1
|
Wang P, Li J, Yi H, Zhu D, Wang S, Zhang N, Guo X, Liu H. Identification, saltiness-enhancing effect, and antioxidant properties of novel saltiness-enhancing peptides from peanut protein. Food Funct 2025. [PMID: 40260794 DOI: 10.1039/d4fo05274a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
In order to reduce the use of traditional salt (NaCl), this study aimed to rapidly identify novel peptides with salt-reducing effects from peanut protein. Four potential peptides were identified through virtual screening and molecular docking. The sensory evaluation and electronic tongue confirmed that the peptides SPDIY, DPSPR, QPGDY, and SPPGER had significant saltiness-enhancing effects, with saltiness enhancement thresholds ranging from 0.16 to 0.64 mmol L-1. Among them, DPSPR exhibited the most pronounced effect in enhancing saltiness, capable of replacing approximately 56.7% of NaCl. Molecular docking and dynamics simulation studies indicated that amino acid residues Arg272, Glu161, Gln279, Arg168, and Ser165 were found to play key roles in ligand-receptor binding. Additionally, antioxidant activity assays demonstrated that the peptide QPGDY contributed to free radical scavenging in a dose-dependent manner through the hydrogen atom transfer mechanism. The combination of virtual screening technology and experimental validation greatly improved the efficiency and accuracy of peptide discovery and functional characterization, offering a promising strategy for the development of low-sodium foods with antioxidant properties.
Collapse
Affiliation(s)
- Peng Wang
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| | - Jun Li
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| | - Hongbo Yi
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| | - Danshi Zhu
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| | - Shengnan Wang
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| | - Na Zhang
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang, China
| | - Xiaofei Guo
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - He Liu
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| |
Collapse
|
2
|
Li R, Shan S, Xu Y, Xiong J, Cheng G. Identification of bioaccessible and neuroprotective peptides from fermented casein hydrolysate. J Dairy Sci 2025:S0022-0302(25)00238-3. [PMID: 40250615 DOI: 10.3168/jds.2024-25763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Fermented dairy products are beneficial to cognitive health. Fermentation-released bioactive peptides have the potential to contribute to the neuroprotective effects of fermented dairy products. However, known neuroprotective peptides are mostly prepared by enzymatic hydrolysis, and physicochemical screening of food-derived functional peptides typically overlooks the interference of biotransport after ingestion. Thus, we aimed to identify neuroprotective peptides from casein fermented by Lactobacillus delbrueckii ssp. bulgaricus to provide more evidence supporting the contribution of fermentation-released peptides. We first screened bioaccessible peptides from fermented casein hydrolysate by simulating digestion, absorption, and blood-brain barrier penetration using INFOGEST standardized protocols, human colon Caco-2 cells, and human brain microvascular endothelial hCMEC/D3 cells sequentially. Next, we identified peptides of each stage by nano-liquid chromatography tandem MS. The intersections were considered bioaccessible peptides. We performed molecular docking against Kelch-like ECH-associated protein 1 (Keap1) to predict potential bioactive peptides and validated the predicted effects in BV2 microglial cells induced by LPS. As a result, we identified 1,971, 663, 276, and 208 casein peptides from the simulated products at each stage, and 63 bioaccessible peptides were identified during fermentation, underwent simulated digestion, and were transported via the simulated intestinal epithelial barrier and blood-brain barrier. Among these peptides, 7 nontoxic small peptides had relatively high predicted affinities for Keap1 and were verified in LPS-treated BV2 cells. We found that Phe-Val-Ala-Pro-Phe-Pro-Glu (FE7) decreased nitric oxide, interleukin-1β, reactive oxygen species, and lipid peroxidation levels by 69.6%, 103.6%, 119.3%, and 75.3%, respectively, in LPS-treated BV2 cells. In conclusion, FE7 could be a promising neuroprotective peptide in fermented casein hydrolysate by reducing neuroinflammation and oxidative stress. Our approach provides a feasible paradigm for identifying bioaccessible and neuroprotective peptides from dairy products.
Collapse
Affiliation(s)
- Ruirui Li
- Department of Nutrition and Food Safety, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shufang Shan
- Department of Clinical Nutrition, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yujie Xu
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal and Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jingyuan Xiong
- Department of Nutrition and Food Safety, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China.
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal and Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
3
|
Bhuva B, Sakure AA, Mankad PM, Ramanuj K, Rawat A, Bishnoi M, Kondepudi KK, Patel A, Sarkar P, Hati S. Influence of Lactobacillus and yeast on antioxidative, antidiabetic, and anti-inflammatory attributes of camel milk and Gir cow milk as well as release of bioactive peptides: A comparative study. J Food Sci 2025; 90:e70112. [PMID: 40091698 DOI: 10.1111/1750-3841.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
The aim of the study is to explore the biofunctional properties (antioxidative, anti-diabetic, and anti-inflammatory) with the release of bioactive peptides from fermented camel milk and Gir cow milk through yeast-lactic fermentation. Fermented camel milk and Gir cow milk exhibited higher antioxidative, antidiabetic, and anti-inflammatory activities compared to their unfermented counterparts. At 30°C, the most significant production of peptides had been discovered at 48 h of incubation with 2.5% rate of inoculation of yeast-lactic culture in the fermented milks of camel and Gir cow. Additionally, both the fermented milks considerably reduced the overproduction of TNF-α, IL-6, IL-1β, and nitric oxide in RAW 267.4 cells. Confocal laser scanning microscopy revealed the visualization of protein biomolecules of camel milk and Gir cow milk pre- and post-fermentation, revealing changes in protein network structure. The structural changes that occur during fermentation were examined using Fourier-transform infrared spectroscopy by assessing changes in functional groups after fermentation. To distinguish between different peptide fractions, reversed-phase high-performance liquid chromatography was used for comparing water-soluble extracts of ultra-filtered fractions. The Peakview tool was implemented to assess the liquid chromatography-mass spectrometry (LC/MS) data. However, fermenting camel and Gir cow milk with yeast and lactic acid bacteria enhances their nutritional and therapeutic values by releasing bioactive compounds, improving antioxidative, antidiabetic, and anti-inflammatory activities, and this process supports gut health, immunity, and sustainability, offering potential for functional foods and nutraceutical innovations. PRACTICAL APPLICATION: Traditionally, camel and Gir cow milk provide health benefits beyond nutrition for the well-being of the society since long. Fermented Gir cow and camel milk contain physiologically bioactive peptides. Gir cow and camel milk fermented with Limosilactobacillus fermentum (KGL4) in combination with Saccharomyces cerevisiae (WBS2A) also provide antidiabetic and antioxidative activities. Anti-inflammatory activity of fermented Gir cow and camel milks was also observed in RAW 264.7 macrophage cell. Antidiabetic and antioxidative peptides were also identified from fermented Gir Cow and camel milks. However, functional fermented dairy products can be developed using these two potent strains in combination for providing better health benefits.
Collapse
Affiliation(s)
- Brijesh Bhuva
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Amar A Sakure
- Departmentof Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Pooja M Mankad
- Department of Veterinary Biotechnology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, Gujarat, India
| | - Krupali Ramanuj
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Anita Rawat
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Ashish Patel
- Department of Animal Genetics and Breeding, College of Veterinary Science, Kamdhenu University, Anand, Gujarat, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| |
Collapse
|
4
|
Huang TY, Yang JJ. Non-targeted metabolomic profile of Leuconostoc mesenteroides-fermented milk reveals differentially expressed metabolites associated with electro-fermentation. Microb Cell Fact 2025; 24:46. [PMID: 39987182 PMCID: PMC11847352 DOI: 10.1186/s12934-025-02673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Leuconostoc mesenteroides (L. mesenteroides) has known as an electrogenic probiotic bacterium. However, metabolites related to electro-fermentation in ferments of L. mesenteroides are not unveiled. RESULT Electrogenic L. mesenteroides fermentatively metabolized bovine milk to dense ferments with homogeneous particle-size distribution. A non-targeted metabolomics approach was performed on non-fermented and L. mesenteroides-fermented milk. A total of 917 metabolites were identified and quantified by ultra-high performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS-MS). Thirteen prokaryotic metabolic pathways associated with differentially expressed metabolites (DEMs) were revealed through Koto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Anthranilic acid (AA) and 3-hydroxyanthranilin acid (3-HAA), potentially as electron donors, and quinolinic acid, an electron donor precursor, in the tryptophan kynurenine pathway were significantly increased in the fermented milk. Histidine, arginine, and riboflavin involved in bacterial survival or bioelectricity production were elevated after fermentation. CONCLUSIONS Results indicate that electrogenic L. mesenteroides can mediate electro-fermentation to transform milk to a new nutritional source which is rich in electron donors reportedly acting as antioxidants.
Collapse
Affiliation(s)
- Tristan Yusho Huang
- Arizona College of Osteopathic Medicine, Midwestern University, Arizona, 85308, USA.
| | - John Jackson Yang
- Department of Medical Biochemistry, Universitas Kristen Indonesia, Jakarta, 13630, Indonesia
| |
Collapse
|
5
|
Tonolo F, Fiorese F, Rilievo G, Grinzato A, Latifidoost Z, Nikdasti A, Cecconello A, Cencini A, Folda A, Arrigoni G, Marin O, Rigobello MP, Magro M, Vianello F. Bioactive peptides from food waste: New innovative bio-nanocomplexes to enhance cellular uptake and biological effects. Food Chem 2025; 463:141326. [PMID: 39316902 DOI: 10.1016/j.foodchem.2024.141326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Mastitis is the most important bovine disease, causing dramatic economic losses to the dairy industry, worldwide. This study explores the valorization of whey from cows affected by mastitis, through a novel separation approach. Surface Active Maghemite Nanoparticles (SAMNs) were used as magnetic baits to selectively bind bioactive peptides with potential health benefits. Advanced techniques such as HPLC and LC-MS/MS highlighted SAMN capability of isolating a restricted group of peptides, drastically diverging from the control profile (Solid Phase Extraction, SPE) and characterized by a peculiar acidic residue distribution. Most importantly, both magnetically purified and nano-immobilized peptides (SAMN@peptides) showed protective activity against oxidative stress and inflammation, when tested on Caco-2 cells; with SAMN@peptides being associated with the strongest biological effect. SAMNs exhibited excellent characteristics, they are environmentally sustainable, and their synthesis is cost-effective prompting at a scalable and selective tool for capturing bioactive peptides, with potential applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Federico Fiorese
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandro Grinzato
- ESRF: European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Zahra Latifidoost
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Ali Nikdasti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
6
|
Folda A, Scalcon V, Tonolo F, Rigobello MP, Bindoli A. Thiamine disulfide derivatives in thiol redox regulation: Role of thioredoxin and glutathione systems. Biofactors 2025; 51:e2121. [PMID: 39302148 DOI: 10.1002/biof.2121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Thiamine (vitamin B1), under the proper conditions, is able to reversibly open the thiazole ring, forming a thiol-bearing molecule that can be further oxidized to the corresponding disulfide. To improve the bioavailability of the vitamin, several derivatives of thiamine in the thioester or disulfide form were developed and extensively studied over time, as apparent from the literature. We have examined three thiamine-derived disulfides: thiamine disulfide, sulbutiamine, and fursultiamine with reference to their intervention in modulating the thiol redox state. First, we observed that both glutathione and thioredoxin (Trx) systems were able to reduce the three disulfides. In particular, thioredoxin reductase (TrxR) reduced these disulfides either directly or in the presence of Trx. In Caco-2 cells, the thiamine disulfide derivatives did not modify the total thiol content, which, however, was significantly decreased by the concomitant inhibition of TrxR. When oxidative stress was induced by tert-butyl hydroperoxide, the thiamine disulfides exerted a protective effect, indicating that the thiol form deriving from the reduction of the disulfides might be the active species. Further, the thiamine disulfides examined were shown to increase the nuclear levels of the transcription factor nuclear factor erythroid 2 related factor 2 and to stimulate both expression and activity of NAD(P)H quinone dehydrogenase 1 and TrxR. However, other enzymes of the glutathione and Trx systems were scarcely affected. As the thiol redox balance plays a critical role in oxidative stress and inflammation, the information presented can be of interest for further research, considering the potential favorable effect exerted in the cell by many sulfur compounds, including the thiamine-derived disulfides.
Collapse
Affiliation(s)
- Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | | | - Alberto Bindoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience (CNR), University of Padova, Padova, Italy
| |
Collapse
|
7
|
Mazloomi N, Safari B, Can Karaca A, Karimzadeh L, Moghadasi S, Ghanbari M, Assadpour E, Sarabandi K, Jafari SM. Loading bioactive peptides within different nanocarriers to enhance their functionality and bioavailability; in vitro and in vivo studies. Adv Colloid Interface Sci 2024; 334:103318. [PMID: 39433020 DOI: 10.1016/j.cis.2024.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
A hydrolyzed protein is a blend of peptides and amino acids which is the result of hydrolysis by enzymes, acids or alkalis. The Bioactive Peptides (BPs) show important biological roles including antioxidant, antimicrobial, anti-diabetic, anti-cancer, and anti-hypertensive effects, as well as positive effects on the immune, nervous, and digestive systems. Despite the benefits of BPs, challenges such as undesired organoleptic properties, solubility profile, chemical instability, and low bioavailability limit their use in functional food formulations and dietary supplements. Nanocarriers have emerged as a promising solution for overcoming these challenges by improving the stability, solubility, resistance to gastric digestion, and bioavailability, allowing for the targeted and controlled delivery, and reduction or masking of the undesirable flavor of BPs. This study reviews the recent scientific accomplishments concerning the loading of BPs into various nanocarriers including lipid, carbohydrate and protein based-nanocarriers. A special emphasis is given to their application in food formulations in accordance to the challenges associated with their use.
Collapse
Affiliation(s)
- Narges Mazloomi
- Department of Nutritional Sciences, School of Health, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Barbod Safari
- School of Literature and Humanities, Kharazmi University, Tehran, Iran
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Laleh Karimzadeh
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Food and Drug Administration, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokufeh Moghadasi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Ghanbari
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Food and Drug Administration, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Assadpour
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Food Industry Research Co., Gorgan, Iran
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
8
|
Nielsen SDH, Liang N, Rathish H, Kim BJ, Lueangsakulthai J, Koh J, Qu Y, Schulz HJ, Dallas DC. Bioactive milk peptides: an updated comprehensive overview and database. Crit Rev Food Sci Nutr 2024; 64:11510-11529. [PMID: 37504497 PMCID: PMC10822030 DOI: 10.1080/10408398.2023.2240396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Partial digestion of milk proteins leads to the formation of numerous bioactive peptides. Previously, our research team thoroughly examined the decades of existing literature on milk bioactive peptides across species to construct the milk bioactive peptide database (MBPDB). Herein, we provide a comprehensive update to the data within the MBPDB and a review of the current state of research for each functional category from in vitro to animal and clinical studies, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, antioxidant, dipeptidyl peptidase (DPP)-IV inhibitory, opioid, anti-inflammatory, immunomodulatory, calcium absorption and bone health and anticancer activity. This information will help drive future research on the bioactivities of milk peptides.
Collapse
Affiliation(s)
| | - Ningjian Liang
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Harith Rathish
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - Bum Jin Kim
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | | | - Jeewon Koh
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Yunyao Qu
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Hans-Jörg Schulz
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - David C. Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
9
|
Scalcon V, Fiorese F, Albanesi M, Folda A, Betti G, Bellamio M, Feller E, Lodovichi C, Arrigoni G, Marin O, Rigobello MP. By-Products Valorization: Peptide Fractions from Milk Permeate Exert Antioxidant Activity in Cellular and In Vivo Models. Antioxidants (Basel) 2024; 13:1221. [PMID: 39456474 PMCID: PMC11504225 DOI: 10.3390/antiox13101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The discarding of agri-food by-products is a stringent problem due to their high environmental impact. Recovery strategies can lead to a reduction of waste and result in new applications. Agri-food waste represents a source of bioactive molecules, which could promote health benefits. The primary goal of this research has been the assessment of the antioxidant activity of milk permeate, a dairy farm by-product, and the isolation and identification of peptide fractions endowed with antioxidant activity. The chromatographic extraction of the peptide fractions was carried out, and the peptides were identified by mass spectrometry. The fractions showed radical scavenging activity in vitro. Moreover, the results in the Caco-2 cell model demonstrated that the peptide fractions were able to protect from oxidative stress by stimulating the Keap1/Nrf2 antioxidant signaling pathway, increasing the transcription of antioxidant enzymes. In addition, the bioactive peptides can affect cellular metabolism, increasing mitochondrial respiration. The action of the peptide fractions was also assessed in vivo on a zebrafish model and resulted in the protection of the whole organism from the adverse effects of acute cold stress, highlighting their strong capability to protect from an oxidative insult. Altogether, the results unveil novel recovery strategies for food by-products as sources of antioxidant bioactive peptides that might be utilized for the development of functional foods.
Collapse
Affiliation(s)
- Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Federico Fiorese
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Marica Albanesi
- Padova Neuroscience Center (PNC), University of Padova, Via Orus 2, 35129 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Via Giuseppe Orus, 2, 35129 Padova, Italy
| | - Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Gianfranco Betti
- Centrale del Latte d’Italia S.p.A., Sede di Firenze, Via dell’Olmatello 20, 50127 Firenze, Italy
| | - Marco Bellamio
- Centrale del Latte d’Italia S.p.A., Sede di Vicenza, Via Faedo 60, 36100 Vicenza, Italy
| | - Emiliano Feller
- Centrale del Latte d’Italia S.p.A., Sede di Vicenza, Via Faedo 60, 36100 Vicenza, Italy
| | - Claudia Lodovichi
- Padova Neuroscience Center (PNC), University of Padova, Via Orus 2, 35129 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Via Giuseppe Orus, 2, 35129 Padova, Italy
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Viale G. Colombo 3, 35121 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| |
Collapse
|
10
|
Sarıtaş S, Portocarrero ACM, Miranda López JM, Lombardo M, Koch W, Raposo A, El-Seedi HR, de Brito Alves JL, Esatbeyoglu T, Karav S, Witkowska AM. The Impact of Fermentation on the Antioxidant Activity of Food Products. Molecules 2024; 29:3941. [PMID: 39203019 PMCID: PMC11357363 DOI: 10.3390/molecules29163941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
From ancient times to the present day, fermentation has been utilized not only for food preservation but also for enhancing the nutritional and functional properties of foods. This process is influenced by numerous factors, including the type of microorganisms used, substrate composition, pH, time, and temperature, all of which can significantly alter the characteristics of the final product. Depending on the parameters, fermentation enhances the bioactive content of the products and imparts the necessary properties, such as antioxidant characteristics, for the products to be considered functional. The enhancement of these properties, particularly antioxidant activity, enriches foods with bioactive compounds and functional attributes, contributing to improved health benefits. Through a review of recent research, this study elucidates how different fermentation processes can enhance the bioavailability and efficacy of antioxidants, thereby improving the nutritional and functional qualities of foods. This study investigated the multifaceted effects of fermentation on antioxidant properties by exploring various types and conditions of fermentation. It highlights specific examples from dairy products and other food categories as well as the valorization of food waste and byproducts. The findings underscore the potential of fermentation as a sustainable method to produce health-promoting foods with elevated antioxidant activities, offering new perspectives for food science and technology.
Collapse
Affiliation(s)
- Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Alicia C. Mondragon Portocarrero
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.C.M.P.); (J.M.M.L.)
| | - Jose M. Miranda López
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.C.M.P.); (J.M.M.L.)
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di 11 Val Cannuta 247, 00166 Rome, Italy;
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Hesham R. El-Seedi
- Chemistry Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia;
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil;
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfired Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
11
|
Wang W, Liang Q, Zhao B, Chen X, Song X. Functional Peptides from Yak Milk Casein: Biological Activities and Structural Characteristics. Int J Mol Sci 2024; 25:9072. [PMID: 39201758 PMCID: PMC11354251 DOI: 10.3390/ijms25169072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The average content of casein in yak milk is 40.2 g/L. Casein can be degraded by enzymatic digestion or food processing to produce abundant degradation peptides. International researchers have studied the degradation peptides of yak milk casein by using multiple techniques and methods, such as in vitro activity tests, cellular experiments, proteomics, bioinformatics, etc., and found that the degradation peptides have a wide range of functional activities that are beneficial to the human body, such as angiotensin-converting enzyme (ACE) inhibitory, antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancer, and immunomodulatory activities, etc., and it has been proved that the types and strengths of functional activities are closely related to the structural characteristics of the peptides. This paper describes the characteristics of yak milk proteins, the functional activities, and mechanism of action of degraded peptides. Based on the types of functional activities of yak milk casein degradation peptides, we classified and elucidated the effects of structural factors, such as peptide molecular weight, peptide length, amino acid sequence, physicochemical properties, electrical charge, hydrophobicity, spatial conformation, chain length, and the type of enzyme on these activities. It reveals the great potential of yak milk casein degradation peptides as functional active peptide resources and as auxiliary treatments for diseases. It also provides important insights for analyzing yak casein degradation peptide activity and exploring high-value utilization.
Collapse
Affiliation(s)
| | - Qi Liang
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (W.W.); (B.Z.); (X.C.); (X.S.)
| | | | | | | |
Collapse
|
12
|
Galland F, de Espindola JS, Sacilotto ES, Almeida LGVC, Morari J, Velloso LA, Dos Santos LD, Rossini BC, Bertoldo Pacheco MT. Digestion of whey peptide induces antioxidant and anti-inflammatory bioactivity on glial cells: Sequences identification and structural activity analysis. Food Res Int 2024; 188:114433. [PMID: 38823827 DOI: 10.1016/j.foodres.2024.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Whey derived peptides have shown potential activity improving brain function in pathological condition. However, there is little information about their mechanism of action on glial cells, which have important immune functions in brain. Astrocytes and microglia are essential in inflammatory and oxidative defense that take place in neurodegenerative disease. In this work we evaluate antioxidant and anti-inflammatory potential bioactivity of whey peptide in glial cells. Peptides were formed during simulated gastrointestinal digestion (Infogest protocol), and low molecular weight (<5kDA) peptides (WPHf) attenuated reactive oxygen species (ROS) production induced by hydrogen peroxide stimulus in both cells in dose-dependent manner. WPHf induced an increase in the antioxidant glutathione (GSH) content and prevented GSH reduction induced by lipopolysaccharides (LPS) stimulus in astrocytes cells in a cell specific form. An increase in cytokine mRNA expression (TNFα and IL6) and nitric oxide secretion induced by LPS was attenuated by WPHf pre-treatment in both cells. The inflammatory pathway was dependent on NFκB activation. Bioactive peptide ranking analysis showed positive correlation with hydrophobicity and negative correlation with high molecular weights. The sequence identification revealed 19 peptides cross-referred with bioactive database. Whey peptides were rich in leucine, valine and tyrosine in the C-terminal region and lysine in the N-terminal region. The anti-inflammatory and antioxidant potential of whey peptides were assessed in glia cells and its mechanisms of action were related, such as modulation of antioxidant enzymes and anti-inflammatory pathways. Features of the peptide structure, such as molecular size, hydrophobicity and types of amino acids present in the terminal region are associated to bioactivity.
Collapse
Affiliation(s)
- Fabiana Galland
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brazil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Juliana Santos de Espindola
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brazil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil
| | - Eduarda Spagnol Sacilotto
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brazil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil
| | - Lilian Gabriely V C Almeida
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brazil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil
| | - Joseane Morari
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Lício Augusto Velloso
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil.
| | | | - Bruno Cesar Rossini
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Maria Teresa Bertoldo Pacheco
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brazil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| |
Collapse
|
13
|
Wu Z, Zhang W, Zhao X, Xu X. Gastrointestinal digestion behavior and bioavailability of greenly prepared highly loaded myofibrillar-luteolin vehicle. Food Res Int 2024; 187:114413. [PMID: 38763665 DOI: 10.1016/j.foodres.2024.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
In this study, the highly loaded myofibrillar protein (MP)-luteolin (Lut) complexes were noncovalently constructed by using green high-pressure homogenization technology (HPH) and high-pressure micro-fluidization technology (HPM), aiming to optimize the encapsulation efficiency of flavonoids in the protein-based vehicle without relying on the organic solvent (i.e. DMSO, ethanol, etc.). The loading efficiency of Lut into MPs could reach 100 % with a concentration of 120 μmol/g protein by using HPH (103 MPa, 2 passes) without ethanol adoption. The in vitro gastrointestinal digestion behavior and antioxidant activity of the complexes were then compared with those of ethanol-assisted groups. During gastrointestinal digestion, the MP digestibility of complexes, reaching more than 70.56 % after thermal treatment, was higher than that of sole protein. The release profile of Lut encapsulated in ethanol-containing and ethanol-free samples both well fitted with the Hixson-Crowell release kinetic model (R2 = 0.92 and 0.94, respectively), and the total phenol content decreased by ≥ 40.02 % and ≥ 62.62 %, respectively. The in vitro antioxidant activity (DPPH, ABTS, and Fe2+) of the digestive products was significantly improved by 23.89 %, 159.69 %, 351.12 % (ethanol groups) and 13.43 %, 125.48 %, 213.95 % (non-ethanol groups). The 3 mg/mL freeze-dried digesta significantly alleviated lipid accumulation and oxidative stress in HepG2 cells. The triglycerides and malondialdehyde contents decreased by at least 57.62 % and 67.74 % after digesta treatment. This study provides an easily approached and environment-friendly strategy to construct a highly loaded protein-flavonoid conjugate, which showed great potential in the formulation of healthier meat products.
Collapse
Affiliation(s)
- Zhenyang Wu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Weiyi Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xue Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China.
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
14
|
Chen P, Huang P, Liang Y, Wang Q, Miao J. The antioxidant peptides from walnut protein hydrolysates and their protective activity against alcoholic injury. Food Funct 2024; 15:5315-5328. [PMID: 38605685 DOI: 10.1039/d4fo00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In this study, walnut protein was hydrolyzed, separated by ultrafiltration, purified by RP-HPLC, identified by LC-MS/MS, and screened by molecular docking to finally obtain three novel antioxidant peptides HGEPGQQQR (1189.584 Da), VAPFPEVFGK (1089.586 Da) and HNVADPQR (949.473 Da). These three peptides exhibited excellent cellular antioxidant activity (CAA) with EC50 values of 0.0120 mg mL-1, 0.0068 mg mL-1, and 0.0069 mg mL-1, respectively, which were superior to that of the positive control GSH (EC50: 0.0122 mg mL-1). In the ethanol injury model, three antioxidant peptides enhanced the survival of cells treated with ethanol from 47.36% to 62.69%, 57.06% and 71.64%, respectively. Molecular docking results showed that the three antioxidant peptides could effectively bind to Keap1, CYP2E1 and TLR4 proteins. These results suggested that walnut-derived antioxidant peptides could be potential antioxidants and hepatoprotective agents for application in functional foods.
Collapse
Affiliation(s)
- Peihang Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Pantian Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yingyan Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qiaoe Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Tonolo F, Coletta S, Fiorese F, Grinzato A, Albanesi M, Folda A, Ferro S, De Mario A, Piazza I, Mammucari C, Arrigoni G, Marin O, Cestonaro G, Nataloni L, Costanzo E, Lodovichi C, Rigobello MP, de Bernard M. Sunflower seed-derived bioactive peptides show antioxidant and anti-inflammatory activity: From in silico simulation to the animal model. Food Chem 2024; 439:138124. [PMID: 38064839 DOI: 10.1016/j.foodchem.2023.138124] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
The evolving field of food technology is increasingly dedicated to developing functional foods. This study explored bioactive peptides from sunflower protein isolate (SPI), obtained from defatted flour, a by-product of the oil processing industry. SPI underwent simulated gastrointestinal digestion and the obtained peptide-enriched fraction (PEF) showed antioxidant properties in vivo, in zebrafish. Among the peptides present in PEF identified by mass spectrometry analysis, we selected those with antioxidant properties by in silico evaluation, considering their capability to interact with Keap1, key protein in the regulation of antioxidant response. The selected peptides were synthesized and evaluated in a cellular model. As a result, DVAMPVPK, VETGVIKPG, TTHTNPPPEAE, LTHPQHQQQGPSTG and PADVTPEEKPEV activated Keap1/Nrf2 pathway leading to Antioxidant Response Element-regulated enzymes upregulation. Since the crosstalk between Nrf2 and NF-κB is well known, the potential anti-inflammatory activity of the peptides was assessed and principally PADVTPEEKPEV showed good features both as antioxidant and anti-inflammatory molecule.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy; Department of Compared Biomedicine and Food Science, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Sara Coletta
- Department of Biology, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Federico Fiorese
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Alessandro Grinzato
- ESRF: European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Marica Albanesi
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy; Padova Neuroscience Center, Università degli Studi di Padova, Padova, Italy
| | - Alessandra Folda
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Stefania Ferro
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Ilaria Piazza
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Cristina Mammucari
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giulia Cestonaro
- Cereal Docks S.p.A. - Research & Innovation Department, Via Innovazione 1, 36043 Camisano Vicentino, VI, Italy
| | - Luigi Nataloni
- Cereal Docks S.p.A, Via Innovazione 1, Camisano Vicentino, VI 36043, Italy
| | - Enrico Costanzo
- Cereal Docks S.p.A. - Research & Innovation Department, Via Innovazione 1, 36043 Camisano Vicentino, VI, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy; Padova Neuroscience Center, Università degli Studi di Padova, Padova, Italy; Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
| | | | | |
Collapse
|
16
|
Mukherjee A, Breselge S, Dimidi E, Marco ML, Cotter PD. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 2024; 21:248-266. [PMID: 38081933 DOI: 10.1038/s41575-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
17
|
Ashok A, Pradeep H, Soundarya HS, Aparna HS. Buffalo colostrum peptide mitigates Parkinson's disease pathophysiology through Cullin-3 inhibition. Bioorg Chem 2024; 145:107242. [PMID: 38428285 DOI: 10.1016/j.bioorg.2024.107242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Colostrum/Milk is a chief repertoire of antioxidant peptides. Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a viable target for Parkinson's Disease (PD), as this pathway deduced to be impaired in PD. Cullin-3 is one of the crucial E3 ligase responsible for its regulation. The present study screened peptide libraries of buffalo colostrum & milk peptides for Cullin-3 inhibition, thus ensuing activation of Nrf2 to alleviate the molecular etiopathology in PD using the C. elegans as a model. The structure was modelled, binding sites analyzed and peptide-interactions analyzed by docking. Among the 55 sequences (≤1 kDa), the peptide SFVSEVPEL having the highest dock score (-16.919) was synthesized and evaluated for its effects on oxidative stress markers, antioxidant enzymes, neurochemical marker and Nrf2/Skn-1 levels. The lead peptide alleviated the oxidative pathophysiology and behavioural deficits associated with PD in C. elegans.
Collapse
Affiliation(s)
- Arpitha Ashok
- DOS in Biotechnology, University of Mysore, Mysuru, Karnataka, India.
| | - H Pradeep
- DOS in Biotechnology, University of Mysore, Mysuru, Karnataka, India.
| | - H S Soundarya
- DOS in Biotechnology, University of Mysore, Mysuru, Karnataka, India.
| | - H S Aparna
- DOS in Biotechnology, University of Mysore, Mysuru, Karnataka, India.
| |
Collapse
|
18
|
Banić M, Butorac K, Čuljak N, Butorac A, Novak J, Pavunc AL, Rušanac A, Stanečić Ž, Lovrić M, Šušković J, Kos B. An Integrated Comprehensive Peptidomics and In Silico Analysis of Bioactive Peptide-Rich Milk Fermented by Three Autochthonous Cocci Strains. Int J Mol Sci 2024; 25:2431. [PMID: 38397111 PMCID: PMC10888711 DOI: 10.3390/ijms25042431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Bioactive peptides (BPs) are molecules of paramount importance with great potential for the development of functional foods, nutraceuticals or therapeutics for the prevention or treatment of various diseases. A functional BP-rich dairy product was produced by lyophilisation of bovine milk fermented by the autochthonous strains Lactococcus lactis subsp. lactis ZGBP5-51, Enterococcus faecium ZGBP5-52 and Enterococcus faecalis ZGBP5-53 isolated from the same artisanal fresh cheese. The efficiency of the proteolytic system of the implemented strains in the production of BPs was confirmed by a combined high-throughput mass spectrometry (MS)-based peptidome profiling and an in silico approach. First, peptides released by microbial fermentation were identified via a non-targeted peptide analysis (NTA) comprising reversed-phase nano-liquid chromatography (RP nano-LC) coupled with matrix-assisted laser desorption/ionisation-time-of-flight/time-of-flight (MALDI-TOF/TOF) MS, and then quantified by targeted peptide analysis (TA) involving RP ultrahigh-performance LC (RP-UHPLC) coupled with triple-quadrupole MS (QQQ-MS). A combined database and literature search revealed that 10 of the 25 peptides identified in this work have bioactive properties described in the literature. Finally, by combining the output of MS-based peptidome profiling with in silico bioactivity prediction tools, three peptides (75QFLPYPYYAKPA86, 40VAPFPEVFGK49, 117ARHPHPHLSF126), whose bioactive properties have not been previously reported in the literature, were identified as potential BP candidates.
Collapse
Affiliation(s)
- Martina Banić
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Katarina Butorac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Nina Čuljak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Ana Butorac
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (Ž.S.); (M.L.)
| | - Jasna Novak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Andreja Leboš Pavunc
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Anamarija Rušanac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Željka Stanečić
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (Ž.S.); (M.L.)
| | - Marija Lovrić
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (Ž.S.); (M.L.)
| | - Jagoda Šušković
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Blaženka Kos
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| |
Collapse
|
19
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
20
|
Balthazar CF, Teixeira S, Bertolo MRV, Silva R, Bogusz Junior S, Cruz AG, Sant'Ana AS. Bioactivity and volatile compound evaluation in sheep milk processed by ohmic heating. J Dairy Sci 2024; 107:155-168. [PMID: 37709020 DOI: 10.3168/jds.2023-23865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Ohmic heating may improve bioactive compounds and processing, ensuring food safety of beverages, liquid and pasty food, or liquid with solid pieces. Due to those traits, this study conducted a comparison between ohmic heating technology and conventional heating (CH), with a focus on assessing the impact of both methods on functional compounds (such as angiotensin-converting enzyme inhibition, α-amylase and α-glucosidase inhibition, and antioxidant activity) in both fresh and thawed raw sheep milk, which had been frozen for up to 3 mo. Different ohmic heating conditions were applied and compared to CH (3.33-8.33 V/cm vs. CH [73°C/15 s]). A total of 18 peptides with some functional activities were identified by MALDI-TOF mass spectrometry analysis. Ohmic heating samples presented the highest activities related to health, followed by CH and raw milk samples; antioxidant activity range was from 0.11% to 0.71%, antihypertensive activity ranged from 0.20% to 0.72%, and antidiabetic activity ranged from 0.21% to 0.79%. Of 51 volatile compounds detected, some were degraded by freezing, storing, and heating the sheep milk. This study showed for the first time that ohmic heating processing improved sheep milk bioactive peptides and preserved volatile compounds.
Collapse
Affiliation(s)
- Celso F Balthazar
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil.
| | - Sinara Teixeira
- São Carlos Institute of Chemistry, São Paulo University, 13563-120, São Carlos, SP, Brazil
| | - Mirella R V Bertolo
- São Carlos Institute of Chemistry, São Paulo University, 13563-120, São Carlos, SP, Brazil
| | - Ramon Silva
- Department of Food Technology, Federal Institute of Rio de Janeiro (IFRJ), 21941-902, Rio de Janeiro, RJ, Brazil; Department of Veterinary Hygiene and Technological Processing of Animal Products, Veterinary School, Federal Fluminense University, 24230-321, Niterói, RJ, Brazil
| | | | - Adriano G Cruz
- Department of Food Technology, Federal Institute of Rio de Janeiro (IFRJ), 21941-902, Rio de Janeiro, RJ, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
21
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023; 65:1433-1464. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
22
|
Liang R, Xu L, Fan C, Cao L, Guo X. Structural Characteristics and Antioxidant Mechanism of Donkey-Hide Gelatin Peptides by Molecular Dynamics Simulation. Molecules 2023; 28:7975. [PMID: 38138465 PMCID: PMC10745372 DOI: 10.3390/molecules28247975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to explore the structural characteristics and antioxidant mechanism of donkey-hide gelatin peptides. After hydrolysis and ultrafiltration treatment, five gelatin peptides with different molecular weights (MWs) were obtained. Amino acid analysis showed that gelatin peptides with different MWs contained a large number of amino acids, including G, P, E, N, A, and R, and differences were noted in the content of various amino acids. Fourier transform infrared spectroscopy and circular dichroism revealed that these gelatin peptides differed in terms of the peak strength of functional groups and number of secondary structures. Moreover, 26 pentapeptides/hexapeptides were identified. Among them, we investigated by molecular docking how PGPAP, which has the best antioxidant activity, may interact with the Keap1 protein. The results showed that the PGPAP-Keap1 complex had a stable conformation, and Arg415, Gly462, Phe478, and Tyr572 were the key residues involved in the binding of the peptide PGPAP to Keap1. Our results demonstrated that PGPAP could serve as a bioactive peptide with antioxidant activity.
Collapse
Affiliation(s)
| | | | | | | | - Xingfeng Guo
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252059, China; (R.L.); (L.X.); (C.F.); (L.C.)
| |
Collapse
|
23
|
de Espindola JS, Ferreira Taccóla M, da Silva VSN, Dos Santos LD, Rossini BC, Mendonça BC, Pacheco MTB, Galland F. Digestion-resistant whey peptides promote antioxidant effect on Caco-2 cells. Food Res Int 2023; 173:113291. [PMID: 37803604 DOI: 10.1016/j.foodres.2023.113291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
Enteric endothelial cells are the first structure to come in contact with digested food and may suffer oxidative damage by innumerous exogenous factors. Although peptides derived from whey digestion have presented antioxidant potential, little is known regarding antioxidant pathways activation in Caco-2 cell line model. Hence, we evaluated the ability to form whey peptides resistant to simulated gastrointestinal digestive processes, with potential antioxidant activity on gastrointestinal cells and associated with sequence structure and activity. Using the INFOGEST method of simulated static digestion, we achieved 35.2% proteolysis, with formation of peptides of low molecular mass (<600 Da) evaluated by FPLC. The digestion-resistant peptides showed a high proportion of hydrophobic and acidic amino acids, but with average surface hydrophobicity. We identified 24 peptide sequences, mainly originated from β-lactoglobulin, that exhibit various bioactivities. Structurally, the sequenced peptides predominantly contained the amino acids lysine and valine in the N-terminal region, and tyrosine in the C-terminal region, which are known to exhibit antioxidant properties. The antioxidant activity of the peptide digests was on average twice as potent as that of the protein isolates for the same concentration, as evaluated by ABTS, DPPH and ORAC. Evaluation of biological activity in Caco-2 intestinal cells, stimulated with hydrogen peroxide, showed that they attenuated the production of reactive oxygen species and prevented GSH reduction and SOD activity increase. Caco-2 cells were not responsive to nitric oxide secretion. This study suggests that whey peptides formed during gastric digestion exhibit biological antioxidant activity, without the need for previously hydrolysis with exogenous enzymes for supplement application. The study's primary contribution was demonstrating the antioxidant activity of whey peptides in maintaining the gastrointestinal epithelial cells, potentially preventing oxidative stress that affects the digestive system.
Collapse
Affiliation(s)
- Juliana Santos de Espindola
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Milena Ferreira Taccóla
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Vera Sônia Nunes da Silva
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | | | - Bruno Cesar Rossini
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Bruna Cavecci Mendonça
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Maria Teresa Bertoldo Pacheco
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Fabiana Galland
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| |
Collapse
|
24
|
Bankole AO, Irondi EA, Awoyale W, Ajani EO. Application of natural and modified additives in yogurt formulation: types, production, and rheological and nutraceutical benefits. Front Nutr 2023; 10:1257439. [PMID: 38024362 PMCID: PMC10646222 DOI: 10.3389/fnut.2023.1257439] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Yogurt, a popular fermented dairy product, is of different types and known for its nutritional and nutraceutical benefits. However, incorporating additives into yogurt has been adopted to improve its functionality and nutraceutical properties. Additives incorporated in yogurt may be natural or modified. The incorporation of diverse natural additives in yogurt formulation, such as moringa, date palm, grape seeds and argel leaf extracts, cornelian cherry paste, mulberry fruit and leaf powder, lentil flour, different types of fibers, lemongrass and spearmint essential oils, and honey, has been reported. Similarly, modified additives, such as β-glucan, pectin, inulin, sodium alginate, and gelatin, are also added to enhance the physicochemical, textural, sensory, and rheological properties of yogurt. Although additives are traditionally added for their technological impact on the yogurt, studies have shown that they influence the nutritional and nutraceutical properties of yogurt, when added. Hence, yogurts enriched with functional additives, especially natural additives, have been reported to possess an improved nutritional quality and impart several health benefits to consumers. These benefits include reducing the risk of cardiovascular disease, cancer, osteoporosis, oxidative stress, and hyperglycemia. This current review highlights the common types of yogurt, the production process, and the rheological and nutraceutical benefits of incorporating natural and modified additives into yogurt.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | |
Collapse
|
25
|
Moguel-Concha DDR, Borges-Martínez JE, Cid-Gallegos MS, Juárez-Chairez MF, Gómez-Gómez AL, Téllez-Medina DI, Jiménez-Martínez C. Antioxidant and Renin Inhibitory Activities of Peptides from Food Proteins on Hypertension: A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:493-505. [PMID: 37578677 DOI: 10.1007/s11130-023-01085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Hypertension is a condition induced by oxidative stress causing an alteration in the endothelium, which increases the risk of suffering from other degenerative diseases. This review compiles the findings on peptides from food proteins with antioxidant and antihypertensive activities. Antihypertensive peptides are mainly focused on renin inhibition. Peptides containing hydrophobic amino acids have antioxidant and renin inhibitory activities, as reported by studies on the biological activity of peptides from various food sources evaluated separately and simultaneously. Peptides from food sources can present multiple biological activities. Moreover, antioxidant peptides have the potential to be evaluated against renin, offering an alternative for hypertension therapy without causing adverse side effects.
Collapse
Affiliation(s)
- Deyanira Del Rosario Moguel-Concha
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, CDMX, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo A. Madero, C.P. 07738, Coahuila, México
| | - José Eduardo Borges-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, CDMX, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo A. Madero, C.P. 07738, Coahuila, México
| | - María Stephanie Cid-Gallegos
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Delegación Gustavo A. Madero, CDMX, Av. Acueducto. La Laguna Ticomán, C.P. 07340, Coahuila, México
| | - Milagros Faridy Juárez-Chairez
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Calzada de la Revolución Mexicana S/N, La Fe. C.P. 98615, Guadalupe, Zacatecas, México
| | - Ana Luisa Gómez-Gómez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, CDMX, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo A. Madero, C.P. 07738, Coahuila, México
| | - Darío Iker Téllez-Medina
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, CDMX, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo A. Madero, C.P. 07738, Coahuila, México
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, CDMX, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo A. Madero, C.P. 07738, Coahuila, México.
| |
Collapse
|
26
|
He XN, Wu P, Jiang WD, Liu Y, Kuang SY, Tang L, Ren HM, Li H, Feng L, Zhou XQ. Aflatoxin B1 exposure induced developmental toxicity and inhibited muscle development in zebrafish embryos and larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163170. [PMID: 37003331 DOI: 10.1016/j.scitotenv.2023.163170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/02/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
The prevalence of aflatoxin B1 (AFB1), one of the most toxic mycotoxins that contaminates feedstock and food is increasing worldwide. AFB1 can cause various health problems in humans and animals, as well as direct embryotoxicity. However, the direct toxicity of AFB1 on embryonic development, especially foetal foetus muscle development, has not been studied in depth. In the present study, we used zebrafish embryos as a model to study the mechanism of the direct toxicity of AFB1 to the foetus, including muscle development and developmental toxicity. Our results showed that AFB1 caused motor dysfunction in zebrafish embryos. In addition, AFB1 induces abnormalities in muscle tissue architecture, which in turn causes abnormal muscle development in larvae. Further studies found that AFB1 destroyed the antioxidant capacity and tight junction complexes (TJs), causing apoptosis in zebrafish larvae. In summary, AFB1 may induce developmental toxicity and inhibit muscle development through oxidative damage, apoptosis and disruption of TJs in zebrafish larvae. Our results revealed the direct toxicity effects of AFB1 on the development of embryos and larvae, including inhibition of muscle development and triggering neurotoxicity, induction of oxidative damage, apoptosis and disruption of TJs, and fills the gap in the toxicity mechanism of AFB1 on foetal development.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| |
Collapse
|
27
|
Vitale GA, Scarpato S, Mangoni A, D'Auria MV, Della Sala G, de Pascale D. Enhanced Molecular Networking Shows Microbacterium sp. V1 as a Factory of Antioxidant Proline-Rich Peptides. Mar Drugs 2023; 21:md21040256. [PMID: 37103395 PMCID: PMC10146280 DOI: 10.3390/md21040256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
Two linear proline-rich peptides (1-2), bearing an N-terminal pyroglutamate, were isolated from the marine bacterium Microbacterium sp. V1, associated with the marine sponge Petrosia ficiformis, collected in the volcanic CO2 vents in Ischia Island (South Italy). Peptide production was triggered at low temperature following the one strain many compounds (OSMAC) method. Both peptides were detected together with other peptides (3-8) via an integrated, untargeted MS/MS-based molecular networking and cheminformatic approach. The planar structure of the peptides was determined by extensive 1D and 2D NMR and HR-MS analysis, and the stereochemistry of the aminoacyl residues was inferred by Marfey's analysis. Peptides 1-8 are likely to arise from Microbacterium V1 tailor-made proteolysis of tryptone. Peptides 1 and 2 were shown to display antioxidant properties in the ferric-reducing antioxidant power (FRAP) assay.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, Molosiglio, 80133 Naples, Italy
| | - Silvia Scarpato
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Alfonso Mangoni
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | | | - Gerardo Della Sala
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, Molosiglio, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, Molosiglio, 80133 Naples, Italy
| |
Collapse
|
28
|
Piao M, Tu Y, Zhang N, Diao Q, Bi Y. Advances in the Application of Phytogenic Extracts as Antioxidants and Their Potential Mechanisms in Ruminants. Antioxidants (Basel) 2023; 12:antiox12040879. [PMID: 37107254 PMCID: PMC10135197 DOI: 10.3390/antiox12040879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Under current breeding conditions, multiple stressors are important challenges facing animal husbandry in achieving animal wellbeing. For many years, the use of antibiotics has been a social concern in the livestock industry. With the implementation of the non-antibiotics policy, there is an urgent need to find relevant technologies and products to replace antibiotics and to solve the problem of disease prevention during animal growth. Phytogenic extracts have the unique advantages of being natural and extensive sources, having a low residue, and being pollution-free and renewable. They can relieve the various stresses, including oxidative stress, on animals and even control their inflammation by regulating the signaling pathways of proinflammatory cytokines, improving animal immunity, and improving the structure of microorganisms in the gastrointestinal tract, thereby becoming the priority choice for improving animal health. In this study, we reviewed the types of antioxidants commonly used in the livestock industry and their applicable effects on ruminants, as well as the recent research progress on their potential mechanisms of action. This review may provide a reference for further research and for the application of other phytogenic extracts and the elucidation of their precise mechanisms of action.
Collapse
Affiliation(s)
- Minyu Piao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
29
|
Chioma Mgbodile F, Nwagu TNT. Probiotic therapy, African fermented foods and food-derived bioactive peptides in the management of SARS-CoV-2 cases and other viral infections. BIOTECHNOLOGY REPORTS 2023; 38:e00795. [PMID: 37041970 PMCID: PMC10066861 DOI: 10.1016/j.btre.2023.e00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The current paper focuses on the impact of probiotics, African fermented foods and bioactive peptides on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection severity and related viral infections. Using probiotics or bioactive peptides as therapeutic adjuncts appears superior to standard care alone. Probiotics play critical roles in innate and adaptive immune modulation by balancing the gut microbiota to combat viral infections, secondary bacterial infections and microbial dysbiosis. African fermented foods contain abundant potential probiotic microorganisms such as the lactic acid bacteria (LAB), Saccharomyces, and Bacillus. More so, fermented food-derived bioactive peptides play vital roles in preventing cardiovascular diseases, hypertension, lung injury, diabetes, and other COVID-19 comorbidities. Regularly incorporating potential probiotics and bioactive peptides into diets should enable a build-up of the benefits in the body system that may result in a better prognosis, especially in COVID-19 patients with underlying complexities. Despite the reported therapeutic potentials of probiotics and fermented foods, numerous setbacks exist regarding their application in disease management. These shortfalls underscore an evident need for more studies to evaluate the specific potentials of probiotics and traditional fermented foods in ameliorating SARS-CoV-2 and other viral infections.
Collapse
|
30
|
Ma Y, Xu J, Guo R, Teng G, Chen Y, Xu X. In vitro gastrointestinal model for the elderly: Effect of high hydrostatic pressure on protein structures and antioxidant activities of whey protein isolate. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Impact of Spontaneous Fermentation and Inoculum with Natural Whey Starter on Peptidomic Profile and Biological Activities of Cheese Whey: A Comparative Study. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Fermentation is a promising solution to valorize cheese whey, the main by-product of the dairy industry. In Parmigiano Reggiano cheese production, natural whey starter (NWS), an undefined community of thermophilic lactic acid bacteria, is obtained from the previous day residual whey through incubation at gradually decreasing temperature after curd cooking. The aim of this study was to investigate the effect of fermentation regime (spontaneous (S) and NWS-inoculated (I-NWS)) on biofunctionalities and release of bioactive peptides during whey fermentation. In S and I-NWS trials proteolysis reached a peak after 24 h, which corresponded to the drop out in pH and the maximum increase in lactic acid. Biological activities increased as a function of fermentation time. NWS inoculum positively affected antioxidant activity, whilst S overcame I-NWS in angiotensin-converting enzyme (ACE) and DPP-IV (dipeptidyl peptidase IV) inhibitory activities. Peptidomics revealed more than 400 peptides, mainly derived from β-casein, κ-casein, and α-lactalbumin. Among them, 49 were bioactive and 21 were ACE-inhibitors. Semi-quantitative analysis strongly correlated ACE-inhibitory activity with the sum of the peptide abundance of ACE-inhibitory peptides. In both samples, lactotripeptide isoleucine-proline-proline (IPP) was higher than valine-proline-proline (VPP), with the highest content in S after 24 h of fermentation. In conclusion, we demonstrated the ability of whey endogenous microbiota and NWS to extensively hydrolyze whey proteins, promoting the release of bioactive peptides and improving protein digestibility.
Collapse
|
32
|
Tonolo F, Grinzato A, Bindoli A, Rigobello MP. From In Silico to a Cellular Model: Molecular Docking Approach to Evaluate Antioxidant Bioactive Peptides. Antioxidants (Basel) 2023; 12:antiox12030665. [PMID: 36978913 PMCID: PMC10045749 DOI: 10.3390/antiox12030665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The increasing need to counteract the redox imbalance in chronic diseases leads to focusing research on compounds with antioxidant activity. Among natural molecules with health-promoting effects on many body functions, bioactive peptides are gaining interest. They are protein fragments of 2–20 amino acids that can be released by various mechanisms, such as gastrointestinal digestion, food processing and microbial fermentation. Recent studies report the effects of bioactive peptides in the cellular environment, and there is evidence that these compounds can exert their action by modulating specific pathways. This review focuses on the newest approaches to the structure–function correlation of the antioxidant bioactive peptides, considering their molecular mechanism, by evaluating the activation of specific signaling pathways that are linked to antioxidant systems. The correlation between the results of in silico molecular docking analysis and the effects in a cellular model was highlighted. This knowledge is fundamental in order to propose the use of bioactive peptides as ingredients in functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università, 35020 Padova, Italy
| | - Alessandro Grinzato
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Alberto Bindoli
- Institute of Neuroscience (CNR), Viale G. Colombo 3, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
33
|
Kariyawasam KMGMM, Lee NK, Paik HD. Effect of set-type yoghurt supplemented with the novel probiotic Lantiplantibacillus plantarum 200655 on physicochemical properties and the modulation of oxidative stress-induced damage. Food Sci Biotechnol 2023; 32:353-360. [PMID: 36778087 PMCID: PMC9905316 DOI: 10.1007/s10068-022-01201-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
The present study developed a functional yoghurt supplemented with Lantiplantibacillus plantarum 200655 and evaluated its physicochemical properties and antioxidant activities. Yoghurt samples were prepared using commercial starter cultures and probiotics and grouped as follows: control sample without probiotics (C), GG (supplemented with Lacticaseibacillus rhamnosus GG), R (supplemented with L. plantarum KCTC 3108), and S (supplemented with L. plantarum 200655). The GG, R, and S samples had shorter fermentation time compared with the C sample. Lactic acid bacteria count, pH, and titratable acidity were similar in all samples during refrigerated storage. However, the GG, R, and S samples showed increased viscosity and water holding capacity (WHC), and decreased syneresis. The S sample had no adverse effect on organoleptic properties. Furthermore, the S sample had the highest antioxidant activity and significantly inhibited LPS-induced oxidative stress in intestinal cells. These findings suggest the potential use of L. plantarum 200655 in dairy products with therapeutic benefits.
Collapse
Affiliation(s)
- Kariyawasam Majuwana Gamage Menaka Menike Kariyawasam
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 South Korea
- Department of Biosystems Technology, Faculty of Technological Studies, Uva Wellassa University, Badulla, 90000 Sri Lanka
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 South Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 South Korea
| |
Collapse
|
34
|
Bioactive peptides derived from fermented foods: Preparation and biological activities. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
35
|
Jiang Y, Qi Y, Liu X, Fang L, Gao Y, Liu C, Wu D, Wang X, Zhao F, Wang J, Min W. Neuroprotective effects of fermented yak milk-derived peptide LYLKPR on H 2O 2-injured HT-22 cells. Food Funct 2022; 13:12021-12038. [PMID: 36300510 DOI: 10.1039/d2fo02131e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This study explored the neuroprotective effect of the peptide LYLKPR derived from fermented yak milk by Lactiplantibacillus plantarum JLAU103 on H2O2-injured HT-22 cells. Peptide LYLKPR showed good stability in the simulated gastrointestinal tract and strong penetrating ability of the blood-brain barrier (BBB) in vitro. LYLKPR could activate the Nrf2/Keap-1/HO-1 pathway, increase the activities of SOD and CAT, and reduce the levels of ROS and MDA in HT-22 cells. In addition, LYLKPR controlled the activation of the NLRP3 inflammasome by inhibiting the oxidative stress, ultimately preventing the cleavage of pro-IL-18 and pro-IL-1β by caspase-1, and reducing the level of intracellular mature IL-18 by 29.08%. Based on the molecular docking verification, LYLKPR could effectively bind to the Keap-1 protein, and directly inhibit the inflammasome to significantly increase intracellular BDNF, synaptophysin, and PSD95, and protect synaptic function. Collectively, LYLKPR ameliorated oxidative stress-mediated neuronal injury by inhibiting the NLRP3 inflammasome via modulation of the Nrf2/Keap-1/HO-1 pathway.
Collapse
Affiliation(s)
- Yunlong Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, P. R. China.
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, 130118, Jilin, P. R. China
| | - Yuan Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, P. R. China.
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, 130118, Jilin, P. R. China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, P. R. China.
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, 130118, Jilin, P. R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, P. R. China.
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, 130118, Jilin, P. R. China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, P. R. China.
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, 130118, Jilin, P. R. China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, P. R. China.
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, 130118, Jilin, P. R. China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, P. R. China.
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, 130118, Jilin, P. R. China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, P. R. China.
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, 130118, Jilin, P. R. China
| | - Fanrui Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, P. R. China.
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, 130118, Jilin, P. R. China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, P. R. China.
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, 130118, Jilin, P. R. China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, P. R. China.
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, 130118, Jilin, P. R. China
| |
Collapse
|
36
|
Chopada K, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Solanki D, Singh BP, Padhi S, Rai AK, Liu Z, Mishra BK, Hati S. Purification and Characterization of Novel Antihypertensive and Antioxidative Peptides From Whey Protein Fermentate: In Vitro, In Silico, and Molecular Interactions Studies. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022:1-20. [PMID: 36416542 DOI: 10.1080/27697061.2022.2110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The goal of this research was to purify and characterize the novel angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides from fermented whey protein concentrate produced by Lactobacillus paracasei and Saccharomyces cerevisiae in a co-fermentation system. METHOD Whey protein fermented with lactic acid bacteria and yeast culture was analyzed for antioxidative, ACE inhibition, as well as anti-inflammatory activity followed by SDS-PAGE, isoelectric focusing, and 2-dimensional (2D) analysis. Anti-inflammatory activity of whey protein fermentate was also studied on the RAW 264.7 cell line. The bioactive peptides were separated from the whey protein fermentate using reverse-phase high-performance liquid chromatography (RP-HPLC) and reverse-phase liquid chromatography mass spectrometry (RPLC/MS), and thus identification and characterization of purified bioactive peptide was performed. RESULTS Whey protein fermentate samples' bioactivity was analyzed at specific time intervals at 12, 24, 36, and 48 hours at 37 °C for M11 and at 25 °C for WBS2A. The development settings (incubation time [12, 24, 36, and 48 hours) and inoculation rates [1.5%, 2.0%, and 2.5%]) were optimized for peptide synthesis via the o-phthaldialdehyde (OPA) method (proteolytic activity). Maximum proteolytic activity was observed at 37 °C for M11 (6.50 mg/mL) and at 25 °C for WBS2A (8.59 mg/mL) for 48 hours of incubation. Protein profiling was carried out using SDS-PAGE and 2D gel electrophoresis, in which Sodium dodecyl-sulfate (SDS) exhibited protein bands in the 10- to 55-kDa range, while 2D showed protein bands varying from 10 to 70 kDa. Every spot from 2D was digested by trypsin and identified by RPLC/MS. Protein fractionations (3- and 10-kDa permeates) were carried out employing RP-HPLC. Whey protein fermentate has anti-inflammatory action in RAW 264.7 macrophages that have been exposed to lipopolysaccharide. A molecular docking system was also used to investigate the interactions of peptides (AFLDSRTR, ILGAFIQIITFR) with human myeloperoxidase enzyme. CONCLUSIONS The antihypertensive and antioxidative peptides discovered from whey protein fermentate may be helpful in the design of pharmacologically active healthy ingredients in the upcoming years.
Collapse
Affiliation(s)
- Keval Chopada
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Gandhinagar, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Divyang Solanki
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - B P Singh
- Department of Microbiology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - B K Mishra
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Gandhinagar, Gujarat, India
| |
Collapse
|
37
|
Xu J, Chen Y, Fan X, Shi Z, Liu M, Zeng X, Wu Z, Pan D. Isolation, identification, and characterization of corn-derived antioxidant peptides from corn fermented milk by Limosilactobacillus fermentum. Front Nutr 2022; 9:1041655. [PMID: 36438739 PMCID: PMC9681995 DOI: 10.3389/fnut.2022.1041655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Dairy-derived peptides and corn-derived peptides have been identified as essential ingredients for health promotion in the food industry. The hydrolysis based on lactic acid bacteria (LAB) protease system is one of the most popular methods to prepare bioactive peptides. The objectives of this paper are to develop antioxidant fermented milk and to obtain natural antioxidant peptides. In our study, LAB with antioxidant capacity were screened in vitro, and the corn fermented milk with antioxidant capacity was achieved by the traditional fermentation method. Fermented milk was purified by ultrafiltration and molecular sieve, and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our findings demonstrate that Limosilactobacillus fermentum L15 had a scavenging capacity of more than 80% of DPPH radicals, Trolox equivalent antioxidant capacity (TEAC) of 0.348 ± 0.005 mmol/L. Meanwhile, the peptide content of corn fermented milk prepared with L. fermentum L15 was 0.914 ± 0.009 mg/mL and TAEC of 0.781 ± 0.020 mmol/L. Particularly important, IGGIGTVPVGR and LTTVTPGSR isolated and extracted from fermented milk were found to have antioxidant capacity for the first time. The synthetic peptides IGGIGTVPVGR and LTTVTPGSR demonstrated a scavenging capacity of 70.07 ± 2.71% and 70.07 ± 2.77% for DPPH radicals and an antioxidant capacity of 0.62 ± 0.01 mmol/L and 0.64 ± 0.02 mmol/L Trolox equivalent, respectively. This research provides ideas and basis for the development and utilization of functional dairy products.
Collapse
Affiliation(s)
- Jue Xu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yingyan Chen
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiankang Fan
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Zihang Shi
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Mingzhen Liu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- *Correspondence: Daodong Pan
| |
Collapse
|
38
|
Ashokbhai JK, Basaiawmoit B, Sakure A, Das S, Patil GB, Mankad M, Hati S. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4262-4272. [PMID: 36193483 PMCID: PMC9525493 DOI: 10.1007/s13197-022-05493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
This study aims to identify antioxidant and antimicrobial peptides from sheep milk produced using Lactobacillus plantarum (KGL3A). It was inferred that antioxidative and antimicrobial activities increased with increasing incubation time, and antioxidative properties (ABTS assay, superoxide free radical & hydroxyl free radical scavenging activity were 34.5, 34.7, and 29.2% respectively) and antimicrobial properties against Escherichia coli, S. typhimurium, E. faecalis, & B. cereus were 11.3, 12.7, 13.3, & 12.3 mm. However, inoculation of culture at a level of 2.5% and 48 h fermentation give the highest proteolysis activities. Fermented sheep milk fractions of 3 & 10 kDa were analysed for antioxidative and antimicrobial activity, and the 10 kDa permeate showed the highest ABTS assay. The hydroxyl free radical scavenging activity was greatest in 10 kDa retentate and superoxide free radical scavenging activity was observed in 3 kDa permeate (34.7, 43.4, and 34.6%, respectively). Antimicrobial activity of 10 kDa retentate against B. cereus & E. coli (13.3 mm) was greater than 3 and 10 kDa retentate against S. typhimurium (13 mm) and 3 kDa retentate against E. faecalis (13.7 mm). The molecular weight of the protein was estimated using SDS-PAGE. On electrophoresis on a 2-D gel, 6 peptides were identified using RP-LC/MS. BIOPEP, a database for antioxidative and antimicrobial peptides, validated the antioxidative & antimicrobial activities of several peptides in sheep's milk that has been fermented. Sheep milk fermented using Lactobacillus could be considered a novel source of antioxidative and antimicrobial proteins. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05493-2.
Collapse
Affiliation(s)
- Jodhani Keyur Ashokbhai
- Department of Dairy Microbiology, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura campus, Tura, 794002 Meghalaya India
| | - Amar Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Sujit Das
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura campus, Tura, 794002 Meghalaya India
| | - G. B. Patil
- Department of Tissue Culture, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Maunil Mankad
- Department of Tissue Culture, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Subrota Hati
- Department of Dairy Microbiology, Anand Agricultural University, Anand, 388110 Gujarat India
| |
Collapse
|
39
|
Okagu IU, Udenigwe CC. Transepithelial transport and cellular mechanisms of food-derived antioxidant peptides. Heliyon 2022; 8:e10861. [PMID: 36217466 PMCID: PMC9547200 DOI: 10.1016/j.heliyon.2022.e10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the involvement of oxidative stress in the etiology of many non-communicable diseases, food-derived antioxidant peptides (FDAPs) are strong candidates for nutraceutical development for disease prevention and management. This paper reviews current evidence on the transepithelial transport and cellular mechanisms of antioxidant activities of FDAPs. Several FDAPs have multiple health benefits such as anti-inflammatory and anti-photoaging activities, in addition to antioxidant properties through which they protect cellular components from oxidative damage. Some FDAPs have been shown to permeate the intestinal epithelium, which could facilitate their bioavailability and physiological bioactivities. Molecular mechanisms of FDAPs include suppression of oxidative stress as evidenced by reduction in intracellular reactive oxygen species production, lipid peroxidation and apoptotic protein activation as well as increase in antioxidant defense mechanisms (enzymatic and non-enzymatic). Since many FDAPs have demonstrated promising antioxidant activity, future investigation should focus on further elucidation of molecular mechanisms and human studies to explore their practical application for the prevention and management of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
40
|
Peptides, Exopolysaccharides, and Short-Chain Fatty Acids from Fermented Milk and Perspectives on Inflammatory Bowel Diseases. Dig Dis Sci 2022; 67:4654-4665. [PMID: 35133532 DOI: 10.1007/s10620-022-07382-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
Crohn's disease and ulcerative colitis are characterized by chronic inflammatory processes and an imbalanced immune response along the gastrointestinal (GI) tract. Pharmacological treatments have been widely used, although their long-term application has adverse side effects. On the other hand, milks fermented with specific lactic acid bacteria (LAB) have been shown to be useful as alternative or complementary aids. Many metabolites such as peptides, exopolysaccharides, and short-chain fatty acids are produced during milk fermentation. These components have been shown to change the pH of the gastrointestinal lumen, aid intestine mucosal recovery, modulate the microbiota, and reduce the inflammatory response (innate and adaptive immune system), both in vitro and in vivo. Therefore, the objective of the present review is to describe how these bioactive compounds from fermented milk by specific LAB can decrease the deleterious symptoms of inflammatory bowel disease.
Collapse
|
41
|
Fathy HM, Abd El-Maksoud AA, Cheng W, Elshaghabee FMF. Value-Added Utilization of Citrus Peels in Improving Functional Properties and Probiotic Viability of Acidophilus-bifidus-thermophilus (ABT)-Type Synbiotic Yoghurt during Cold Storage. Foods 2022; 11:foods11172677. [PMID: 36076870 PMCID: PMC9455927 DOI: 10.3390/foods11172677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Citrus peel, a fruit-processing waste, is a substantial source of naturally occurring health-promoting compounds, including polyphenols, and has great potential as a dietary supplement for enhancing the functional properties of food. The present work aimed to investigate the effects of sour orange (SO), sweet orange (SWO), and lemon (LO) peels on the typical physiochemical, antioxidant, antibacterial, and probiotic properties of synbiotic yoghurt fermented by acidophilus-bifidus-thermophilus (ABT)-type cultures during cold storage (0−28 days). High-performance liquid chromatography-diode array detection (HPLC-DAD) analysis showed that the total phenolic content in the SO peel were more than 2-fold higher than that in the SWO and LO peel. The predominant phenolic compounds were myricetin (2.10 mg/g dry weight) and o-coumaric acid (1.13 mg/g) in SO peel, benzoic acid (0.81 mg/g) and naringin (0.72 mg/g) in SWO peel, and benzoic acid (0.76 mg/g) and quercetin (0.36 mg/g) in LO peel. Only 0.5% (w/w) of citrus peel addition did not reduce the overall acceptance of ABT synbiotic yoghurt but led to increased acidity and decreased moisture during cold storage (14 and 28 days). Additionally, compared to control samples without citrus peel addition, supplementation with citrus peels improved the antioxidant property of the ABT synbiotic yoghurt. ABT milks with SO and SWO peel addition had significantly stronger DPPH radical scavenging activities than that with LO peel addition (p < 0.05). Antibacterial analysis of ABT synbiotic yoghurt with citrus peel addition showed that the diameters of inhibition zones against S. aureus, B. subtilis, and E. coli increased by 0.6−1.9 mm relative to the control groups, suggesting the enhancement of antibacterial activities by citrus peels. The viabilities of probiotic starter cultures (L. acidophilus, S. thermophilus, and Bifidobacterial sp.) were also enhanced by the incorporation of citrus peels in synbiotic yoghurt during cold storage. Hence, our results suggest that citrus peels, especially SO and SWO peels, could be recommended as a promising multifunctional additive for the development of probiotic and synbiotic yoghurt with enhanced antioxidant and antibacterial properties, as well as probiotic viability.
Collapse
Affiliation(s)
- Hayam M. Fathy
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | | | - Weiwei Cheng
- Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Nanshan District, Shenzhen 518060, China
- Correspondence: ; Tel./Fax: +86-755-2653-9262
| | | |
Collapse
|
42
|
Health-Promoting and Therapeutic Attributes of Milk-Derived Bioactive Peptides. Nutrients 2022; 14:nu14153001. [PMID: 35893855 PMCID: PMC9331789 DOI: 10.3390/nu14153001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
Milk-derived bioactive peptides (BAPs) possess several potential attributes in terms of therapeutic capacity and their nutritional value. BAPs from milk proteins can be liberated by bacterial fermentation, in vitro enzymatic hydrolysis, food processing, and gastrointestinal digestion. Previous evidence suggested that milk protein-derived BAPs have numerous health-beneficial characteristics, including anti-cancerous activity, anti-microbial activity, anti-oxidative, anti-hypertensive, lipid-lowering, anti-diabetic, and anti-osteogenic. In this literature overview, we briefly discussed the production of milk protein-derived BAPs and their mechanisms of action. Milk protein-derived BAPs are gaining much interest worldwide due to their immense potential as health-promoting agents. These BAPs are now used to formulate products sold in the market, which reflects their safety as natural compounds. However, enhanced commercialization of milk protein-derived BAPs depends on knowledge of their particular functions/attributes and safety confirmation using human intervention trials. We have summarized the therapeutic potentials of these BAPs based on data from in vivo and in vitro studies.
Collapse
|
43
|
Detecting the Bitterness of Milk-Protein-Derived Peptides Using an Electronic Tongue. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bitterness is a considerable limiting factor for the application of bioactive peptides in the food industry. The objective of this study was to compare the level of bitterness of milk-protein-derived peptides using an electronic tongue (E-tongue). Liquid milk protein concentrate (LMPC) was prepared from ultra-heat-treated skimmed cow’s milk. It was initially hydrolyzed with different concentrations of trypsin, namely, 0.008 g·L−1, 0.016 g·L−1 and 0.032 g·L−1. In a later exercise, tryptic-hydrolyzed LMPC (LMPC-T) was further hydrolyzed using Lactobacillus bulgaricus and Streptococcus thermophilus. The effect of glucose in microbial hydrolysis was studied. The bitterness of peptides was evaluated with respect to quinine, a standard bittering agent. The level of bitterness of the peptides after microbial hydrolysis of LMPC-T (LMPC-T-F and LMPC-T-FG) was evaluated using a potentiometric E-tongue equipped with a sensor array that had seven chemically modified field-effect transistor sensors. The results of the measurements were evaluated using principal component analysis (PCA), and subsequently, a classification of the models was built using the linear discriminant analysis (LDA) method. The bitterness of peptides in LMPC-T-F and LMPC-T-FG was increased with the increase in the concentration of trypsin. The bitterness of peptides was reduced in LMPC-T-FG compared with LMPC-T-F. The potential application of the E-tongue using a standard model solution with quinine was shown to follow the bitterness of peptides.
Collapse
|
44
|
Novel Antioxidant Collagen Peptides of Siberian Sturgeon (Acipenser baerii) Cartilages: The Preparation, Characterization, and Cytoprotection of H2O2-Damaged Human Umbilical Vein Endothelial Cells (HUVECs). Mar Drugs 2022; 20:md20050325. [PMID: 35621976 PMCID: PMC9146044 DOI: 10.3390/md20050325] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
For making full use of aquatic by-products to produce high value-added products, Siberian sturgeon (Acipenser baerii) cartilages were degreased, mineralized, and separately hydrolyzed by five kinds of proteases. The collagen hydrolysate (SCH) generated by Alcalase showed the strongest 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·) and hydroxide radical (HO·) scavenging activity. Subsequently, thirteen antioxidant peptides (SCP1-SCP3) were isolated from SCH, and they were identified as GPTGED, GEPGEQ, GPEGPAG, VPPQD, GLEDHA, GDRGAEG, PRGFRGPV, GEYGFE, GFIGFNG, PSVSLT, IELFPGLP, LRGEAGL, and RGEPGL with molecular weights of 574.55, 615.60, 583.60, 554.60, 640.64, 660.64, 885.04, 700.70, 710.79, 602.67, 942.12, 714.82, and 627.70 Da, respectively. GEYGFE, PSVSLT, and IELFPGLP showed the highest scavenging activity on DPPH· (EC50: 1.27, 1.05, and 1.38 mg/mL, respectively) and HO· (EC50: 1.16, 0.97, and 1.63 mg/mL, respectively), inhibiting capability of lipid peroxidation, and protective functions on H2O2-damaged plasmid DNA. More importantly, GEYGFE, PSVSLT, and IELFPGLP displayed significant cytoprotection on HUVECs against H2O2 injury by regulating the endogenous antioxidant enzymes of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). Therefore, the research provided better technical assistance for a higher-value utilization of Siberian sturgeon cartilages and the thirteen isolated peptides—especially GEYGFE, PSVSLT, and IELFPGLP—which may serve as antioxidant additives for generating health-prone products to treat chronic diseases caused by oxidative stress.
Collapse
|
45
|
Rul F, Béra-Maillet C, Champomier-Vergès MC, El-Mecherfi KE, Foligné B, Michalski MC, Milenkovic D, Savary-Auzeloux I. Underlying evidence for the health benefits of fermented foods in humans. Food Funct 2022; 13:4804-4824. [PMID: 35384948 DOI: 10.1039/d1fo03989j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fermented foods (FFs) have been a part of our diets for millennia and comprise highly diverse products obtained from plants and animals all over the world. Historically, fermentation has been used to preserve food and render certain raw materials edible. As our food systems evolve towards more sustainability, the health benefits of FFs have been increasingly touted. Fermentation generates new/transformed bioactive compounds that may occur in association with probiotic bacteria. The result can be specific, advantageous functional properties. Yet, when considering the body of human studies on the topic, whether observational or experimental, it is rare to come across findings supporting the above assertion. Certainly, results are lacking to confirm the widespread idea that FFs have general health benefits. There are some exceptions, such as in the case of lactose degradation via fermentation in individuals who are lactose intolerant; the impact of select fermented dairy products on insulin sensitivity; or the benefits of alcohol consumption. However, in other situations, the results fail to categorically indicate whether FFs have neutral, beneficial, or detrimental effects on human health. This review tackles this apparent incongruity by showing why it is complex to test the health effects of FFs and what can be done to improve knowledge in this field.
Collapse
Affiliation(s)
- F Rul
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - C Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - M C Champomier-Vergès
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - K E El-Mecherfi
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - B Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - M C Michalski
- Univ-Lyon, CarMeN Laboratory, Inserm, U1060, INRAE, UMR1397, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France
| | - D Milenkovic
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France. .,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - I Savary-Auzeloux
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France.
| |
Collapse
|
46
|
Exploring the potential of Lactobacillus and Saccharomyces for biofunctionalities and the release of bioactive peptides from whey protein fermentate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Tonolo F, Folda A, Scalcon V, Marin O, Bindoli A, Rigobello MP. Nrf2-Activating Bioactive Peptides Exert Anti-Inflammatory Activity through Inhibition of the NF-κB Pathway. Int J Mol Sci 2022; 23:ijms23084382. [PMID: 35457199 PMCID: PMC9032749 DOI: 10.3390/ijms23084382] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/05/2023] Open
Abstract
Redox status and inflammation are related to the pathogenesis of the majority of diseases. Therefore, understanding the role of specific food-derived molecules in the regulation of their specific pathways is a relevant issue. Our previous studies indicated that K-8-K and S-10-S, milk and soy-derived bioactive peptides, respectively, exert antioxidant effects through activation of the Keap1/Nrf2 pathway. A crosstalk between Nrf2 and NF-κB, mediated by the action of heme oxygenase (HO-1), is well known. On this basis, we studied if these peptides, in addition to their antioxidant activity, could exert anti-inflammatory effects in human cells. First, we observed an increase of HO-1 expression in Caco-2 cells treated with K-8-K and S-10-S, following the activation of the Keap1/Nrf2 pathway. Moreover, when cells are treated with the two peptides and stimulated by TNF-α, the levels of NF-κB in the nucleus decreased in comparison with TNF-α alone. In the same conditions, we observed the downregulation of the gene expression of proinflammatory cytokines (IL1B, IL6, and TNF), while the anti-inflammatory cytokine gene, IL1RN, was upregulated in Caco-2 cells processed as reported above. Then, when the cells were pretreated with the two peptides and stimulated with LPS, a different proinflammatory factor, (TNF-α) was estimated to have a lower secretion in the supernatant of cells. In conclusion, these observations confirmed that Nrf2-activating bioactive peptides, K-8-K and S-10-S, exerted anti-inflammatory effects by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Alberto Bindoli
- Institute of Neuroscience, CNR, Via G Colombo 3, 35131 Padova, Italy;
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
- Correspondence:
| |
Collapse
|
48
|
Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Zhu L, Xiong H, Huang X, Guyonnet V, Ma M, Chen X, Zheng Y, Wang L, Hu G. Identification and molecular mechanisms of novel antioxidant peptides from two sources of eggshell membrane hydrolysates showing cytoprotection against oxidative stress: A combined in silico and in vitro study. Food Res Int 2022; 157:111266. [DOI: 10.1016/j.foodres.2022.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/04/2022]
|
50
|
Diet and exercise in lifestyle medicine: the hormetic effects of bioactive compounds on human health. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|