DA neurons exacerbates DRP1K711 acetylation, leading to increased DA neuronal damage, neuronal death, and worsened motor dysfunction. Notably, this study identifies a novel mechanism involving aberrant SIRT3-mediated DRP1 acetylation at K711 as a key driver of mitochondrial dysfunction and DA neuronal death in PD, revealing a potential target for PD treatment.
Collapse
Affiliation(s)
- Ye Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kai Tao
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xiaomin Wen
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Zifan Mai
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hui Ding
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mingming Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Jie Xiang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jie Zhang
- Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, Fujian, 361105, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
7
|
Singh A, Maheshwari S, Yadav JP, Kumar R, Verma A, Singh S, Prajapati BG. Bioactive Compound-Fortified Nanocarriers in the Management of Neurodegenerative Disease: A Review. Chem Biodivers 2025:e202402018. [PMID: 39928755 DOI: 10.1002/cbdv.202402018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/12/2025]
Abstract
Individual around the globe faces enormous problems from illnesses of the neurological system and the cerebrum, including neurodegenerative conditions and brain tumors. There are still no demonstrated viable treatments for neurological conditions, despite advances in drug delivery technologies such as solid lipid nanoparticles, nanostructured lipid carriers, and nano-liposomes. To address this, there is growing interest in leveraging naturally occurring bioactive substances for their therapeutic potential. However, challenges such as limited bioavailability and metabolism hinder their efficacy, particularly in the brain. Although various pharmaceutical interventions exist for neurodegenerative diseases, they often come with significant side effects, and there is currently no specific treatment to cure or slow down disease progression. Challenges such as the blood-brain barrier and blood-cerebrospinal fluid barrier present significant obstacles to deliver drugs into the brain. Strategies to improve drug penetration across these barriers include targeting specific transport systems and developing innovative drug delivery approaches. Hence, the development of nanocarriers capable of targeting bioactive compounds to the brain represents a promising approach for neurodegenerative disease therapy. This review explores the potential of bioactive compound-fortified nano-delivery systems for treating neurodegenerative diseases, with various compounds offering unique avenues for investigating neurodegeneration pathways and strategies in overcoming associated challenges.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Shubhrat Maheshwari
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Jagat Pal Yadav
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Ravi Kumar
- Institute of pharmaceutical sciences, J.S. University, Shikohabad, Uttar Pradesh, India
| | - Amita Verma
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttrakhand, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
8
|
Traa A, Tamez González AA, Van Raamsdonk JM. Developmental disruption of the mitochondrial fission gene drp-1 extends the longevity of daf-2 insulin/IGF-1 receptor mutant. GeroScience 2025; 47:877-902. [PMID: 39028454 PMCID: PMC11872967 DOI: 10.1007/s11357-024-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The dynamic nature of the mitochondrial network is regulated by mitochondrial fission and fusion, allowing for re-organization of mitochondria to adapt to the cell's ever-changing needs. As organisms age, mitochondrial fission and fusion become dysregulated and mitochondrial networks become increasingly fragmented. Modulation of mitochondrial dynamics has been shown to affect longevity in fungi, yeast, Drosophila and C. elegans. Disruption of the mitochondrial fission gene drp-1 drastically increases the already long lifespan of daf-2 insulin/IGF-1 signaling (IIS) mutants. In this work, we determined the conditions required for drp-1 disruption to extend daf-2 longevity and explored the molecular mechanisms involved. We found that knockdown of drp-1 during development is sufficient to extend daf-2 lifespan, while tissue-specific knockdown of drp-1 in neurons, intestine or muscle failed to increase daf-2 longevity. Disruption of other genes involved in mitochondrial fission also increased daf-2 lifespan as did treatment with RNA interference clones that decrease mitochondrial fragmentation. In exploring potential mechanisms involved, we found that deletion of drp-1 increases resistance to chronic stresses. In addition, we found that disruption of drp-1 increased mitochondrial and peroxisomal connectedness in daf-2 worms, increased oxidative phosphorylation and ATP levels, and increased mitophagy in daf-2 worms, but did not affect their ROS levels, food consumption or mitochondrial membrane potential. Disruption of mitophagy through RNA interference targeting pink-1 decreased the lifespan of daf-2;drp-1 worms suggesting that increased mitophagy contributes to their extended lifespan. Overall, this work defined the conditions under which drp-1 disruption increases daf-2 lifespan and has identified multiple changes in daf-2;drp-1 mutants that may contribute to their lifespan extension.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Aura A Tamez González
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Lun W, Wang H, Li M, Ma J, Ding Y, Zheng X, Cao X, Li Q. Fabrication of MnO 2-Modified Decellularized Tendon Membrane for Enhancing Tendon Repair. Adv Healthc Mater 2025; 14:e2402584. [PMID: 39491818 DOI: 10.1002/adhm.202402584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Repairing tendon/ligament injuries is a major challenge in sports medicine. It has been reported that tendon injury healing is hindered by massive production of reactive oxygen species (ROS). Manganese oxides nanoparticles are generally non-toxic, can scavenge ROS, promote tissue regeneration, and hold promise for sustainable nanotechnologies. However, the effective and safe integration of MnO2 nanoparticles on decellularized scaffold mediating tissue repair is still a great challenge. To address these issues, an in situ MnO2-modified decellularized scaffold is developed to enhance tendon regeneration through improving microenvironment. The decellularized fibrous membrane is designed and prepared using the central tendon of the porcine diaphragm. Then MnO2 nanozymes are in situ grown on the collagen fibers using tannic acid (TA) as cross-linking agent and reducing agent. The results showed that MnO2-modified scaffold eliminates excessive accumulation of ROS in cells, protects mitochondrial, and maintains the phenotype of tendon cells in an oxidative stress environment. Notably, it is found that the MnO2-modified scaffold exhibits good biocompatibility and is able to promote the tendon healing in the rat patellar tendon defect model. Altogether, this study confirmed that this nanozyme-functionalized decellularized extracellular matrix effectively enhanced tendon repair by scavenging ROS, which provides new strategies for enhancing tendon regeneration.
Collapse
Affiliation(s)
- Wanqing Lun
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
- The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, 510630, P. R. China
| | - Mengyuan Li
- Division of Joint Osteopathy and Traumatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P. R. China
| | - Jiuzhi Ma
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
| | - Yilin Ding
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
- The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, 510630, P. R. China
| | - Xiaodong Cao
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Qingtao Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
| |
Collapse
|
10
|
Athari SZ, Keyhanmanesh R, Farajdokht F, Karimipour M, Azizifar N, Alimohammadi S, Mohaddes G. AdipoRon improves mitochondrial homeostasis and protects dopaminergic neurons through activation of the AMPK signaling pathway in the 6-OHDA-lesioned rats. Eur J Pharmacol 2024; 985:177111. [PMID: 39515564 DOI: 10.1016/j.ejphar.2024.177111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The progressive decline of dopaminergic neurons in Parkinson's disease (PD) has been linked to an imbalance in energy and the failure of mitochondrial function. AMP-activated protein kinase (AMPK), the major intracellular energy sensor, regulates energy balance, and damage to nigral dopaminergic neurons induced by 6-hydroxydopamine (6-OHDA) is exacerbated in the absence of AMPK activity. This study aimed to examine the potential therapeutic advantages of AdipoRon, an AMPK activator, on motor function and mitochondrial homeostasis in a 6-OHDA-induced PD model. Male Wistar rats were subjected to unilateral injection of 6-OHDA (10 μg) into the left medial forebrain bundle at two points, and after 7 days, they were treated with intranasal AdipoRon (0.1, 1, and 10 μg) or Levodopa (10 mg/kg, p. o.) for 21 successive days. Following the last treatment day, motor behavior was evaluated through the Murprogo's test, bar test, beam walking test, and apomorphine-induced rotation test. After euthanasia, the left substantia nigra (SN) was separated for evaluation of ATP, mitochondrial membrane potential (MMP), and protein expressions of AMPK, p-AMPK, and mitochondrial dynamics markers (Mfn-2 and Drp-1). Moreover, the number of tyrosine hydroxylase-positive (TH+) cells was quantified in the left substantia nigra. Intranasal AdipoRon effectively reversed muscle rigidity, akinesia, bradykinesia, and rotation caused by 6-OHDA. Moreover, AdipoRon increased the phospho-AMPK/AMPK ratio, mitigated mitochondrial dysfunction, and improved mitochondrial dynamics in the SN. Furthermore, AdipoRon increased the number of TH+ cells in the SN of PD animals. These findings suggest that AdipoRon could protect dopaminergic neurons by activating the AMPK pathway and improving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Azizifar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Alimohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA.
| |
Collapse
|
11
|
Zarrilli B, Bonanni R, Belfiore M, Severino M, Cariati I, Fioravanti R, Cappella G, Sennato S, Frank C, Giordani C, Tancredi V, Bombelli C, Diociaiuti M, D'Arcangelo G. Molecular mechanisms at the basis of the protective effect exerted by EPPS on neurodegeneration induced by prefibrillar amyloid oligomers. Sci Rep 2024; 14:26533. [PMID: 39489758 PMCID: PMC11532462 DOI: 10.1038/s41598-024-77859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
It has been shown recently, without an explanation of the possible molecular mechanisms involved, that 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic (EPPS) acid effectively protects from the neurotoxicity induced by oligomers and plaques formed by the protein amyloid-β protein. Here we report the same protective effect, obtained in vitro (HT22-diff cell line) and ex vivo (hippocampal slices) models, against amyloid neurotoxicity induced by oligomers of salmon Calcitonin (sCT), which has been shown to be a good model for the study of neurodegenerative diseases. Based on biophysical studies focusing on the protein aggregation kinetic and the interaction of the aggregates with model membranes, we propose a possible molecular mechanism underlying the protective effects. Taken together, our results indicate that EPPS is able to counteract the direct association (primary aggregation) of harmless low-molecular weight aggregates (dimers and trimers) or their aggregation catalysed by surfaces present in the solution (secondary aggregation). Thus, EPPS stabilizes harmless aggregates and hinders the formation of toxic and metastable prefibrillar oligomers. Overall, our data demonstrate that EPPS is an excellent drug candidate for the treatment of neurodegeneration due to misfolded proteins, such as Alzheimer's or Parkinson's disease.
Collapse
Affiliation(s)
- Beatrice Zarrilli
- Department of Systems Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- Laboratory of Experimental Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Roberto Bonanni
- Department of Biomedicine and Prevention, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Marcello Belfiore
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Mariagrazia Severino
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Raoul Fioravanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giacomo Cappella
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Sennato
- CNR - Institute of Complex Systems (ISC) - Sede "Sapienza", c/o Physics Department, "Sapienza" University of Rome, 00185, Rome, Italy
| | - Claudio Frank
- UniCamillus - Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, Rome, 00131, Italy
| | - Cristiano Giordani
- Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, 050010, Medellín, Colombia
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, 050010, Medellín, Colombia
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- Centre of Space Bio-Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Cecilia Bombelli
- CNR - Institute for Biological Systems, Secondary Office of Rome - Reaction Mechanisms c/o Chemistry Department, "Sapienza" University of Rome, Rome, Italy
| | - Marco Diociaiuti
- CNR - Institute for Biological Systems, Secondary Office of Rome - Reaction Mechanisms c/o Chemistry Department, "Sapienza" University of Rome, Rome, Italy.
| | - Giovanna D'Arcangelo
- Department of Systems Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- Centre of Space Bio-Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
12
|
Neha, Mazahir I, Khan SA, Kaushik P, Parvez S. The Interplay of Mitochondrial Bioenergetics and Dopamine Agonists as an Effective Disease-Modifying Therapy for Parkinson's Disease. Mol Neurobiol 2024; 61:8086-8103. [PMID: 38468113 DOI: 10.1007/s12035-024-04078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Parkinson's disease (PD) is a progressive neurological ailment with a slower rate of advancement that is more common in older adults. The biggest risk factor for PD is getting older, and those over 60 have an exponentially higher incidence of this condition. The failure of the mitochondrial electron chain, changes in the dynamics of the mitochondria, and abnormalities in calcium and ion homeostasis are all symptoms of Parkinson's disease (PD). Increased mitochondrial reactive oxygen species (mROS) and an energy deficit are linked to these alterations. Levodopa (L-DOPA) is a medication that is typically used to treat most PD patients, but because of its negative effects, additional medications have been created utilizing L-DOPA as the parent molecule. Ergot and non-ergot derivatives make up most PD medications. PD is successfully managed with the use of dopamine agonists (DA). To get around the motor issues produced by L-DOPA, these dopamine derivatives can directly excite DA receptors in the postsynaptic membrane. In the past 10 years, two non-ergoline DA with strong binding properties for the dopamine D2 receptor (D2R) and a preference for the dopamine D3 receptor (D3R) subtype, ropinirole, and pramipexole (PPx) have been developed for the treatment of PD. This review covers the most recent research on the efficacy and safety of non-ergot drugs like ropinirole and PPx as supplementary therapy to DOPA for the treatment of PD.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Iqra Mazahir
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sara Akhtar Khan
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
Khan AH, Gu X, Patel RJ, Chuphal P, Viana MP, Brown AI, Zid BM, Tsuboi T. Mitochondrial protein heterogeneity stems from the stochastic nature of co-translational protein targeting in cell senescence. Nat Commun 2024; 15:8274. [PMID: 39333462 PMCID: PMC11437024 DOI: 10.1038/s41467-024-52183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
A decline in mitochondrial function is a hallmark of aging and neurodegenerative diseases. It has been proposed that changes in mitochondrial morphology, including fragmentation of the tubular mitochondrial network, can lead to mitochondrial dysfunction, yet the mechanism of this loss of function is unclear. Most proteins contained within mitochondria are nuclear-encoded and must be properly targeted to the mitochondria. Here, we report that sustained mRNA localization and co-translational protein delivery leads to a heterogeneous protein distribution across fragmented mitochondria. We find that age-induced mitochondrial fragmentation drives a substantial increase in protein expression noise across fragments. Using a translational kinetic and molecular diffusion model, we find that protein expression noise is explained by the nature of stochastic compartmentalization and that co-translational protein delivery is the main contributor to increased heterogeneity. We observed that cells primarily reduce the variability in protein distribution by utilizing mitochondrial fission-fusion processes rather than relying on the mitophagy pathway. Furthermore, we are able to reduce the heterogeneity of the protein distribution by inhibiting co-translational protein targeting. This research lays the framework for a better understanding of the detrimental impact of mitochondrial fragmentation on the physiology of cells in aging and disease.
Collapse
Affiliation(s)
- Abdul Haseeb Khan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Xuefang Gu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Rutvik J Patel
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Prabha Chuphal
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | | | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Tatsuhisa Tsuboi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
- Tsinghua-SIGS & Jilin Fuyuan Guan Food Group Joint Research Center, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Abati E, Gagliardi D, Manini A, Del Bo R, Ronchi D, Meneri M, Beretta F, Sarno A, Rizzo F, Monfrini E, Di Fonzo A, Pellecchia MT, Brusati A, Silani V, Comi GP, Ratti A, Verde F, Ticozzi N, Corti S. Investigating the prevalence of MFN2 mutations in amyotrophic lateral sclerosis: insights from an Italian cohort. Brain Commun 2024; 6:fcae312. [PMID: 39315308 PMCID: PMC11417610 DOI: 10.1093/braincomms/fcae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/11/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024] Open
Abstract
The MFN2 gene encodes mitofusin 2, a key protein for mitochondrial fusion, transport, maintenance and cell communication. MFN2 mutations are primarily linked to Charcot-Marie-Tooth disease type 2A. However, a few cases of amyotrophic lateral sclerosis and amyotrophic lateral sclerosis/frontotemporal dementia phenotypes with concomitant MFN2 mutations have been previously reported. This study examines the clinical and genetic characteristics of an Italian cohort of amyotrophic lateral sclerosis patients with rare, non-synonymous MFN2 mutations. A group of patients (n = 385) diagnosed with amyotrophic lateral sclerosis at our Neurology Units between 2008 and 2023 underwent comprehensive molecular testing, including MFN2. After excluding pathogenic mutations in the main amyotrophic lateral sclerosis-related genes (i.e. C9orf72, SOD1, FUS and TARDBP), MFN2 variants were classified based on the American College of Medical Genetics and Genomics guidelines, and demographic and clinical data of MFN2-mutated patients were retrieved. We identified 12 rare, heterozygous, non-synonymous MFN2 variants in 19 individuals (4.9%). Eight of these variants, carried by nine patients (2.3%), were either pathogenic, likely pathogenic or variants of unknown significance according to the American College of Medical Genetics and Genomics guidelines. Among these patients, four exhibited a familial pattern of inheritance. The observed phenotypes included classic and bulbar amyotrophic lateral sclerosis, amyotrophic lateral sclerosis/frontotemporal dementia, flail arm, flail leg and progressive muscular atrophy. Median survival after disease onset was extremely variable, ranging from less than 1 to 13 years. This study investigates the prevalence of rare, non-synonymous MFN2 variants within an Italian cohort of amyotrophic lateral sclerosis patients, who have been extensively investigated, enhancing our knowledge of the underlying phenotypic spectrum. Further research is needed to understand whether MFN2 mutations contribute to motor neuron disease and to what extent. Improving our knowledge regarding the genetic basis of amyotrophic lateral sclerosis is crucial both in a diagnostic and therapeutic perspective.
Collapse
Affiliation(s)
- Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Arianna Manini
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Megi Meneri
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Beretta
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Università degli Studi di Firenze, 50139 Firenze, Italy
| | - Annalisa Sarno
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Federica Rizzo
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Edoardo Monfrini
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, Neuroscience Section, Università degli Studi di Salerno, 84081Salerno, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Vincenzo Silani
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122 Milan, Italy
| |
Collapse
|
15
|
Xie W, Koppula S, Kale MB, Ali LS, Wankhede NL, Umare MD, Upaganlawar AB, Abdeen A, Ebrahim EE, El-Sherbiny M, Behl T, Shen B, Singla RK. Unraveling the nexus of age, epilepsy, and mitochondria: exploring the dynamics of cellular energy and excitability. Front Pharmacol 2024; 15:1469053. [PMID: 39309002 PMCID: PMC11413492 DOI: 10.3389/fphar.2024.1469053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Epilepsy, a complex neurological condition marked by recurring seizures, is increasingly recognized for its intricate relationship with mitochondria, the cellular powerhouses responsible for energy production and calcium regulation. This review offers an in-depth examination of the interplay between epilepsy, mitochondrial function, and aging. Many factors might account for the correlation between epilepsy and aging. Mitochondria, integral to cellular energy dynamics and neuronal excitability, perform a critical role in the pathophysiology of epilepsy. The mechanisms linking epilepsy and mitochondria are multifaceted, involving mitochondrial dysfunction, reactive oxygen species (ROS), and mitochondrial dynamics. Mitochondrial dysfunction can trigger seizures by compromising ATP production, increasing glutamate release, and altering ion channel function. ROS, natural byproducts of mitochondrial respiration, contribute to oxidative stress and neuroinflammation, critical factors in epileptogenesis. Mitochondrial dynamics govern fusion and fission processes, influence seizure threshold and calcium buffering, and impact seizure propagation. Energy demands during seizures highlight the critical role of mitochondrial ATP generation in maintaining neuronal membrane potential. Mitochondrial calcium handling dynamically modulates neuronal excitability, affecting synaptic transmission and action potential generation. Dysregulated mitochondrial calcium handling is a hallmark of epilepsy, contributing to excitotoxicity. Epigenetic modifications in epilepsy influence mitochondrial function through histone modifications, DNA methylation, and non-coding RNA expression. Potential therapeutic avenues targeting mitochondria in epilepsy include mitochondria-targeted antioxidants, ketogenic diets, and metabolic therapies. The review concludes by outlining future directions in epilepsy research, emphasizing integrative approaches, advancements in mitochondrial research, and ethical considerations. Mitochondria emerge as central players in the complex narrative of epilepsy, offering profound insights and therapeutic potential for this challenging neurological disorder.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Republic of Korea
| | - Mayur B. Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Mohit D. Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Elturabi E. Ebrahim
- Medical-Surgical Nursing Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
16
|
Fan JJ, Ding WD, Liang YF, Wei YX, Huang Y, Ma L, Wang R. Diosgenin derivative ML5 attenuates MPTP-induced neuronal impairment via regulating AMPK/PGC-1α-mediated mitochondrial biogenesis and fusion/fission. Am J Transl Res 2024; 16:3582-3598. [PMID: 39262707 PMCID: PMC11384354 DOI: 10.62347/jbre5043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/14/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE The aim of the present study was to assess the therapeutic impact of diosgenin derivative ML5 on Parkinson's disease (PD) and explore the mechanism underlying mitochondrial biogenesis and fusion/fission. METHODS We established 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse models and N-methyl-4-phenylpyridinium iodide (MPP+)-induced cell models of PD. The pole test and forced swimming test were used to detect the motor coordination and depressive symptoms in mice. The influence of ML5 on dopaminergic neuronal injury was investigated. Meanwhile, adenosine triphosphate (ATP) content, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) production were measured to evaluate mitochondrial function. Confocal and transmission electron microscopy were used to detect mitochondrial morphology of cell. The expression of mitochondrial biogenesis-related proteins was measured by Western blotting. RESULTS The administration of ML5 showed the neuroprotection against MPTP-induced damage in vivo and in vitro. The levels of ATP, MMP, and ROS were restored after ML5 administration. In addition, we observed that ML5 preserved the mitochondrial network morphology and inhibited mitochondrial fission. Furthermore, the amelioration of mitochondrial dysfunction was mediated by enhancing 5'-monophosphate-activated protein kinase (AMPK) and peroxisome proliferators-activated receptor γ coactivator-l alpha (PGC-1α) expression, which activated its downstream modulators leading to the enhancing of mitochondrial biogenesis and the balance of mitochondrial fusion/fission. CONCLUSION ML5 can protect the PD models against MPTP/MPP+-induced mitochondrial dysfunction and neuronal injury via promoting AMPK/PGC-1α signaling activation and be used as a therapeutic drug for PD treatment.
Collapse
Affiliation(s)
- Jing-Jing Fan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| | - Wei-Dong Ding
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| | - Ying-Fan Liang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| | - Yao-Xin Wei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| | - Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| |
Collapse
|
17
|
Chen M, Zhang C, Jiang L, Huang Y. Construction of prognostic markers for pancreatic adenocarcinoma based on mitochondrial fusion-related genes. Medicine (Baltimore) 2024; 103:e38843. [PMID: 38996145 PMCID: PMC11245210 DOI: 10.1097/md.0000000000038843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Early detection of pancreatic adenocarcinoma (PAAD) remains a pressing clinical problem. Information on the clinical prognostic value of mitochondrial fusion-related genes in PAAD remains limited. In this study, we investigated mitochondrial fusion-related genes of PAAD to establish an optimal signature plate for the early diagnosis and prognosis of PAAD. The cancer genome atlas database was used to integrate the Fragments Per Kilobase Million data and related clinical data for patients with PAAD. Least absolute shrinkage and selection operator regression, cox regression, operating characteristic curves, and cBioPortal database was used to evaluate model performance, assess the prognostic ability and sensitivity. The levels of immune infiltration were compared by CIBERSORT, QUANTISEQ, and EPIC. Chemotherapy sensitivity between the different risk groups was compared by the Genomics of Drug Sensitivity in Cancer database and the "pRRophetic" R package. At last, a total of 4 genes were enrolled in multivariate Cox regression analysis. The risk-predictive signature was constructed as: (0.5438 × BAK1) + (-1.0259 × MIGA2) + (1.1140 × PARL) + (-0.4300 × PLD6). The area under curve of these 4 genes was 0.89. Cox regression analyses indicates the signature was an independent prognostic indicator (P < .001, hazard ratio [HR] = 1.870, 95% CI = 1.568-2.232). Different levels of immune cell infiltration in the 2 risk groups were observed using the 3 algorithms, with tumor mutation load (P = .0063), tumor microenvironment score (P = .01), and Tumor Immune Dysfunction and Exclusion score (P = .0012). The chemotherapeutic sensitivity analysis also revealed that the half-maximal inhibitory concentration of 5-fluorouracil (P = .0127), cisplatin (P = .0099), docetaxel (P < .0001), gemcitabine (P = .0047), and pacilataxel (P < .0001) were lower in the high-risk groups, indicating that the high-risk group patients had a greater sensitivity to chemotherapy. In conclude, we established a gene signature plate comprised of 4 mitochondrial fusion related genes to facilitate early diagnosis and prognostic prediction of PAAD.
Collapse
Affiliation(s)
- Maolin Chen
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chengbin Zhang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Longyang Jiang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Cirillo S, Zhang B, Brown S, Zhao X. Antimicrobial peptide A 9K as a gene delivery vector in cancer cells. Eur J Pharm Biopharm 2024; 198:114244. [PMID: 38467336 DOI: 10.1016/j.ejpb.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Designed peptides are promising biomaterials for biomedical applications. The amphiphilic cationic antimicrobial peptide (AMP), A9K, can self-assemble into nano-rod structures and has shown cancer cell selectivity and could therefore be a promising candidate for therapeutic delivery into cancer cells. In this paper, we investigate the selectivity of A9K for cancer cell models, examining its effect on two human cancer cell lines, A431 and HCT-116. Little or no activity was observed on the control, human dermal fibroblasts (HDFs). In the cancer cell lines the peptide inhibited cellular growth through changes in mitochondrial morphology and membrane potential while remaining harmless towards HDFs. In addition, the peptide can bind to and protect nucleic acids while transporting them into both 2D cultures and 3D spheroids of cancer cells. A9K showed high efficiency in delivering siRNA molecules into the centre of the spheroids. A9K was also explored in vivo, using a zebrafish (Danio rerio) development toxicity assay, showing that the peptide is safe at low doses. Finally, a high-content imaging screen, using RNA interference (RNAi) targeted towards cellular uptake, in HCT-116 cells was carried out. Our findings suggest that active cellular uptake is involved in peptide internalisation, mediated through clathrin-mediated endocytosis. These new discoveries make A9K attractive for future developments in clinical and biotechnological applications.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Bo Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Stephen Brown
- The Sheffield RNAi Screening Facility, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
19
|
LI Z, WANG X, Luis U, Ayman Y, BAI Y, XU X, LIU Q. Complementary and alternative medicine on cognitive defects and neuroinflammation after sepsis. J TRADIT CHIN MED 2024; 44:408-416. [PMID: 38504548 PMCID: PMC10927414 DOI: 10.19852/j.cnki.jtcm.20240203.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a common manifestation of sepsis, ranging from mild confusion and delirium to severe cognitive impairment and deep coma. SAE is associated with higher mortality and long-term outcomes, particularly substantial declines in cognitive function. The mechanisms of SAE probably include neuroinflammation that is mediated by systemic inflammation and ischemic lesions in the brain, a disrupted blood-brain barrier, oxidative stress, neurotransmitter dysfunction, and severe microglial activation. Increasing evidence suggests that complementary and alternative medicine, especially Traditional Chinese Medicine (TCM), is favorable in alleviating cognitive decline after sepsis. Here, we summarized the studies of traditional herbal remedies, TCM formulas and acupuncture therapy in animal models of neurological dysfunctions after sepsis in recent decades and reviewed their potential mechanisms.
Collapse
Affiliation(s)
- Zhenxuan LI
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xuerui WANG
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ulloa Luis
- 5 Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Youssef Ayman
- 5 Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yunjing BAI
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaolong XU
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qingquan LIU
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
20
|
Charrasse S, Racine V, Saint-Omer C, Poquillon T, Lionnard L, Ledru M, Gonindard C, Delaunois S, Kissa K, Frye RE, Pastore M, Reynes C, Frechet M, Chajra H, Aouacheria A. Quantitative imaging and semiotic phenotyping of mitochondrial network morphology in live human cells. PLoS One 2024; 19:e0301372. [PMID: 38547143 PMCID: PMC10977735 DOI: 10.1371/journal.pone.0301372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
The importance of mitochondria in tissue homeostasis, stress responses and human diseases, combined to their ability to transition between various structural and functional states, makes them excellent organelles for monitoring cell health. There is therefore a need for technologies to accurately analyze and quantify changes in mitochondrial organization in a variety of cells and cellular contexts. Here we present an innovative computerized method that enables accurate, multiscale, fast and cost-effective analysis of mitochondrial shape and network architecture from confocal fluorescence images by providing more than thirty features. In order to facilitate interpretation of the quantitative results, we introduced two innovations: the use of Kiviat-graphs (herein named MitoSpider plots) to present highly multidimensional data and visualization of the various mito-cellular configurations in the form of morphospace diagrams (called MitoSigils). We tested our fully automated image analysis tool on rich datasets gathered from live normal human skin cells cultured under basal conditions or exposed to specific stress including UVB irradiation and pesticide exposure. We demonstrated the ability of our proprietary software (named MitoTouch) to sensitively discriminate between control and stressed dermal fibroblasts, and between normal fibroblasts and other cell types (including cancer tissue-derived fibroblasts and primary keratinocytes), showing that our automated analysis captures subtle differences in morphology. Based on this novel algorithm, we report the identification of a protective natural ingredient that mitigates the deleterious impact of hydrogen peroxide (H2O2) on mitochondrial organization. Hence we conceived a novel wet-plus-dry pipeline combining cell cultures, quantitative imaging and semiotic analysis for exhaustive analysis of mitochondrial morphology in living adherent cells. Our tool has potential for broader applications in other research areas such as cell biology and medicine, high-throughput drug screening as well as predictive and environmental toxicology.
Collapse
Affiliation(s)
- Sophie Charrasse
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
| | - Victor Racine
- QuantaCell SAS, Institute for Regenerative Medicine and Biotherapy (IRMB), Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Charlotte Saint-Omer
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
| | - Titouan Poquillon
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
- QuantaCell SAS, Institute for Regenerative Medicine and Biotherapy (IRMB), Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
| | - Marine Ledru
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
| | | | | | - Karima Kissa
- VBIC, INSERM U1047, Université de Montpellier, Montpellier, France
| | - Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, United States America
| | - Manuela Pastore
- STATABIO BioCampus, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Christelle Reynes
- STATABIO BioCampus, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Abdel Aouacheria
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
21
|
Shreeya T, Ansari MS, Kumar P, Saifi M, Shati AA, Alfaifi MY, Elbehairi SEI. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. FRONTIERS IN AGING 2024; 4:1292053. [PMID: 38596783 PMCID: PMC11002673 DOI: 10.3389/fragi.2023.1292053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Senescence is a complicated, multi-factorial, irreversible cell cycle halt that has a tumor-suppressing effect in addition to being a significant factor in aging and neurological diseases. Damaged DNA, neuroinflammation, oxidative stress and disrupted proteostasis are a few of the factors that cause senescence. Senescence is triggered by DNA damage which initiates DNA damage response. The DNA damage response, which includes the formation of DNA damage foci containing activated H2AX, which is a key factor in cellular senescence, is provoked by a double strand DNA break. Oxidative stress impairs cognition, inhibits neurogenesis, and has an accelerated aging effect. Senescent cells generate pro-inflammatory mediators known as senescence-associated secretory phenotype (SASP). These pro-inflammatory cytokines and chemokines have an impact on neuroinflammation, neuronal death, and cell proliferation. While it is tempting to think of neurodegenerative diseases as manifestations of accelerated aging and senescence, this review will present information on brain ageing and neurodegeneration as a result of senescence and DNA damage response.
Collapse
Affiliation(s)
- Tejal Shreeya
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Mohd Saifullah Ansari
- Institute of Genetics, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Prabhat Kumar
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | | | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
22
|
Yao MF, Dang T, Wang HJ, Zhu XZ, Qiao C. Mitochondrial homeostasis regulation: A promising therapeutic target for Parkinson's disease. Behav Brain Res 2024; 459:114811. [PMID: 38103871 DOI: 10.1016/j.bbr.2023.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of Lewy bodies (LBs) or Lewy neurites (LNs) which consist of α-synuclein (α-syn) and a complex mix of other biomolecules. Mitochondrial dysfunction is widely believed to play an essential role in the pathogenesis of PD and other related neurodegenerative diseases. But mitochondrial dysfunction is subject to complex genetic regulation. There is increasing evidence that PD-related genes directly or indirectly affect mitochondrial integrity. Therefore, targeted regulation of mitochondrial function has great clinical application prospects in the treatment of PD. However, lots of PD drugs targeting mitochondria have been developed but their clinical therapeutic effects are not ideal. This review aims to reveal the role of mitochondrial dysfunction in the pathogenesis of neurodegenerative diseases based on the mitochondrial structure and function, which may highlight potential interventions and therapeutic targets for the development of PD drugs to recover mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng-Fan Yao
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tao Dang
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hua-Jun Wang
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xiao-Zhong Zhu
- Department of Cardiothoracic Surgery, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Chen Qiao
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
23
|
Choudhury C, Gill MK, McAleese CE, Butcher NJ, Ngo ST, Steyn FJ, Minchin RF. The Arylamine N-Acetyltransferases as Therapeutic Targets in Metabolic Diseases Associated with Mitochondrial Dysfunction. Pharmacol Rev 2024; 76:300-320. [PMID: 38351074 DOI: 10.1124/pharmrev.123.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.
Collapse
Affiliation(s)
- Chandra Choudhury
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Melinder K Gill
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Courtney E McAleese
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Neville J Butcher
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Shyuan T Ngo
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| |
Collapse
|
24
|
Sharma R, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Targeted Treatment Strategies for Mitochondria Dysfunction: Correlation with Neurological Disorders. Curr Drug Targets 2024; 25:683-699. [PMID: 38910425 DOI: 10.2174/0113894501303824240604103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are an essential intracellular organelle for medication targeting and delivery since they seem to create energy and conduct many other cellular tasks, and mitochondrial dysfunctions and malfunctions lead to many illnesses. Many initiatives have been taken to detect, diagnose, and image mitochondrial abnormalities, and to transport and accumulate medicines precisely to mitochondria, all because of special mitochondrial aspects of the pathophysiology of cancer. In addition to the negative membrane potential and paradoxical mitochondrial dynamics, they include high temperatures, high levels of reactive oxygen species, high levels of glutathione, and high temperatures. Neurodegenerative diseases represent a broad spectrum of debilitating illnesses. They are linked to the loss of certain groups of neurons based on an individual's physiology or anatomy. The mitochondria in a cell are generally accepted as the authority with respect to ATP production. Disruption of this system is linked to several cellular physiological issues. The development of neurodegenerative disorders has been linked to mitochondrial malfunction, according to pathophysiological studies. There seems to be substantial evidence connecting mitochondrial dysfunction and oxidative stress to the development of neurodegenerative disorders. It has been extensively observed that mitochondrial malfunction triggers autophagy, which plays a role in neurodegenerative disorders. In addition, excitotoxicity and mitochondrial dysfunction have been linked to the development of neurodegenerative disorders. The pathophysiology of neurodegenerative illnesses has been linked to increased apoptosis and necrosis, as well as mitochondrial malfunction. A variety of synthetic and natural treatments have shown efficacy in treating neurodegenerative illnesses caused by mitochondrial failure. Neurodegenerative illnesses can be effectively treated with existing drugs that target mitochondria, although their precise formulations are poorly understood. Therefore, there is an immediate need to focus on creating drug delivery methods specifically targeted at mitochondria in the treatment and diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
- Era College of Pharmacy, Era University, Lucknow, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
25
|
Mu S, Han T, Zhang X, Liu J, Sun H, Zhang J, Liu X, Zhang H. Exploring the Role of Mitochondrial Hydrogen Sulfide in Maintaining Polarity and mtDNA Integrity with a Multichannel Fluorescent Probe. Anal Chem 2023; 95:18460-18469. [PMID: 37990434 DOI: 10.1021/acs.analchem.3c03663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Abnormal mitochondrial state has been implicated in the pathogenesis of various diseases including neurodegenerative disorders, myopathies, cardiovascular diseases, and cancers. Assessing mitochondrial functionality can be achieved by monitoring alterations in mitochondrial polarity and mitochondrial DNA (mtDNA) integrity, which serve as valuable biomarkers. Hydrogen sulfide (H2S), a gaseous signaling molecule, plays a regulatory role in mitochondrial respiratory chain activity, ATP synthesis, and calcium ion balance, thereby influencing cellular metabolism and signal transduction. Investigating the interplay between mitochondrial H2S, polarity, and mtDNA can enhance our understanding of the underlying regulatory mechanisms involved in H2S-mediated mitochondrial functions. To address this, we designed a mitochondria-targeted multichannel fluorescent probe, HNA, capable of cascaded detection of H2S and polarity, as well as parallel detection of mtDNA. The probe exhibited a significant turn-on response to H2S, emitting at approximately 604 nm, while the product HNAP demonstrated high sensitivity to polarity within the wavelength range of 526-591 nm. Additionally, the probe was able to bind to DNA, resulting in an enhanced long-wave emission at 668 nm. Facilitated by HNA, our study provides novel insights into the role of mitochondrial H2S in maintaining mitochondrial polarity and validates its protective effect on mtDNA through antioxidative mechanisms. Overall, this work proposes a potential therapeutic strategy for modulating the inflammatory process in mitochondrial-related diseases.
Collapse
Affiliation(s)
- Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Taihe Han
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyun Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jia Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Huipeng Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinlong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
26
|
Spisni E, Valerii MC, Massimino ML. Essential Oil Molecules Can Break the Loop of Oxidative Stress in Neurodegenerative Diseases. BIOLOGY 2023; 12:1504. [PMID: 38132330 PMCID: PMC10740714 DOI: 10.3390/biology12121504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Essential oils (EOs) are mixtures of volatile compounds, extracted from aromatic plants, with multiple activities including antioxidant and anti-inflammatory ones. EOs are complex mixtures easy to find on the market and with low costs. In this mini narrative review, we have collected the results of in vitro and in vivo studies, which tested these EOs on validated models of neurodegeneration and in particular of the two main neurodegenerative diseases (NDs) that afflict humans: Alzheimer's and Parkinson's. Since EO compositions can vary greatly, depending on the environmental conditions, plant cultivar, and extraction methods, we focused our attention to studies involving single EO molecules, and in particular those that have demonstrated the ability to cross the blood-brain barrier. These single EO molecules, alone or in defined mixtures, could be interesting new therapies to prevent or slow down oxidative and inflammatory processes which are common mechanisms that contribute to neuronal death in all NDs.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Lina Massimino
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padova, Italy
| |
Collapse
|
27
|
Semadhi MP, Mulyaty D, Halimah E, Levita J. Healthy mitochondrial DNA in balanced mitochondrial dynamics: A potential marker for neuro‑aging prediction (Review). Biomed Rep 2023; 19:64. [PMID: 37614983 PMCID: PMC10442761 DOI: 10.3892/br.2023.1646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/15/2023] [Indexed: 08/25/2023] Open
Abstract
The mitochondrial genome or mitochondrial DNA (mtDNA) is released as a response to cellular stress. In mitochondrial biogenesis, active communication between the mitochondria genome and nucleus is associated with the mtDNA profile that affects the mitochondrial quality. The present review aimed to assess the molecular mechanism and potential roles of mitochondria in neuro-aging, including the importance of evaluating the health status of mtDNA via mitochondrial dynamics. The normal condition of mitochondria, defined as mitochondrial dynamics, includes persistent changes in morphology due to fission and fusion events and autophagy-mitophagy in the mitochondrial quality control process. The calculated copy number of mtDNA in the mitochondria genome represents cellular health, which can be affected by a long-term imbalance between the production and accumulation of reactive oxygen species in the neuroendocrine system, which leads to an abnormal function of mitochondria and mtDNA damage. Mitochondria health is a new approach to discovering a potential indicator for the health status of the nervous system and several types of neurodegenerative disorders. Mitochondrial dynamics is a key contributor to predicting neuro-aging development, which affects the self-renewal and differentiation of neurons in cell metabolism. Neuro-aging is associated with uncontrolled mitochondrial dynamics, which generates age-associated diseases via various mechanisms and signaling routes that lead to the mtDNA damage that has been associated with neurodegeneration. Future studies on the strategic positioning of mtDNA health profile are needed to detect early neurodegenerative disorders.
Collapse
Affiliation(s)
- Made Putra Semadhi
- Prodia National Reference Laboratory, Jakarta 10430, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dewi Mulyaty
- Prodia Widyahusada Co., Jakarta 10430, Indonesia
| | - Eli Halimah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
28
|
Grel H, Woznica D, Ratajczak K, Kalwarczyk E, Anchimowicz J, Switlik W, Olejnik P, Zielonka P, Stobiecka M, Jakiela S. Mitochondrial Dynamics in Neurodegenerative Diseases: Unraveling the Role of Fusion and Fission Processes. Int J Mol Sci 2023; 24:13033. [PMID: 37685840 PMCID: PMC10487704 DOI: 10.3390/ijms241713033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration and death of neurons, leading to a range of neurological symptoms. Despite the heterogeneity of these conditions, a common denominator is the implication of mitochondrial dysfunction in their pathogenesis. Mitochondria play a crucial role in creating biomolecules, providing energy through adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS), and producing reactive oxygen species (ROS). When they're not functioning correctly, becoming fragmented and losing their membrane potential, they contribute to these diseases. In this review, we explore how mitochondria fuse and undergo fission, especially in the context of NDs. We discuss the genetic and protein mutations linked to these diseases and how they impact mitochondrial dynamics. We also look at the key regulatory proteins in fusion (MFN1, MFN2, and OPA1) and fission (DRP1 and FIS1), including their post-translational modifications. Furthermore, we highlight potential drugs that can influence mitochondrial dynamics. By unpacking these complex processes, we aim to direct research towards treatments that can improve life quality for people with these challenging conditions.
Collapse
Affiliation(s)
- Hubert Grel
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Damian Woznica
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Katarzyna Ratajczak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Ewelina Kalwarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Julia Anchimowicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Weronika Switlik
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Piotr Zielonka
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
29
|
Vinciguerra C, Di Fonzo A, Monfrini E, Ronchi D, Cuoco S, Piscosquito G, Barone P, Pellecchia MT. Case report: Asp194Ala variant in MFN2 is associated with ALS-FTD in an Italian family. Front Genet 2023; 14:1235887. [PMID: 37547466 PMCID: PMC10400291 DOI: 10.3389/fgene.2023.1235887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Background: MFN2 gene encodes the protein Mitofusin 2, involved in essential mitochondrial functions such as fusion, trafficking, turnover, and cellular interactions. We describe a family carrying a novel MFN2 mutation associated with ALS-frontotemporal dementia (FTD) clinical phenotype in the mother and Charcot-Marie-Tooth disease type 2A (CMT2A) in her son. Case presentation: The mother, a 67-year-old woman, referred to us for a three year-history of mood disturbance and gait impairment, and a more recent hypophonia, dysarthria, dysphagia, and diffuse muscle wasting. Family history was positive for psychiatric disorders and gait disturbances. Brain 18F-FDG PET showed severe hypometabolism in the fronto-temporal brain cortex bilaterally. Electrodiagnostic studies (EDX) showed severe motor axonopathy in the bulbar, cervical and lumbosacral districts. Her 41-year-old son had a history of mood depression and sensory disturbances in the limbs, along with mild muscle wasting, weakness, and reduced reflexes. Nerve conduction studies revealed a moderate sensory-motor polyneuropathy, while brain MRI was normal. Whole exome sequencing of the patients' DNA identified the novel MFN2 (NM_014874.4) variant c.581A>C p.(Asp194Ala). Conclusion: Our findings provide evidence of heterogenous clinical manifestations in family members sharing the same MFN2 molecular defect. Additionally, we present the first documented case of ASL-FTD associated with an MFN2 mutation, thereby expanding the range of MFN-related disorders. Further research involving larger cohorts of patients will be needed to better understand the role of MFN2 as a contributing gene in the development of ALS-FTD.
Collapse
Affiliation(s)
- C. Vinciguerra
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Odontology “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - A. Di Fonzo
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - E. Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - D. Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - S. Cuoco
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Odontology “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - G. Piscosquito
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Odontology “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - P. Barone
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Odontology “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - M. T Pellecchia
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Odontology “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| |
Collapse
|
30
|
Anguchamy V, Arumugam M. Enhancing the neuroprotective effect of squid outer skin astaxanthin against rotenone-induced neurotoxicity in in-vitro model for Parkinson's disease. Food Chem Toxicol 2023:113846. [PMID: 37277017 DOI: 10.1016/j.fct.2023.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023]
Abstract
Rotenone is a widely used organic pesticide that induces neurotoxicity via inhibition of mitochondrial complex I and oxidative stress actions for the most of dopaminergic neurons as that occurring in Parkinsonism disease (PD). Astaxanthin (ASX) is a natural pigment (carotenoids) and a potent therapeutic compound due to its antioxidant and anti-inflammatory properties. The commercially important cephalopod Doryteuthis singhalensis is widely distributed in tropical and subtropical waters in World Ocean. D. singhalensis is an important source of astaxanthin that contains valuable biological active compounds with many valuable pharmacological effects. The present study evaluated the effect of astaxanthin in preventing rotenone-induced toxicity of SK-N-SH human neuroblastoma cells in an in vitro model of experimental Parkinsonism. The results revealed the strongly significant antioxidant capability of extracted squid astaxanthin in 1,1- diphenyl- 2- picrylhydrazyl (DPPH) radical scavenging activity. In addition, astaxanthin treatment based on dose dependent manner significantly attenuated rotenone induced cytotoxicity, mitochondrial dysfunction and oxidative stress in SKN- SH cells. It is concluded that the marine squid derived astaxanthin could be used as a potential neuroprotector against rotenone induced toxicity due to its antioxidant, and anti-apoptotic properties. Consequently, it could be a supportive remedy for neurodegenerative diseases like Parkinson's disease.
Collapse
Affiliation(s)
- Veeruraj Anguchamy
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamilnadu, India.
| | - Muthuvel Arumugam
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamilnadu, India
| |
Collapse
|
31
|
Qin S, You P, Yu H, Su B. REEP1 Preserves Motor Function in SOD1 G93A Mice by Improving Mitochondrial Function via Interaction with NDUFA4. Neurosci Bull 2023; 39:929-946. [PMID: 36520405 PMCID: PMC10264344 DOI: 10.1007/s12264-022-00995-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/25/2022] [Indexed: 12/23/2022] Open
Abstract
A decline in the activities of oxidative phosphorylation (OXPHOS) complexes has been consistently reported in amyotrophic lateral sclerosis (ALS) patients and animal models of ALS, although the underlying molecular mechanisms are still elusive. Here, we report that receptor expression enhancing protein 1 (REEP1) acts as an important regulator of complex IV assembly, which is pivotal to preserving motor neurons in SOD1G93A mice. We found the expression of REEP1 was greatly reduced in transgenic SOD1G93A mice with ALS. Moreover, forced expression of REEP1 in the spinal cord extended the lifespan, decelerated symptom progression, and improved the motor performance of SOD1G93A mice. The neuromuscular synaptic loss, gliosis, and even motor neuron loss in SOD1G93A mice were alleviated by increased REEP1 through augmentation of mitochondrial function. Mechanistically, REEP1 associates with NDUFA4, and plays an important role in preserving the integrity of mitochondrial complex IV. Our findings offer insights into the pathogenic mechanism of REEP1 deficiency in neurodegenerative diseases and suggest a new therapeutic target for ALS.
Collapse
Affiliation(s)
- Siyue Qin
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Pan You
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
32
|
Valles SL, Singh SK, Campos-Campos J, Colmena C, Campo-Palacio I, Alvarez-Gamez K, Caballero O, Jorda A. Functions of Astrocytes under Normal Conditions and after a Brain Disease. Int J Mol Sci 2023; 24:ijms24098434. [PMID: 37176144 PMCID: PMC10179527 DOI: 10.3390/ijms24098434] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
In the central nervous system (CNS) there are a greater number of glial cells than neurons (between five and ten times more). Furthermore, they have a greater number of functions (more than eight functions). Glia comprises different types of cells, those of neural origin (astrocytes, radial glia, and oligodendroglia) and differentiated blood monocytes (microglia). During ontogeny, neurons develop earlier (at fetal day 15 in the rat) and astrocytes develop later (at fetal day 21 in the rat), which could indicate their important and crucial role in the CNS. Analysis of the phylogeny reveals that reptiles have a lower number of astrocytes compared to neurons and in humans this is reversed, as there have a greater number of astrocytes compared to neurons. These data perhaps imply that astrocytes are important and special cells, involved in many vital functions, including memory, and learning processes. In addition, astrocytes are involved in different mechanisms that protect the CNS through the production of antioxidant and anti-inflammatory proteins and they clean the extracellular environment and help neurons to communicate correctly with each other. The production of inflammatory mediators is important to prevent changes in brain homeostasis. On the contrary, excessive, or continued production appears as a characteristic element in many diseases, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and in neurodevelopmental diseases, such as bipolar disorder, schizophrenia, and autism. Furthermore, different drugs and techniques have been developed to reverse oxidative stress and/or excess of inflammation that occurs in many CNS diseases, but much remains to be investigated. This review attempts to highlight the functional relevance of astrocytes in normal and neuropathological conditions by showing the molecular and cellular mechanisms of their role in the CNS.
Collapse
Affiliation(s)
- Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Juan Campos-Campos
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| | - Carlos Colmena
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Ignacio Campo-Palacio
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Kenia Alvarez-Gamez
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Oscar Caballero
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| | - Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
33
|
Brustovetsky T, Khanna R, Brustovetsky N. CRMP2 Participates in Regulating Mitochondrial Morphology and Motility in Alzheimer's Disease. Cells 2023; 12:cells12091287. [PMID: 37174687 PMCID: PMC10177167 DOI: 10.3390/cells12091287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondrial bioenergetics and dynamics (alterations in morphology and motility of mitochondria) play critical roles in neuronal reactions to varying energy requirements in health and disease. In Alzheimer's disease (AD), mitochondria undergo excessive fission and become less motile. The mechanisms leading to these alterations are not completely clear. Here, we show that collapsin response mediator protein 2 (CRMP2) is hyperphosphorylated in AD and that is accompanied by a decreased interaction of CRMP2 with Drp1, Miro 2, and Mitofusin 2, which are proteins involved in regulating mitochondrial morphology and motility. CRMP2 was hyperphosphorylated in postmortem brain tissues of AD patients, in brain lysates, and in cultured cortical neurons from the double transgenic APP/PS1 mice, an AD mouse model. CRMP2 hyperphosphorylation and dissociation from its binding partners correlated with increased Drp1 recruitment to mitochondria, augmented mitochondrial fragmentation, and reduced mitochondrial motility. (S)-lacosamide ((S)-LCM), a small molecule that binds to CRMP2, decreased its phosphorylation at Ser 522 and Thr 509/514, and restored CRMP2's interaction with Miro 2, Drp1, and Mitofusin 2. This was paralleled by decreased Drp1 recruitment to mitochondria, diminished mitochondrial fragmentation, and improved motility of the organelles. Additionally, (S)-LCM-protected cultured cortical AD neurons from cell death. Thus, our data suggest that CRMP2, in a phosphorylation-dependent manner, participates in the regulation of mitochondrial morphology and motility, and modulates neuronal survival in AD.
Collapse
Affiliation(s)
- Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Medical Science Building, Room 362, Indianapolis, IN 46202, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
- College of Dentistry, NYU Pain Research Center, New York University, New York, NY 10010, USA
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY 10010, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Medical Science Building, Room 362, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
Rey F, Berardo C, Maghraby E, Mauri A, Messa L, Esposito L, Casili G, Ottolenghi S, Bonaventura E, Cuzzocrea S, Zuccotti G, Tonduti D, Esposito E, Paterniti I, Cereda C, Carelli S. Redox Imbalance in Neurological Disorders in Adults and Children. Antioxidants (Basel) 2023; 12:antiox12040965. [PMID: 37107340 PMCID: PMC10135575 DOI: 10.3390/antiox12040965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Erika Maghraby
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy
| | - Eleonora Bonaventura
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Davide Tonduti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| |
Collapse
|
35
|
Ma L, Chen C, Hai S, Wang C, Rahman SU, Huang W, Zhao C, Feng S, Wang X. Inhibition of Mitochondrial Fission Alleviates Zearalenone-Induced Mitochondria-Associated Endoplasmic Reticulum Membrane Dysfunction in Piglet Sertoli Cells. Toxins (Basel) 2023; 15:toxins15040253. [PMID: 37104191 PMCID: PMC10146415 DOI: 10.3390/toxins15040253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
This study aimed to investigate the effects of zearalenone (ZEA) on piglet Sertoli cell (SC)-mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) based on mitochondrial fission, and to explore the molecular mechanism of ZEA-induced cell damage. After the SCs were exposed to the ZEA, the cell viability decreased, the Ca2+ levels increased, and the MAM showed structural damage. Moreover, glucose-regulated protein 75 (Grp75) and mitochondrial Rho-GTPase 1 (Miro1) were upregulated at the mRNA and protein levels. However, phosphofurin acidic cluster protein 2 (PACS2), mitofusin2 (Mfn2), voltage-dependent anion channel 1 (VDAC1), and inositol 1,4,5-trisphosphate receptor (IP3R) were downregulated at the mRNA and protein levels. A pretreatment with mitochondrial division inhibitor 1 (Mdivi-1) decreased the ZEA-induced cytotoxicity toward the SCs. In the ZEA + Mdivi-1 group, the cell viability increased, the Ca2+ levels decreased, the MAM damage was repaired, and the expression levels of Grp75 and Miro1 decreased, while those of PACS2, Mfn2, VDAC1, and IP3R increased compared with those in the ZEA-only group. Thus, ZEA causes MAM dysfunction in piglet SCs through mitochondrial fission, and mitochondria can regulate the ER via MAM.
Collapse
Affiliation(s)
- Li Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chuangjiang Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sirao Hai
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chenlong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanyue Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, Hefei 230036, China
| |
Collapse
|
36
|
Moradi Vastegani S, Nasrolahi A, Ghaderi S, Belali R, Rashno M, Farzaneh M, Khoshnam SE. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies. Neurochem Res 2023:10.1007/s11064-023-03904-0. [PMID: 36943668 DOI: 10.1007/s11064-023-03904-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rafie Belali
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
37
|
Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Cells 2023; 12:cells12060852. [PMID: 36980194 PMCID: PMC10047932 DOI: 10.3390/cells12060852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Sirtuin 5 (SIRT5) is a predominantly mitochondrial enzyme catalyzing the removal of glutaryl, succinyl, malonyl, and acetyl groups from lysine residues through a NAD+-dependent deacylase mechanism. SIRT5 is an important regulator of cellular homeostasis and modulates the activity of proteins involved in different metabolic pathways such as glycolysis, tricarboxylic acid (TCA) cycle, fatty acid oxidation, electron transport chain, generation of ketone bodies, nitrogenous waste management, and reactive oxygen species (ROS) detoxification. SIRT5 controls a wide range of aspects of myocardial energy metabolism and plays critical roles in heart physiology and stress responses. Moreover, SIRT5 has a protective function in the context of neurodegenerative diseases, while it acts as a context-dependent tumor promoter or suppressor. In addition, current research has demonstrated that SIRT5 is implicated in the SARS-CoV-2 infection, although opposing conclusions have been drawn in different studies. Here, we review the current knowledge on SIRT5 molecular actions under both healthy and diseased settings, as well as its functional effects on metabolic targets. Finally, we revise the potential of SIRT5 as a therapeutic target and provide an overview of the currently reported SIRT5 modulators, which include both activators and inhibitors.
Collapse
Affiliation(s)
- Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
- IEOS—Istituto per l’Endocrinologia e Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| |
Collapse
|
38
|
Bons J, Rose J, Zhang R, Burton JB, Carrico C, Verdin E, Schilling B. In-depth analysis of the Sirtuin 5-regulated mouse brain malonylome and succinylome using library-free data-independent acquisitions. Proteomics 2023; 23:e2100371. [PMID: 36479818 PMCID: PMC10363399 DOI: 10.1002/pmic.202100371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Post-translational modifications (PTMs) dynamically regulate proteins and biological pathways, typically through the combined effects of multiple PTMs. Lysine residues are targeted for various PTMs, including malonylation and succinylation. However, PTMs offer specific challenges to mass spectrometry-based proteomics during data acquisition and processing. Thus, novel and innovative workflows using data-independent acquisition (DIA) ensure confident PTM identification, precise site localization, and accurate and robust label-free quantification. In this study, we present a powerful approach that combines antibody-based enrichment with comprehensive DIA acquisitions and spectral library-free data processing using directDIA (Spectronaut). Identical DIA data can be used to generate spectral libraries and comprehensively identify and quantify PTMs, reducing the amount of enriched sample and acquisition time needed, while offering a fully automated workflow. We analyzed brains from wild-type and Sirtuin 5 (SIRT5)-knock-out mice, and discovered and quantified 466 malonylated and 2211 succinylated peptides. SIRT5 regulation remodeled the acylomes by targeting 164 malonylated and 578 succinylated sites. Affected pathways included carbohydrate and lipid metabolisms, synaptic vesicle cycle, and neurodegenerative diseases. We found 48 common SIRT5-regulated malonylation and succinylation sites, suggesting potential PTM crosstalk. This innovative and efficient workflow offers deeper insights into the mouse brain lysine malonylome and succinylome.
Collapse
Affiliation(s)
- Joanna Bons
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jacob Rose
- Buck Institute for Research on Aging, Novato, California, USA
| | - Ran Zhang
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jordan B Burton
- Buck Institute for Research on Aging, Novato, California, USA
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California, USA
| | | |
Collapse
|
39
|
Zhou Y, Tang J, Lan J, Zhang Y, Wang H, Chen Q, Kang Y, Sun Y, Feng X, Wu L, Jin H, Chen S, Peng Y. Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis. Acta Pharm Sin B 2023; 13:577-597. [PMID: 36873166 PMCID: PMC9979194 DOI: 10.1016/j.apsb.2022.07.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting both upper and lower motor neurons (MNs) with large unmet medical needs. Multiple pathological mechanisms are considered to contribute to the progression of ALS, including neuronal oxidative stress and mitochondrial dysfunction. Honokiol (HNK) has been reported to exert therapeutic effects in several neurologic disease models including ischemia stroke, Alzheimer's disease and Parkinson's disease. Here we found that honokiol also exhibited protective effects in ALS disease models both in vitro and in vivo. Honokiol improved the viability of NSC-34 motor neuron-like cells that expressed the mutant G93A SOD1 proteins (SOD1-G93A cells for short). Mechanistical studies revealed that honokiol alleviated cellular oxidative stress by enhancing glutathione (GSH) synthesis and activating the nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response element (ARE) pathway. Also, honokiol improved both mitochondrial function and morphology via fine-tuning mitochondrial dynamics in SOD1-G93A cells. Importantly, honokiol extended the lifespan of the SOD1-G93A transgenic mice and improved the motor function. The improvement of antioxidant capacity and mitochondrial function was further confirmed in the spinal cord and gastrocnemius muscle in mice. Overall, honokiol showed promising preclinical potential as a multiple target drug for ALS treatment.
Collapse
Affiliation(s)
- Yujun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingshu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiaqi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yong Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiuyu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yang Sun
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinhong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China
| | - Shizhong Chen
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
40
|
Zuccarini M, Pruccoli L, Balducci M, Giuliani P, Caciagli F, Ciccarelli R, Di Iorio P. Influence of Guanine-Based Purines on the Oxidoreductive Reactions Involved in Normal or Altered Brain Functions. J Clin Med 2023; 12:jcm12031172. [PMID: 36769818 PMCID: PMC9917437 DOI: 10.3390/jcm12031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Martina Balducci
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
41
|
Babazadeh A, Vahed FM, Liu Q, Siddiqui SA, Kharazmi MS, Jafari SM. Natural Bioactive Molecules as Neuromedicines for the Treatment/Prevention of Neurodegenerative Diseases. ACS OMEGA 2023; 8:3667-3683. [PMID: 36743024 PMCID: PMC9893457 DOI: 10.1021/acsomega.2c06098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The brain is vulnerable to different types of stresses, particularly oxidative stress as a result of oxygen requirements/utilization in the body. Large amounts of unsaturated fatty acids present in the brain increase this vulnerability. Neurodegenerative diseases (NDDs) are brain disorders that are characterized by the gradual loss of specific neurons and are attributed to broad evidence of cell-level oxidative stress. The accurate characterization of neurological disorders relies on several parameters along with genetics and environmental risk factors, making therapies less efficient to fight NDDs. On the way to tackle oxidative damage and discover efficient and safe therapies, bioactives are at the edge of NDD science. Naturally occurring bioactive compounds such as polyphenols, carotenoids, essential fatty acids, phytosterols, essential oils, etc. are particularly of interest owing to their potent antioxidant and anti-inflammatory activities, and they offer lots of brain-health-promoting features. This Review focuses on probing the neuroefficacy and bioefficacy of bioactives and their role in supporting relatively low antioxidative and low regenerative capacities of the brain, neurogenesis, neuroprotection, and ameliorating/treating NDDs.
Collapse
Affiliation(s)
- Afshin Babazadeh
- Center
for Motor Neuron Disease Research, Macquarie Medical School, Faculty
of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Fereshteh Mohammadi Vahed
- Center
for Motor Neuron Disease Research, Macquarie Medical School, Faculty
of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Qi Liu
- Institute
of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
- Jiangsu
Key Laboratory of Integrated Traditional Chinese and Western Medicine
for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Shahida Anusha Siddiqui
- Technical
University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German
Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610 D Quakenbrück, Germany
| | | | - Seid Mahdi Jafari
- Department
of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
- Nutrition
and Bromatology Group, Department of Analytical Chemistry and Food
Science, Faculty of Science, Universidade
de Vigo, E-32004 Ourense, Spain
- College
of Food Science and Technology, Hebei Agricultural
University, Baoding 071001, China
| |
Collapse
|
42
|
Altered Mitochondrial Morphology and Bioenergetics in a New Yeast Model Expressing Aβ42. Int J Mol Sci 2023; 24:ijms24020900. [PMID: 36674415 PMCID: PMC9862424 DOI: 10.3390/ijms24020900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, age-related neurological disorder, the most common form of dementia. Considering that AD is a multifactorial complex disease, simplified experimental models are required for its analysis. For this purpose, genetically modified Yarrowia lipolytica yeast strains expressing Aβ42 (the main biomarker of AD), eGFP-Aβ42, Aβ40, and eGFP-Aβ40 were constructed and examined. In contrast to the cells expressing eGFP and eGFP-Aβ40, retaining "normal" mitochondrial reticulum, eGFP-Aβ42 cells possessed a disturbed mitochondrial reticulum with fragmented mitochondria; this was partially restored by preincubation with a mitochondria-targeted antioxidant SkQThy. Aβ42 expression also elevated ROS production and cell death; low concentrations of SkQThy mitigated these effects. Aβ42 expression caused mitochondrial dysfunction as inferred from a loose coupling of respiration and phosphorylation, the decreased level of ATP production, and the enhanced rate of hydrogen peroxide formation. Therefore, we have obtained the same results described for other AD models. Based on an analysis of these and earlier data, we suggest that the mitochondrial fragmentation might be a biomarker of the earliest preclinical stage of AD with an effective therapy based on mitochondria- targeted antioxidants. The simple yeast model constructed can be a useful platform for the rapid screening of such compounds.
Collapse
|
43
|
Shaito A, Al-Mansoob M, Ahmad SM, Haider MZ, Eid AH, Posadino AM, Pintus G, Giordo R. Resveratrol-Mediated Regulation of Mitochondria Biogenesis-associated Pathways in Neurodegenerative Diseases: Molecular Insights and Potential Therapeutic Applications. Curr Neuropharmacol 2023; 21:1184-1201. [PMID: 36237161 PMCID: PMC10286596 DOI: 10.2174/1570159x20666221012122855] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/22/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative disorders include different neurological conditions that affect nerve cells, causing the progressive loss of their functions and ultimately leading to loss of mobility, coordination, and mental functioning. The molecular mechanisms underpinning neurodegenerative disease pathogenesis are still unclear. Nonetheless, there is experimental evidence to demonstrate that the perturbation of mitochondrial function and dynamics play an essential role. In this context, mitochondrial biogenesis, the growth, and division of preexisting mitochondria, by controlling mitochondria number, plays a vital role in maintaining proper mitochondrial mass and function, thus ensuring efficient synaptic activity and brain function. Mitochondrial biogenesis is tightly associated with the control of cell division and variations in energy demand in response to extracellular stimuli; therefore, it may represent a promising therapeutic target for developing new curative approaches to prevent or counteract neurodegenerative disorders. Accordingly, several inducers of mitochondrial biogenesis have been proposed as pharmacological targets for treating diverse central nervous system conditions. The naturally occurring polyphenol resveratrol has been shown to promote mitochondrial biogenesis in various tissues, including the nervous tissue, and an ever-growing number of studies highlight its neurotherapeutic potential. Besides preventing cognitive impairment and neurodegeneration through its antioxidant and anti-inflammatory properties, resveratrol has been shown to be able to enhance mitochondria biogenesis by acting on its main effectors, including PGC-1α, SIRT1, AMPK, ERRs, TERT, TFAM, NRF-1 and NRF-2. This review aims to present and discuss the current findings concerning the impact of resveratrol on the machinery and main effectors modulating mitochondrial biogenesis in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Abdullah Shaito
- Biomedical Research Center, College of Medicine, Qatar University, Doha, 2713, Qatar
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, 2713, Qatar
| | - Maryam Al-Mansoob
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Salma M.S. Ahmad
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | | | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, 505055, United Arab Emirates
| |
Collapse
|
44
|
Ali T, Hussain F, Kayani HUR, Naeem M, Anjum F. The role of mitochondria and mitophagy in cell senescence. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023. [PMID: 37437987 DOI: 10.1016/bs.apcsb.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Mitochondrial malfunction and cell senescence have been defined as the hallmarks of aging. Cell senescence leads to the loss of health allied with aging. While deciphering the complex association between mitochondria and cellular senescence, it is observed that senescence has a two-faced nature being beneficial and hazardous. This duality of cellular senescence is associated with circumstantial aspects. During the process of cellular senescence, dysfunctional mitochondria are accumulated, the efficiency of the oxidative phosphorylation process declines along with the enhanced synthesis of reactive oxygen species. It is suggested that reduction in the negative consequences of senescence throughout old age might be accomplished by targeting the mitochondria as all roads lead towards mitochondria. It is unclear how perturbation of mitophagy in senescence results in the accumulation of mitochondria, impairment of mitochondrial biogenesis and onset of diseases. Understanding this complex interplay will bring about a long yet healthy lifespan. But definitely casual and specific players contribute in the initiation and conservation of the cell senescence. Variations in metabolism, quality control and dynamics of mitochondria are observed during cell aging process. Several On-target and Off-target mechanisms can also cause side effects in cellular senescence. Translational research of these mechanisms may lead to effective clinical interventions. This chapter reviews the role of mitochondria, homeostatic mechanisms and mitophagy as drivers and effectors of cell senescence along with multiple signalling pathways that lead to the initiation, maintenance, induction and suppression of cellular aging process during health and disease.
Collapse
|
45
|
O'Reilly CL, Miller BF, Lewis TL. Exercise and mitochondrial remodeling to prevent age-related neurodegeneration. J Appl Physiol (1985) 2023; 134:181-189. [PMID: 36519568 PMCID: PMC9829476 DOI: 10.1152/japplphysiol.00611.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Healthy brain activity requires precise ion and energy management creating a strong reliance on mitochondrial function. Age-related neurodegeneration leads to a decline in mitochondrial function and increased oxidative stress, with associated declines in mitochondrial mass, respiration capacity, and respiration efficiency. The interdependent processes of mitochondrial protein turnover and mitochondrial dynamics, known together as mitochondrial remodeling, play essential roles in mitochondrial health and therefore brain function. This mini-review describes the role of mitochondria in neurodegeneration and brain health, current practices for assessing both aspects of mitochondrial remodeling, and how exercise mitigates the adverse effects of aging in the brain. Exercise training elicits functional adaptations to improve brain health, and current literature strongly suggests that mitochondrial remodeling plays a vital role in these positive adaptations. Despite substantial implications that the two aspects of mitochondrial remodeling are interdependent, very few investigations have simultaneously measured mitochondrial dynamics and protein synthesis. An improved understanding of the partnership between mitochondrial protein turnover and mitochondrial dynamics will provide a better understanding of their role in both brain health and disease, as well as how they induce protection following exercise.
Collapse
Affiliation(s)
- Colleen L O'Reilly
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Association, Oklahoma City, Oklahoma
| | - Tommy L Lewis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
46
|
Mesquita PHC, Osburn SC, Godwin JS, Roberts MD, Kavazis AN. Effects of aging and long-term physical activity on mitochondrial physiology and redox state of the cortex and cerebellum of female rats. Physiol Rep 2022; 10:e15542. [PMID: 36543327 PMCID: PMC9771693 DOI: 10.14814/phy2.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023] Open
Abstract
We investigated the effects of aging and long-term physical activity on markers of mitochondrial function and dynamics in the cortex and cerebellum of female rats. Additionally, we interrogated markers of oxidative damage and antioxidants. Thirty-four female Lewis rats were separated into three groups. A young group (YNG, n = 10) was euthanized at 6 months of age. Two other groups were aged to 15 months and included a physical activity group (MA-PA, n = 12) and a sedentary group (MA-SED, n = 12). There were no age effects for any of the variables investigated, except for SOD2 protein levels in the cortex (+6.5%, p = 0.012). Long-term physical activity increased mitochondrial complex IV activity in the cortex compared to YNG (+85%, p = 0.016) and MA-SED (+82%, p = 0.023) and decreased carbonyl levels in the cortex compared to YNG (-12.49%, p = 0.034). Our results suggest that the mitochondrial network and redox state of the brain of females may be more resilient to the aging process than initially thought. Further, voluntary wheel running had minimal beneficial effects on brain markers of oxidative damage and mitochondrial physiology.
Collapse
Affiliation(s)
| | | | | | - Michael D. Roberts
- School of KinesiologyAuburn UniversityAuburnAlabamaUSA
- Edward Via College of Osteopathic MedicineAuburnAlabamaUSA
| | | |
Collapse
|
47
|
Luo HM, Xu J, Huang DX, Chen YQ, Liu YZ, Li YJ, Chen H. Mitochondrial dysfunction of induced pluripotent stem cells-based neurodegenerative disease modeling and therapeutic strategy. Front Cell Dev Biol 2022; 10:1030390. [DOI: 10.3389/fcell.2022.1030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders in which neurons are lost owing to various factors, resulting in a series of dysfunctions. Their rising prevalence and irreversibility have brought physical pain to patients and economic pressure to both individuals and society. However, the pathogenesis of NDDs has not yet been fully elucidated, hampering the use of precise medication. Induced pluripotent stem cell (IPSC) modeling provides a new method for drug discovery, and exploring the early pathological mechanisms including mitochondrial dysfunction, which is not only an early but a prominent pathological feature of NDDs. In this review, we summarize the iPSC modeling approach of Alzheimer’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis, as well as outline typical mitochondrial dysfunction and recapitulate corresponding therapeutic strategies.
Collapse
|
48
|
Tonner H, Hunn S, Auler N, Schmelter C, Pfeiffer N, Grus FH. Dynamin-like Protein 1 (DNML1) as a Molecular Target for Antibody-Based Immunotherapy to Treat Glaucoma. Int J Mol Sci 2022; 23:ijms232113618. [PMID: 36362420 PMCID: PMC9654827 DOI: 10.3390/ijms232113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Slow and progressive loss of retinal ganglion cells (RGCs) is the main characteristic of glaucoma, the second leading cause of blindness worldwide. Previous studies have shown that impaired mitochondrial dynamics could facilitate retinal neurodegeneration. Mitochondrial dynamics are regulated directly (fission) or more indirectly (fusion) by dynamin-like protein 1 (DNML1). Therefore, DNM1L might be a promising target for an antibody-based approach to treat glaucoma. The consequences of targeting endogenous DNM1L by antibodies in a glaucoma animal model have not been investigated yet. Here, we show that the intravitreal application of an anti-DNM1L antibody showed protective effects regarding the survival of RGCs and their axons in the retinal nerve fiber layer (RNFL). Antibody treatment also improved retinal functionality, as observed by electroretinography (Ganzfeld ERG). Western blot analysis revealed altered DNM1L phosphorylation and altered expression of proteins related to apoptosis suggesting a decreased apoptosis rate. Mass spectrometry analysis revealed 28 up-regulated and 21 down-regulated proteins (p < 0.05) in both experimental groups. Protein pathway analysis showed that many proteins interacted directly with the target protein DNM1L and could be classified into three main protein clusters: Vesicle traffic-associated (NSF, SNCA, ARF1), mitochondrion-associated (HSP9A, SLC25A5/ANT2, GLUD1) and cytoskeleton-associated (MAP1A) signaling pathway. Our results demonstrate that DNM1L is a promising target for an antibody-based approach to glaucoma therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Franz H. Grus
- Correspondence: ; Tel.: +49-6131-17-3328; Fax: +49-6131-4970563
| |
Collapse
|
49
|
Bhatti GK, Gupta A, Pahwa P, Khullar N, Singh S, Navik U, Kumar S, Mastana SS, Reddy AP, Reddy PH, Bhatti JS. Targeting mitochondrial bioenergetics as a promising therapeutic strategy in metabolic and neurodegenerative diseases. Biomed J 2022; 45:733-748. [PMID: 35568318 PMCID: PMC9661512 DOI: 10.1016/j.bj.2022.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are the organelles that generate energy for the cells and act as biosynthetic and bioenergetic factories, vital for normal cell functioning and human health. Mitochondrial bioenergetics is considered an important measure to assess the pathogenesis of various diseases. Dysfunctional mitochondria affect or cause several conditions involving the most energy-intensive organs, including the brain, muscles, heart, and liver. This dysfunction may be attributed to an alteration in mitochondrial enzymes, increased oxidative stress, impairment of electron transport chain and oxidative phosphorylation, or mutations in mitochondrial DNA that leads to the pathophysiology of various pathological conditions, including neurological and metabolic disorders. The drugs or compounds targeting mitochondria are considered more effective and safer for treating these diseases. In this review, we make an effort to concise the available literature on mitochondrial bioenergetics in various conditions and the therapeutic potential of various drugs/compounds targeting mitochondrial bioenergetics in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali Punjab, India
| | - Anshika Gupta
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Paras Pahwa
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Arubala P Reddy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
50
|
Liu Y, Shi G. Roles of sirtuins in asthma. Respir Res 2022; 23:251. [PMID: 36117172 PMCID: PMC9482752 DOI: 10.1186/s12931-022-02175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacylases and deacetylases that participate in a variety of cellular processes, including transcriptional activity, energy metabolism, DNA damage response, inflammation, apoptosis, autophagy, and oxidative stress. As a result, sirtuins are linked to multiple pathophysiological processes, such as cardiovascular diseases, metabolic diseases, autoimmune diseases, infectious diseases, and respiratory diseases. Asthma is the most common respiratory disease, which is characterized by airway inflammation and airway remodeling. Accumulating evidence has indicated that sirtuins are involved in the pathogenesis of asthma. Furthermore, some studies have suggested that sirtuin modulators are potential agents for the treatment of asthma via alteration of the expression or activity of sirtuins. In this review, we illustrate the role of sirtuins in asthma, discuss related molecular mechanisms, and evaluate the sirtuins-targeted therapy for asthma.
Collapse
|