1
|
Chen P, Pillai R, Datta S. Nanoscale insights into vibration-induced heterogeneous ice nucleation. NANOSCALE 2025. [PMID: 40387598 DOI: 10.1039/d5nr00326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Accelerating ice nucleation in confined liquids is desirable in applications like food freezing, cryopreservation, and ice casting, but current techniques have their limitations. The use of high-frequency acoustic waves (AW) is a promising alternative but remains poorly-understood. We employ molecular dynamics simulations to investigate AW-induced ice nucleation within confined nanopores. By systematically varying vibrational amplitude and frequency, we identify five distinct nucleation regimes, forming a comprehensive regime map that links these parameters to nucleation outcomes. Our simulations reveal that ice nucleation is preceded by formation of ice-like clusters, and is strongly influenced by negative pressure induced by surface vibrations. A strain-based criterion is introduced to generalize the findings to larger lengthscales. This enables us to propose a universal framework for controlling ice formation via surface vibrations in industrial applications.
Collapse
Affiliation(s)
- Pengxu Chen
- Institute for Multiscale Thermofluids, School of Engineering, University of Edinburgh, King's Buildings, EH9 3FB, Edinburgh, UK.
| | - Rohit Pillai
- Institute for Multiscale Thermofluids, School of Engineering, University of Edinburgh, King's Buildings, EH9 3FB, Edinburgh, UK.
| | - Saikat Datta
- Institute for Multiscale Thermofluids, School of Engineering, University of Edinburgh, King's Buildings, EH9 3FB, Edinburgh, UK.
| |
Collapse
|
2
|
Jacob C, Melotto M. Lettuce immune responses and apoplastic metabolite profile contribute to reduced internal leaf colonization by human bacterial pathogens. BMC PLANT BIOLOGY 2025; 25:635. [PMID: 40369434 PMCID: PMC12076921 DOI: 10.1186/s12870-025-06636-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Human bacterial pathogens such as Salmonella enterica and Escherichia coli can colonize the apoplast of leafy greens, where they may evade standard sanitization measures and persist until produce consumption. Bacterial survival in this niche is influenced by plant immune responses that may vary according to bacterial species and plant genotypes. The variability in immune responses has been associated with differences in pathogen persistence capacity within the phyllosphere. In addition, emerging evidence suggests that preexisting and inducible plant metabolites contribute to either restricting or facilitating colonization of human pathogens in plant tissues. Identifying the molecular mechanisms underlying these interactions is crucial for developing strategies to mitigate contamination in fresh produce. RESULTS We characterized whole-leaf transcriptome and apoplast metabolome profiles of three lettuce cultivars upon exposure to the human pathogenic bacteria S. enterica ser. Typhimurium 14028s and E. coli O157:H7. The lettuce genotypes Lollo Rossa and Green Towers exhibited stronger transcriptional modulation, primarily associated with defense-related processes and showed reduced bacterial survival in their apoplast. Surprisingly, Green Towers did not generate callose deposition or reactive oxygen species burst responses at levels comparable to that of Lollo Rossa, suggesting it has distinct modifications in the apoplastic conditions that restrict pathogen persistence. Apoplastic metabolomic profiling revealed specific compounds alterations in Green Towers linked to bacterial survival, indicating their potential role in this genotype's defense mechanism. In contrast, the lettuce cultivar Red Tide exhibited minimal transcriptional and metabolic modulation, lack of robust defense activation, which was accompanied by apoplastic bacterial survival. CONCLUSIONS This study provides evidence that lettuce cultivars exhibit distinct molecular responses that may influence the persistence of human bacterial pathogens in the leaf apoplast. The results indicate that both immune response activation and metabolite composition may contribute to restrict apoplastic bacterial persistence or growth. These findings offer novel insights into the genetic and biochemical factors shaping lettuce-pathogen interactions, which might inform breeding programs and agronomic practices aimed at enhancing food safety.
Collapse
Affiliation(s)
- Cristián Jacob
- Departamento de Ciencias Vegetales, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Srivastava AK, Singh RD, Pandey GK, Mukherjee PK, Foyer CH. Unravelling the Molecular Dialogue of Beneficial Microbe-Plant Interactions. PLANT, CELL & ENVIRONMENT 2025; 48:2534-2548. [PMID: 39497504 PMCID: PMC11893932 DOI: 10.1111/pce.15245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 03/12/2025]
Abstract
Plants are an intrinsic part of the soil community, which is comprised of a diverse range of organisms that interact in the rhizosphere through continuous molecular communications. The molecular dialogue within the plant microbiome involves a complex repertoire of primary and secondary metabolites that interact within different liquid matrices and biofilms. Communication functions are likely to involve membrane-less organelles formed by liquid-liquid phase separation of proteins and natural deep eutectic solvents that play a role as alternative media to water. We discuss the chemistry of inter-organism communication and signalling within the biosphere that allows plants to discriminate between harmful, benign and beneficial microorganisms. We summarize current information concerning the chemical repertoire that underpins plant-microbe communication and host-range specificity. We highlight how the regulated production, perception and processing of reactive oxygen species (ROS) is used in the communication between plants and microbes and within the communities that shape the soil microbiome.
Collapse
Affiliation(s)
- Ashish K. Srivastava
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiIndia
| | - Reema D. Singh
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiMaharashtraIndia
| | - Girdhar K. Pandey
- Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Prasun K. Mukherjee
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiIndia
| | | |
Collapse
|
4
|
Chen HC, Newton CJ, Diaz G, Zheng Y, Kong F, Yao Y, Yang L, Kvitko BH. Proteomic Landscape of Pattern Triggered Immunity in the Arabidopsis Leaf Apoplast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636724. [PMID: 39974966 PMCID: PMC11839045 DOI: 10.1101/2025.02.06.636724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The apoplast is a critical interface in plant-pathogen interactions particularly in the context of pattern-triggered immunity (PTI), which is initiated by recognition of microbe-associated molecular patterns (PAMPs). Our study characterizes the proteomic profile of the Arabidopsis apoplast during PTI induced by flg22, a 22 amino acid bacterial flagellin epitope, to elucidate the output of PTI. Apoplastic washing fluid (AWF) was extracted with minimal cytoplasmic contamination for LC-MS/MS analysis. We observed consistent identification of PTI enriched and depleted peptides across replicates with limited correlation between total protein abundance and transcript abundance. We observed topological bias in peptide recovery of receptor-like kinases with peptides predominantly recovered from their ectodomains. Notably, tetraspanin 8, an exosome marker, was enriched in PTI samples. We additionally confirmed increased concentrations of exosomes during PTI. This study enhances our understanding of the proteomic changes in the apoplast during plant immune responses and lays the groundwork for future investigations into the molecular mechanisms of plant defense under recognition of pathogen molecular patterns.
Collapse
Affiliation(s)
- Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Carter J. Newton
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Gustavo Diaz
- Analytical Resources Core: Bioanalysis and Omics, Colorado State University, Fort Collins, CO
| | - Yaochao Zheng
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Feng Kong
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Yao Yao
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
- The Plant Center, University of Georgia, Athens, Georgia, USA
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
- The Plant Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Karimi HZ, Chen KE, Karinshak M, Gu X, Sello JK, Vierstra RD. Proteasomes accumulate in the plant apoplast where they participate in microbe-associated molecular pattern (MAMP)-triggered pathogen defense. Nat Commun 2025; 16:1634. [PMID: 39952938 PMCID: PMC11829042 DOI: 10.1038/s41467-025-56594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025] Open
Abstract
Akin to mammalian extracellular fluids, the plant apoplastic fluid (APF) contains a unique collection of proteins, RNAs, and vesicles that drive many physiological processes ranging from cell wall assembly to defense against environmental challenges. Using an improved method to enrich for the Arabidopsis APF, we better define its composition and discover that the APF harbors active proteasomes though microscopic detection, proteasome-specific activity and immunological assays, and mass spectrometry showing selective enrichment of the core protease. Functional analysis of extracellular (ex)-proteasomes reveals that they help promote basal pathogen defense through proteolytic release of microbe-associated molecular patterns (MAMPs) such as flg22 from bacterial flagellin that induce protective reactive-oxygen-species (ROS) bursts. Flagellin-triggered ROS is also strongly suppressed by the enigmatic Pseudomonas syringae virulence effector syringolin-A that blocks ex-proteasome activity. Collectively, we provide a deep catalog of apoplast proteins and evidence that ex-proteasomes participate in the evolving arms race between pathogens and their plant hosts.
Collapse
Affiliation(s)
- Hana Zand Karimi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
- Pfizer Pharmaceuticals, Chesterfield, MO, USA
| | - Kuo-En Chen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Marilee Karinshak
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xilin Gu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Jason K Sello
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
Riseh RS, Fathi F, Vazvani MG, Tarkka MT. Plant Colonization by Biocontrol Bacteria and Improved Plant Health: A Review. FRONT BIOSCI-LANDMRK 2025; 30:23223. [PMID: 39862070 DOI: 10.31083/fbl23223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 01/27/2025]
Abstract
The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control. The present review deals with the in-depth understanding of steps involved in host colonization by biocontrol bacteria. The colonization process starts from the root zone, where biocontrol bacteria establish initial interactions with the plant's root system. Moving beyond the roots, biocontrol bacteria migrate and colonize other plant organs, including stems, leaves, and even flowers. Also, the present review attempts to explore the mechanisms facilitating bacterial movement within the plant such as migrating through interconnected spaces such as vessels or in the apoplast, and applying quorum sensing or extracellular enzymes during colonization and what is needed to establish a long-term association within a plant. The impacts on microbial community dynamics, nutrient cycling, and overall plant health are discussed, emphasizing the intricate relationships between biocontrol bacteria and the plant's microbiome and the benefits to the plant's above-ground parts, the biocontrol 40 bacteria confer. By unraveling these mechanisms, researchers can develop targeted strategies for enhancing the colonization efficiency and overall effectiveness of biocontrol bacteria, leading to more sustainability and resilience.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Mika Tapio Tarkka
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany
| |
Collapse
|
7
|
Guedes LM, Aguilera N, Kuster VC, da Silva Carneiro RG, de Oliveira DC. Integrated insights into the cytological, histochemical, and cell wall composition features of Espinosa nothofagi (Hymenoptera) gall tissues: implications for functionality. PROTOPLASMA 2025; 262:149-165. [PMID: 39249158 DOI: 10.1007/s00709-024-01985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
Many insect-induced galls are considered complex structures due to their tissue compartmentalization and multiple roles performed by them. The current study investigates the complex interaction between Nothofagus obliqua host plant and the hymenopteran gall-inducer Espinosa nothofagi, focusing on cell wall properties and cytological features. The E. nothofagi galls present an inner cortex with nutritive and storage tissues, as well as outer cortex with epidermis, chlorenchyma, and water-storing parenchyma. The water-storing parenchyma cells are rich in pectins, heteromannans, and xyloglucans in their walls, and have large vacuoles. Homogalacturonans contribute to water retention, and periplasmic spaces function as additional water reservoirs. Nutritive storage cell walls support nutrient storage, with plasmodesmata facilitating nutrient mobilization crucial for larval nutrition. Their primary and sometimes thick secondary cell walls support structural integrity and act as a carbon reserve. The absent labeling of non-cellulosic epitopes indicates a predominantly cellulosic nature in nutritive cell walls, facilitating larval access to lipid, protein, and reducing sugar-rich contents. The nutritive tissue, with functional chloroplasts and high metabolism-related organelles, displays signs of self-sufficiency, emphasizing its role in larval nutrition and cellular maintenance. Overall, the intricate cell wall composition in E. nothofagi galls showcases adaptations for water storage, nutrient mobilization, and larval nutrition, contributing significantly to our understanding of plant-insect interactions.
Collapse
Affiliation(s)
- Lubia María Guedes
- Laboratorio de Semioquímica Aplicada, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160‑C, 4030000, Concepción, Chile
| | - Narciso Aguilera
- Laboratorio de Semioquímica Aplicada, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160‑C, 4030000, Concepción, Chile
| | - Vinícius Coelho Kuster
- Laboratório de Anatomia Vegetal, Instituto de Biociências, Universidade Federal de Jataí, Campus Jatobá, Cidade Universitária, Jataí, Goiás, Brazil
| | - Renê Gonçalves da Silva Carneiro
- Laboratório de Anatomia Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás, Brazil
| | - Denis Coelho de Oliveira
- Laboratório de Anatomia, Desenvolvimento Vegetal E Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Tavakoli F, Hajiboland R, Haeili M, Sadeghzadeh N, Nikolic M. Effect of elevated ammonium on biotic and abiotic stress defense responses and expression of related genes in cucumber (Cucumis sativus L.) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109310. [PMID: 39577162 DOI: 10.1016/j.plaphy.2024.109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Ammonium (NH4+) enhances plant defense mechanisms but can be phytotoxic as the sole nitrogen source. To investigate the impact of a balanced NH4+ and NO3- ratio on plant defense parameters without adverse effects, cucumber plants (Cucumis sativus L.) were grown under control (14 mM NO3- + 2 mM NH4+) and elevated level of NH4+ (eNH4+, 8 mM NO3-+ 8 mM NH4+). Plants subjected to eNH4+ showed significantly increased shoot and root biomass by about 41% and 47%, respectively. Among the antioxidant enzymes studied, ascorbate peroxidase (EC 1.11.1.11) activity was increased up to 3.3 fold in eNH4+ compared with control plants, which was associated with enhanced resistance to paraquat. Upregulation of PATHOGENESIS RELATED PROTEIN 4 (PR4) and LIPOXYGENASE 1 (LOX1), accompanied by increased concentrations of salicylic acid and nitric oxide, conferred more excellent resistance of eNH4+ plants to powdery mildew infection. However, the expression levels of ACC OXIDASE 1 (ACO1) and RESPIRATORY BURST OXIDASE HOMOLOGS B (RBOHB) were lower in eNH4+ plants, which was consistent with decreased NADPH oxidase activity and lower leaf H2O2 levels. The biosynthesis of phenolics was enhanced, whereas the activities of polymerizing enzymes and lignin deposition were reduced by half in eNH4+ plants. Besides, a significant effect on plant biomass under salt or drought stress has not been observed between control and eNH4+ plants. These results showed that different defense pathways are distinctively affected by eNH4+ treatment, and the NH4+ to NO3- ratio may play a role in fine-tuning the plant defense response.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Plant, Cell and Molecular Biology, University of Tabriz, 51666-14779, Tabriz, Iran
| | - Roghieh Hajiboland
- Department of Plant, Cell and Molecular Biology, University of Tabriz, 51666-14779, Tabriz, Iran.
| | - Mehri Haeili
- Department of Animal Biology, University of Tabriz, Tabriz, Iran
| | - Noushin Sadeghzadeh
- Department of Plant, Cell and Molecular Biology, University of Tabriz, 51666-14779, Tabriz, Iran
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Lee Erickson J, Schuster M. Extracellular proteases from microbial plant pathogens as virulence factors. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102621. [PMID: 39232347 DOI: 10.1016/j.pbi.2024.102621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Plant pathogens deploy specialized proteins to aid disease progression, some of these proteins function in the apoplast and constitute proteases. Extracellular virulence proteases have been described to play roles in plant cell wall manipulation and immune evasion. In this review, we discuss the evidence for the hypothesized virulence functions of bacterial, fungal, and oomycete extracellular proteases. We highlight the contrast between the low number of elucidated functions for these proteins and the size of extracellular protease repertoires among pathogens. Finally, we suggest that the refinement of in planta 'omics' approaches, combined with recent advances in modeling and mechanism-based methods for trapping substrates finally make it possible to address this knowledge gap.
Collapse
Affiliation(s)
| | - Mariana Schuster
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany.
| |
Collapse
|
10
|
Freire FBS, Morais EG, Daloso DM. Toward the apoplast metabolome: Establishing a leaf apoplast collection approach suitable for metabolomics analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109080. [PMID: 39232365 DOI: 10.1016/j.plaphy.2024.109080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
The leaf apoplast contains several compounds that play important roles in the regulation of different physiological processes in plants. However, this compartment has been neglected in several experimental and modelling studies, which is mostly associated to the difficulty to collect apoplast washing fluid (AWF) in sufficient amount for metabolomics analysis and as free as possible from symplastic contamination. Here, we established an approach based in an infiltration-centrifugation technique that use little leaf material but allows sufficient AWF collection for gas chromatography mass spectrometry (GC-MS)-based metabolomics analysis in both tobacco and Arabidopsis. Up to 54 metabolites were annotated in leaf and apoplast samples from both species using either 20% (v/v) methanol (20% MeOH) or distilled deionized water (ddH2O) as infiltration fluids. The use of 20% MeOH increased the yield of the AWF collected but also the level of symplastic contamination, especially in Arabidopsis. We propose a correction factor and recommend the use of multiple markers such as MDH activity, protein content and conductivity measurements to verify the level of symplastic contamination in MeOH-based protocols. Neither the concentration of sugars nor the level of primary metabolites differed between apoplast samples extracted with ddH2O or 20% MeOH. This indicates that ddH2O can be preferentially used, given that it is a non-toxic and highly accessible infiltration fluid. The infiltration-centrifugation-based approach established here uses little leaf material and ddH2O as infiltration fluid, being suitable for GC-MS-based metabolomics analysis in tobacco and Arabidopsis, with great possibility to be extended for other plant species and tissues.
Collapse
Affiliation(s)
- Francisco Bruno S Freire
- LabPlant, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil.
| | - Eva G Morais
- LabPlant, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil
| | - Danilo M Daloso
- LabPlant, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil.
| |
Collapse
|
11
|
Song SJ, Diao HP, Guo YF, Hwang I. Advances in Subcellular Accumulation Design for Recombinant Protein Production in Tobacco. BIODESIGN RESEARCH 2024; 6:0047. [PMID: 39206181 PMCID: PMC11350518 DOI: 10.34133/bdr.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Plants and their use as bioreactors for the generation of recombinant proteins have become one of the hottest topics in the field of Plant Biotechnology and Plant Synthetic Biology. Plant bioreactors offer superior engineering potential compared to other types, particularly in the realm of subcellular accumulation strategies for increasing production yield and quality. This review explores established and emerging strategies for subcellular accumulation of recombinant proteins in tobacco bioreactors, highlighting recent advancements in the field. Additionally, the review provides reference to the crucial initial step of selecting an optimal subcellular localization for the target protein, a design that substantially impacts production outcomes.
Collapse
Affiliation(s)
- Shi-Jian Song
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Hai-Ping Diao
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yong-Feng Guo
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Inhwan Hwang
- Department of Life Science,
Pohang University of Science and Technology, Pohang, Republic of Korea
- BioApplications Inc., Pohang, Republic of Korea
| |
Collapse
|
12
|
Han Z, Schneiter R. Dual functionality of pathogenesis-related proteins: defensive role in plants versus immunosuppressive role in pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1368467. [PMID: 39157512 PMCID: PMC11327054 DOI: 10.3389/fpls.2024.1368467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
Plants respond to pathogen exposure by activating the expression of a group of defense-related proteins known as Pathogenesis-Related (PR) proteins, initially discovered in the 1970s. These PR proteins are categorized into 17 distinct families, denoted as PR1-PR17. Predominantly secreted, most of these proteins execute their defensive roles within the apoplastic space. Several PR proteins possess well-defined enzymatic functions, such as β-glucanase (PR2), chitinases (PR3, 4, 8, 11), proteinase (PR7), or RNase (PR10). Enhanced resistance against pathogens is observed upon PR protein overexpression, while their downregulation renders plants more susceptible to pathogen infections. Many of these proteins exhibit antimicrobial activity in vitro, and due to their compact size, some are classified as antimicrobial peptides. Recent research has unveiled that phytopathogens, including nematodes, fungi, and phytophthora, employ analogous proteins to bolster their virulence and suppress plant immunity. This raises a fundamental question: how can these conserved proteins act as antimicrobial agents when produced by the host plant but simultaneously suppress plant immunity when generated by the pathogen? In this hypothesis, we investigate PR proteins produced by pathogens, which we term "PR-like proteins," and explore potential mechanisms by which this class of virulence factors operate. Preliminary data suggests that these proteins may form complexes with the host's own PR proteins, thereby interfering with their defense-related functions. This analysis sheds light on the intriguing interplay between plant and pathogen-derived PR-like proteins, providing fresh insights into the intricate mechanisms governing plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
13
|
Myers RJ, Peláez-Vico MÁ, Fichman Y. Functional analysis of reactive oxygen species-driven stress systemic signalling, interplay and acclimation. PLANT, CELL & ENVIRONMENT 2024; 47:2842-2851. [PMID: 38515255 DOI: 10.1111/pce.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Reactive oxygen species (ROS) play a critical role in plant development and stress responses, acting as key components in rapid signalling pathways. The 'ROS wave' triggers essential acclimation processes, ultimately ensuring plant survival under diverse challenges. This review explores recent advances in understanding the composition and functionality of the ROS wave within plant cells. During their initiation and propagation, ROS waves interact with other rapid signalling pathways, hormones and various molecular compounds. Recent research sheds light on the intriguing lack of a rigid hierarchy governing these interactions, highlighting a complex interplay between diverse signals. Notably, ROS waves culminate in systemic acclimation, a crucial outcome for enhanced stress tolerance. This review emphasizes the versatility of ROS, which act as flexible players within a network of short- and long-term factors contributing to plant stress resilience. Unveiling the intricacies of these interactions between ROS and various signalling molecules holds immense potential for developing strategies to augment plant stress tolerance, contributing to improved agricultural practices and overall ecosystem well-being.
Collapse
Affiliation(s)
- Ronald J Myers
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Yosef Fichman
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Du B, Haensch R, Alfarraj S, Rennenberg H. Strategies of plants to overcome abiotic and biotic stresses. Biol Rev Camb Philos Soc 2024; 99:1524-1536. [PMID: 38561998 DOI: 10.1111/brv.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
In their environment, plants are exposed to a multitude of abiotic and biotic stresses that differ in intensity, duration and severity. As sessile organisms, they cannot escape these stresses, but instead have developed strategies to overcome them or to compensate for the consequences of stress exposure. Defence can take place at different levels and the mechanisms involved are thought to differ in efficiency across these levels. To minimise metabolic constraints and to reduce the costs of stress defence, plants prioritise first-line defence strategies in the apoplastic space, involving ascorbate, defensins and small peptides, as well as secondary metabolites, before cellular processes are affected. In addition, a large number of different symplastic mechanisms also provide efficient stress defence, including chemical antioxidants, antioxidative enzymes, secondary metabolites, defensins and other peptides as well as proteins. At both the symplastic and the apoplastic level of stress defence and compensation, a number of specialised transporters are thought to be involved in exchange across membranes that still have not been identified, and information on the regeneration of different defence compounds remains ambiguous. In addition, strategies to overcome and compensate for stress exposure operate not only at the cellular, but also at the organ and whole-plant levels, including stomatal regulation, and hypersensitive and systemic responses to prevent or reduce the spread of stress impacts within the plant. Defence can also take place at the ecosystem level by root exudation of signalling molecules and the emission of volatile organic compounds, either directly or indirectly into the rhizosphere and/or the aboveground atmosphere. The mechanisms by which plants control the production of these compounds and that mediate perception of stressful conditions are still not fully understood. Here we summarise plant defence strategies from the cellular to ecosystem level, discuss their advantages and disadvantages for plant growth and development, elucidate the current state of research on the transport and regeneration capacity of defence metabolites, and outline insufficiently explored questions for further investigation.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Ecological Security and Protection Key laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang, 621000, PR China
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53, Freiburg, D-79110, Germany
| | - Robert Haensch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstr. 1, Braunschweig, D-38106, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, PR China
| | - Saleh Alfarraj
- King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53, Freiburg, D-79110, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, PR China
| |
Collapse
|
15
|
Farvardin A, González-Hernández AI, Llorens E, Camañes G, Scalschi L, Vicedo B. The Dual Role of Antimicrobial Proteins and Peptides: Exploring Their Direct Impact and Plant Defense-Enhancing Abilities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2059. [PMID: 39124177 PMCID: PMC11314357 DOI: 10.3390/plants13152059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Plants face numerous environmental stresses that hinder their growth and productivity, including biotic agents, such as herbivores and parasitic microorganisms, as well as abiotic factors, such as cold, drought, salinity, and high temperature. To counter these challenges, plants have developed a range of defense strategies. Among these, plant antimicrobial proteins and peptides (APPs) have emerged as a promising solution. Due to their broad-spectrum activity, structural stability, and diverse mechanisms of action, APPs serve as powerful tools to complement and enhance conventional agricultural methods, significantly boosting plant defense and productivity. This review focuses on different studies on APPs, emphasizing their crucial role in combating plant pathogens and enhancing plant resilience against both biotic and abiotic stresses. Beginning with in vitro studies, we explore how APPs combat various plant pathogens. We then delve into the defense mechanisms triggered by APPs against biotic stress, showcasing their effectiveness against bacterial and fungal diseases. Additionally, we highlight the role of APPs in mitigating the abiotic challenges associated with climatic change. Finally, we discuss the current applications of APPs in agriculture, emphasizing their potential for sustainable agricultural practices and the need for future research in this area.
Collapse
Affiliation(s)
- Atefeh Farvardin
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | | | - Eugenio Llorens
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | - Gemma Camañes
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | - Loredana Scalschi
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | - Begonya Vicedo
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| |
Collapse
|
16
|
Ngwenya SP, Moloi SJ, Shargie NG, Brown AP, Chivasa S, Ngara R. Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1874. [PMID: 38999714 PMCID: PMC11244414 DOI: 10.3390/plants13131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Plants reprogramme their proteome to alter cellular metabolism for effective stress adaptation. Intracellular proteomic responses have been extensively studied, and the extracellular matrix stands as a key hub where peptide signals are generated/processed to trigger critical adaptive signal transduction cascades inaugurated at the cell surface. Therefore, it is important to study the plant extracellular proteome to understand its role in plant development and stress response. This study examined changes in the soluble extracellular sub-proteome of sorghum cell cultures exposed to a combination of sorbitol-induced osmotic stress and heat at 40 °C. The combined stress significantly reduced metabolic activity and altered protein secretion. While cells treated with osmotic stress alone had elevated proline content, the osmoprotectant in the combined treatment remained unchanged, confirming that sorghum cells exposed to combined stress utilise adaptive processes distinct from those invoked by the single stresses applied separately. Reactive oxygen species (ROS)-metabolising proteins and proteases dominated differentially expressed proteins identified in cells subjected to combined stress. ROS-generating peroxidases were suppressed, while ROS-degrading proteins were upregulated for protection from oxidative damage. Overall, our study provides protein candidates that could be used to develop crops better suited for an increasingly hot and dry climate.
Collapse
Affiliation(s)
- Samkelisiwe P Ngwenya
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa
| | - Sellwane J Moloi
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa
| | - Nemera G Shargie
- Agricultural Research Council-Grain Crops Institute, P. Bag X1251, Potchefstroom 2520, South Africa
| | - Adrian P Brown
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Stephen Chivasa
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Rudo Ngara
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa
| |
Collapse
|
17
|
Lim YJ, Lee YH. Guardian of the rice: Unveiling OsSSP1 for broad-spectrum disease resistance. MOLECULAR PLANT 2024; 17:996-998. [PMID: 38850021 DOI: 10.1016/j.molp.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Affiliation(s)
- You-Jin Lim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Hwan Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Center for Plant Microbiome Research, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
18
|
Dhobale KV, Sahoo L. Identification of mungbean yellow mosaic India virus and susceptibility-related metabolites in the apoplast of mung bean leaves. PLANT CELL REPORTS 2024; 43:173. [PMID: 38877163 DOI: 10.1007/s00299-024-03247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
KEY MESSAGE The investigation of MYMIV-infected mung bean leaf apoplast revealed viral genome presence, increased EVs secretion, and altered stress-related metabolite composition, providing comprehensive insights into plant-virus interactions. The apoplast, an extracellular space around plant cells, plays a vital role in plant-microbe interactions, influencing signaling, defense, and nutrient transport. While the involvement of apoplast and extracellular vesicles (EVs) in RNA virus infection is documented, the role of the apoplast in plant DNA viruses remains unclear. This study explores the apoplast's role in mungbean yellow mosaic India virus (MYMIV) infection. Our findings demonstrate the presence of MYMIV genomic components in apoplastic fluid, suggesting potential begomovirus cell-to-cell movement via the apoplast. Moreover, MYMIV infection induces increased EVs secretion into the apoplast. NMR-based metabolomics reveals altered metabolic profiles in both apoplast and symplast in response to MYMIV infection, highlighting key metabolites associated with stress and defense mechanisms. The data show an elevation of α- and β-glucose in both apoplast and symplast, suggesting a shift in glucose utilization. Interestingly, this increase in glucose does not contribute to the synthesis of phenolic compounds, potentially influencing the susceptibility of mung bean to MYMIV. Fructose levels increase in the symplast, while apoplastic sucrose levels rise significantly. Symplastic aspartate levels increase, while proline exhibits elevated concentration in the apoplast and reduced concentration in the cytosol, suggesting a role in triggering a hypersensitive response. These findings underscore the critical role of the apoplast in begomovirus infection, providing insights for targeted viral disease management strategies.
Collapse
Affiliation(s)
- Kiran Vilas Dhobale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
19
|
Rocha TM, Marcelino PRF, Antunes FAF, Sánchez-Muñoz S, Dos Santos JC, da Silva SS. Biocompatibility of Brazilian native yeast-derived sophorolipids and Trichoderma harzianum as plant-growth promoting bioformulations. Microbiol Res 2024; 283:127689. [PMID: 38493529 DOI: 10.1016/j.micres.2024.127689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The replacement of agrochemicals by biomolecules is imperative to mitigate soil contamination and inactivation of its core microbiota. Within this context, this study aimed at the interaction between a biological control agent such as Trichoderma harzianum CCT 2160 (BF-Th) and the biosurfactants (BSs) derived from the native Brazilian yeast Starmerella bombicola UFMG-CM-Y6419. Thereafter, their potential in germination of Oryza sativa L. seeds was tested. Both bioproducts were produced on site and characterized according to their chemical composition by HPLC-MS and GC-MS for BSs and SDS-PAGE gel for BF-Th. The BSs were confirmed to be sophorolipids (SLs) which is a well-studied compound with antimicrobial activity. The biocompatibility was examined by cultivating the fungus with SLs supplementation ranging from 0.1 to 2 g/L in solid and submerged fermentation. In solid state fermentation the supplementation of SLs enhanced spore production, conferring the synergy of both bioproducts. For the germination assays, bioformulations composed of SLs, BF-Th and combined (SLT) were applied in the germination of O. sativa L seeds achieving an improvement of up to 30% in morphological aspects such as root and shoot size as well as the presence of lateral roots. It was hypothesized that SLs were able to regulate phytohormones expression such as auxins and gibberellins during early stage of growth, pointing to their novel plant-growth stimulating properties. Thus, this study has pointed to the potential of hybrid bioformulations composed of biosurfactants and active endophytic fungal spores in order to augment the plant fitness and possibly the control of diseases.
Collapse
Affiliation(s)
- Thiago Moura Rocha
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil.
| | - Paulo Ricardo Franco Marcelino
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Felipe Antonio Fernandes Antunes
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Salvador Sánchez-Muñoz
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Júlio César Dos Santos
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Silvio Silvério da Silva
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| |
Collapse
|
20
|
Nguyen NN, Nguyen NT, Nguyen PT, Phan QN, Le TL, Do HDK. Current and emerging nanotechnology for sustainable development of agriculture: Implementation design strategy and application. Heliyon 2024; 10:e31503. [PMID: 38818209 PMCID: PMC11137568 DOI: 10.1016/j.heliyon.2024.e31503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Recently, agriculture systems have faced numerous challenges involving sustainable nutrient use efficiency and feeding, environmental pollution especially heavy metals (HMs), infection of harmful microorganisms, and maintenance of crop production quality during postharvesting and packaging. Nanotechnology and nanomaterials have emerged as powerful tools in agriculture applications that provide alternatives or support traditional methods. This review aims to address and highlight the current overarching issue and various implementation strategies of nanotechnology for sustainable agriculture development. In particular, the current progress of different nano-fertilizers (NFs) systems was analyzed to show their advances in enhancing the uptake and translocations in plants and improving nutrient bioavailability in soil. Also, the design strategy and application of nanotechnology for rapid detection of HMs and pathogenic diseases in plant crops were emphasized. The engineered nanomaterials have great potential for biosensors with high sensitivity and selectivity, high signal throughput, and reproducibility through various detection approaches such as Raman, colorimetric, biological, chemical, and electrical sensors. We obtain that the development of microfluidic and lab-on-a-chip (LoC) technologies offers the opportunity to create on-site portable and smart biodevices and chips for real-time monitoring of plant diseases. The last part of this work is a brief introduction to trends in nanotechnology for harvesting and packaging to provide insights into the overall applications of nanotechnology for crop production quality. This review provides the current advent of nanotechnology in agriculture, which is essential for further studies examining novel applications for sustainable agriculture.
Collapse
Affiliation(s)
- Nhat Nam Nguyen
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Ngoc Trai Nguyen
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Phuong Thuy Nguyen
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Quoc Nam Phan
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Truc Linh Le
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City, Viet Nam
| |
Collapse
|
21
|
Zhao T, Ma S, Kong Z, Zhang H, Wang Y, Wang J, Liu J, Feng W, Liu T, Liu C, Liang S, Lu S, Li X, Zhao H, Lu C, Latif MZ, Yin Z, Li Y, Ding X. Recognition of the inducible, secretory small protein OsSSP1 by the membrane receptor OsSSR1 and the co-receptor OsBAK1 confers rice resistance to the blast fungus. MOLECULAR PLANT 2024; 17:807-823. [PMID: 38664971 DOI: 10.1016/j.molp.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Abstract
The plant apoplast, which serves as the frontline battleground for long-term host-pathogen interactions, harbors a wealth of disease resistance resources. However, the identification of the disease resistance proteins in the apoplast is relatively lacking. In this study, we identified and characterized the rice secretory protein OsSSP1 (Oryza sativa secretory small protein 1). OsSSP1 can be secreted into the plant apoplast, and either in vitro treatment of recombinant OsSSP1 or overexpression of OsSSP1 in rice could trigger plant immune response. The expression of OsSSP1 is suppressed significantly during Magnaporthe oryzae infection in the susceptible rice variety Taibei 309, and OsSSP1-overexpressing lines all show strong resistance to M. oryzae. Combining the knockout and overexpression results, we found that OsSSP1 positively regulates plant immunity in response to fungal infection. Moreover, the recognition and immune response triggered by OsSSP1 depend on an uncharacterized transmembrane OsSSR1 (secretory small protein receptor 1) and the key co-receptor OsBAK1, since most of the induced immune response and resistance are lost in the absence of OsSSR1 or OsBAK1. Intriguingly, the OsSSP1 protein is relatively stable and can still induce plant resistance after 1 week of storage in the open environment, and exogenous OsSSP1 treatment for a 2-week period did not affect rice yield. Collectively, our study reveals that OsSSP1 can be secreted into the apoplast and percepted by OsSSR1 and OsBAK1 during fungal infection, thereby triggering the immune response to enhance plant resistance to M. oryzae. These findings provide novel resources and potential strategies for crop breeding and disease control.
Collapse
Affiliation(s)
- Tianfeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shijie Ma
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ziying Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yi Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Junzhe Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jiazong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Wanzhen Feng
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, Hainan, China
| | - Tong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chunyan Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Suochen Liang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shilin Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xinyu Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
22
|
Der C, Courty PE, Recorbet G, Wipf D, Simon-Plas F, Gerbeau-Pissot P. Sterols, pleiotropic players in plant-microbe interactions. TRENDS IN PLANT SCIENCE 2024; 29:524-534. [PMID: 38565452 DOI: 10.1016/j.tplants.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Plant-microbe interactions (PMIs) are regulated through a wide range of mechanisms in which sterols from plants and microbes are involved in numerous ways, including recognition, transduction, communication, and/or exchanges between partners. Phytosterol equilibrium is regulated by PMIs through expression of genes involved in phytosterol biosynthesis, together with their accumulation. As such, PMI outcomes also include plasma membrane (PM) functionalization events, in which phytosterols have a central role, and activation of sterol-interacting proteins involved in cell signaling. In spite (or perhaps because) of such multifaceted abilities, an overall mechanism of sterol contribution is difficult to determine. However, promising approaches exploring sterol diversity, their contribution to PMI outcomes, and their localization would help us to decipher their crucial role in PMIs.
Collapse
Affiliation(s)
- Christophe Der
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | | | - Ghislaine Recorbet
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Daniel Wipf
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | | | | |
Collapse
|
23
|
Parrilla M, Sena-Torralba A, Steijlen A, Morais S, Maquieira Á, De Wael K. A 3D-printed hollow microneedle-based electrochemical sensing device for in situ plant health monitoring. Biosens Bioelectron 2024; 251:116131. [PMID: 38367566 DOI: 10.1016/j.bios.2024.116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Plant health monitoring is devised as a new concept to elucidate in situ physiological processes. The need for increased food production to nourish the growing global population is inconsistent with the dramatic impact of climate change, which hinders crop health and exacerbates plant stress. In this context, wearable sensors play a crucial role in assessing plant stress. Herein, we present a low-cost 3D-printed hollow microneedle array (HMA) patch as a sampling device coupled with biosensors based on screen-printing technology, leading to affordable analysis of biomarkers in the plant fluid of a leaf. First, a refinement of the 3D-printing method showed a tip diameter of 25.9 ± 3.7 μm with a side hole diameter on the microneedle of 228.2 ± 18.6 μm using an affordable 3D printer (<500 EUR). Notably, the HMA patch withstanded the forces exerted by thumb pressing (i.e. 20-40 N). Subsequently, the holes of the HMA enabled the fluid extraction tested in vitro and in vivo in plant leaves (i.e. 13.5 ± 1.1 μL). A paper-based sampling strategy adapted to the HMA allowed the collection of plant fluid. Finally, integrating the sampling device onto biosensors facilitated the in situ electrochemical analysis of plant health biomarkers (i.e. H2O2, glucose, and pH) and the electrochemical profiling of plants in five plant species. Overall, this electrochemical platform advances precise and versatile sensors for plant health monitoring. The wearable device can potentially improve precision farming practices, addressing the critical need for sustainable and resilient agriculture in changing environmental conditions.
Collapse
Affiliation(s)
- Marc Parrilla
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium.
| | - Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - Annemarijn Steijlen
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium
| | - Sergi Morais
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera S/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera S/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - Karolien De Wael
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium.
| |
Collapse
|
24
|
Kołodziejczyk I, Kaźmierczak A. Melatonin - This is important to know. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170871. [PMID: 38340815 DOI: 10.1016/j.scitotenv.2024.170871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
MEL (N-acetyl-5-methoxytryptamine) is a well-known natural compound that controls cellular processes in both plants and animals and is primarily found in plants as a neurohormone. Its roles have been described very broadly, from its antioxidant function related to the photoperiod and determination of seasonal rhythms to its role as a signalling molecule, imitating the action of plant hormones (or even being classified as a prohormone). MEL positively affects the yield and survival of plants by increasing their tolerance to unfavourable biotic and abiotic conditions, which makes MEL widely applicable in ecological farming as a stimulant of growth and development. Thus, it is called a phytobiostimulator. In this review, we discuss the genesis of MEL functions, the presence of MEL at the cellular level and its effects on gene expression and plant development, which can ensure the survival of plants under the conditions they encounter. Moreover, we consider the future application possibilities of MEL in agriculture.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Geobotany and Plant Ecology, Institute of Ecology and Environmental Protection, University of Lodz, Lodz 90-236, Banacha 12/16, 90-237, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
25
|
Wang Y, Ge S, Ahammed GJ, Gao H, Shen K, Wang Q, Wang W, Chen S, Li X. Epigallocatechin-3-gallate-induced tolerance to cadmium stress involves increased flavonoid synthesis and nutrient homeostasis in tomato roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108468. [PMID: 38507840 DOI: 10.1016/j.plaphy.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal, increasingly accumulating in the environment and its presence in various environmental compartments represents a significant risk to human health via the food chain. Epigallocatechin-3-Gallate (EGCG) is a prominent secondary metabolite, which can safeguard plants from biotic and abiotic stress. However, the role of EGCG in flavonoid synthesis, nutrient acquisition and reactive oxygen species (ROS) metabolism under Cd stress remains unclear. Here, we examined the effects of EGCG and Cd treatment on leaf photochemical efficiency, cell ultrastructure, essential element acquisition, antioxidant system, and secondary metabolism in tomato (Solanum lycopersicum L.). The results showed that O2•-, H2O2, and malondialdehyde levels increased after Cd treatment, but Fv/Fm decreased significantly, suggesting that Cd induced oxidative stress and photoinhibition. However, EGCG mitigated the adverse effects of Cd-induced phytotoxicity in both the roots and leaves. A decrease in ROS accumulation under EGCG + Cd treatment was mainly attributed to the significant enhancement in antioxidant enzyme activity, flavonoid content, and PHENYLALANINE AMMONIA-LYASE expression in roots. Moreover, EGCG reduced Cd content but increased some essential nutrient contents in tomato plants. Transmission electron microscopy-based observations revealed that EGCG treatment safeguards leaf and root cell ultrastructure under Cd stress. This implies that tomato plants subjected to Cd stress experienced advantageous effects upon receiving EGCG treatment. The present work elucidated critical mechanisms by which EGCG induces tolerance to Cd, thereby providing a basis for future investigations into environmentally sustainable agricultural practices in areas contaminated with heavy metals, for utilizing naturally occurring substances found in plants.
Collapse
Affiliation(s)
- Yameng Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Shibei Ge
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Haina Gao
- Ankang Academy of Agricultural Sciences, Ankang, 725000, PR China
| | - Keyin Shen
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Qianying Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Wenli Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
26
|
Short SE, Zamorano M, Aranzaez-Ríos C, Lee-Estevez M, Díaz R, Quiñones J, Ulloa-Rodríguez P, Villalobos EF, Bravo LA, Graether SP, Farías JG. Novel Apoplastic Antifreeze Proteins of Deschampsia antarctica as Enhancer of Common Cell Freezing Media for Cryobanking of Genetic Resources, a Preliminary Study. Biomolecules 2024; 14:174. [PMID: 38397411 PMCID: PMC10886522 DOI: 10.3390/biom14020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Antifreeze proteins (AFPs) are natural biomolecules found in cold-adapted organisms that lower the freezing point of water, allowing survival in icy conditions. These proteins have the potential to improve cryopreservation techniques by enhancing the quality of genetic material postthaw. Deschampsia antarctica, a freezing-tolerant plant, possesses AFPs and is a promising candidate for cryopreservation applications. In this study, we investigated the cryoprotective properties of AFPs from D. antarctica extracts on Atlantic salmon spermatozoa. Apoplastic extracts were used to determine ice recrystallization inhibition (IRI), thermal hysteresis (TH) activities and ice crystal morphology. Spermatozoa were cryopreserved using a standard cryoprotectant medium (C+) and three alternative media supplemented with apoplastic extracts. Flow cytometry was employed to measure plasma membrane integrity (PMI) and mitochondrial membrane potential (MMP) postthaw. Results showed that a low concentration of AFPs (0.05 mg/mL) provided significant IRI activity. Apoplastic extracts from D. antarctica demonstrated a cryoprotective effect on salmon spermatozoa, with PMI comparable to the standard medium. Moreover, samples treated with apoplastic extracts exhibited a higher percentage of cells with high MMP. These findings represent the first and preliminary report that suggests that AFPs derived from apoplastic extracts of D. antarctica have the potential to serve as cryoprotectants and could allow the development of novel freezing media.
Collapse
Affiliation(s)
- Stefania E. Short
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54D, Temuco 4811230, Chile; (S.E.S.); (M.Z.); (C.A.-R.)
| | - Mauricio Zamorano
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54D, Temuco 4811230, Chile; (S.E.S.); (M.Z.); (C.A.-R.)
| | - Cristian Aranzaez-Ríos
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54D, Temuco 4811230, Chile; (S.E.S.); (M.Z.); (C.A.-R.)
| | - Manuel Lee-Estevez
- Faculty of Health Sciences, Universidad Autónoma de Chile, Av. Alemania 1090, Temuco 4810101, Chile;
| | - Rommy Díaz
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (R.D.); (J.Q.)
| | - John Quiñones
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (R.D.); (J.Q.)
| | - Patricio Ulloa-Rodríguez
- Department of Agronomical Sciences, Universidad Católica del Maule, Av. Carmen 684, Curicó 3341695, Chile;
| | - Elías Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Universidad Católica de Temuco, Manuel Montt 056, Temuco 4813302, Chile;
| | - León A. Bravo
- Department of Agronomical Sciences and Natural Resources, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile;
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada;
| | - Jorge G. Farías
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54D, Temuco 4811230, Chile; (S.E.S.); (M.Z.); (C.A.-R.)
| |
Collapse
|
27
|
Ahammed GJ, Li Z, Chen J, Dong Y, Qu K, Guo T, Wang F, Liu A, Chen S, Li X. Reactive oxygen species signaling in melatonin-mediated plant stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108398. [PMID: 38359555 DOI: 10.1016/j.plaphy.2024.108398] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways. Crucially, the emerging plant hormone melatonin attenuates excessive ROS accumulation under stress, whereas ROS signaling mediates melatonin-induced plant developmental response and stress tolerance. In particular, RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) proteins responsible for apoplastic ROS generation act downstream of melatonin to mediate stress response. In this review, we discuss promising developments in plant ROS signaling and how ROS might mediate melatonin-induced plant resilience to environmental stress.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Jingying Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Yifan Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Kehao Qu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Tianmeng Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Fenghua Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
28
|
Sembada AA, Lenggoro IW. Transport of Nanoparticles into Plants and Their Detection Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:131. [PMID: 38251096 PMCID: PMC10819755 DOI: 10.3390/nano14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Nanoparticle transport into plants is an evolving field of research with diverse applications in agriculture and biotechnology. This article provides an overview of the challenges and prospects associated with the transport of nanoparticles in plants, focusing on delivery methods and the detection of nanoparticles within plant tissues. Passive and assisted delivery methods, including the use of roots and leaves as introduction sites, are discussed, along with their respective advantages and limitations. The barriers encountered in nanoparticle delivery to plants are highlighted, emphasizing the need for innovative approaches (e.g., the stem as a new recognition site) to optimize transport efficiency. In recent years, research efforts have intensified, leading to an evendeeper understanding of the intricate mechanisms governing the interaction of nanomaterials with plant tissues and cells. Investigations into the uptake pathways and translocation mechanisms within plants have revealed nuanced responses to different types of nanoparticles. Additionally, this article delves into the importance of detection methods for studying nanoparticle localization and quantification within plant tissues. Various techniques are presented as valuable tools for comprehensively understanding nanoparticle-plant interactions. The reliance on multiple detection methods for data validation is emphasized to enhance the reliability of the research findings. The future outlooks of this field are explored, including the potential use of alternative introduction sites, such as stems, and the continued development of nanoparticle formulations that improve adhesion and penetration. By addressing these challenges and fostering multidisciplinary research, the field of nanoparticle transport in plants is poised to make significant contributions to sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - I. Wuled Lenggoro
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
29
|
De la Rubia AG, Largo-Gosens A, Yusta R, Sepúlveda-Orellana P, Riveros A, Centeno ML, Sanhueza D, Meneses C, Saez-Aguayo S, García-Angulo P. A novel pectin methylesterase inhibitor, PMEI3, in common bean suggests a key role of pectin methylesterification in Pseudomonas resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:364-390. [PMID: 37712879 DOI: 10.1093/jxb/erad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The mechanisms underlying susceptibility to and defense against Pseudomonas syringae (Pph) of the common bean (Phaseolus vulgaris) have not yet been clarified. To investigate these, 15-day-old plants of the variety Riñón were infected with Pph and the transcriptomic changes at 2 h and 9 h post-infection were analysed. RNA-seq analysis showed an up-regulation of genes involved in defense/signaling at 2 h, most of them being down-regulated at 9 h, suggesting that Pph inhibits the transcriptomic reprogramming of the plant. This trend was also observed in the modulation of 101 cell wall-related genes. Cell wall composition changes at early stages of Pph infection were associated with homogalacturonan methylation and the formation of egg boxes. Among the cell wall genes modulated, a pectin methylesterase inhibitor 3 (PvPMEI3) gene, closely related to AtPMEI3, was detected. PvPMEI3 protein was located in the apoplast and its pectin methylesterase inhibitory activity was demonstrated. PvPMEI3 seems to be a good candidate to play a key role in Pph infection, which was supported by analysis of an Arabidopsis pmei3 mutant, which showed susceptibility to Pph, in contrast to resistant Arabidopsis Col-0 plants. These results indicate a key role of the degree of pectin methylesterification in host resistance to Pph during the first steps of the attack.
Collapse
Affiliation(s)
- Alfonso G De la Rubia
- Área de Fisiología Vegetal, Dpto Ingenieria y Ciencias Agrarias, Universidad de León, León, E-24071, Spain
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Dpto Ingenieria y Ciencias Agrarias, Universidad de León, León, E-24071, Spain
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Ricardo Yusta
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute Center for Genome Regulation (CRG), 7800003, Santiago, Chile
| | - Pablo Sepúlveda-Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Aníbal Riveros
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - María Luz Centeno
- Área de Fisiología Vegetal, Dpto Ingenieria y Ciencias Agrarias, Universidad de León, León, E-24071, Spain
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Claudio Meneses
- ANID - Millennium Science Initiative Program - Millennium Institute Center for Genome Regulation (CRG), 7800003, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
- Chilean fruits cell wall Components as Biotechnological resources (CHICOBIO), Proyecto Anillo ACT210025, Santiago, Chile
| | - Penélope García-Angulo
- Área de Fisiología Vegetal, Dpto Ingenieria y Ciencias Agrarias, Universidad de León, León, E-24071, Spain
| |
Collapse
|
30
|
Pečenková T, Potocký M. Small secreted proteins and exocytosis regulators: do they go along? PLANT SIGNALING & BEHAVIOR 2023; 18:2163340. [PMID: 36774640 PMCID: PMC9930824 DOI: 10.1080/15592324.2022.2163340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Small secreted proteins play an important role in plant development, as well as in reactions to changes in the environment. In Arabidopsis thaliana, they are predominantly members of highly expanded families, such as the pathogenesis-related (PR) 1-like protein family, whose most studied member PR1 is involved in plant defense responses by a so far unknown mechanism, or Clavata3/Endosperm Surrounding Region (CLE) protein family, whose members' functions in the development are well described. Our survey of the existing literature for the two families showed a lack of details on their localization, trafficking, and exocytosis. Therefore, in order to uncover the modes of their secretion, we tested the hypothesis that a direct link between the secreted cargoes and the secretion regulators such as Rab GTPases, SNAREs, and exocyst subunits could be established using in silico co-expression and clustering approaches. We employed several independent techniques to uncover that only weak co-expression links could be found for limited numbers of secreted cargoes and regulators. We propose that there might be particular spatio-temporal requirements for PR1 and CLE proteins to be synthesized and secreted, and efforts to experimentally cover these discrepancies should be invested along with functional studies.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Potocký
- Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
31
|
Costantini S, Benedetti M, Pontiggia D, Giovannoni M, Cervone F, Mattei B, De Lorenzo G. Berberine bridge enzyme-like oxidases of cellodextrins and mixed-linked β-glucans control seed coat formation. PLANT PHYSIOLOGY 2023; 194:296-313. [PMID: 37590952 DOI: 10.1093/plphys/kiad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Plants have evolved various resistance mechanisms to cope with biotic stresses that threaten their survival. The BBE23 member (At5g44360/BBE23) of the Arabidopsis berberine bridge enzyme-like (BBE-l) protein family (Arabidopsis thaliana) has been characterized in this paper in parallel with the closely related and previously described CELLOX (At4g20860/BBE22). In addition to cellodextrins, both enzymes, renamed here as CELLODEXTRIN OXIDASE 2 and 1 (CELLOX2 and CELLOX1), respectively, oxidize the mixed-linked β-1→3/β-1→4-glucans (MLGs), recently described as capable of activating plant immunity, reinforcing the view that the BBE-l family includes members that are devoted to the control of the homeostasis of potential cell wall-derived damage-associated molecular patterns (DAMPs). The 2 putatively paralogous genes display different expression profiles. Unlike CELLOX1, CELLOX2 is not expressed in seedlings or adult plants and is not involved in immunity against Botrytis cinerea. Both are instead expressed in a concerted manner in the seed coat during development. Whereas CELLOX2 is expressed mainly during the heart stage, CELLOX1 is expressed at the immediately later stage, when the expression of CELLOX2 decreases. Analysis of seeds of cellox1 and cellox2 knockout mutants shows alterations in the coat structure: the columella area is smaller in cellox1, radial cell walls are thicker in both cellox1 and cellox2, and the mucilage halo is reduced in cellox2. However, the coat monosaccharide composition is not significantly altered, suggesting an alteration of the organization of the cell wall, thus reinforcing the notion that the architecture of the cell wall in specific organs is determined not only by the dynamics of the synthesis/degradation of the main polysaccharides but also by its enzymatic oxidation.
Collapse
Affiliation(s)
- Sara Costantini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, 00185 Rome, Italy
| | - Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Felice Cervone
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
32
|
Kumachova TK, Babosha AV, Ryabchenko AS, Voronkov AS. Colleters in leaves of Mespilus germanica L. (Rosaceae): Micromorphology, histochemistry and fluorescence. Micron 2023; 175:103537. [PMID: 37690393 DOI: 10.1016/j.micron.2023.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
New data on the micromorphology, histochemistry, and fluorescence of colleters on leaf structures at different stages of development (leaf blade, stipules, and petiole) of Mespilus germanica L. are presented. Colleters are found on the tips of the teeth of both young and mature leaf blades and stipules, less often on the petioles. The leaf veins approach the leaf tooth, but no vascularization was found in the colleter. On leaf structures inside the bud, young colleters were observed in the form of finger-shaped or rounded outgrowths consisting of isodiametric cells. Mature colleters are multicellular secretory structures that have a head on a short stalk. The central part of the head consists of densely packed parenchymal cells, which are surrounded by radially elongated palisade-like secretory cells covered with a cuticle. The main secretion process of the colleter falls on the period of active growth of leaf structures. The secreted substances accumulated in the intercellular spaces of the palisade-like cells of the head and then were released outside in the form of translucent vesicles. The secretion products were released when the cuticle was ruptured and spread over the surface of the head and tooth of the leaf blade and stipules. After the end of secretion, the sizes of the head of the colleter decreased, and an abscission zone appeared in the cells of the colleter stalk, along the border of which a fracture occurred when the head fell off. Histochemical analysis of the contents of the colleter showed the presence of polysaccharides, especially at a young age, substances of a phenolic nature and lipids at a more mature age. In the fluorescence spectrum of young leaf colleter secretion, a peak at 671-672 nm was observed upon excitation at 405 and 473 nm. The obtained data on Mespilus germanica L. colleter can be used in the taxonomy of Pyrinae and Rosaceae.
Collapse
Affiliation(s)
- T Kh Kumachova
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskaya 49, Moscow 127550, Russia
| | - A V Babosha
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, Moscow 127276, Russia
| | - A S Ryabchenko
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, Moscow 127276, Russia.
| | - A S Voronkov
- K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| |
Collapse
|
33
|
Farvardin A, Llorens E, Liu-Xu L, Sánchez-Giménez L, Wong A, Biosca EG, Pedra JM, Falomir E, Camañes G, Scalschi L, Vicedo B. Solanum lycopersicum heme-binding protein 2 as a potent antimicrobial weapon against plant pathogens. Sci Rep 2023; 13:20336. [PMID: 37990046 PMCID: PMC10663603 DOI: 10.1038/s41598-023-47236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
The rise in antibiotic-resistant bacteria caused by the excessive use of antibiotics has led to the urgent exploration of alternative antimicrobial solutions. Among these alternatives, antimicrobial proteins, and peptides (Apps) have garnered attention due to their wide-ranging antimicrobial effects. This study focuses on evaluating the antimicrobial properties of Solanum lycopersicum heme-binding protein 2 (SlHBP2), an apoplastic protein extracted from tomato plants treated with 1-Methyl tryptophan (1-MT), against Pseudomonas syringae pv. tomato DC3000 (Pst). Computational studies indicate that SlHBP2 is annotated as a SOUL heme-binding family protein. Remarkably, recombinant SlHBP2 demonstrated significant efficacy in inhibiting the growth of Pst within a concentration range of 3-25 μg/mL. Moreover, SlHBP2 exhibited potent antimicrobial effects against other microorganisms, including Xanthomonas vesicatoria (Xv), Clavibacter michiganensis subsp. michiganensis (Cmm), and Botrytis cinerea. To understand the mechanism of action employed by SlHBP2 against Pst, various techniques such as microscopy and fluorescence assays were employed. The results revealed that SlHBP2 disrupts the bacterial cell wall and causes leakage of intracellular contents. To summarize, the findings suggest that SlHBP2 has significant antimicrobial properties, making it a potential antimicrobial agent against a wide range of pathogens. Although further studies are warranted to explore the full potential of SlHBP2 and its suitability in various applications.
Collapse
Affiliation(s)
- Atefeh Farvardin
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Eugenio Llorens
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Luisa Liu-Xu
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Lorena Sánchez-Giménez
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Aloysius Wong
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, Zhejiang, China
| | - Elena G Biosca
- Department of Microbiology and Ecology, Universitat de Valencia, E-46100, Valencia, Spain
| | - José M Pedra
- Central Service of Scientific Instrumentation, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Eva Falomir
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Gemma Camañes
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Loredana Scalschi
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain.
| | - Begonya Vicedo
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| |
Collapse
|
34
|
Bouranis DL, Chorianopoulou SN. Foliar Application of Sulfur-Containing Compounds-Pros and Cons. PLANTS (BASEL, SWITZERLAND) 2023; 12:3794. [PMID: 38005690 PMCID: PMC10674314 DOI: 10.3390/plants12223794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Sulfate is taken up from the soil solution by the root system; and inside the plant, it is assimilated to hydrogen sulfide, which in turn is converted to cysteine. Sulfate is also taken up by the leaves, when foliage is sprayed with solutions containing sulfate fertilizers. Moreover, several other sulfur (S)-containing compounds are provided through foliar application, including the S metabolites hydrogen sulfide, glutathione, cysteine, methionine, S-methylmethionine, and lipoic acid. However, S compounds that are not metabolites, such as thiourea and lignosulfonates, along with dimethyl sulfoxide and S-containing adjuvants, are provided by foliar application-these are the S-containing agrochemicals. In this review, we elaborate on the fate of these compounds after spraying foliage and on the rationale and the efficiency of such foliar applications. The foliar application of S-compounds in various combinations is an emerging area of agricultural usefulness. In the agricultural practice, the S-containing compounds are not applied alone in spray solutions and the need for proper combinations is of prime importance.
Collapse
Affiliation(s)
- Dimitris L. Bouranis
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of Athens, 11855 Athens, Greece;
- PlanTerra Institute for Plant Nutrition and Soil Quality, Agricultural University of Athens, 11855 Athens, Greece
| | - Styliani N. Chorianopoulou
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of Athens, 11855 Athens, Greece;
- PlanTerra Institute for Plant Nutrition and Soil Quality, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
35
|
Xu B, Zhang J, Shi Y, Dai F, Jiang T, Xuan L, He Y, Zhang Z, Deng J, Zhang T, Hu Y, Si Z. GoSTR, a negative modulator of stem trichome formation in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:389-403. [PMID: 37403589 DOI: 10.1111/tpj.16379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023]
Abstract
Trichomes, the outward projection of plant epidermal tissue, provide an effective defense against stress and insect pests. Although numerous genes have been identified to be involved in trichome development, the molecular mechanism for trichome cell fate determination is not well enunciated. Here, we reported GoSTR functions as a master repressor for stem trichome formation, which was isolated by map-based cloning based on a large F2 segregating population derived from a cross between TM-1 (pubescent stem) and J220 (smooth stem). Sequence alignment revealed a critical G-to-T point mutation in GoSTR's coding region that converted codon 2 from GCA (Alanine) to TCA (Serine). This mutation occurred between the majority of Gossypium hirsutum with pubescent stem (GG-haplotype) and G. barbadense with glabrous stem (TT-haplotype). Silencing of GoSTR in J220 and Hai7124 via virus-induced gene silencing resulted in the pubescent stems but no visible change in leaf trichomes, suggesting stem trichomes and leaf trichomes are genetically distinct. Yeast two-hybrid assay and luciferase complementation imaging assay showed GoSTR interacts with GoHD1 and GoHOX3, two key regulators of trichome development. Comparative transcriptomic analysis further indicated that many transcription factors such as GhMYB109, GhTTG1, and GhMYC1/GhDEL65 which function as positive regulators of trichomes were significantly upregulated in the stem from the GoSTR-silencing plant. Taken together, these results indicate that GoSTR functions as an essential negative modulator of stem trichomes and its transcripts will greatly repress trichome cell differentiation and growth. This study provided valuable insights for plant epidermal hair initiation and differentiation research.
Collapse
Affiliation(s)
- Biyu Xu
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Jun Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Yue Shi
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Fan Dai
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Tao Jiang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Lisha Xuan
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Ying He
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Zhiyuan Zhang
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jieqiong Deng
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Tianzhen Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Yan Hu
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Zhanfeng Si
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
- The Rural Development Academy, Zhejiang University, Hangzhou, 310029, China
| |
Collapse
|
36
|
Qin Z, Liang ZZ, Wu YN, Zhou XQ, Xu M, Jiang LW, Li S, Zhang Y. Embryo sac development relies on symplastic signals from ovular integuments in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:161-172. [PMID: 37381795 DOI: 10.1111/tpj.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Ovules are female reproductive organs of angiosperms, consisting of sporophytic integuments surrounding female gametophytes, that is, embryo sacs. Synchronization between integument growth and embryo sac development requires intracellular communication. However, signaling routes through which cells of the two generations communicate are unclear. We report that symplastic signals through plasmodesmata (PDs) of integuments are critical for the development of female gametophytes. Genetic interferences of PD biogenesis either by functional loss of CHOLINE TRANSPORTER-LIKE1 (CTL1) or by integument-specific expression of a mutated CALLOSE SYNTHASE 3 (cals3m) compromised PD formation in integuments and reduced fertility. Close examination of pINO:cals3m or ctl1 ovules indicated that female gametophytic development was either arrested at various stages after the formation of functional megaspores. In both cases, defective ovules could not attract pollen tubes, leading to the failure of fertilization. Results presented here demonstrate a key role of the symplastic route in sporophytic control of female gametophytic development.
Collapse
Affiliation(s)
- Zheng Qin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Zi-Zhen Liang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Centre for Cell & Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya-Nan Wu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Xue-Qing Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Meng Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Li-Wen Jiang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Centre for Cell & Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| |
Collapse
|
37
|
Liu Q, Zhang Y, Dong X, Zheng L, Zhou Y, Gao F. Integrated metabolomics and transcriptomics analysis reveals that the change of apoplast metabolites contributes to adaptation to winter freezing stress in Euonymus japonicus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107924. [PMID: 37541019 DOI: 10.1016/j.plaphy.2023.107924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Euonymus japonicus, a common urban street tree, can withstand winter freezing stress in temperate regions. The apoplast is the space outside the plasma membrane, and the changes of metabolites in apoplast may be involved in plant adaptation to adverse environments. To reveal the molecular mechanism underlying the winter freezing stress tolerance in E. japonicus, the changes in physiological and biochemical indexes, apoplast metabolites, and gene expression in the leaves of E. japonicus in early autumn and winter were analyzed. A total of 300 differentially accumulated metabolites were identified in apoplast fluids in E. japonicus, which were mainly related to flavone and flavonol biosynthesis, and galactose metabolism, amino acid synthesis, and unsaturated fatty acid synthesis. Integrated metabolomics and transcriptomics analysis revealed that E. japonicus adjust apoplast metabolites including flavonoids such as quercetin and kaempferol, and oligosaccharides such as raffinose and stachyose, to adapt to winter freezing stress through gene expression regulation. In addition, the regulation of ABA and SA biosynthesis and signal transduction pathways, as well as the activation of the antioxidant enzymes, also played important roles in the adaptation to winter freezing stress in E. japonicus. The present study provided essential data for understanding the molecular mechanism underlying the adaptation to winter freezing stress in E. japonicus.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yifang Zhang
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xue Dong
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lamei Zheng
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Fei Gao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
38
|
Spanic V, Vukovic A, Cseplo M, Vukovic R, Buchvaldt Amby D, Cairo Westergaard J, Puskas K, Roitsch T. Early leaf responses of cell physiological and sensor-based signatures reflect susceptibility of wheat seedlings to infection by leaf rust. PHYSIOLOGIA PLANTARUM 2023; 175:e13990. [PMID: 37616017 DOI: 10.1111/ppl.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Leaf rust caused by Puccinia triticina Erikss. can have devastating effects on wheat (Triticum aestivum L.), causing severe economic losses. This comprehensive study serves to facilitate our understanding of the impact of carbohydrate and antioxidant metabolism in association with sensor-based phenotyping and leaf rust stress responses in wheat seedlings. After 24 h of inoculation (hai) very susceptible variety to leaf rust (Ficko) increased cell-wall invertase (cwInv; EC 3.2.1.26), compared to other varieties that significantly increased cwInv later. This could mean that the Ficko variety cannot defend itself from leaf rust infections once symptoms have started to develop. Also, Ficko had significantly decreased amounts of cytoplasmic invertase (cytInv; EC 3.2.1.26) at 8 hai. The downregulation of cytInv in susceptible plants may facilitate the maintenance of elevated apoplastic sucrose availability favoring the pathogen. The significant role of vacuolar invertase (vacInv; EC 3.2.1.26) in moderately resistant varieties was recorded. Also, a significant decrease of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) in moderately resistant varieties might restrict normal development of leaf rust due to reduced sugar. During plant-pathogen interaction, when the invader spreads systemically throughout the plant, the main role of ascorbate peroxidase (APX; EC 1.11.1.11) activity in one moderately resistant variety (Olimpija) and catalase (CAT; EC 1.11.1.6) activity in another moderately resistant variety (Alka) is to protect the plant against oxidative damage in the early stages of infection. Non-invasive phenotyping with a sensor-based technique could be used as a rapid method for pre-symptomatic determination of wheat leaf rust resistance or susceptibility.
Collapse
Affiliation(s)
- Valentina Spanic
- Department of Small Cereal Crops Breeding and Genetics, Agricultural Institute Osijek, Osijek, Osijek, Croatia
| | - Ana Vukovic
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Monika Cseplo
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Rosemary Vukovic
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| | - Katalin Puskas
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| |
Collapse
|
39
|
Hajiboland R, Panda CK, Lastochkina O, Gavassi MA, Habermann G, Pereira JF. Aluminum Toxicity in Plants: Present and Future. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:3967-3999. [DOI: 10.1007/s00344-022-10866-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/26/2022] [Indexed: 06/23/2023]
|
40
|
Dos Santos C, Franco OL. Pathogenesis-Related Proteins (PRs) with Enzyme Activity Activating Plant Defense Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112226. [PMID: 37299204 DOI: 10.3390/plants12112226] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Throughout evolution, plants have developed a highly complex defense system against different threats, including phytopathogens. Plant defense depends on constitutive and induced factors combined as defense mechanisms. These mechanisms involve a complex signaling network linking structural and biochemical defense. Antimicrobial and pathogenesis-related (PR) proteins are examples of this mechanism, which can accumulate extra- and intracellular space after infection. However, despite their name, some PR proteins are present at low levels even in healthy plant tissues. When they face a pathogen, these PRs can increase in abundance, acting as the first line of plant defense. Thus, PRs play a key role in early defense events, which can reduce the damage and mortality caused by pathogens. In this context, the present review will discuss defense response proteins, which have been identified as PRs, with enzymatic action, including constitutive enzymes, β-1,3 glucanase, chitinase, peroxidase and ribonucleases. From the technological perspective, we discuss the advances of the last decade applied to the study of these enzymes, which are important in the early events of higher plant defense against phytopathogens.
Collapse
Affiliation(s)
- Cristiane Dos Santos
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil
| |
Collapse
|
41
|
Leung HS, Chan LY, Law CH, Li MW, Lam HM. Twenty years of mining salt tolerance genes in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:45. [PMID: 37313223 PMCID: PMC10248715 DOI: 10.1007/s11032-023-01383-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/12/2023] [Indexed: 06/15/2023]
Abstract
Current combined challenges of rising food demand, climate change and farmland degradation exert enormous pressure on agricultural production. Worldwide soil salinization, in particular, necessitates the development of salt-tolerant crops. Soybean, being a globally important produce, has its genetic resources increasingly examined to facilitate crop improvement based on functional genomics. In response to the multifaceted physiological challenge that salt stress imposes, soybean has evolved an array of defences against salinity. These include maintaining cell homeostasis by ion transportation, osmoregulation, and restoring oxidative balance. Other adaptations include cell wall alterations, transcriptomic reprogramming, and efficient signal transduction for detecting and responding to salt stress. Here, we reviewed functionally verified genes that underly different salt tolerance mechanisms employed by soybean in the past two decades, and discussed the strategy in selecting salt tolerance genes for crop improvement. Future studies could adopt an integrated multi-omic approach in characterizing soybean salt tolerance adaptations and put our existing knowledge into practice via omic-assisted breeding and gene editing. This review serves as a guide and inspiration for crop developers in enhancing soybean tolerance against abiotic stresses, thereby fulfilling the role of science in solving real-life problems. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01383-3.
Collapse
Affiliation(s)
- Hoi-Sze Leung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Long-Yiu Chan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Cheuk-Hin Law
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000 People’s Republic of China
| |
Collapse
|
42
|
Burian M, Podgórska A, Ostaszewska-Bugajska M, Kryzheuskaya K, Dziewit K, Wdowiak A, Laszczka M, Szal B. A prospective study of short-term apoplastic responses to ammonium treatment. JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154008. [PMID: 37245458 DOI: 10.1016/j.jplph.2023.154008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 05/30/2023]
Abstract
The integration of external stimuli into plant cells has been extensively studied. Ammonium is a metabolic trigger because it affects plant nutrition status; on the contrary, it is also a stress factor inducing oxidative changes. Plants, upon quick reaction to the presence of ammonium, can avoid the development of toxicity symptoms, but their primary ammonium sensing mechanisms remain unknown. This study aimed to investigate the different signaling routes available in the extracellular space in response to supplying ammonium to plants. During short-term (30 min-24 h) ammonium treatment of Arabidopsis seedlings, no indication of oxidative stress development or cell wall modifications was observed. However, specific changes in reactive oxygen species (ROS) and redox status were observed in the apoplast, consequently leading to the activation of several ROS (RBOH, NQR), redox (MPK, OXI), and cell-wall (WAK, FER, THE, HERK) related genes. Therefore, it is expected that immediately after ammonium supply, a defense signaling route is initiated in the extracellular space. To conclude, the presence of ammonium is primarily perceived as a typical immune reaction.
Collapse
Affiliation(s)
- Maria Burian
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Kacper Dziewit
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Agata Wdowiak
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Marta Laszczka
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
43
|
Borniego ML, Innes RW. Extracellular RNA: mechanisms of secretion and potential functions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2389-2404. [PMID: 36609873 PMCID: PMC10082932 DOI: 10.1093/jxb/erac512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/21/2022] [Indexed: 06/06/2023]
Abstract
Extracellular RNA (exRNA) has long been considered as cellular waste that plants can degrade and utilize to recycle nutrients. However, recent findings highlight the need to reconsider the biological significance of RNAs found outside of plant cells. A handful of studies suggest that the exRNA repertoire, which turns out to be an extremely heterogenous group of non-coding RNAs, comprises species as small as a dozen nucleotides to hundreds of nucleotides long. They are found mostly in free form or associated with RNA-binding proteins, while very few are found inside extracellular vesicles (EVs). Despite their low abundance, small RNAs associated with EVs have been a focus of exRNA research due to their putative role in mediating trans-kingdom RNAi. Therefore, non-vesicular exRNAs have remained completely under the radar until very recently. Here we summarize our current knowledge of the RNA species that constitute the extracellular RNAome and discuss mechanisms that could explain the diversity of exRNAs, focusing not only on the potential mechanisms involved in RNA secretion but also on post-release processing of exRNAs. We will also share our thoughts on the putative roles of vesicular and extravesicular exRNAs in plant-pathogen interactions, intercellular communication, and other physiological processes in plants.
Collapse
Affiliation(s)
- M Lucía Borniego
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
44
|
Kiselev A, Camborde L, Carballo LO, Kaschani F, Kaiser M, van der Hoorn RAL, Gaulin E. The root pathogen Aphanomyces euteiches secretes modular proteases in pea apoplast during host infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1140101. [PMID: 37051076 PMCID: PMC10084794 DOI: 10.3389/fpls.2023.1140101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
To successfully colonize the host, phytopathogens have developed a large repertoire of components to both combat the host plant defense mechanisms and to survive in adverse environmental conditions. Microbial proteases are predicted to be crucial components of these systems. In the present work, we aimed to identify active secreted proteases from the oomycete Aphanomyces euteiches, which causes root rot diseases on legumes. Genome mining and expression analysis highlighted an overrepresentation of microbial tandemly repeated proteases, which are upregulated during host infection. Activity Based Protein Profiling and mass spectrometry (ABPP-MS) on apoplastic fluids isolated from pea roots infected by the pathogen led to the identification of 35 active extracellular microbial proteases, which represents around 30% of the genes expressed encoding serine and cysteine proteases during infection. Notably, eight of the detected active secreted proteases carry an additional C-terminal domain. This study reveals novel active modular extracellular eukaryotic proteases as potential pathogenicity factors in Aphanomyces genus.
Collapse
Affiliation(s)
- Andrei Kiselev
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Laura Ossorio Carballo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Renier A. L. van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
45
|
Mahmoudi M, Landry MP, Moore A, Coreas R. The protein corona from nanomedicine to environmental science. NATURE REVIEWS. MATERIALS 2023; 8:1-17. [PMID: 37361608 PMCID: PMC10037407 DOI: 10.1038/s41578-023-00552-2] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 05/15/2023]
Abstract
The protein corona spontaneously develops and evolves on the surface of nanoscale materials when they are exposed to biological environments, altering their physiochemical properties and affecting their subsequent interactions with biosystems. In this Review, we provide an overview of the current state of protein corona research in nanomedicine. We next discuss remaining challenges in the research methodology and characterization of the protein corona that slow the development of nanoparticle therapeutics and diagnostics, and we address how artificial intelligence can advance protein corona research as a complement to experimental research efforts. We then review emerging opportunities provided by the protein corona to address major issues in healthcare and environmental sciences. This Review details how mechanistic insights into nanoparticle protein corona formation can broadly address unmet clinical and environmental needs, as well as enhance the safety and efficacy of nanobiotechnology products.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA USA
- Innovative Genomics Institute, Berkeley, CA USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA USA
- Chan Zuckerberg Biohub, San Francisco, CA USA
| | - Anna Moore
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI USA
| | - Roxana Coreas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA USA
| |
Collapse
|
46
|
Zhu M, Liu Q, Liu F, Zheng L, Bing J, Zhou Y, Gao F. Gene Profiling of the Ascorbate Oxidase Family Genes under Osmotic and Cold Stress Reveals the Role of AnAO5 in Cold Adaptation in Ammopiptanthus nanus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030677. [PMID: 36771760 PMCID: PMC9920380 DOI: 10.3390/plants12030677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
The uplift of the Qinghai Tibet Plateau has led to a drastic change in the climate in Central Asia, from warm and rainy, to dry and less rainfall. Ammopiptanthus nanus, a rare evergreen broad-leaved shrub distributed in the temperate desert region of Central Asia, has survived the drastic climate change in Central Asia caused by the uplift of the Qinghai-Tibet Plateau. Ascorbate oxidase (AO) regulates the redox status of the apoplast by catalyzing the oxidation of ascorbate acid to dehydroascorbic acid, and plays a key role in the adaptation of plants to environmental changes. Analyzing the evolution, environmental response, and biological functions of the AO family of A. nanus is helpful for understanding how plant genome evolution responds to climate change in Central Asia. A total of 16 AOs were identified in A. nanus, all of which contained the ascorbate oxidase domain, most of which contained transmembrane domain, and many were predicted to be localized in the apoplast. Segmental duplication and tandem duplication are the main factors driving the gene amplification of the AO gene family in A. nanus. Gene expression analysis based on transcriptome data and fluorescence quantitative PCR, as well as enzyme activity measurements, showed that the expression levels of AO genes and total enzyme activity decreased under short-term osmotic stress and low-temperature stress, but the expression of some AO genes (AnAO5, AnAO13, and AnAO16) and total enzyme activity increased under 7 days of cold stress. AnAO5 and AnAO11 are targeted by miR4415. Further functional studies on AnAO5 showed that AnAO5 protein was localized in the apoplast. The expression of AnAO5 in yeast cells and the transient expression in tobacco enhanced the tolerance of yeast and tobacco to low-temperature stress, and the overexpression of AnAO5 enhanced the tolerance of Arabidopsis seedlings to cold stress. Our research provides important data for understanding the role of AOs in plant adaptation to environmental change.
Collapse
Affiliation(s)
- Ming Zhu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fuyu Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Lamei Zheng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
47
|
Fraudentali I, Pedalino C, D’Incà R, Tavladoraki P, Angelini R, Cona A. Distinct role of AtCuAOβ- and RBOHD-driven H 2O 2 production in wound-induced local and systemic leaf-to-leaf and root-to-leaf stomatal closure. FRONTIERS IN PLANT SCIENCE 2023; 14:1154431. [PMID: 37152169 PMCID: PMC10160378 DOI: 10.3389/fpls.2023.1154431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Polyamines (PAs) are ubiquitous low-molecular-weight aliphatic compounds present in all living organisms and essential for cell growth and differentiation. The developmentally regulated and stress-induced copper amine oxidases (CuAOs) oxidize PAs to aminoaldehydes producing hydrogen peroxide (H2O2) and ammonia. The Arabidopsis thaliana CuAOβ (AtCuAOβ) was previously reported to be involved in stomatal closure and early root protoxylem differentiation induced by the wound-signal MeJA via apoplastic H2O2 production, suggesting a role of this enzyme in water balance, by modulating xylem-dependent water supply and stomata-dependent water loss under stress conditions. Furthermore, AtCuAOβ has been shown to mediate early differentiation of root protoxylem induced by leaf wounding, which suggests a whole-plant systemic coordination of water supply and loss through stress-induced stomatal responses and root protoxylem phenotypic plasticity. Among apoplastic ROS generators, the D isoform of the respiratory burst oxidase homolog (RBOH) has been shown to be involved in stress-mediated modulation of stomatal closure as well. In the present study, the specific role of AtCuAOβ and RBOHD in local and systemic perception of leaf and root wounding that triggers stomatal closure was investigated at both injury and distal sites exploiting Atcuaoβ and rbohd insertional mutants. Data evidenced that AtCuAOβ-driven H2O2 production mediates both local and systemic leaf-to-leaf and root-to-leaf responses in relation to stomatal movement, Atcuaoβ mutants being completely unresponsive to leaf or root wounding. Instead, RBOHD-driven ROS production contributes only to systemic leaf-to-leaf and root-to-leaf stomatal closure, with rbohd mutants showing partial unresponsiveness in distal, but not local, responses. Overall, data herein reported allow us to hypothesize that RBOHD may act downstream of and cooperate with AtCuAOβ in inducing the oxidative burst that leads to systemic wound-triggered stomatal closure.
Collapse
Affiliation(s)
| | | | | | - Paraskevi Tavladoraki
- Department of Science, University Roma Tre, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Riccardo Angelini
- Department of Science, University Roma Tre, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Alessandra Cona
- Department of Science, University Roma Tre, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
- *Correspondence: Alessandra Cona,
| |
Collapse
|
48
|
Polyamine Oxidase-Generated Reactive Oxygen Species in Plant Development and Adaptation: The Polyamine Oxidase-NADPH Oxidase Nexus. Antioxidants (Basel) 2022; 11:antiox11122488. [PMID: 36552696 PMCID: PMC9774701 DOI: 10.3390/antiox11122488] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolism and regulation of cellular polyamine levels are crucial for living cells to maintain their homeostasis and function. Polyamine oxidases (PAOs) terminally catabolize polyamines or catalyse the back-conversion reactions when spermine is converted to spermidine and Spd to putrescine. Hydrogen peroxide (H2O2) is a by-product of both the catabolic and back-conversion processes. Pharmacological and genetic approaches have started to uncover the roles of PAO-generated H2O2 in various plant developmental and adaptation processes such as cell differentiation, senescence, programmed cell death, and abiotic and biotic stress responses. Many of these studies have revealed that the superoxide-generating Respiratory Burst Oxidase Homolog (RBOH) NADPH oxidases control the same processes either upstream or downstream of PAO action. Therefore, it is reasonable to suppose that the two enzymes co-ordinately control the cellular homeostasis of reactive oxygen species. The intricate relationship between PAOs and RBOHs is also discussed, posing the hypothesis that these enzymes indirectly control each other's abundance/function via H2O2.
Collapse
|
49
|
Acharya U, Das T, Ghosh Z, Ghosh A. Defense Surveillance System at the Interface: Response of Rice Towards Rhizoctonia solani During Sheath Blight Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1081-1095. [PMID: 36000178 DOI: 10.1094/mpmi-07-22-0153-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sheath blight of rice caused by necrotrophic plant pathogen Rhizoctonia solani is one of the most common fungal diseases of rice leading to significant yield loss. Among the defense responses exhibited by the host plants towards fungal infections, those functional within the apoplast contribute significantly. Here, we have studied apoplastic defense response of rice towards R. solani during sheath blight infection. The transcriptome of R. solani-infected rice plants was compared with that of uninfected rice, to identify the set of defense genes that undergo differential expression and code for proteins with a predicted N-terminal signal peptide. Significant changes in the stress-responsive, molecular signal perception, protein modification, and metabolic process pathways represented by a group of differentially expressed genes were observed. Our data also revealed two secreted protease inhibitors from rice that exhibit increased expression during R. solani infection and induce disease resistance when expressed in Nicotiana benthamiana. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Udita Acharya
- Division of Plant Biology, Bose Institute, Kolkata, India
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Anupama Ghosh
- Division of Plant Biology, Bose Institute, Kolkata, India
| |
Collapse
|
50
|
Ishida K, Noutoshi Y. The function of the plant cell wall in plant-microbe interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:273-284. [PMID: 36279746 DOI: 10.1016/j.plaphy.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The plant cell wall is an interface of plant-microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant-microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall-physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources-in the context of plant-microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|