1
|
Mistry MN, Gasparrini A. Real-time forecast of temperature-related excess mortality at small-area level: towards an operational framework. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2024; 2:035011. [PMID: 39119459 PMCID: PMC7616349 DOI: 10.1088/2752-5309/ad5f51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The development of innovative tools for real-time monitoring and forecasting of environmental health impacts is central to effective public health interventions and resource allocation strategies. Though a need for such generic tools has been previously echoed by public health planners and regional authorities responsible for issuing anticipatory alerts, a comprehensive, robust and scalable real-time system for predicting temperature-related excess deaths at a local scale has not been developed yet. Filling this gap, we propose a flexible operational framework for coupling publicly available weather forecasts with temperature-mortality risk functions specific to small census-based zones, the latter derived using state-of-the-art environmental epidemiological models. Utilising high-resolution temperature data forecast by a leading European meteorological centre, we demonstrate a real-time application to forecast the excess mortality during the July 2022 heatwave over England and Wales. The output, consisting of expected temperature-related excess deaths at small geographic areas on different lead times, can be automated to generate maps at various spatio-temporal scales, thus facilitating preventive action and allocation of public health resources in advance. While the real-case example discussed here demonstrates an application for predicting (expected) heat-related excess deaths, the framework can also be adapted to other weather-related health risks and to different geographical areas, provided data on both meteorological exposure and the underlying health outcomes are available to calibrate the associated risk functions. The proposed framework addresses an urgent need for predicting the short-term environmental health burden on public health systems globally, especially in low- and middle-income regions, where rapid response to mitigate adverse exposures and impacts to extreme temperatures are often constrained by available resources.
Collapse
Affiliation(s)
- Malcolm N Mistry
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Economics, Ca’ Foscari University of Venice, Venice, Italy
| | - Antonio Gasparrini
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
He C, Breitner S, Zhang S, Huber V, Naumann M, Traidl-Hoffmann C, Hammel G, Peters A, Ertl M, Schneider A. Nocturnal heat exposure and stroke risk. Eur Heart J 2024; 45:2158-2166. [PMID: 38768958 PMCID: PMC11212822 DOI: 10.1093/eurheartj/ehae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND AND AIMS In recent decades, nighttime temperatures have increased faster than daytime temperatures. The increasing prevalence of nocturnal heat exposure may pose a significant risk to cardiovascular health. This study investigated the association between nighttime heat exposure and stroke risk in the region of Augsburg, Germany, and examined its temporal variations over 15 years. METHODS Hourly meteorological parameters, including mean temperature, relative humidity, and barometric pressure, were acquired from a local meteorological station. A data set was obtained consisting of 11 037 clinical stroke cases diagnosed during warmer months (May to October) between the years 2006 and 2020. The average age of cases was 71.3 years. Among these cases, 642 were identified as haemorrhagic strokes, 7430 were classified as ischaemic strokes, and 2947 were transient ischaemic attacks. A time-stratified case-crossover analysis with a distributed lag non-linear model was used to estimate the stroke risk associated with extreme nighttime heat, as measured by the hot night excess (HNE) index after controlling for the potential confounding effects of daily maximum temperature and other climatic variables. Subgroup analyses by age group, sex, stroke subtype, and stroke severity were performed to identify variations in susceptibility to nighttime heat. RESULTS Results suggested a significant increase in stroke risk on days with extreme nighttime heat (97.5% percentile of HNE) (odds ratio 1.07, 95% confidence interval 1.01-1.15) during the full study period. When comparing the results for 2013-20 with the results for 2006-12, there was a significant increase (P < .05) in HNE-related risk for all strokes and specifically for ischaemic strokes during the more recent period. Furthermore, older individuals, females, and patients with mild stroke symptoms exhibited a significantly increased vulnerability to nighttime heat. CONCLUSIONS This study found nocturnal heat exposure to be related to elevated stroke risk after controlling for maximum daytime temperature, with increasing susceptibility between 2006 and 2020. These results underscore the importance of considering nocturnal heat as a critical trigger of stroke events in a warming climate.
Collapse
Affiliation(s)
- Cheng He
- Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, IBE, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Veronika Huber
- Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, IBE, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Naumann
- Department of Neurology and Clinical Neurophysiology, University Hospital Augsburg, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Medical Faculty, University Augsburg, Augsburg, Germany
- CK-CARE, Christine Kühne Center for Allergy and Research and Education, Davos, Switzerland
- Institute of Environmental Medicine, Helmholtz Zentrum München—German Research Center for Environmental Health, Augsburg, Germany
| | - Gertrud Hammel
- Environmental Medicine, Medical Faculty, University Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München—German Research Center for Environmental Health, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, IBE, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Health (DZHK e.V., partner-site Munich), Munich, Germany
| | - Michael Ertl
- Department of Neurology and Clinical Neurophysiology, University Hospital Augsburg, Augsburg, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
3
|
Rezaee R, Fathi S, Maleki A, Aboubakri O, Li G, Safari M, Sharafkhani R, Zarei M. Summer heat waves and their mortality risk over a 14-year period in a western region of Iran. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:2081-2091. [PMID: 37845501 DOI: 10.1007/s00484-023-02564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Compared to previous decade, impact of heat waves (HWs) on mortality in recent years needs to be discussed in Iran. We investigated temporal change in added impact of summer HWs on mortality in eight cities of Iran. The pooled length of HWs was compared between 2015-2022 and 2008-2014 using random and fixed-effects of meta-analysis regression model. The temporal change in impact of HWs was evaluated through interaction effect between crossbasis function of HW and year in a two-stage time varying model. In order to pool the reduced coefficients of each period, multivariate meta-regression model, including city-specific temperature and temperature range as heterogenicity factors, was used. In addition to relative risk (RR), attributable fraction (AF) of HW in the two periods was also estimated in each city. In the last years, the frequency of all HWs was higher and the weak HWs were significantly longer. The only significant RR was related to the lowest and low severe HWs which was observed in the second period. In terms of AF, compared to the strong HWs, all weak HWs caused a considerable excess mortality in all cities and second period. The subgroup analysis revealed that the significant impact in the second period was mainly related to females and elderlies. The increased risk and AF due to more frequent and longer HWs (weak HWs) in the last years highlights the need for mitigation strategies in the region. Because of uncertainty in the results of severe HWs, further elaborately investigation of the HWs is need.
Collapse
Affiliation(s)
- Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Serveh Fathi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Omid Aboubakri
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University, School of Public Health, Beijing, China
| | - Mahdi Safari
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rahim Sharafkhani
- School of Public Health, Khoy University of Medical Sciences, Khoy, Iran
| | - Mozhdeh Zarei
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Deputy of Research and Technology, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
4
|
He C, Yin P, Chen R, Gao Y, Liu W, Schneider A, Bell ML, Kan H, Zhou M. Cause-specific accidental deaths and burdens related to ambient heat in a warming climate: A nationwide study of China. ENVIRONMENT INTERNATIONAL 2023; 180:108231. [PMID: 37778287 DOI: 10.1016/j.envint.2023.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Future warming is projected to increase the heat-related mortality burden, especially for vulnerable populations. However, most previous studies focused on non-accidental morbidity or mortality, with far less research on heat-related accidental events. METHODS We collected individual accidental death records among all residents in Chinese mainland from June to August during 2013-2019. Accidental deaths were further divided into several subtypes by different causes. We used an individual-level, time-stratified, case-crossover study design to estimate the association between daily mean temperature and accidental deaths, and estimate its variation in seven geo-climatic zones, age (5-64, 65-74, ≥75), and sex (male, female). We then estimated the temperature-related excess accidental deaths under global warming scenarios of 1.5, 2, and 3℃. FINDINGS A total of 711,929 accidental death records were included in our study. We found that higher temperatures were associated with increased risks of deaths from the total accidental events and four main subtypes, including traffic, falls, drowning, and unintentional injuries. We also found that younger individuals (ages 5-64) and males faced a higher risk of heat-related mortality due to total accidents, traffic incidents, and drowning. For future climate scenarios, even under the 1.5℃ climate change scenario, 6,939 (95% eCI (empirical Confidence Interval): 6,818-7,067) excess accidental deaths per year are attributed to higher summertime daily temperature over mainland China, and the number of accidental deaths would increase by 16.71% and 33.59% under the 2℃ and 3℃ climate change scenarios, respectively. For residents living in southern coastal and northwest inland regions, the projected increase in accidental death is higher. CONCLUSIONS This nationwide study confirms that higher summer temperatures are linked to an increased risk of accidental deaths. Younger age groups and males face a higher risk. This indicates that current estimates of the health effects of climate change might be underestimated, particularly for younger populations.
Collapse
Affiliation(s)
- Cheng He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Wei Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
5
|
Pascal M, Wagner V, Corso M. Changes in the temperature-mortality relationship in France: Limited evidence of adaptation to a new climate. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:725-734. [PMID: 36930363 DOI: 10.1007/s00484-023-02451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Documenting trends in the health impacts of ambient temperature is key to supporting adaptation strategies to climate change. This paper explores changes in the temperature-related mortality in 18 French urban centers between 1970 and 2015. METHOD A multicentric time-series design with time-varying distributed lag nonlinear models was adopted to model the shape of the relationship and assess temporal changes in risks and impacts. RESULTS The general shape of the temperature-mortality relationship did not change over time, except for an increasing risk at very low percentiles and a decreasing risk at very high percentiles. The relative risk at the 99.9th percentile compared to the 50th percentile of the 1970-2015 temperature distribution decreased from 2.33 [95% confidence interval (CI): 1.95:2.79] in 1975 to 1.33 [95% CI: 1.14:1.55] in 2015. Between 1970 and 2015, 302,456 [95% CI: 292,723:311,392] deaths were attributable to non-optimal temperatures, corresponding to 5.5% [95% CI: 5.3:5.6] of total mortality. This burden decreased progressively, representing 7.2% [95% CI: 6.7:7.7] of total mortality in the 1970s to 3.4% [95% CI: 3.2:3.6] in the 2000s. However, the contribution of hot temperatures to this burden (higher than the 90th percentile) increased. DISCUSSION Despite the decreasing relative risk, the fraction of mortality attributable to extreme heat increased between 1970 and 2015, thus highlighting the need for proactive adaptation.
Collapse
Affiliation(s)
- Mathilde Pascal
- Department of Environmental and Occupational Health, Santé Publique France, 12 Rue du Val d'Osne, 94415, St Maurice, France.
| | - Vérène Wagner
- Department of Environmental and Occupational Health, Santé Publique France, 12 Rue du Val d'Osne, 94415, St Maurice, France
| | - Magali Corso
- Department of Environmental and Occupational Health, Santé Publique France, 12 Rue du Val d'Osne, 94415, St Maurice, France
| |
Collapse
|
6
|
Roca-Barceló A, Fecht D, Pirani M, Piel FB, Nardocci AC, Vineis P. Trends in Temperature-associated Mortality in São Paulo (Brazil) between 2000 and 2018: an Example of Disparities in Adaptation to Cold and Heat. J Urban Health 2022; 99:1012-1026. [PMID: 36357626 PMCID: PMC9727050 DOI: 10.1007/s11524-022-00695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/12/2022]
Abstract
Exposure to non-optimal temperatures remains the single most deathful direct climate change impact to health. The risk varies based on the adaptation capacity of the exposed population which can be driven by climatic and/or non-climatic factors subject to fluctuations over time. We investigated temporal changes in the exposure-response relationship between daily mean temperature and mortality by cause of death, sex, age, and ethnicity in the megacity of São Paulo, Brazil (2000-2018). We fitted a quasi-Poisson regression model with time-varying distributed-lag non-linear model (tv-DLNM) to obtain annual estimates. We used two indicators of adaptation: trends in the annual minimum mortality temperature (MMT), i.e., temperature at which the mortality rate is the lowest, and in the cumulative relative risk (cRR) associated with extreme cold and heat. Finally, we evaluated their association with annual mean temperature and annual extreme cold and heat, respectively to assess the role of climatic and non-climatic drivers. In total, we investigated 4,471,000 deaths from non-external causes. We found significant temporal trends for both the MMT and cRR indicators. The former was decoupled from changes in AMT, whereas the latter showed some degree of alignment with extreme heat and cold, suggesting the role of both climatic and non-climatic adaptation drivers. Finally, changes in MMT and cRR varied substantially by sex, age, and ethnicity, exposing disparities in the adaptation capacity of these population groups. Our findings support the need for group-specific interventions and regular monitoring of the health risk to non-optimal temperatures to inform urban public health policies.
Collapse
Affiliation(s)
- Aina Roca-Barceló
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| | - Daniela Fecht
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.,Protection Research Unit in Chemical and Radiation Threats and Hazards, Department of Epidemiology and Biostatistics, School of Public Health, National Institute for Health Research Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Monica Pirani
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Frédéric B Piel
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.,Department of Epidemiology and Biostatistics, School of Public Health, National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Adelaide C Nardocci
- Department of Environmental Health, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
7
|
Skarha J, Dominick A, Spangler K, Dosa D, Rich JD, Savitz DA, Zanobetti A. Provision of Air Conditioning and Heat-Related Mortality in Texas Prisons. JAMA Netw Open 2022; 5:e2239849. [PMID: 36322085 PMCID: PMC9631100 DOI: 10.1001/jamanetworkopen.2022.39849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
IMPORTANCE There is a large body of epidemiologic evidence that heat is associated with increased risk of mortality. One of the most effective strategies to mitigate the effects of heat is through air conditioning (AC); Texas regulates the internal temperature of jails to stay between 65 and 85 °F degrees, but these same standards do not apply to state and private prisons. OBJECTIVE To analyze whether heat during warm months is associated with an increased risk of mortality in Texas prisons without AC. DESIGN, SETTING, AND PARTICIPANTS This case-crossover study included individuals who died in Texas prisons between 2001 and 2019. The association of heat in warm months with mortality in Texas prisons with and without AC was estimated. Data analysis was conducted from January to April 2022. EXPOSURES Increasing daily heat index above 85 °F and extreme heat days (days above the 90th percentile heat index for the prison location). MAIN OUTCOMES AND MEASURES Daily mortality in Texas prisons. RESULTS There were 2083 and 1381 deaths in prisons without and with AC, respectively, during warm months from 2001 to 2019. Most of the deceased were male (3339 of 3464 [96%]) and the median (IQR) age at death was 54 (45-62) years. A 1-degree increase above 85 °F heat index and an extreme heat day were associated with a 0.7% (95% CI, 0.1%-1.3%) and a 15.1% (95% CI, 1.3%-30.8%) increase in the risk of mortality in prisons without AC, respectively. Approximately 13% of mortality or 271 deaths may be attributable to extreme heat during warm months between 2001 to 2019 in Texas prison facilities without AC. In prisons with AC, a negative percentage change in mortality risk was observed, although the 95% CI crossed zero (percentage change in mortality risk: -0.6%; 95% CI, -1.6% to 0.5%). The estimates in prisons without AC were statistically different than the estimates in prisons with AC (P = .05). CONCLUSIONS AND RELEVANCE This study found an average of 14 deaths per year between 2001 to 2019 were associated with heat in Texas prisons without AC vs no deaths associated with heat in prisons with AC. Adopting an AC policy in Texas prisons may be important for protecting the health of one of our most vulnerable populations.
Collapse
Affiliation(s)
- Julianne Skarha
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| | | | - Keith Spangler
- Department of Environmental Health, School of Public Health, Boston University, Boston, Massachusetts
| | - David Dosa
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Providence VAMC, Department of Primary Care, Providence, Rhode Island
| | - Josiah D. Rich
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
- Center for Health and Justice Transformation, Providence, Rhode Island
| | - David A. Savitz
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
8
|
Romitti Y, Sue Wing I, Spangler KR, Wellenius GA. Inequality in the availability of residential air conditioning across 115 US metropolitan areas. PNAS NEXUS 2022; 1:pgac210. [PMID: 36714868 PMCID: PMC9802221 DOI: 10.1093/pnasnexus/pgac210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/22/2022] [Indexed: 02/01/2023]
Abstract
Continued climate change is increasing the frequency, severity, and duration of populations' high temperature exposures. Indoor cooling is a key adaptation, especially in urban areas, where heat extremes are intensified-the urban heat island effect (UHI)-making residential air conditioning (AC) availability critical to protecting human health. In the United States, the differences in residential AC prevalence from one metropolitan area to another is well understood, but its intra-urban variation is poorly characterized, obscuring neighborhood-scale variability in populations' heat vulnerability and adaptive capacity. We address this gap by constructing empirically derived probabilities of residential AC for 45,995 census tracts across 115 metropolitan areas. Within cities, AC is unequally distributed, with census tracts in the urban "core" exhibiting systematically lower prevalence than their suburban counterparts. Moreover, this disparity correlates strongly with multiple indicators of social vulnerability and summer daytime surface UHI intensity, highlighting the challenges that vulnerable urban populations face in adapting to climate-change driven heat stress amplification.
Collapse
Affiliation(s)
- Yasmin Romitti
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA
| | - Ian Sue Wing
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA
| | - Keith R Spangler
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Gregory A Wellenius
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| |
Collapse
|
9
|
He C, Kim H, Hashizume M, Lee W, Honda Y, Kim SE, Kinney PL, Schneider A, Zhang Y, Zhu Y, Zhou L, Chen R, Kan H. The effects of night-time warming on mortality burden under future climate change scenarios: a modelling study. Lancet Planet Health 2022; 6:e648-e657. [PMID: 35932785 DOI: 10.1016/s2542-5196(22)00139-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The health impacts of climate warming are usually quantified based on daily average temperatures. However, extra health risks might result from hot nights. We project the future mortality burden due to hot nights. METHODS We selected the hot night excess (HNE) to represent the intensity of night-time heat, which was calculated as the excess sum of high temperature during night time. We collected historical mortality data in 28 cities from three east Asian countries, from 1981 to 2010. The associations between HNE and mortality in each city were firstly examined using a generalised additive model in combination with a distributed lag non-linear model over lag 0-10 days. We then pooled the cumulative associations using a univariate meta-regression model at the national or regional levels. Historical and future hourly temperature series were projected under two scenarios of greenhouse-gas emissions from 1980-2099, with ten general circulation models. We then projected the attributable fraction of mortality due to HNE under each scenario. FINDINGS Our dataset comprised 28 cities across three countries (Japan, South Korea, and China), including 9 185 598 deaths. The time-series analyses showed the HNE was significantly associated with increased mortality risks, the relative mortality risk on days with hot nights could be 50% higher than on days with non-hot nights. Compared with the rise in daily mean temperature (lower than 20%), the frequency of hot nights would increase more than 30% and the intensity of hot night would increase by 50% by 2100s. The attributable fraction of mortality due to hot nights was projected to be 3·68% (95% CI 1·20 to 6·17) under a strict emission control scenario (SSP126). Under a medium emission control scenario (SSP245), the attributable fraction of mortality was projected to increase up to 5·79% (2·07 to 9·52), which is 0·95% (-0·39 to 2·29) more than the attributable fraction of mortality due to daily mean temperature. INTERPRETATION Our study provides evidence for significant mortality risks and burden in association with night-time warming across Japan, South Korea, and China. Our findings suggest a growing role of night-time warming in heat-related health effects in a changing climate. FUNDING The National Natural Science Foundation of China, Shanghai International Science and Technology Partnership Project.
Collapse
Affiliation(s)
- Cheng He
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ho Kim
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Whanhee Lee
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea; Institute of Ewha-SCL for Environmental Health, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Yasushi Honda
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan; Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Satbyul Estella Kim
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan; Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Yuqiang Zhang
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Durham, NC, USA
| | - Yixiang Zhu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Lu Zhou
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
10
|
Hu X, Han W, Wang Y, Aunan K, Pan X, Huang J, Li G. Does air pollution modify temperature-related mortality? A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 210:112898. [PMID: 35181304 DOI: 10.1016/j.envres.2022.112898] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION There is an increasing interest in understanding whether air pollutants modify the quantitative relationships between temperature and health outcomes. The results of available studies were, however, inconsistent. This study aims to sum up the current evidence and provide a comprehensive understanding of this topic. METHODS We conducted an electronic search in PubMed (MEDLINE), EMBASE, Web of Science Core Collection, and ProQuest Dissertations and Theses. The modified Navigation Guide was applied to evaluate the quality and strength of evidence. We calculated pooled temperature-related mortality at low and high pollutant levels respectively, using the random-effects model. RESULTS We identified 22 eligible studies, eleven of which were included in the meta-analysis. Significant effect modification was observed on heat effects for all-cause and non-accidental mortality by particulate matter with an aerodynamic diameter of <10 μm (PM10) and ozone (O3) (p < 0.05). The excess risks (ERs) for all-cause and non-accidental mortality were 5.4% (4.4%, 6.4%) and 6.3% (4.8%, 7.8%) at the low PM10 level, 8.8% (7.5%, 10.1%) and 11.4% (8.7%, 14.2%) at the high PM10 level, respectively. As for O3, the ERs for all-cause and non-accidental mortality were 5.1% (3.9%, 6.3%) and 3.6% (0.1%, 7.2%) at the low O3 level, 7.6% (6.3%, 9.0%) and 12.5% (4.7%, 20.9%) at the high O3 level, respectively. Surprisingly, the heat effects on cardiovascular mortality were found to be lower at high carbon monoxide (CO) levels [ERs = 5.4% (3.9%, 6.9%)] than that at low levels [ERs = 9.4% (7.0%, 11.9%)]. The heterogeneity varied, but the results of sensitivity analyses were generally robust. Significant effect modification by air pollutants was not observed for heatwave or cold effects. CONCLUSIONS PM10 and O3 modify the heat-related all-cause and non-accidental mortality, indicating that policymakers should consider air pollutants when establishing heat-health warning systems. Future studies with comparable designs and settings are needed.
Collapse
Affiliation(s)
- Xin Hu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Wenxing Han
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yuxin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Kristin Aunan
- CICERO Center for International Climate Research, N-0318, Oslo, Norway
| | - Xiaochuan Pan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
11
|
Choi HM, Chen C, Son JY, Bell ML. Temperature-mortality relationship in North Carolina, USA: Regional and urban-rural differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147672. [PMID: 34000533 PMCID: PMC8214419 DOI: 10.1016/j.scitotenv.2021.147672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Health disparities exist between urban and rural populations, yet research on rural-urban disparities in temperature-mortality relationships is limited. As inequality in the United States increases, understanding urban-rural and regional differences in the temperature-mortality association is crucial. OBJECTIVE We examined regional and urban-rural differences of the temperature-mortality association in North Carolina (NC), USA, and investigated potential effect modifiers. METHODS We applied time-series models allowing nonlinear temperature-mortality associations for 17 years (2000-2016) to generate heat and cold county-specific estimates. We used second-stage analysis to quantify the overall effects. We also explored potential effect modifiers (e.g. social associations, greenness) using stratified analysis. The analysis considered relative effects (comparing risks at 99th to 90th temperature percentiles based on county-specific temperature distributions for heat, and 1st to 10th percentiles for cold) and absolute effects (comparing risks at specific temperatures). RESULTS We found null effects for heat-related mortality (relative effect: 1.001 (95% CI: 0.995-1.007)). Overall cold-mortality risk for relative effects was 1.019 (1.015-1.023). All three regions had statistically significant cold-related mortality risks for relative and absolute effects (relative effect: 1.019 (1.010-1.027) for Coastal Plains, 1.021 (1.015-1.027) for Piedmont, 1.014 (1.006-1.023) for Mountains). The heat mortality risk was not statistically significant, whereas the cold mortality risk was statistically significant, showing higher cold-mortality risks in urban areas than rural areas (relative effect for heat: 1.006 (0.997-1.016) for urban, 1.002 (0.988-1.017) for rural areas; relative effect for cold: 1.023 (1.017-1.030) for urban, 1.012 (1.001-1.023) for rural areas). Findings are suggestive of higher relative cold risks in counties with the less social association, higher population density, less green-space, higher PM2.5, lower education level, higher residential segregation, higher income inequality, and higher income (e.g., Ratio of Relative Risks 1.72 (0.68, 4.35) comparing low to high education). CONCLUSION Results indicate cold-mortality risks in NC, with potential differences by regional, urban-rural areas, and community characteristics.
Collapse
Affiliation(s)
| | - Chen Chen
- School of the Environment, Yale University, New Haven, CT, USA
| | - Ji-Young Son
- School of the Environment, Yale University, New Haven, CT, USA
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Lay CR, Sarofim MC, Vodonos Zilberg A, Mills DM, Jones RW, Schwartz J, Kinney PL. City-level vulnerability to temperature-related mortality in the USA and future projections: a geographically clustered meta-regression. Lancet Planet Health 2021; 5:e338-e346. [PMID: 34022145 PMCID: PMC9422466 DOI: 10.1016/s2542-5196(21)00058-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Extreme heat exposure can lead to premature death. Climate change is expected to increase the frequency, intensity, and duration of extreme heat events, resulting in many additional heat-related deaths globally, as well as changing the nature of extreme cold events. At the same time, vulnerability to extreme heat has decreased over time, probably due to a combination of physiological, behavioural, infrastructural, and technological adaptations. We aimed to account for these changes in vulnerability and avoid overstated projections for temperature-related mortality. We used the historical observed decrease in vulnerability to improve future mortality estimates. METHODS We used historical mortality and temperature data from 208 US cities to quantify how observed changes in vulnerability from 1973 to 2013 affected projections of temperature-related mortality under various climate scenarios. We used geographically structured meta-regression to characterise the relationship between temperature and mortality for these urban populations over the specified time period. We then used the fitted relationships to project mortality under future climate conditions. FINDINGS Between Oct 26, 2018, and March 9, 2020, we established that differences in vulnerability to temperature were geographically structured. Vulnerability decreased over time in most areas. US mortalities projected from a 2°C increase in mean temperature decreased by more than 97% when using 2003-13 data compared with 1973-82 data. However, these benefits declined with increasing temperatures, with a 6°C increase showing only an 84% decline in projected mortality based on 2003-13 data. INTERPRETATION Even after accounting for adaptation, the projected effects of climate change on premature mortality constitute a substantial public health risk. Our work suggests large increases in temperature will require additional mitigation to avoid excess mortality from heat events, even in areas with high air conditioning coverage in place. FUNDING The US Environmental Protection Agency and Abt Associates.
Collapse
|
13
|
Spangler KR, Wellenius GA. Spatial and intraseasonal variation in changing susceptibility to extreme heat in the United States. Environ Epidemiol 2021; 5:e136. [PMID: 33870011 PMCID: PMC8043727 DOI: 10.1097/ee9.0000000000000136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/15/2021] [Indexed: 12/02/2022] Open
Abstract
Exposure to excessive heat is associated with a higher risk of death. Although the relative risk of death on extreme-heat days has decreased over the past several decades in the United States, the drivers of this decline have not been fully characterized. In particular, while extreme heat earlier in the warm season has been shown to confer greater risk of mortality than exposure later in the season, it is unknown whether this within-season variability in susceptibility has changed over time and whether it is modified by region, climatic changes, or social vulnerability. METHODS We used distributed-lag nonlinear models and meta-regression to estimate the association between ambient maximum daily temperature during the early, late, and overall warm seasons and the relative risk of mortality for two decades, 1973-1982 and 1997-2006, in 186 metropolitan areas in the United States. We assessed changes in relative risk nationally, regionally, and between places with differential changes in early-season relative extreme heat and indicators of social vulnerability. RESULTS Most of the reduction in heat-related mortality nationally between the two decades is driven by decreases in late-season mortality, while substantial early-season risk remains. This difference is most apparent in the Northeast, in cities with greater increases in early-season relative extreme heat, and in places that have become more socially vulnerable. CONCLUSIONS Early-season heat mortality risks have persisted despite overall adaptations, particularly in places with greater warming and increasing social vulnerability. Interventions to reduce heat mortality may need to consider greater applicability to the early warm season.
Collapse
Affiliation(s)
- Keith R. Spangler
- Boston University School of Public Health, Department of Environmental Health, Boston, Massachusetts
- Brown University Department of Earth, Environmental, and Planetary Sciences, Providence, Rhode Island
- Brown University School of Public Health, Department of Epidemiology, Providence, Rhode Island; and
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island
| | - Gregory A. Wellenius
- Boston University School of Public Health, Department of Environmental Health, Boston, Massachusetts
- Brown University School of Public Health, Department of Epidemiology, Providence, Rhode Island; and
| |
Collapse
|
14
|
Abstract
BACKGROUND Air conditioning has been proposed as one of the key factors explaining reductions of heat-related mortality risks observed in the last decades. However, direct evidence is still limited. METHODS We used a multi-country, multi-city, longitudinal design to quantify the independent role of air conditioning in reported attenuation in risk. We collected daily time series of mortality, mean temperature, and yearly air conditioning prevalence for 311 locations in Canada, Japan, Spain, and the USA between 1972 and 2009. For each city and sub-period, we fitted a quasi-Poisson regression combined with distributed lag non-linear models to estimate summer-only temperature-mortality associations. At the second stage, we used a novel multilevel, multivariate spatio-temporal meta-regression model to evaluate effect modification of air conditioning on heat-mortality associations. We computed relative risks and fractions of heat-attributable excess deaths under observed and fixed air conditioning prevalences. RESULTS Results show an independent association between increased air conditioning prevalence and lower heat-related mortality risk. Excess deaths due to heat decreased during the study periods from 1.40% to 0.80% in Canada, 3.57% to 1.10% in Japan, 3.54% to 2.78% in Spain, and 1.70% to 0.53% in the USA. However, increased air conditioning explains only part of the observed attenuation, corresponding to 16.7% in Canada, 20.0% in Japan, 14.3% in Spain, and 16.7% in the USA. CONCLUSIONS Our findings are consistent with the hypothesis that air conditioning represents an effective heat adaptation strategy, but suggests that other factors have played an equal or more important role in increasing the resilience of populations.
Collapse
|
15
|
Dimitrova A, Ingole V, Basagaña X, Ranzani O, Milà C, Ballester J, Tonne C. Association between ambient temperature and heat waves with mortality in South Asia: Systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2021; 146:106170. [PMID: 33395923 DOI: 10.1016/j.envint.2020.106170] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND South Asia is highly vulnerable to climate change and is projected to experience some of the highest increases in average annual temperatures throughout the century. Although the adverse impacts of ambient temperature on human health have been extensively documented in the literature, only a limited number of studies have focused on populations in this region. OBJECTIVES Our aim was to systematically review the current state and quality of available evidence on the direct relationship between ambient temperature and heat waves and all-cause mortality in South Asia. METHODS The databases Pubmed, Web of Science, Scopus and Embase were searched from 1990 to 2020 for relevant observational quantitative studies. We applied the Navigation Guide methodology to assess the strength of the evidence and performed a meta-analysis based on a novel approach that allows for combining nonlinear exposure-response associations without access to data from individual studies. RESULTS From the 6,759 screened papers, 27 were included in the qualitative synthesis and five in a meta-analysis. Studies reported an association of all-cause mortality with heat wave episodes and both high and low daily temperatures. The meta-analysis showed a U-shaped pattern, with increasing mortality for both high and low temperatures, but a statistically significant association was found only at higher temperatures - above 31° C for lag 0-1 days and above 34° C for lag 0-13 days. Effects were found to vary with cause of death, age, sex, location (urban vs. rural), level of education and socio-economic status, but the profile of vulnerabilities was somewhat inconsistent and based on a limited number of studies. Overall, the strength of the evidence for ambient temperature as a risk factor for all-cause mortality was judged as limited and for heat wave episodes as inadequate. CONCLUSIONS The evidence base on temperature impacts on mortality in South Asia is limited due to the small number of studies, their skewed geographical distribution and methodological weaknesses. Understanding the main determinants of the temperature-mortality association as well as how these may evolve in the future in a dynamic region such as South Asia will be an important area for future research. Studies on viable adaptation options to high temperatures for a region that is a hotspot for climate vulnerability, urbanisation and population growth are also needed.
Collapse
Affiliation(s)
- Asya Dimitrova
- Barcelona Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10, 08002 Barcelona, Spain; CIBER Epidemiología y Salud Pública, Avda. Monforte de Lemos 3-5, Madrid, Spain
| | - Vijendra Ingole
- Barcelona Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública, Avda. Monforte de Lemos 3-5, Madrid, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10, 08002 Barcelona, Spain; CIBER Epidemiología y Salud Pública, Avda. Monforte de Lemos 3-5, Madrid, Spain
| | - Otavio Ranzani
- Barcelona Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública, Avda. Monforte de Lemos 3-5, Madrid, Spain
| | - Carles Milà
- Barcelona Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública, Avda. Monforte de Lemos 3-5, Madrid, Spain
| | - Joan Ballester
- Barcelona Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública, Avda. Monforte de Lemos 3-5, Madrid, Spain
| | - Cathryn Tonne
- Barcelona Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10, 08002 Barcelona, Spain; CIBER Epidemiología y Salud Pública, Avda. Monforte de Lemos 3-5, Madrid, Spain.
| |
Collapse
|
16
|
Rodrigues M, Santana P, Rocha A. Modelling climate change impacts on attributable-related deaths and demographic changes in the largest metropolitan area in Portugal: A time-series analysis. ENVIRONMENTAL RESEARCH 2020; 190:109998. [PMID: 32771365 DOI: 10.1016/j.envres.2020.109998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have consistently analyzed the impact that extreme temperatures will have on human health. However, there are very few data on temperature-related mortality burden considering future demographic changes in a context of climate change in Portugal. This study aims to quantify the impact of climate change on heat-, cold-, and net change mortality burdens, taking into account the future demographic changes in Lisbon Metropolitan Area, Portugal. We applied a time-series generalized linear model with a quasi-Poisson model via a distributed lag nonlinear model to project temperature-related mortality burden for two climatological scenarios: a present (or reference, 1986-2005) scenario and a future scenario (2046-2065), in this case the Representative Concentration Pathway RCP8.5, which reflects the worst set of expectations (with the most onerous impacts). The results show that the total attributable fraction due to temperature, extreme and moderate cold, is statistically significant in the historical period and the future projected scenarios, while extreme and moderate heat were only significant in the projected future summer period. Net differences were attributed to moderate cold in the future winter months. Projections show a consistent and significant increase in future heat-related mortality burden. The attributable fraction due to heat in the future period, compared to the historical period, ranges from 0 to 1.5% for moderate heat and from 0 to 0.5% for extreme heat. Adaptation should be implemented at the local level, so as to prevent and diminish the effects on citizens and healthcare services, in a context of climate change.
Collapse
Affiliation(s)
- Mónica Rodrigues
- Department of Geography and Tourism, Centre of Studies on Geography and Spatial Planning, University of Coimbra, Portugal.
| | - Paula Santana
- Department of Geography and Tourism, Centre of Studies on Geography and Spatial Planning, University of Coimbra, Portugal
| | - Alfredo Rocha
- Department of Physics, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
17
|
Varquez ACG, Darmanto NS, Honda Y, Ihara T, Kanda M. Future increase in elderly heat-related mortality of a rapidly growing Asian megacity. Sci Rep 2020; 10:9304. [PMID: 32518364 PMCID: PMC7283254 DOI: 10.1038/s41598-020-66288-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/15/2020] [Indexed: 11/17/2022] Open
Abstract
Urban dwellers are at risk of heat-related mortality in the onset of climate change. In this study, future changes in heat-related mortality of elderly citizens were estimated while considering the combined effects of spatially-varying megacity’s population growth, urbanization, and climate change. The target area is the Jakarta metropolitan area of Indonesia, a rapidly developing tropical country. 1.2 × 1.2 km2 daily maximum temperatures were acquired from weather model outputs for the August months from 2006 to 2015 (present 2010s) and 2046 to 2055 (future 2050s considering pseudo-global warming of RCP2.6 and RCP8.5). The weather model considers population-induced spatial changes in urban morphology and anthropogenic heating distribution. Present and future heat-related mortality was mapped out based on the simulated daily maximum temperatures. The August total number of heat-related elderly deaths in Jakarta will drastically increase by 12~15 times in the 2050s compared to 2010s because of population aging and rising daytime temperatures under “compact city” and “business-as-usual” scenarios. Meanwhile, mitigating climate change (RCP 2.6) could reduce the August elderly mortality count by up to 17.34%. The downwind areas of the densest city core and the coastal areas of Jakarta should be avoided by elderly citizens during the daytime.
Collapse
Affiliation(s)
| | - Nisrina S Darmanto
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Ihara
- Department of Environment Systems, University of Tokyo, Tokyo, Japan
| | - Manabu Kanda
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
18
|
Shindell D, Zhang Y, Scott M, Ru M, Stark K, Ebi KL. The Effects of Heat Exposure on Human Mortality Throughout the United States. GEOHEALTH 2020; 4:e2019GH000234. [PMID: 32258942 PMCID: PMC7125937 DOI: 10.1029/2019gh000234] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 05/10/2023]
Abstract
Exposure to high ambient temperatures is an important cause of avoidable, premature death that may become more prevalent under climate change. Though extensive epidemiological data are available in the United States, they are largely limited to select large cities, and hence, most projections estimate the potential impact of future warming on a subset of the U.S. population. Here we utilize evaluations of the relative risk of premature death associated with temperature in 10 U.S. cities spanning a wide range of climate conditions to develop a generalized risk function. We first evaluate the performance of this generalized function, which introduces substantial biases at the individual city level but performs well at the large scale. We then apply this function to estimate the impacts of projected climate change on heat-related nationwide U.S. deaths under a range of scenarios. During the current decade, there are 12,000 (95% confidence interval 7,400-16,500) premature deaths annually in the contiguous United States, much larger than most estimates based on totals for select individual cities. These values increase by 97,000 (60,000-134,000) under the high-warming Representative Concentration Pathway (RCP) 8.5 scenario and by 36,000 (22,000-50,000) under the moderate RCP4.5 scenario by 2100, whereas they remain statistically unchanged under the aggressive mitigation scenario RCP2.6. These results include estimates of adaptation that reduce impacts by ~40-45% as well as population increases that roughly offset adaptation. The results suggest that the degree of climate change mitigation will have important health impacts on Americans.
Collapse
Affiliation(s)
- Drew Shindell
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
- Duke Global Health InitiativeDuke UniversityDurhamNCUSA
- Porter School of the Environment and Earth SciencesTel Aviv UniversityTel AvivIsrael
| | - Yuqiang Zhang
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| | - Melissa Scott
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
- Now at the Samuel DuBois Cook Center on Social EquityDuke UniversityDurhamNCUSA
| | - Muye Ru
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| | - Krista Stark
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| | - Kristie L. Ebi
- Center for Health and the Global EnvironmentUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
19
|
Folkerts MA, Bröde P, Botzen WJW, Martinius ML, Gerrett N, Harmsen CN, Daanen HAM. Long Term Adaptation to Heat Stress: Shifts in the Minimum Mortality Temperature in the Netherlands. Front Physiol 2020; 11:225. [PMID: 32256386 PMCID: PMC7093592 DOI: 10.3389/fphys.2020.00225] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/27/2020] [Indexed: 01/25/2023] Open
Abstract
It is essentially unknown how humans adapt or will adapt to heat stress caused by climate change over a long-term interval. A possible indicator of adaptation may be the minimum mortality temperature (MMT), which is defined as the mean daily temperature at which the lowest mortality occurs. Another possible indicator may be the heat sensitivity, i.e., the percentage change in mortality per 1°C above the MMT threshold, or heat attributable fraction (AF), i.e., the percentage relative excess mortality above MMT. We estimated MMT and heat sensitivity/AF over a period of 23 years for older adults (≥65 years) in the Netherlands using three commonly used methods. These methods are segmented Poisson regression (SEG), constrained segmented distributed lag models (CSDL), and distributed lag non-linear models (DLNM). The mean ambient temperature increased by 0.03°C/year over the 23 year period. The calculated mean MMT over the 23-year period differed considerably between methods [16.4 ± 1.2°C (SE) (SEG), 18.9 ± 0.5°C (CSDL), and 15.3 ± 0.4°C DLNM]. MMT increased during the observed period according to CSDL (0.11 ± 0.05°C/year) and DLNM (0.15 ± 0.02°C/year), but not with SEG. The heat sensitivity, however, decreased for the latter method (0.06%/°C/year) and did not change for CSDL. Heat AF was calculated for the DLNM method and decreased with 0.07%/year. Based on these results we conclude that the susceptibility of humans to heat decreases over time, regardless which method was used, because human adaptation is shown by either an increase in MMT (CSDL and DLNM) or a decrease in heat sensitivity for unchanged MMT (SEG). Future studies should focus on what factors (e.g., physiological, behavioral, technological, or infrastructural adaptations) influence human adaptation the most, so it can be promoted through adaptation policies. Furthermore, future studies should keep in mind that the employed method influences the calculated MMT, which hampers comparability between studies.
Collapse
Affiliation(s)
- Mireille A Folkerts
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Peter Bröde
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - W J Wouter Botzen
- Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mike L Martinius
- Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nicola Gerrett
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | | | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
20
|
Spangler KR, Wellenius GA. Spatial patterns of recent US summertime heat trends: Implications for heat sensitivity and health adaptations. ENVIRONMENTAL RESEARCH COMMUNICATIONS 2020; 2:035002. [PMID: 34296061 PMCID: PMC8294661 DOI: 10.1088/2515-7620/ab7abb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heat is known to cause illness and death not only at extreme temperatures, but also at moderate levels. Although substantial research has shown how summer time temperature distributions have changed over recent decades in the United States, less is known about how the heat index-a potentially more health-applicable metric of heat-has similarly evolved over this period. Moreover, the extent to which these distributional changes have overlapped with indicators of social vulnerability has not been established, despite the applicability of co-varying climatic and sociodemographic characteristics to heat-related health adaptations. Presented here is an analysis of trends in the median, 95th percentile, and 'warm-tail spread' (i.e., intra-seasonal range between the upper extreme and median) of warm-season (May-September) maximum heat index between 1979and 2018 across the conterminous US. Using40 years of data from the North American Regional Reanalysis dataset, it is shown that most of the US has experienced statistically significant positive trends in summertime heat, and that both the magnitude of trends and the shape of the frequency distributions of these measures vary regionally. Comparisons with data from the Social Vulnerability Index show that the most socially vulnerable counties appear to be warming faster than the least vulnerable, but that opposite patterns hold for trends in warm-tail spread. These findings may be applicable to further studies on climate change, heat adaptations, and environmental justice in the US.
Collapse
Affiliation(s)
- Keith R Spangler
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, United States of America
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States of America
- Institute at Brown for Environment and Society, Brown University, Providence, RI, United States of America
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America
- Current address: Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America
| | - Gregory A Wellenius
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States of America
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America
| |
Collapse
|
21
|
Projections of Temperature-Attributable Deaths in Portuguese Metropolitan Areas: A Time-Series Modelling Approach. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change is now widely recognised as the greatest global threat over the coming decades. This study aimed to quantify and project the effects of climate change on future temperature-attributable mortality due to circulatory system diseases (CSD) in Lisbon metropolitan area (LMA) and in Porto metropolitan area (PMA). The future time slices of Representative Concentration Pathway (RCP 8.5), mid-term (2046–2065) and long-term (2080–2099) were compared with the reference period (1986–2005). There is a significant decreasing trend in proportion to the overall extreme cold temperature-attributable mortality due to CSD in the future periods (2045–2065 and 2081–2099) in LMA, −0.63% and −0.73%, respectively, and in PMA, −0.62% for 2045–2065 and −0.69% for 2081–2099, compared to the historical period. The fraction attributable to extreme hot temperature in the summer months increased by 0.08% and 0.23%, from 0.04% in the historical period to 0.11% during 2046–2065, and to 0.27% during 2081–2099 in LMA. While there were no noticeable changes due to extreme hot temperature during the summer in PMA, significant increases were observed with warmer winter temperatures: 1.27% and 2.80%. The projections of future temperature-attributable mortality may provide valuable information to support climate policy decision making and temperature-related risk management.
Collapse
|