1
|
Bernardinelli E, Liuni R, Jamontas R, Tesolin P, Morgan A, Girotto G, Roesch S, Dossena S. Novel genetic determinants contribute to hearing loss in a central European cohort with enlarged vestibular aqueduct. Mol Med 2025; 31:111. [PMID: 40121402 PMCID: PMC11929268 DOI: 10.1186/s10020-025-01159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The enlarged vestibular aqueduct (EVA) is the most commonly detected inner ear malformation. Biallelic pathogenic variants in the SLC26A4 gene, coding for the anion exchanger pendrin, are frequently involved in determining Pendred syndrome and nonsyndromic autosomal recessive hearing loss DFNB4 in EVA patients. In Caucasian cohorts, the genetic determinants of EVA remain unknown in approximately 50% of cases. We have recruited a cohort of 32 Austrian patients with hearing loss and EVA to define the prevalence and type of pathogenic sequence alterations in SLC26A4 and discover novel EVA-associated genes. METHODS Sanger sequencing, single nucleotide polymorphism (SNP) assays, copy number variation (CNV) testing, and Exome Sequencing (ES) were employed for gene analysis. Cell-based functional and molecular assays were used to discriminate between gene variants with and without impact on protein function. RESULTS SLC26A4 biallelic variants were detected in 5/32 patients (16%) and monoallelic variants in 5/32 patients (16%). The pathogenicity of the uncharacterized SLC26A4 protein variants was assigned or excluded based on their ion transport function and cellular abundance. The monoallelic or biallelic Caucasian EVA haplotype was detected in 7/32 (22%) patients, but its pathogenicity could not be confirmed. X-linked pathogenic variants in POU3F4 (2/32, 6%) and biallelic pathogenic variants in GJB2 (2/32, 6%) were also found. No CNV of SLC26A4 and STRC genes was detected. ES of eleven undiagnosed patients with bilateral EVA detected rare sequence variants in six EVA-unrelated genes (monoallelic variants in SCD5, REST, EDNRB, TJP2, TMC1, and two variants in CDH23) in five patients (5/11, 45%). Cell-based assays showed that the TJP2 variant leads to a mislocalized protein product forming dimers with the wild-type, supporting autosomal dominant pathogenicity. The genetic causes of hearing loss and EVA remained unidentified in (14/32) 44% of patients. CONCLUSIONS The present investigation confirms the role of SLC26A4 in determining hearing loss with EVA, identifies novel genes in this pathophysiological context, highlights the importance of functional testing to exclude or assign pathogenicity of a given gene variant, proposes a possible diagnostic workflow, suggests a novel pathomechanism of disease for TJP2, and highlights voids of knowledge that deserve further investigation.
Collapse
Affiliation(s)
- Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
| | - Raffaella Liuni
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
| | - Rapolas Jamontas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257, Vilnius, Lithuania
| | - Paola Tesolin
- Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34137, Trieste, Italy
| | - Anna Morgan
- Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137, Trieste, Italy
| | - Giorgia Girotto
- Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34137, Trieste, Italy
| | - Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020, Salzburg, Austria
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.
- Research and Innovation Center Regenerative Medicine and Novel Therapies (FIZ RM&NT), Paracelsus Medical University, 5020, Salzburg, Austria.
| |
Collapse
|
2
|
Gerb J, Kirsch V, Kierig E, Brandt T, Dieterich M, Boegle R. Optimizing spatial normalization of multisubject inner ear MRI: comparison of different geometry-preserving co-registration approaches. Sci Rep 2025; 15:6414. [PMID: 39984604 PMCID: PMC11845522 DOI: 10.1038/s41598-025-90842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/17/2025] [Indexed: 02/23/2025] Open
Abstract
Spatial normalization of multisubject inner ear imaging data is challenging, due to both substantial intraindividual differences and the small size of the organ compared to other intracranial structures. Automatic whole brain co-registration to standard space can only roughly co-align the peripheral vestibular endorgan, and complemental manual registration is highly time-consuming. Here, we compared the accuracy of four geometry-maintaining co-registration methods (one semi-manual method and three automatic methods). High-resolution structural T2-MRI of 153 inner ears from patients and healthy participants were co-registered to an inner-ear atlas. The semi-manual method used a three-point landmark-based approach (3P), two automatic methods were based on unassisted standard algorithms (Advanced Normalization Tools (ANTs), Elastix (EL)), while the fourth automatic method utilized a volumetrically dilated, atlas-based mask (thick inner ear, TIE) for probabilistic inner ear masking. Registration accuracy was evaluated by neurotologists blinded to the respective registration paradigm, and the resulting median volumes were quantified using colocalization analyses. The mask-aided automatic approach showed the best ratings, followed by the semi-manual three-point landmark-based registration (mean ratings (lower: better) TIE 2.21 ± 1.15; 3P 2.58 ± 0.61; EL 3.42 ± 1.06; ANTs 3.49 ± 1.26). The semi-manual method had the lowest rate of insufficient registrations, followed by TIE (3P: 3.70%; TIE: 8.28%; EL: 22.66%; ANTs: 27.02%). TIE showed the highest colocalization metrics with the atlas. Only TIE and 3P allowed for sufficient semicircular canal visualization in method-wise average volumes. Overall, geometry-preserving spatial normalization of multisubject inner ear imaging data is possible and could allow groupwise examinations of the bony labyrinth or temporal bone morphology in the future.
Collapse
Affiliation(s)
- Johannes Gerb
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany.
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Valerie Kirsch
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
- Graduate School of Systemic Neuroscience, LMU Munich, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Emilie Kierig
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
- Graduate School of Systemic Neuroscience, LMU Munich, Munich, Germany
| | - Marianne Dieterich
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
- Graduate School of Systemic Neuroscience, LMU Munich, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rainer Boegle
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
- Graduate School of Systemic Neuroscience, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Naghinejad M, Parvizpour S, Khaniani MS, Mehri M, Derakhshan SM, Amirfiroozy A. The known structural variations in hearing loss and their diagnostic approaches: a comprehensive review. Mol Biol Rep 2025; 52:131. [PMID: 39821465 DOI: 10.1007/s11033-025-10231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Hearing loss (HL) is the most common sensory disorder, characterized by a wide range of causes, including both environmental and genetic factors. While single-nucleotide variants (SNVs) and small insertions/deletions have been extensively studied, the role of structural variations (SVs) in hearing impairment has gained increasing recognition. This review article aims to provide a comprehensive overview of the importance of SVs in HL, by exploring the SVs associated with HL and their underlying pathogenic mechanisms. Additionally, diagnostic methods of SVs have been briefly evaluated and compared in general. Three major mechanisms by which SVs can lead to HL are gene disruption, gene dosage imbalance, and position effect. Furthermore, to facilitate the detection of SVs in HL, this review presents a table highlighting the key genes and genomic regions implicated in SVs and their diagnostic approaches associated with HL patients. In the next step, indications for the use of SV diagnostic techniques are compiled in another table in this article, which will help experts in choosing the most appropriate technique. At last, the comprehensive review presented here underscores the significant role of SVs in HL. Further research is required to fully elucidate the spectrum of SVs in HL and optimize the clinical use of SV detection methods in routine diagnostic procedures.
Collapse
Affiliation(s)
- Maryam Naghinejad
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsood Mehri
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Gasperin AC, Monteiro BT, Zawierucha EPS, Minniti EGO, Alves MRS, Passos PHV. Enlarged vestibular aqueduct with bilateral sensorineural hearing loss following cranial trauma: a case report. Braz J Otorhinolaryngol 2025; 91:101518. [PMID: 39481243 PMCID: PMC11555407 DOI: 10.1016/j.bjorl.2024.101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/15/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Affiliation(s)
- Alexandre Camilotti Gasperin
- Instituto Paranaense de Otorrinolaringologia (IPO), Curitiba, PR, Brazil; Pontifícia Universidade Católica do Paraná (PUC-PR), Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Dlugaiczyk J, Rösch S, Mantokoudis G. [Update on diagnostic procedures in third window syndromes. German version]. HNO 2025; 73:35-44. [PMID: 38695898 PMCID: PMC11711136 DOI: 10.1007/s00106-024-01466-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND The diagnosis of third window syndromes often poses a challenge in clinical practice. OBJECTIVE This paper provides an up-to-date overview of diagnostic procedures in third window syndromes, with special emphasis on superior canal dehiscence syndrome (SCDS), large vestibular aqueduct syndrome (LVAS), and X-chromosomal malformation of the cochlea. MATERIALS AND METHODS A literature search was performed in PubMed up to December 2023. Furthermore, a selection of the authors' own cases is presented. RESULTS Audiovestibular tests for the diagnosis of third window syndromes are most often reported for patients with SCDS in the literature. In this context, cut-off values with different sensitivities and specificities have been defined for different outcome parameters of vestibular evoked myogenic potentials. Current developments include the application of electrocochleography, broadband tympanometry, video head impulse testing, and vibration-induced nystagmus. Genetic analyses are increasingly applied in LVAS. CONCLUSION The diagnosis of third window syndromes is always based on the synthesis of patients' symptoms, clinical signs, audiovestibular test results, and imaging.
Collapse
Affiliation(s)
- Julia Dlugaiczyk
- Klinik für Ohren‑, Nasen‑, Hals- und Gesichtschirurgie & Interdisziplinäres Zentrum für Schwindel und neurologische Sehstörungen, Universitätsspital Zürich (USZ), Universität Zürich (UZH), Rämistrasse 100, 8091, Zürich, Schweiz.
| | - Sebastian Rösch
- Universitätsklinik für Hals‑, Nasen‑, Ohrenkrankheiten der Paracelsus Medizinischen Privatuniversität Salzburg, Uniklinikum Salzburg, Salzburg, Österreich
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Georgios Mantokoudis
- Universitätsklinik für Hals‑, Nasen- und Ohrenkrankheiten (HNO), Kopf- und Halschirurgie, lnselspital Bern, Universität Bern, Bern, Schweiz
| |
Collapse
|
6
|
Tsuji RK, Hamerschmidt R, Lavinsky J, Felix F, Silva VAR. Brazilian Society of Otology task force - cochlear implant ‒ recommendations based on strength of evidence. Braz J Otorhinolaryngol 2025; 91:101512. [PMID: 39442262 PMCID: PMC11539123 DOI: 10.1016/j.bjorl.2024.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE To make evidence-based recommendations for the indications and complications of Cochlear Implant (CI) surgery in adults and children. METHODS Task force members were educated on knowledge synthesis methods, including electronic database search, review and selection of relevant citations, and critical appraisal of selected studies. Articles written in English or Portuguese on cochlear implantation were eligible for inclusion. The American College of Physicians' guideline grading system and the American Thyroid Association's guideline criteria were used for critical appraisal of evidence and recommendations for therapeutic interventions. RESULTS The topics were divided into 2 parts: (1) Evaluation of candidate patients and indications for CI surgery; (2) CI surgery - techniques and complications. CONCLUSIONS CI is a safe device for auditory rehabilitation of patients with severe-to-profound hearing loss. In recent years, indications for unilateral hearing loss and vestibular schwannoma have been expanded, with encouraging results. However, for a successful surgery, commitment of family members and patients in the hearing rehabilitation process is essential.
Collapse
Affiliation(s)
- Robinson Koji Tsuji
- Universidade de São Paulo (USP), Faculdade de Medicina, Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Rogério Hamerschmidt
- Universidade Federal do Paraná (UFPR), Departamento de Otorrinolaringologia, Curitiba, PR, Brazil
| | - Joel Lavinsky
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Ciências Morfológicas, Porto Alegre, RS, Brazil
| | - Felippe Felix
- Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho (HUCFF), Rio de Janeiro, RJ, Brazil
| | - Vagner Antonio Rodrigues Silva
- Universidade de Campinas (Unicamp), Faculdade de Ciências Médicas (FCM), Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Deng L, Yang X, Cheng X, Wen C, Yu Y, Li Y, Gao S, Liu H, Liu D, Ruan Y, Xie J, En H, Xian J, Huang L. Hearing loss trajectory and prediction model for children with enlarged vestibular aqueduct. Am J Otolaryngol 2024; 46:104573. [PMID: 39740534 DOI: 10.1016/j.amjoto.2024.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
PURPOSE To explore how hearing changes over time and the characteristics associated with progressive hearing loss in children with enlarged vestibular aqueduct (EVA), and develop a prediction model for anticipation of hearing progression probability. METHODS A retrospective analysis was conducted on 48 children (92 ears) diagnosed with EVA. A total of 314 audiograms were included in the analysis of hearing loss trajectories using linear mixed-effects model. Progressive hearing loss was defined based on the difference between the initial and final hearing threshold. All participants had underwent one or two gene detection methods, including deafness gene screening and SLC26A4 whole coding exon sequencing. RESULTS The pure-tone thresholds (PTTs) at frequencies of 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz and the average are expected to increase by 0.34, 0.49, 0.54, 0.57, and 0.55 dB HL per each additional month. Age and genotypes have an interactive effect on PTT at frequencies of 500 Hz, 1000 Hz, and the average. The hazard ratio for the genotype without SLC26A4 c.919-2 A > G mutation was 4.91 (95 % confidence interval 1.76-13.7, P < 0.01). This prediction model fitted using age, initial average PTT, midpoint size of vestibular aqueduct, incomplete partition type II, and genotypes of SLC26A4 showed strong consistency and differentiation. CONCLUSION These findings reveal that the PTT would deteriorate over time in patients with EVA. The hearing threshold at high frequency and genotype without c.919-2 A > G heterozygous mutation deteriorated relatively fast. Genotype is an important predictive factor and the nomogram helps to predict progressive hearing loss.
Collapse
Affiliation(s)
- Lin Deng
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Xiaozhe Yang
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Xiaohua Cheng
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Cheng Wen
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yiding Yu
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yue Li
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Shan Gao
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Hui Liu
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Dongxin Liu
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yu Ruan
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Jinge Xie
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Hui En
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lihui Huang
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China.
| |
Collapse
|
8
|
Huang CY, Tsai YH, Cheng YF, Wu PY, Chuang YC, Huang PY, Liu JS, Wu CC, Cheng YF. CRISPR/Cas9-mediated exon skipping to restore premature translation termination in a DFNB4 mouse model. Gene Ther 2024; 31:531-540. [PMID: 39232211 DOI: 10.1038/s41434-024-00483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
SLC26A4 encodes pendrin, a crucial anion exchanger essential for maintaining hearing function. Mutations in SLC26A4, including the prevalent c.919-2 A > G splice-site mutation among East Asian individuals, can disrupt inner ear electrolyte balance, leading to syndromic and non-syndromic hearing loss, such as Pendred syndrome and DFNB4. To explore potential therapeutic strategies, we utilized CRISPR/Cas9-mediated exon skipping to create a Slc26a4∆E8+E9/∆E8+E9 mouse model. We assessed pendrin expression in the inner ear and evaluated vestibular and auditory functions. The Slc26a4∆E8+E9/∆E8+E9 mice demonstrated reframed pendrin in the inner ear and normal vestibular functions, contrasting with severely abnormal vestibular functions observed in the Slc26a4 c.919-2 A > G splicing mutation mouse model. However, despite these molecular achievements, hearing function did not show the expected improvement, consistent with observed pathology, including cochlear hair cell loss and elevated hearing thresholds. Consequently, our findings highlight the necessity for alternative genetic editing strategies to address hearing loss caused by the SLC26A4 c.919-2 A > G mutation.
Collapse
Affiliation(s)
- Chun-Ying Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsiu Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fen Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Peng-Yu Wu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chi Chuang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Yuan Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jai-Shin Liu
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu City, Taiwan.
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
9
|
Tian Y, Liu M, Lu Y, Zhao X, Yan Z, Sun Y, Ma J, Tang W, Wang H, Xu H. Exonic Deletions and Deep Intronic Variants of the SLC26A4 Gene Contribute to the Genetic Diagnosis of Unsolved Patients With Enlarged Vestibular Aqueduct. Hum Mutat 2024; 2024:8444122. [PMID: 40225947 PMCID: PMC11919234 DOI: 10.1155/2024/8444122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 04/15/2025]
Abstract
Enlarged vestibular aqueduct (EVA) is a frequently occurring inner ear malformation that associates with sensorineural hearing loss (SNHL), with SLC26A4 being the responsible gene. Based on multiplex PCR enrichment and sequencing of the exonic and flanking regions of the SLC26A4 gene, we developed a panel specifically for EVA and found that up to 95% of EVA patients in our Chinese cohorts carried biallelic SLC26A4 pathogenic variants (M2). In this study, we tried to investigate the genetic etiology of 13 previously undiagnosed EVA patients with monoallelic (M1) or none (M0) SLC26A4 variant using a stepwise approach, including copy number variation (CNV) analysis of multiplex PCR enrichment and next-generation sequencing data, single-molecule real-time (SMRT) sequencing of the whole SLC26A4 gene, whole exome sequencing (WES), and whole genome sequencing (WGS). CNV analysis revealed deletions in Exons 1-3, Exons 5-6, and Exons 9-10 of the SLC26A4 gene in seven patients, and SMRT sequencing identified the same heterozygous deep intronic variant (NM_000441.2:c.304+941C>T) in two patients, resulting in a final diagnosis in 9/13 patients. Notably, the variants of Exons 9-10 deletion and c.304+941C>T have not been reported previously. We further showed that the variant c.304+941C>T led to the exonization of partial AluSz6 element (126 bp) where the variant is located through sequencing of the mRNA extracted from the blood of a heterozygous variant carrier. In conclusion, our stepwise approach improved the diagnosis rate of EVA, expanded the mutational spectrum of the SLC26A4 gene, and highlighted the contribution of exonic deletions and deep intronic variants to EVA.
Collapse
Affiliation(s)
- Yongan Tian
- Precision Medicine Center, Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
| | - Mengli Liu
- Precision Medicine Center, Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Yu Lu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoyan Zhao
- Precision Medicine Center, Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Zhiqiang Yan
- Department of Otolaryngology Head and Neck Surgery, Hospital of the 71st Group Army/Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Yi Sun
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Central Theater Command, Wuhan 430070, China
| | - Jingyuan Ma
- Department of Otolaryngology, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
| | - Haili Wang
- Longhu Laboratory, Zhengzhou University, No. 100, Science Avenue, Zhengzhou 450001, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
| |
Collapse
|
10
|
Xu K, Xiao Y, Luo J, Chao X, Wang R, Fan Z, Wang H, Xu L. Research progress on incomplete partition type 3 inner ear malformation. Eur Arch Otorhinolaryngol 2024; 281:3943-3948. [PMID: 38498189 PMCID: PMC11266284 DOI: 10.1007/s00405-024-08555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE This review aims to provides a comprehensive overview of the latest research progress on IP-III inner ear malformation, focusing on its geneticbasis, imaging features, cochlear implantation, and outcome. METHODS Review the literature on clinical and genetic mechanisms associated with IP-III. RESULTS Mutations in the POU3F4 gene emerge as the principal pathogenic contributors to IP-III anomalies, primarily manifesting through inner ear potential irregularities leading to deafness. While cochlear implantation stands as the primary intervention for restoring hearing, the unique nature of the inner ear anomaly escalates the complexity of surgical procedures and postoperative results. Hence, meticulous preoperative assessment to ascertain surgical feasibility and postoperative verification of electrode placement are imperative. Additionally, gene therapy holds promise as a prospective treatment modality. CONCLUSIONS IP-III denotes X-linked recessive hereditary deafness, with cochlear implantation currently serving as the predominant therapeutic approach. Clinicians are tasked with preoperative assement and individualized postoperative rehabilitation.
Collapse
Affiliation(s)
- Kaifan Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantology, Second People's Hospital of Shandong Province, jinan, China
- Shandong Institute of Otorhinolaryngology, jinan, China
| | - Yun Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, jinan, China
| | - Jianfen Luo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantology, Second People's Hospital of Shandong Province, jinan, China
| | - Xiuhua Chao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantology, Second People's Hospital of Shandong Province, jinan, China
| | - Ruijie Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantology, Second People's Hospital of Shandong Province, jinan, China
| | - Zhaoming Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China.
- Department of Auditory Implantology, Second People's Hospital of Shandong Province, jinan, China.
| |
Collapse
|
11
|
Wang S, Zhu Y, Xu C, Ding W, Jia H, Bian P, Xu B, Guo Y, Liu X. A novel intronic variant causing aberrant splicing identified in two deaf Chinese siblings with enlarged vestibular aqueducts. Mol Genet Genomic Med 2024; 12:e2361. [PMID: 38348997 PMCID: PMC10863356 DOI: 10.1002/mgg3.2361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/13/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE We aimed to evaluate the genotype-phenotype relationship in two Chinese family members with enlarged vestibular aqueduct (EVA). METHODS We collected blood samples and clinical data from each pedigree family member. Genomic DNA was isolated from peripheral leukocytes using standard methods. Targeted next-generation sequencing and Sanger sequencing were performed to find the pathogenic mutation in this family. Minigene assays were used to verify whether the novel intronic mutation SLC26A4c.765+4A>G influenced mRNA splicing. RESULTS Hearing loss in the patients with EVA was diagnosed using auditory tests and imaging examinations. Two pathogenic mutations, c.765+4A>G and c.919-2A>G were detected in SLC26A4. In vitro minigene analysis confirmed that c.765+4A>G variant could cause aberrant splicing, resulting in skipping over exon 6. CONCLUSIONS The SLC26A4c.765+4A>G mutation is the causative variant in the Chinese family with EVA. Particular attention should be paid to intronic variants.
Collapse
Affiliation(s)
- Suyang Wang
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
- Department of Otolaryngology‐Head and Neck SurgeryMaternal and Child Health Hospital of Gansu ProvinceLanzhouGansuChina
| | - Yi‐Ming Zhu
- Department of Otolaryngology‐Head and Neck SurgeryGansu Provincial HospitalLanzhouGansuPR China
| | - ChenYang Xu
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Wenjuan Ding
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Hui Jia
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Panpan Bian
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Baicheng Xu
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Yufen Guo
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
- Health Commission of Gansu ProvinceLanzhouGansuPR China
| | - Xiaowen Liu
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| |
Collapse
|
12
|
Robson CD, Lewis M, D'Arco F. Non-Syndromic Sensorineural Hearing Loss in Children. Neuroimaging Clin N Am 2023; 33:531-542. [PMID: 37741656 DOI: 10.1016/j.nic.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Pediatric hearing loss is common with significant consequences in terms of language, communication, social and emotional development, and academic advancement. Radiological imaging provides useful information regarding hearing loss etiology, prognosis, therapeutic options, and potential surgical pitfalls. This review provides an overview of temporal bone imaging protocols, an outline of the classification of inner ear anomalies associated with sensorineural hearing loss and illustrates some of the more frequently encountered and/or important causes of non-syndromic hearing loss.
Collapse
Affiliation(s)
- Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, USA.
| | - Martin Lewis
- Department of Radiology, Great Ormond Street Hospital for Children, Great Ormond Street, London, WC1N 3JH, UK
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children, Great Ormond Street, London, WC1N 3JH, UK
| |
Collapse
|
13
|
Muñoz EM, Martínez Cerdeño V. Editorial: Transcription regulation - Brain development and homeostasis - A finely tuned and orchestrated scenario in physiology and pathology, volume II. Front Mol Neurosci 2023; 16:1280573. [PMID: 37736114 PMCID: PMC10509287 DOI: 10.3389/fnmol.2023.1280573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Affiliation(s)
- Estela M. Muñoz
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo (UNCuyo), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Verónica Martínez Cerdeño
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, and MIND Institute at the UC Davis Medical Center, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
14
|
Friis IJ, Aaberg K, Edholm B. Causes of hearing loss and implantation age in a cohort of Danish pediatric cochlear implant recipients. Int J Pediatr Otorhinolaryngol 2023; 171:111640. [PMID: 37441990 DOI: 10.1016/j.ijporl.2023.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
INTRODUCTION Sensorineural hearing loss (SNHL) is the most common birth disorder. The cause of SNHL is heterogeneous and varies in different populations. Understanding the causes of a hearing loss (HL) predict the outcome of cochlear implantation and is of great importance in understanding the mechanism of the disease and in providing the best treatment. Undiagnosed and untreated HL has a profound effect on the acquisition of early communication skills, speech, language, academic, emotional, and psychosocial development in children. OBJECTIVES To determine the cause of HL and implantation age in pediatric cochlear implant (CI) users in a Danish population. METHODS Data of 100 children (54 females and 46 males), age 0-17 years, was analyzed. All of the children were implanted during 2020-2022. RESULTS Hereditary HL was diagnosed in 44 cases (44%), with pathogenic variants in the SLC26A4 gene found in 14 cases (14%). Syndromic HL was diagnosed in 23 children (23%). Non-syndromic HL was diagnosed in 21 children (21%), where the most common genetic variation was found in the GJB2 gene. Acquired prenatal and postnatal sensory disorders TORCH risk factors were associated with HL in 25 cases (25%). Congenital CMV DNA was diagnosed in 23 samples (23%). The cause of the HL remained unknown for 31 (31%) children. In 70 (70%) of the participants the HL was diagnosed at time of newborn hearing screening (NHS). Twenty-three of the children were diagnosed with congenital severe to profound bilateral HL and were simultaneously implanted between 8 and 14 months (mean age 10.5 months). In the remaining 47 cases, the HL was progressive and the children were implanted when the HL reached the criteria for implantation. CONCLUSIONS In the current study, the major causes of HL were alterations in the SLC26A4 gene: 13% with Pendred syndrome and 1% non-syndromic. Thirty-one (31%) had HL of unknown origin and almost half of these cases had inner ear malformations (n = 16).
Collapse
Affiliation(s)
- Ida Jensen Friis
- Department of Otorhinolaryngology, Aarhus University Hospital, Aarhus C, Denmark.
| | - Kirsten Aaberg
- Department of Otorhinolaryngology, Aarhus University Hospital, Aarhus C, Denmark
| | - Bjarke Edholm
- Department of Otorhinolaryngology, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
15
|
Bernardinelli E, Huber F, Roesch S, Dossena S. Clinical and Molecular Aspects Associated with Defects in the Transcription Factor POU3F4: A Review. Biomedicines 2023; 11:1695. [PMID: 37371790 DOI: 10.3390/biomedicines11061695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
X-linked deafness (DFNX) is estimated to account for up to 2% of cases of hereditary hearing loss and occurs in both syndromic and non-syndromic forms. POU3F4 is the gene most commonly associated with X-linked deafness (DFNX2, DFN3) and accounts for about 50% of the cases of X-linked non-syndromic hearing loss. This gene codes for a transcription factor of the POU family that plays a major role in the development of the middle and inner ear. The clinical features of POU3F4-related hearing loss include a pathognomonic malformation of the inner ear defined as incomplete partition of the cochlea type 3 (IP-III). Often, a perilymphatic gusher is observed upon stapedectomy during surgery, possibly as a consequence of an incomplete separation of the cochlea from the internal auditory canal. Here we present an overview of the pathogenic gene variants of POU3F4 reported in the literature and discuss the associated clinical features, including hearing loss combined with additional phenotypes such as cognitive and motor developmental delays. Research on the transcriptional targets of POU3F4 in the ear and brain is in its early stages and is expected to greatly advance our understanding of the pathophysiology of POU3F4-linked hearing loss.
Collapse
Affiliation(s)
- Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Florian Huber
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
16
|
Santos F, Gil-Peña H. Long-term complications of primary distal renal tubular acidosis. Pediatr Nephrol 2023; 38:635-642. [PMID: 35543873 DOI: 10.1007/s00467-022-05546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
Abstract
The clinical manifestations of primary distal renal tubular acidosis usually begin in childhood, but the disease is caused by a genetic defect that persists throughout life. This review focuses on the complications of distal tubular acidosis that occur or remain long-term such as nephrocalcinosis and urolithiasis, growth impairment, bone mineralization, severe hypokalemia, kidney cysts, and progressive kidney failure, as well as other persistent manifestations that occur independent of acidosis but are associated with some inherited forms of the disease. The pathogenic factors responsible for kidney failure are discussed in particular because it is a complication to which different publications have recently drawn attention and which affects a high percentage of adults with primary distal renal tubular acidosis. The need to maintain optimal metabolic control of the disease and scheduled clinical follow-up throughout life and the importance of organizing protocols for the transition of patients to adult nephrology services are emphasized.
Collapse
Affiliation(s)
- Fernando Santos
- Department of Medicine, Pediatrics, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo, Asturias, Spain.
| | - Helena Gil-Peña
- Department of Medicine, Pediatrics, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
17
|
Alahmadi A, Abdelsamad Y, Almuhawas F, Hamed N, Salamah M, Alsanosi A. Cochlear Implantation: The Volumetric Measurement of Vestibular Aqueduct and Gusher Prediction. J Pers Med 2023; 13:jpm13020171. [PMID: 36836405 PMCID: PMC9961179 DOI: 10.3390/jpm13020171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
This study aimed to validate the role of 3D segmentation in measuring the volume of the vestibular aqueduct (VAD), and the inner ear, and to study the correlation between VAD volume and VAD linear measurements at the midpoint and operculum. The correlation with other cochlear metrics was also studied. We retrospectively recruited 21 children (42 ears) diagnosed with Mondini dysplasia (MD) plus enlarged vestibular aqueduct (EVA) from 2009 to 2021 and who underwent cochlear implantation (CI). Patients' sociodemographic data were collected, and linear cochlear metrics were measured using Otoplan. Vestibular aqueduct width and vestibular aqueduct and inner ear volumes were measured by two independent neuro-otologists using 3D segmentation software (version 4.11.20210226) and high-resolution CT. We also conducted a regression analysis to determine the association between these variables and CT VAD and inner ear volumes. Among the 33 cochlear implanted ears, 13 ears had a gusher (39.4%). Regarding CT inner ear volume, we found that gender, age, A-value, and VAD at the operculum were statistically significant (p-Value = 0.003, <0.001, 0.031, and 0.027, respectively) by regression analysis. Moreover, we found that Age, H value, VAD at the midpoint, and VAD at the operculum were significant predictors of CT VAD volume (p-Value < 0.04). Finally, gender (OR: 0.092; 95%CI: 0.009-0.982; p-Value = 0.048) and VAD at the midpoint (OR: 0.106; 95%CI: 0.015-0.735; p-Value = 0.023) were significant predictors of gusher risk. Patients' gusher risk was significantly differentiated by gender and VAD width at the midpoint.
Collapse
Affiliation(s)
- Asma Alahmadi
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City (KSUMC), King Saud University, Riyadh 11411, Saudi Arabia
- Correspondence:
| | | | - Fida Almuhawas
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City (KSUMC), King Saud University, Riyadh 11411, Saudi Arabia
| | - Nezar Hamed
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City (KSUMC), King Saud University, Riyadh 11411, Saudi Arabia
| | - Marzouqi Salamah
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City (KSUMC), King Saud University, Riyadh 11411, Saudi Arabia
| | - Abdulrahman Alsanosi
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City (KSUMC), King Saud University, Riyadh 11411, Saudi Arabia
| |
Collapse
|
18
|
Analysis of SLC26A4, FOXI1, and KCNJ10 Gene Variants in Patients with Incomplete Partition of the Cochlea and Enlarged Vestibular Aqueduct (EVA) Anomalies. Int J Mol Sci 2022; 23:ijms232315372. [PMID: 36499699 PMCID: PMC9740095 DOI: 10.3390/ijms232315372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Pathogenic variants in the SLC26A4, FOXI1, and KCNJ10 genes are associated with hearing loss (HL) and specific inner ear abnormalities (DFNB4). In the present study, phenotype analyses, including clinical data collection, computed tomography (CT), and audiometric examination, were performed on deaf individuals from the Sakha Republic of Russia (Eastern Siberia). In cases with cochleovestibular malformations, molecular genetic analysis of the coding regions of the SLC26A4, FOXI1, and KCNJ10 genes associated with DFNB4 was completed. In six of the 165 patients (3.6%), CT scans revealed an incomplete partition of the cochlea (IP-1 and IP-2), in isolation or combined with an enlarged vestibular aqueduct (EVA) anomaly. Sequencing of the SLC26A4, FOXI1, and KCNJ10 genes was performed in these six patients. In the SLC26A4 gene, we identified four variants, namely c.85G>C p.(Glu29Gln), c.757A>G p.(Ile253Val), c.2027T>A p.(Leu676Gln), and c.2089+1G>A (IVS18+1G>A), which are known as pathogenic, as well as c.441G>A p.(Met147Ile), reported previously as a variant with uncertain significance. Using the AlphaFold algorithm, we found in silico evidence of the pathogenicity of this variant. We did not find any causative variants in the FOXI1 and KCNJ10 genes, nor did we find any evidence of digenic inheritance associated with double heterozygosity for these genes with monoallelic SLC26A4 variants. The contribution of biallelic SLC26A4 variants in patients with IP-1, IP-2, IP-2+EVA, and isolated EVA was 66.7% (DFNB4 in three patients, Pendred syndrome in one patient). Seventy-five percent of SLC26A4-biallelic patients had severe or profound HL. The morphology of the inner ear anomalies demonstrated that, among SLC26A4-biallelic patients, all types of incomplete partition of the cochlea are possible, from IP-1 and IP-2, to a normal cochlea. However, the dominant type of anomaly was IP-2+EVA (50.0%). This finding is very important for cochlear implantation, since the IP-2 anomaly does not have an increased risk of “gushers” and recurrent meningitis.
Collapse
|
19
|
Silva VAR, Pauna HF, Lavinsky J, Hyppolito MA, Vianna MF, Leal M, Massuda ET, Hamerschmidt R, Bahmad F, Cal RV, Sampaio ALL, Felix F, Chone CT, Castilho AM. Task force Guideline of Brazilian Society of Otology ‒ hearing loss in children - Part I ‒ Evaluation. Braz J Otorhinolaryngol 2022; 89:159-189. [PMID: 36529647 PMCID: PMC9874360 DOI: 10.1016/j.bjorl.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To provide an overview of the main evidence-based recommendations for the diagnosis of hearing loss in children and adolescents aged 0 to 18 years. METHODS Task force members were educated on knowledge synthesis methods, including electronic database search, review and selection of relevant citations, and critical appraisal of selected studies. Articles written in English or Portuguese on childhood hearing loss were eligible for inclusion. The American College of Physicians' guideline grading system and the American Thyroid Association's guideline criteria were used for critical appraisal of evidence and recommendations for therapeutic interventions. RESULTS The evaluation and diagnosis of hearing loss: universal newborn hearing screening, laboratory testing, congenital infections (especially cytomegalovirus), genetic testing and main syndromes, radiologic imaging studies, vestibular assessment of children with hearing loss, auditory neuropathy spectrum disorder, autism spectrum disorder, and noise-induced hearing loss. CONCLUSIONS Every child with suspected hearing loss has the right to diagnosis and appropriate treatment if necessary. This task force considers 5 essential rights: (1) Otolaryngologist consultation; (2) Speech assessment and therapy; (3) Diagnostic tests; (4) Treatment; (5) Ophthalmologist consultation.
Collapse
Affiliation(s)
- Vagner Antonio Rodrigues Silva
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil.
| | - Henrique Furlan Pauna
- Hospital Universitário Cajuru, Departamento de Otorrinolaringologia, Curitiba, PR, Brazil
| | - Joel Lavinsky
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Cirurgia, Porto Alegre, RS, Brazil
| | - Miguel Angelo Hyppolito
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | - Melissa Ferreira Vianna
- Irmandade Santa Casa de Misericórdia de São Paulo, Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Mariana Leal
- Universidade Federal de Pernambuco (UFPE), Departamento de Cirurgia, Recife, PE, Brazil
| | - Eduardo Tanaka Massuda
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | - Rogério Hamerschmidt
- Universidade Federal do Paraná (UFPR), Hospital de Clínicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Curitiba, PR, Brazil
| | - Fayez Bahmad
- Universidade de Brasília (UnB), Programa de Pós-Graduação em Ciências da Saúde, Brasília, DF, Brazil; Instituto Brasiliense de Otorrinolaringologia (IBO), Brasília, DF, Brazil
| | - Renato Valério Cal
- Centro Universitário do Estado do Pará (CESUPA), Departamento de Otorrinolaringologia, Belém, PA, Brazil
| | - André Luiz Lopes Sampaio
- Universidade de Brasília (UnB), Faculdade de Medicina, Laboratório de Ensino e Pesquisa em Otorrinolaringologia, Brasília, DF, Brazil
| | - Felippe Felix
- Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho (HUCFF), Departamento de Otorrinolaringologia, Rio de Janeiro, RJ, Brazil
| | - Carlos Takahiro Chone
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| | - Arthur Menino Castilho
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| |
Collapse
|
20
|
Bernardinelli E, Roesch S, Simoni E, Marino A, Rasp G, Astolfi L, Sarikas A, Dossena S. Novel POU3F4 variants identified in patients with inner ear malformations exhibit aberrant cellular distribution and lack of SLC6A20 transcriptional upregulation. Front Mol Neurosci 2022; 15:999833. [PMID: 36245926 PMCID: PMC9558712 DOI: 10.3389/fnmol.2022.999833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 11/14/2022] Open
Abstract
Hearing loss (HL) is the most common sensory defect and affects 450 million people worldwide in a disabling form. Pathogenic sequence alterations in the POU3F4 gene, which encodes a transcription factor, are causative of the most common type of X-linked deafness (X-linked deafness type 3, DFN3, DFNX2). POU3F4-related deafness is characterized by a typical inner ear malformation, namely an incomplete partition of the cochlea type 3 (IP3), with or without an enlargement of the vestibular aqueduct (EVA). The pathomechanism underlying POU3F4-related deafness and the corresponding transcriptional targets are largely uncharacterized. Two male patients belonging to a Caucasian cohort with HL and EVA who presented with an IP3 were submitted to genetic analysis. Two novel sequence variants in POU3F4 were identified by Sanger sequencing. In cell-based assays, the corresponding protein variants (p.S74Afs*8 and p.C327*) showed an aberrant expression and subcellular distribution and lack of transcriptional activity. These two protein variants failed to upregulate the transcript levels of the amino acid transporter gene SLC6A20, which was identified as a novel transcriptional target of POU3F4 by RNA sequencing and RT-qPCR. Accordingly, POU3F4 silencing by siRNA resulted in downregulation of SLC6A20 in mouse embryonic fibroblasts. Moreover, we showed for the first time that SLC6A20 is expressed in the mouse cochlea, and co-localized with POU3F4 in the spiral ligament. The findings presented here point to a novel role of amino acid transporters in the inner ear and pave the way for mechanistic studies of POU3F4-related HL.
Collapse
Affiliation(s)
- Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Edi Simoni
- Bioacoustic Research Laboratory, Department of Neuroscience, Biomedical Campus Pietro d’Abano, University of Padua, Padua, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Laura Astolfi
- Bioacoustic Research Laboratory, Department of Neuroscience, Biomedical Campus Pietro d’Abano, University of Padua, Padua, Italy
- Interdepartmental Research Center of International Auditory Processing Project in Venice (I-APPROVE), Department of Neurosciences, University of Padova, Santi Giovanni e Paolo Hospital, ULSS3, Venice, Italy
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
- *Correspondence: Antonio Sarikas,
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
- Silvia Dossena,
| |
Collapse
|
21
|
Matulevičius A, Bernardinelli E, Brownstein Z, Roesch S, Avraham KB, Dossena S. Molecular Features of SLC26A4 Common Variant p.L117F. J Clin Med 2022; 11:5549. [PMID: 36233414 PMCID: PMC9570580 DOI: 10.3390/jcm11195549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The SLC26A4 gene, which encodes the anion exchanger pendrin, is involved in determining syndromic (Pendred syndrome) and non-syndromic (DFNB4) autosomal recessive hearing loss. SLC26A4 c.349C>T, p.L117F is a relatively common allele in the Ashkenazi Jewish community, where its minor allele frequency is increased compared to other populations. Although segregation and allelic data support the pathogenicity of this variant, former functional tests showed characteristics that were indistinguishable from those of the wild-type protein. Here, we applied a triad of cell-based assays, i.e., measurement of the ion transport activity by a fluorometric method, determination of the subcellular localization by confocal microscopy, and assessment of protein expression levels, to conclusively assign or exclude the pathogenicity of SLC26A4 p.L117F. This protein variant showed a moderate, but significant, reduction in ion transport function, a partial retention in the endoplasmic reticulum, and a strong reduction in expression levels as a consequence of an accelerated degradation by the Ubiquitin Proteasome System, all supporting pathogenicity. The functional and molecular features of human pendrin p.L117F were recapitulated by the mouse ortholog, thus indicating that a mouse carrying this variant might represent a good model of Pendred syndrome/DFNB4.
Collapse
Affiliation(s)
- Arnoldas Matulevičius
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Zippora Brownstein
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Karen B. Avraham
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
22
|
Heneghan JF, Majmundar AJ, Rivera A, Wohlgemuth JG, Dlott JS, Snyder LM, Hildebrandt F, Alper SL. Activation of 2-oxoglutarate receptor 1 (OXGR1) by α-ketoglutarate (αKG) does not detectably stimulate Pendrin-mediated anion exchange in Xenopus oocytes. Physiol Rep 2022; 10:e15362. [PMID: 35851763 PMCID: PMC9294391 DOI: 10.14814/phy2.15362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023] Open
Abstract
SLC26A4/Pendrin is the major electroneutral Cl- /HCO3- exchanger of the apical membrane of the Type B intercalated cell (IC) of the connecting segment (CNT) and cortical collecting duct (CCD). Pendrin mediates both base secretion in response to systemic base load and Cl- reabsorption in response to systemic volume depletion, manifested as decreased nephron salt and water delivery to the distal nephron. Pendrin-mediated Cl- /HCO3- exchange in the apical membrane is upregulated through stimulation of the β-IC apical membrane G protein-coupled receptor, 2-oxoglutarate receptor 1 (OXGR1/GPR99), by its ligand α-ketoglutarate (αKG). αKG is both filtered by the glomerulus and lumenally secreted by proximal tubule apical membrane organic anion transporters (OATs). OXGR1-mediated regulation of Pendrin by αKG has been documented in transgenic mice and in isolated perfused CCD. However, aspects of the OXGR1 signaling pathway have remained little investigated since its original discovery in lymphocytes. Moreover, no ex vivo cellular system has been reported in which to study the OXGR1 signaling pathway of Type B-IC, a cell type refractory to survival in culture in its differentiated state. As Xenopus oocytes express robust heterologous Pendrin activity, we investigated OXGR1 regulation of Pendrin in oocytes. Despite functional expression of OXGR1 in oocytes, co-expression of Pendrin and OXGR1 failed to exhibit αKG-sensitive stimulation of Pendrin-mediated Cl- /anion exchange under a wide range of conditions. We conclude that Xenopus oocytes lack one or more essential molecular components or physical conditions required for OXGR1 to regulate Pendrin activity.
Collapse
Affiliation(s)
- John F. Heneghan
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Amar J. Majmundar
- Division of NephrologyBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
| | - Alicia Rivera
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | | | - Friedhelm Hildebrandt
- Division of NephrologyBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Seth L. Alper
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
23
|
Xu J, Barone S, Varasteh Kia M, Holliday LS, Zahedi K, Soleimani M. Identification of IQGAP1 as a SLC26A4 (Pendrin)-Binding Protein in the Kidney. Front Mol Biosci 2022; 9:874186. [PMID: 35601831 PMCID: PMC9117723 DOI: 10.3389/fmolb.2022.874186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Several members of the SLC26A family of transporters, including SLC26A3 (DRA), SLC26A5 (prestin), SLC26A6 (PAT-1; CFEX) and SLC26A9, form multi-protein complexes with a number of molecules (e.g., cytoskeletal proteins, anchoring or adaptor proteins, cystic fibrosis transmembrane conductance regulator, and protein kinases). These interactions provide regulatory signals for these molecules. However, the identity of proteins that interact with the Cl-/HCO3 - exchanger, SLC26A4 (pendrin), have yet to be determined. The purpose of this study is to identify the protein(s) that interact with pendrin. Methods: A yeast two hybrid (Y2H) system was employed to screen a mouse kidney cDNA library using the C-terminal fragment of SLC26A4 as bait. Immunofluorescence microscopic examination of kidney sections, as well as co-immunoprecipitation assays, were performed using affinity purified antibodies and kidney protein extracts to confirm the co-localization and interaction of pendrin and the identified binding partners. Co-expression studies were carried out in cultured cells to examine the effect of binding partners on pendrin trafficking and activity. Results: The Y2H studies identified IQ motif-containing GTPase-activating protein 1 (IQGAP1) as a protein that binds to SLC26A4's C-terminus. Co-immunoprecipitation experiments using affinity purified anti-IQGAP1 antibodies followed by western blot analysis of kidney protein eluates using pendrin-specific antibodies confirmed the interaction of pendrin and IQGAP1. Immunofluorescence microscopy studies demonstrated that IQGAP1 co-localizes with pendrin on the apical membrane of B-intercalated cells, whereas it shows basolateral expression in A-intercalated cells in the cortical collecting duct (CCD). Functional and confocal studies in HEK-293 cells, as well as confocal studies in MDCK cells, demonstrated that the co-transfection of pendrin and IQGAP1 shows strong co-localization of the two molecules on the plasma membrane along with enhanced Cl-/HCO3 - exchanger activity. Conclusion: IQGAP1 was identified as a protein that binds to the C-terminus of pendrin in B-intercalated cells. IQGAP1 co-localized with pendrin on the apical membrane of B-intercalated cells. Co-expression of IQGAP1 with pendrin resulted in strong co-localization of the two molecules and increased the activity of pendrin in the plasma membrane in cultured cells. We propose that pendrin's interaction with IQGAP1 may play a critical role in the regulation of CCD function and physiology, and that disruption of this interaction could contribute to altered pendrin trafficking and/or activity in pathophysiologic states.
Collapse
Affiliation(s)
- Jie Xu
- Research Services, VA Medical Center, Albuquerque, NM, United States,Department of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Sharon Barone
- Research Services, VA Medical Center, Albuquerque, NM, United States,Department of Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Mujan Varasteh Kia
- Department of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - L. Shannon Holliday
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| | - Kamyar Zahedi
- Research Services, VA Medical Center, Albuquerque, NM, United States,Department of Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Manoocher Soleimani
- Research Services, VA Medical Center, Albuquerque, NM, United States,Department of Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, University of New Mexico, Albuquerque, NM, United States,*Correspondence: Manoocher Soleimani,
| |
Collapse
|
24
|
Remigante A, Spinelli S, Pusch M, Sarikas A, Morabito R, Marino A, Dossena S. Role of SLC4 and SLC26 solute carriers during oxidative stress. Acta Physiol (Oxf) 2022; 235:e13796. [PMID: 35143116 PMCID: PMC9542443 DOI: 10.1111/apha.13796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
Bicarbonate is one of the major anions in mammalian tissues and fluids, is utilized by various exchangers to transport other ions and organic substrates across cell membranes and plays a critical role in cell and systemic pH homoeostasis. Chloride/bicarbonate (Cl−/HCO3−) exchangers are abundantly expressed in erythrocytes and epithelial cells and, as a consequence, are particularly exposed to oxidants in the systemic circulation and at the interface with the external environment. Here, we review the physiological functions and pathophysiological alterations of Cl−/HCO3− exchangers belonging to the solute carriers SLC4 and SLC26 superfamilies in relation to oxidative stress. Particularly well studied is the impact of oxidative stress on the red blood cell SLC4A1/AE1 (Band 3 protein), of which the function seems to be directly affected by oxidative stress and possibly involves oxidation of the transporter itself or its interacting proteins, with detrimental consequences in oxidative stress‐related diseases including inflammation, metabolic dysfunctions and ageing. The effect of oxidative stress on SLC26 members was less extensively explored. Indirect evidence suggests that SLC26 transporters can be target as well as determinants of oxidative stress, especially when their expression is abolished or dysregulated.
Collapse
Affiliation(s)
- Alessia Remigante
- Biophysics Institute National Research Council Genova Italy
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Sara Spinelli
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Michael Pusch
- Biophysics Institute National Research Council Genova Italy
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| | - Rossana Morabito
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angela Marino
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| |
Collapse
|
25
|
Different Rates of the SLC26A4-Related Hearing Loss in Two Indigenous Peoples of Southern Siberia (Russia). Diagnostics (Basel) 2021; 11:diagnostics11122378. [PMID: 34943614 PMCID: PMC8699871 DOI: 10.3390/diagnostics11122378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Hereditary hearing loss (HL) is known to be highly locus/allelic heterogeneous, and the prevalence of different HL forms significantly varies among populations worldwide. Investigation of region-specific landscapes of hereditary HL is important for local healthcare and medical genetic services. Mutations in the SLC26A4 gene leading to nonsyndromic recessive deafness (DFNB4) and Pendred syndrome are common genetic causes of hereditary HL, at least in some Asian populations. We present for the first time the results of a thorough analysis of the SLC26A4 gene by Sanger sequencing in the large cohorts of patients with HL of unknown etiology belonging to two neighboring indigenous Turkic-speaking Siberian peoples (Tuvinians and Altaians). A definite genetic diagnosis based on the presence of biallelic SLC26A4 mutations was established for 28.2% (62/220) of all enrolled Tuvinian patients vs. 4.3% (4/93) of Altaian patients. The rate of the SLC26A4-related HL in Tuvinian patients appeared to be one of the highest among populations worldwide. The SLC26A4 mutational spectrum was characterized by the presence of Asian-specific mutations c.919-2A>G and c.2027T>A (p.Leu676Gln), predominantly found in Tuvinian patients, and c.2168A>G (p.His723Arg), which was only detected in Altaian patients. In addition, a novel pathogenic variant c.1545T>G (p.Phe515Leu) was found with high frequency in Tuvinian patients. Overall, based on the findings of this study and our previous research, we were able to uncover the genetic causes of HL in 50.5% of Tuvinian patients and 34.5% of Altaian patients.
Collapse
|
26
|
Brotto D, Sorrentino F, Cenedese R, Avato I, Bovo R, Trevisi P, Manara R. Genetics of Inner Ear Malformations: A Review. Audiol Res 2021; 11:524-536. [PMID: 34698066 PMCID: PMC8544219 DOI: 10.3390/audiolres11040047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Inner ear malformations are present in 20% of patients with sensorineural hearing loss. Although the first descriptions date to the 18th century, in recent years the knowledge about these conditions has experienced terrific improvement. Currently, most of these conditions have a rehabilitative option. Much less is known about the etiology of these anomalies. In particular, the evolution of genetics has provided new data about the possible relationship between inner ear malformations and genetic anomalies. In addition, in syndromic condition, the well-known presence of sensorineural hearing loss can now be attributed to the presence of an inner ear anomaly. In some cases, the presence of these abnormalities should be considered as a characteristic feature of the syndrome. The present paper aims to summarize the available knowledge about the possible relationships between inner ear malformations and genetic mutations.
Collapse
Affiliation(s)
- Davide Brotto
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
- Correspondence:
| | - Flavia Sorrentino
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Roberta Cenedese
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Irene Avato
- Department of Diagnostic, Paediatric, Clinical and Surgical Science, University of Pavia, 35128 Pavia, Italy;
| | - Roberto Bovo
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Patrizia Trevisi
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Renzo Manara
- Neuroradiology Unit, Department of Neurosciences, University of Padua, 35128 Padua, Italy;
| |
Collapse
|