1
|
Yang C, Li L, Li M, Shu Y, Luo Y, Gu D, Zhu X, Chen J, Yang L, Shu J. Assessment of CuFeSe 2 ternary nanozymes for multimodal triple negative breast cancer theranostics. NANO CONVERGENCE 2025; 12:18. [PMID: 40175784 PMCID: PMC11965050 DOI: 10.1186/s40580-025-00483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Triple negative breast cancer (TNBC) remains a challenge for clinical diagnosis and therapy due to its poor prognosis and high mortality rate. Hence, new methods to achieve TNBC imaging and imaging-guided TNBC therapy are urgently needed. Currently, the combination of chemotherapy with phototherapy/catalytic therapy has become a promising strategy for cancer treatment. Here, multifunctional CuFeSe2 ternary nanozymes (CuFeSe2-AMD3100-Gem nanosheets) were prepared as high-performance nanotheranostic agents for imaging-guided synergistic therapy of TNBC in vitro and in vivo. CuFeSe2-AMD3100-Gem nanosheets not only exhibited outstanding CXCR4-targeted capability and superior photothermal properties, but also produced exact chemical cytotoxicity through the loading of the chemotherapy drug Gemcitabine. Specifically, the CuFeSe2-AMD3100-Gem nanosheets simultaneously possessed peroxidase-like activities capable of converting endogenous H2O2 to hydroxyl radicals (•OH), which could be significantly enhanced under light irradiation. Furthermore, these nanosheets showed remarkable multimodal imaging ability for magnetic resonance imaging (MRI), computed tomography (CT) and infrared thermography in TNBC tumor-bearing mice (4T1 cells). More importantly, the in vitro and in vivo results verified the significant synergistic anticancer effect of the CuFeSe2-AMD3100-Gem nanosheets by combining photothermal therapy and enzyme catalytic therapy with chemotherapy. In conclusion, these advantages demonstrate the powerful potential of CuFeSe2 ternary nanozymes for imaging-guided synergistic photothermal/catalytic/chemical therapy for TNBC.
Collapse
Affiliation(s)
- Chunmei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou, Luzhou, Sichuan, 646000, China
| | - Lihong Li
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou, Luzhou, Sichuan, 646000, China
| | - Mingdong Li
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou, Luzhou, Sichuan, 646000, China
| | - Yue Shu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yiping Luo
- The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Didi Gu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou, Luzhou, Sichuan, 646000, China
| | - Xin Zhu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou, Luzhou, Sichuan, 646000, China
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou, Luzhou, Sichuan, 646000, China.
| | - Lu Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou, Luzhou, Sichuan, 646000, China.
- The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
2
|
Karna D, Watanabe S, Sharma G, Sharma A, Zheng Y, Kawamata I, Suzuki Y, Mao H. Logic-Gated Modulation of Cell Migration via Mesoscale Mechanical Uncaging Effects. ACS NANO 2025; 19:8058-8069. [PMID: 39980204 DOI: 10.1021/acsnano.4c16194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Mesoscopic objects ranging from molecular machinery to cells are prevalent in nature. Unlike atomic and nanoscopic objects that do not have pronounced mechanical properties due to their small sizes, mesoscale substances demonstrate their unique mechanical features that can interfere with cell functions, particularly those with a mechanical nature such as cell migrations. Here, we demonstrate mechanical caging/uncaging effects in a DNA origami nanospring system that precisely controls cancer cell migrations. By leveraging DNA as a programming language, our work demonstrates the creation of logic gates (Boolean AND and OR gates) responsive to various miRNA inputs, resulting in mechanical and structural changes in DNA origami nanosprings serving as processors, which uncage the arginyl-glycyl-aspartate (RGD) ligands to interact with integrins on the cell membrane surface. The mechanical uncaging effect inhibits the migration of cancer cells. The strategy can be readily harnessed for targeted drug delivery with minimal off-target effects. Our proof-of-concept mesoscale DNA origami self-assembly highlights the potential for exquisite multimodal control of mechanical functions of cells with future applications in synthetic biology and precision medicine.
Collapse
Affiliation(s)
- Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Shin Watanabe
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
| | - Grinsun Sharma
- School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Arpit Sharma
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Yaorong Zheng
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Ibuki Kawamata
- Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Suzuki
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
- School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
3
|
Valdivieso E, Zabala M, Muñoz Noval A, López-Méndez R, Carmona N, Espinosa A, García García FJ, Boulahya K, Lucas JA, Biancotto L, Amador U, Azcondo MT, Hurtado-Marcos C. Hyperthermic Core-Shell Silver-Gold Nanoparticles: Green Synthesis and Adsorption-Uptake by Macrophages, Fibroblasts and Cancer Cells. ChemistryOpen 2025; 14:e202400459. [PMID: 39967444 DOI: 10.1002/open.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Gold-coated silver nanoparticles (Ag@AuNPs) are synthesized by green synthesis using Vaccinium corymbosum as reducing agent. The obtained Ag@AuNPs present a core-shell structure with nanostar shape. The absorption spectrum of these nanoparticles shows a prominent band centred at 680 nm, within the optimal range for photothermal applications. Dispersions of Ag@AuNPs in water, 1.87 1010 NPs/mL, reach a temperature of 44.3 °C under laser excitation in 10 minutes, which is suitable for hyperthermia therapy. The internalization of Ag@AuNPs, at a concentration of 3 108 NPs/ml, by macrophages (Raw 264.7), human fibroblasts (Hs27), and cancer cells (4T1) is confirmed by transmission electron microscopy. Cytotoxicity studies demonstrate that at this concentration the cells are viable.
Collapse
Affiliation(s)
- E Valdivieso
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668, Boadilla del Monte, Spain
| | - M Zabala
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - A Muñoz Noval
- Departamento de Física de Materiales, Facultad de Físicas, Universidad Complutense, E-28040, Madrid, Spain
- IMDEA Nanociencia c/ Faraday, 9, Madrid, 28049, Spain
| | | | - N Carmona
- Departamento de Física de Materiales, Facultad de Físicas, Universidad Complutense, E-28040, Madrid, Spain
| | - A Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - F J García García
- ICTS-Centro Nacional de Microscopía Electrónica F. CC. Químicas, UCM Av. Complutense S/N, 28040-, Madrid, Spain
| | - K Boulahya
- Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | - J A Lucas
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668, Boadilla del Monte, Spain
| | - L Biancotto
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - U Amador
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - M T Azcondo
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, E-28668, Madrid, Spain
| | - C Hurtado-Marcos
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668, Boadilla del Monte, Spain
| |
Collapse
|
4
|
Nguyen AL, Griffin QJ, Wang A, Zou S, Jing H. Optimization of the Surfactant Ratio in the Formation of Penta-Twinned Seeds for Precision Synthesis of Gold Nanobipyramids with Tunable Plasmon Resonances. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:4303-4312. [PMID: 40041389 PMCID: PMC11873936 DOI: 10.1021/acs.jpcc.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
The synthesis of high-purity gold nano bipyramids (Au NBPs) with a narrow size distribution and tunable plasmon resonances is of great significance for plasmon resonance-related applications. However, the synthesis Au NBP approach involves multiple steps with many parameters that can affect the purity of the final product. In this work, we were devoted to studying the effect of the molar ratio between hexadecyltrimethylammonium chloride (CTAC) and sodium citrate tribasic dihydrate (CiNa3) on the seed formation stage. The results showed that the yield of Au NBP product has dramatically increased with the seed solution made from the molar ratio of CTAC:CiNa3 at 21:1. Furthermore, using this optimal seed, we can efficiently synthesize Au NBPs with various sizes by adjusting the concentration of the seed but keeping the rest of the parameters constant. In this study, the longitudinal localized surface plasmon resonances (LSPRs) of Au NBPs exhibit tunability beyond 450 nm across the visible and near-infrared regions from 774 to 1224 nm. We were able to successfully fine-tune the LSPRs of Au NBPs in the spectral region to become resonant with the excitation wavelengths of an 808 nm near-infrared (NIR) laser. The photothermal activities of Au NBPs were studied under 808 nm laser irradiation at ambient conditions. The present work demonstrates a paradigm for the synthesis of Au NBPs with tunable LSPRs in a precise and controllable manner, achieved by examining the surfactant ratios in the formation of penta-twinned seeds.
Collapse
Affiliation(s)
- Au Lac Nguyen
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 22030, United States
| | - Quinn J. Griffin
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 22030, United States
| | - Ankai Wang
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Shengli Zou
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Hao Jing
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 22030, United States
| |
Collapse
|
5
|
Csupász-Szabó HJ, Döncző B, Szarka M, Daróczi L, Lázár I. Thermal Reverse-Engineered Synthesis and Catalytic Activity of Nanogold-Containing Silica Aerogels. Gels 2025; 11:87. [PMID: 39996630 PMCID: PMC11854600 DOI: 10.3390/gels11020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Silica aerogels are extensively used as catalyst supports due to their mesoporous structure and chemical inertness. In this study, SiO2-AuNP aerogels containing gold nanoparticles (AuNPs) were synthesized using the sol-gel method followed by supercritical CO2 drying. The inclusion of polyvinyl pyrrolidone (PVP) as a stabilizing agent preserved the gold particle sizes during the gelation process. In contrast, aerogels synthesized without PVP contained enlarged AuNP aggregates, resulting in a shift in the plasmon resonance color from red to bluish or blue-grey. Thermal treatment of these bluish-colored aerogels at high temperatures restored their red coloration, visually indicating the breakdown of large gold clusters into individual nanoparticles. Both types of aerogels were characterized using SEM, TEM, 3D optical microscopy, UV-vis and ATR-IR spectroscopy, and N2 porosimetry, with their properties analyzed as a function of annealing temperature. Their catalytic activity was evaluated through the reduction of 4-nitrophenol with sodium borohydride, and both aerogel types demonstrated catalytic activity. This thermal conversion of large clusters into individual nanoparticles within an aerogel matrix introduces a new and promising approach for creating catalytically active nanogold-containing aerogel catalysts.
Collapse
Affiliation(s)
- Hanna Judit Csupász-Szabó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
| | - Boglárka Döncző
- HUN-REN Institute for Nuclear Research (ATOMKI), Bem tér 18/c, 4026 Debrecen, Hungary; (B.D.); (M.S.)
| | - Máté Szarka
- HUN-REN Institute for Nuclear Research (ATOMKI), Bem tér 18/c, 4026 Debrecen, Hungary; (B.D.); (M.S.)
| | - Lajos Daróczi
- Department of Solid State Physics, University of Debrecen, Bem tér 18/b, 4026 Debrecen, Hungary;
| | - István Lázár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
| |
Collapse
|
6
|
Bao X, Luo H, Weng T, Chen Z, Yan X, An F, Jiang F, Chen H. Photothermal Material-Based Solar-Driven Cogeneration of Water and Electricity: An Efficient and Promising Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411369. [PMID: 39828590 DOI: 10.1002/smll.202411369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/06/2025] [Indexed: 01/22/2025]
Abstract
With the increasing demand for fresh-water and electricity in modern society, various technologies are being explored to obtain fresh-water and electricity. Due to advances in materials science, solar-driven interfacial evaporation (SDIE) systems have attracted widespread attention because they require only solar energy, and possess a high evaporation rate and little pollution. The researchers combined energy harvesting measures into the system to output electricity, further improving energy utilization. However, more in-depth research and review remain on using SDIE systems for efficient water-electricity cogeneration. Therefore, the mechanisms of different photothermal materials that utilize solar energy to produce thermal energy are first summarized in this paper. Subsequently, the mechanism and application of thermal, mechanical, chemical, and evaporation energy to produce electrical power in SDIE water-electricity cogeneration systems are discussed. Concurrently, vital mathematical equations and widely used mathematical simulation methods for performance evaluation and practical applications are presented. The design and operation of water-electricity cogeneration systems based on photothermal materials are analyzed and summarized. Based on a review and in-depth understanding of these aspects, the future development direction of cogeneration is proposed to address the problems faced in basic research and practical applications.
Collapse
Affiliation(s)
- Xiangxin Bao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Haopeng Luo
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tingyi Weng
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zihan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xing Yan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fengxia An
- China Energy Science and Technology Research Institute Co. Ltd., Nanjing, 210023, P. R. China
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
7
|
Wong WK, Ren Y, Leung FKC. Photothermal-chemotherapy: the emerging supramolecular photothermal molecules and the recent advances. NANOPHOTOTHERAPY 2025:463-499. [DOI: 10.1016/b978-0-443-13937-6.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Elhassan Taha MM, Abdelwahab SI, Moni SS, Farasani A, Aljahdali IA, Oraibi B, Alfaifi HA, Alzahrani AH, Ali Jerah A. Nano-enhanced immunity: A bibliometric analysis of nanoparticles in vaccine adjuvant research. Hum Vaccin Immunother 2024; 20:2427464. [PMID: 39539151 PMCID: PMC11572201 DOI: 10.1080/21645515.2024.2427464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
This study analyzed the growth, collaboration, citation trends, and emerging topics in nanoparticle-based vaccine and adjuvant research (NVAR) from 1977 to 2023, using data from the Scopus database. The field showed a steady growth rate of 7.53% per year. Leading researchers Jaafari, M.R. and Alving, C.R. contributed significantly to the field, with 24.22% of publications and 38.92% of total citations coming from the United States. International collaboration was very strong, particularly between the US, UK, Germany, China, and France. Key research topics include nanoparticles, immunotherapy, COVID-19, and vaccines with a focus on SARS-CoV-2 and malaria. Emerging topics include vaccine adjuvants, mRNA, and neutralizing antibodies. This study emphasizes the importance of ongoing collaboration and interdisciplinary efforts to advance the field of NVAR.
Collapse
Affiliation(s)
| | | | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Farasani
- Health Research Centre, Jazan University, Jazan, Saudi Arabia
- College of Nursing and Health Science, Jazan University, Jazan, Saudi Arabia
| | - Ieman A. Aljahdali
- Department of Clinical Laboratory Sciences, Taif University, Taif, Saudi Arabia
| | - Bassem Oraibi
- Health Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hassan Ahmad Alfaifi
- Pharmaceutical Care Administration, Ministry of Health, (Jeddah Second Health Cluster), Riyadh, Saudi Arabia
| | - Amal Hamdan Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Ali Jerah
- College of Nursing and Health Science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
9
|
Santhosh PB, Hristova-Panusheva K, Petrov T, Stoychev L, Krasteva N, Genova J. Femtosecond Laser-Induced Photothermal Effects of Ultrasmall Plasmonic Gold Nanoparticles on the Viability of Human Hepatocellular Carcinoma HepG2 Cells. Cells 2024; 13:2139. [PMID: 39768227 PMCID: PMC11675025 DOI: 10.3390/cells13242139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.2 ± 1.1 nm), induced by a 343 nm wavelength ultrafast femtosecond-pulse laser with a low intensity (0.1 W/cm2) for 5 and 10 min, on the cell morphology and viability of human hepatocellular carcinoma (HepG2) cells treated in vitro. The optical microscopy images showed considerable alteration in the overall morphology of the cells treated with AuNPs and irradiated with laser light. Infrared thermometer measurements showed that the temperature of the cell medium treated with AuNPs and exposed to the laser increased steadily from 22 °C to 46 °C and 48.5 °C after 5 and 10 min, respectively. The WST-1 assay results showed a significant reduction in cell viability, demonstrating a synergistic therapeutic effect of the femtosecond laser and AuNPs on HepG2 cells. The obtained results pave the way to design a less expensive, effective, and minimally invasive photothermal approach to treat cancers with reduced side effects.
Collapse
Affiliation(s)
- Poornima Budime Santhosh
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
- Central Laboratory of Solar Energy and New Energy Sources, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria (N.K.)
| | - Todor Petrov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
- Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 8, Kliment Ohridski St, 1000 Sofia, Bulgaria
| | - Lyubomir Stoychev
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria (N.K.)
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
| |
Collapse
|
10
|
Deng X, Hu L, Xing H, Liu Y, Yin H. Recent progress in gold-derived nanomaterials for tumor theranostics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8058-8067. [PMID: 39601081 DOI: 10.1039/d4ay01932f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It is widely acknowledged that gold-based materials are of significant interest in the field of biomedicine. Consequently, considerable efforts have been devoted to identifying gold nanoparticles that exhibit effective performance in tumor diagnosis and treatment. However, the underlying reasons for the enhanced efficacy of these gold-based nanomaterials in cancer therapy and diagnosis remain unclear, primarily due to the lack of an in-depth understanding of the mechanisms involved. Therefore, it is essential to summarize the progress in the field to facilitate the rational design of more efficient nanodevices. In this review, we present recent achievements drawn from the latest research to demonstrate the broad applications of gold-based materials. We begin by illustrating the mechanisms of gold-derived nanoparticles during therapeutic and diagnostic processes, including photothermal therapy, photodynamic therapy, sonodynamic therapy, photoacoustic tomography, fluorescence imaging, and X-ray computed tomography. We then summarize the advancements of gold-based nanomaterials in cancer diagnosis and treatment while also analyzing the factors contributing to their enhanced performance. Finally, we highlight key descriptors for evaluating the efficacy and strategies for designing high-performance nanomaterials. This review aims to pave the way for addressing future challenges and outlines directions for the advancement of gold-based biomedicine.
Collapse
Affiliation(s)
- Xi Deng
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lei Hu
- Department of Oncology, Jiulongpo District People's Hospital, Chongqing, 400050, China
| | - Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hong Yin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
11
|
Tayebi-Khorrami V, Rahmanian-Devin P, Fadaei MR, Movaffagh J, Askari VR. Advanced applications of smart electrospun nanofibers in cancer therapy: With insight into material capabilities and electrospinning parameters. Int J Pharm X 2024; 8:100265. [PMID: 39045009 PMCID: PMC11263755 DOI: 10.1016/j.ijpx.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer remains a major global health challenge, and despite available treatments, its prognosis remains poor. Recently, researchers have turned their attention to intelligent nanofibers for cancer drug delivery. These nanofibers exhibit remarkable capabilities in targeted and controlled drug release. Their inherent characteristics, such as a high surface area-to-volume ratio, make them attractive candidates for drug delivery applications. Smart nanofibers can release drugs in response to specific stimuli, including pH, temperature, magnetic fields, and light. This unique feature not only reduces side effects but also enhances the overall efficiency of drug delivery systems. Electrospinning, a widely used method, allows the precision fabrication of smart nanofibers. Its advantages include high efficiency, user-friendliness, and the ability to control various manufacturing parameters. In this review, we explore the latest developments in producing smart electrospun nanofibers for cancer treatment. Additionally, we discuss the materials used in manufacturing these nanofibers and the critical parameters involved in the electrospinning process.
Collapse
Affiliation(s)
- Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebraeel Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Gu J, Jiang L, Chen Z, Qi J. A simple nanoplatform of thermo-sensitive liposomes and gold nanorods to treat bone metastasis through improved chemotherapy combined with photothermal therapy. Int J Pharm X 2024; 8:100282. [PMID: 39286038 PMCID: PMC11403519 DOI: 10.1016/j.ijpx.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Bone metastasis remains a clinical challenge and is still considered incurable. While nanoparticles-based drug delivery and photothermal therapy (PTT) show promise in treating subcutaneous solid tumor, their therapeutic outcome in treating bone metastasis is limited, due to the inaccessibility of bone metastatic site and the complexity of bone metastasis. Herein, we reported a simple nanoplatform composed of thermo-sensitive liposomes (TSL) and gold nanorods (GNR) to treat bone metastasis through improved chemotherapy combined with GNR-assisted PTT. Lipid combination of TSL was firstly tailored to regulate its stability under physiological condition as well as its sensitivity in responding to PTT-caused mild hyperthermia. The obtained TSL with loaded drug was then combined with GNR to form the nanoplatform through unsophisticated incubation. Cell experiments revealed that upon near-infrared (NIR) irradiation, the nanoplatform effectively inhibited the viability and migration ability of tumor cells through PTT, PTT-triggered thermo-sensitive drug release, and PTT-augmented sensitivity of tumor cells to drug. In a murine model of bone metastasis, the nanoplatform enabled effective delivery of loaded drug and GNR to bone metastatic site for rapid drug release upon local NIR irradiation. Through killing tumor cells and rebalancing the turnover of osteoclasts and osteoblasts, the nanoplatform largely preserved bone structure for pain relief and survival extension. Inspired by the simplicity of nanoplatform acquirement and treatment operation, the strategy of liposomes-based thermo-sensitive drug delivery in combination with GNR-assisted PTT is considered greatly promising in treating bone metastasis.
Collapse
Affiliation(s)
- Jia Gu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Lifan Jiang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Zhongping Chen
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Jun Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
13
|
Yu B, Huang H. Multiscale Thermal Technologies: Exploring Hot and Cold Potentials in Biomedical Applications. Bioengineering (Basel) 2024; 11:1028. [PMID: 39451403 PMCID: PMC11505225 DOI: 10.3390/bioengineering11101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Harnessing thermal technology has opened up new possibilities in biomedicine in areas such as cancer treatment, biopreservation, and assisted reproduction [...].
Collapse
Affiliation(s)
- Bangrui Yu
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
| | - Haishui Huang
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
14
|
Gao Y, Huo S, Chen C, Du S, Xia R, Liu J, Chen D, Diao Z, Han X, Yin Z. Gold nanorods as biocompatible nano-agents for the enhanced photothermal therapy in skin disorders. J Biomed Res 2024; 39:1-17. [PMID: 39375931 PMCID: PMC11873593 DOI: 10.7555/jbr.38.20240119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Rod-shaped gold nanomaterials, known as gold nanorods (GNRs), may undergo specific surface modification, because of their straightforward surface chemistry. This feature makes them appropriate for use as functional and biocompatible nano-formulations. By optimizing the absorption of longitudinally localized surface plasmon resonance in the near-infrared region, which corresponds to the near-infrared bio-tissue window, GNRs with appropriate modifications may improve the results of photothermal treatment (PTT). In dermatology, potential noninvasive uses of GNRs to enhance wound healing, manage infections, combat cutaneous malignancies, and remodel skin tissues via PTT have attracted research attention in recent years. The review discussed the basic properties of GNRs, such as their shape, size, optical performance, photothermal efficiency, and metabolism. Then, the disadvantages of using these particles in photodynamic therapy are highlighted. Next, biological applications of GNRs-based PTT are explored in detail. Finally, the limitations and future perspectives of this research are addressed, providing a comprehensive perspective on the potential GNRs with PTT.
Collapse
Affiliation(s)
- Yamei Gao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shaohu Huo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Chao Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Shiyu Du
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ruiyuan Xia
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Liu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dandan Chen
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ziyue Diao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Han
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Zhiqiang Yin
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
15
|
Mustakim N, Vera LFR, Pinto JP, Seo SW. Gold Nanorod-Embedded PDMS Micro-Pillar Array for Localized Photothermal Stimulation. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2024; 33:543-549. [PMID: 39364062 PMCID: PMC11449256 DOI: 10.1109/jmems.2024.3418373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Gold nanorods (GNRs) are one of the most promising biomaterial choices for the photothermal activation of neurons due to their relative biocompatibility, unique photothermal properties, and broad optical tunability through their synthetic shape control. While photothermal stimulation using randomly accumulated GNRs successfully demonstrates the potential treatment of functional neural disorders by modulating the neuronal activities using localized heating, there are limited demonstrations to translate this new concept into large-arrayed neural stimulations. In this paper, we report an arrayed PDMS micropillar platform in which GNRs are embedded as pixel-like, arrayed photothermal stimulators at the tips of the pillars. The proposed platform will be able to localize GNRs at predetermined pillar positions and create thermal stimulations using near-infrared (NIR) light. This will address the limitations of randomly distributed GNR-based approaches. Furthermore, a flexible PDMS pillar structure will create intimate interfaces on target cells. By characterizing the spatiotemporal temperature change in the platform with rhodamine B dye, we have shown that the localized temperature can be optically modulated within 4°C, which is in the range of temperature variation required for neuromodulation using NIR light. We envision that our proposed platform has the potential to be applied as a photothermal, neuronal stimulation interface with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Nafis Mustakim
- Department of Electrical Engineering, The City College of New York, New York, NY 10031 USA
| | - Luis F Rodriguez Vera
- Department of Electrical Engineering, The City College of New York, New York, NY 10031 USA; Cadence Design Systems, San Jose, CA 95134 USA
| | - Jose Pacheco Pinto
- Department of Electrical Engineering, The City College of New York, New York, NY 10031 USA
| | - Sang-Woo Seo
- Department of Electrical Engineering, The City College of New York, New York, NY 10031 USA
| |
Collapse
|
16
|
Shariati B, Goodarzi MT, Jalali A, Salehi N, Mozaffari M. Improvement photothermal property of MoS 2/Fe 3O 4/GNR nanocomposite in cancer treatment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:48. [PMID: 39136805 PMCID: PMC11322282 DOI: 10.1007/s10856-024-06819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
The objective of the present study was to develop a novel molybdenum disulfide/iron oxide/gold nanorods (MoS2/Fe3O4/GNR) nanocomposite (MFG) with different concentrations of AgNO3 solution (MFG1, MFG2, and MFG3) for topical doxorubicin (DOX) drug delivery. Then, these nanocomposites were synthesized and characterized by Fourier transform infrared (FTIR), Transmission electron microscopy (TEM), Dynamic light scattering (DLS), and Ultraviolet-visible (UV-Vis) spectroscopies to confirm their structural and optical properties. Cytotoxicity of samples on Hela cell was determined using MTT assay. Results indicated that nanocomposites possess little cytotoxicity without NIR laser irradiation. Also, the relative viabilities of Hela cells decreased when the concentration of AgNO3 solution increased in this nanocomposite. Using NIR irradiation, the relative viabilities of Hela cells decreased when the concentration of samples increased. Acridine orange/propidium iodide (PI) staining, flow cytometry were recruited to evaluate the effect of these nanocomposites on apoptosis of Hela cells. Finally, results revealed when DOX loading increased in nanocomposite, then cell viability was decreased in it. Therefore, these properties make MFG3 nanocomposite a good candidate for photothermal therapy and drug loading.
Collapse
Affiliation(s)
- Behdad Shariati
- Department of Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Alireza Jalali
- Department of Chemistry, Herbal Medicines Raw Materials Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Nasrin Salehi
- Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Majid Mozaffari
- Department of Chemistry, Herbal Medicines Raw Materials Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
17
|
Wang Y, Chang L, Gao H, Yu C, Gao Y, Peng Q. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer. Eur J Med Chem 2024; 272:116508. [PMID: 38761583 DOI: 10.1016/j.ejmech.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The traditional clinical approaches for oral cancer consist of surgery, chemotherapy, radiotherapy, immunotherapy, and so on. However, these treatments often induce side effects and exhibit limited efficacy. Photothermal therapy (PTT) emerges as a promising adjuvant treatment, utilizing photothermal agents (PTAs) to convert light energy into heat for tumor ablation. Another innovative approach, photodynamic therapy (PDT), leverages photosensitizers (PSs) and specific wavelength laser irradiation to generate reactive oxygen species (ROS), offering an effective and non-toxic alternative. The relevant combination therapies have been reported in the field of oral cancer. Simultaneously, the advancement of nanomaterials has propelled the clinical application of PTT and PDT. Therefore, a comprehensive understanding of PTT and PDT is required for better application in oral cancer treatment. Here, we review the use of PTT and PDT in oral cancer, including noble metal materials (e.g., Au nanoparticles), carbon materials (e.g., graphene oxide), organic dye molecules (e.g., indocyanine green), organic molecule-based agents (e.g., porphyrin-analog phthalocyanine) and other inorganic materials (e.g., MXenes), exemplify the advantages and disadvantages of common PTAs and PSs, and summarize the combination therapies of PTT with PDT, PTT/PDT with chemotherapy, PTT with radiotherapy, PTT/PDT with immunotherapy, and PTT/PDT with gene therapy in the treatment of oral cancer. The challenges related to the PTT/PDT combination therapy and potential solutions are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenhao Yu
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610500, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Rodrigues CF, Correia IJ, Moreira AF. Red blood cell membrane-camouflaged gold-core silica shell nanorods for cancer drug delivery and photothermal therapy. Int J Pharm 2024; 655:124007. [PMID: 38493844 DOI: 10.1016/j.ijpharm.2024.124007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Gold core mesoporous silica shell (AuMSS) nanorods are multifunctional nanomedicines that can act simultaneously as photothermal, drug delivery, and bioimaging agents. Nevertheless, it is reported that once administrated, nanoparticles can be coated with blood proteins, forming a protein corona, that directly impacts on nanomedicines' circulation time, biodistribution, and therapeutic performance. Therefore, it become crucial to develop novel alternatives to improve nanoparticles' half-life in the bloodstream. In this work, Polyethylenimine (PEI) and Red blood cells (RBC)-derived membranes were combined for the first time to functionalize AuMSS nanorods and simultaneously load acridine orange (AO). The obtained results revealed that the RBC-derived membranes promoted the neutralization of the AuMSS' surface charge and consequently improved the colloidal stability and biocompatibility of the nanocarriers. Indeed, the in vitro data revealed that PEI/RBC-derived membranes' functionalization also improved the nanoparticles' cellular internalization and was capable of mitigating the hemolytic effects of AuMSS and AuMSS/PEI nanorods. In turn, the combinatorial chemo-photothermal therapy mediated by AuMSS/PEI/RBC_AO nanorods was able to completely eliminate HeLa cells, contrasting with the less efficient standalone therapies. Such data reinforce the potential of AuMSS nanomaterials to act simultaneously as photothermal and chemotherapeutic agents.
Collapse
Affiliation(s)
- Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CPIRN-UDI/IPG - Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal.
| |
Collapse
|
19
|
Yang J, Tan Q, Li K, Liao J, Hao Y, Chen Y. Advances and Trends of Photoresponsive Hydrogels for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:1921-1945. [PMID: 38457377 DOI: 10.1021/acsbiomaterials.3c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The development of static hydrogels as an optimal choice for bone tissue engineering (BTE) remains a difficult challenge primarily due to the intricate nature of bone healing processes, continuous physiological functions, and pathological changes. Hence, there is an urgent need to exploit smart hydrogels with programmable properties that can effectively enhance bone regeneration. Increasing evidence suggests that photoresponsive hydrogels are promising bioscaffolds for BTE due to their advantages such as controlled drug release, cell fate modulation, and the photothermal effect. Here, we review the current advances in photoresponsive hydrogels. The mechanism of photoresponsiveness and its advanced applications in bone repair are also elucidated. Future research would focus on the development of more efficient, safer, and smarter photoresponsive hydrogels for BTE. This review is aimed at offering comprehensive guidance on the trends of photoresponsive hydrogels and shedding light on their potential clinical application in BTE.
Collapse
Affiliation(s)
- Juan Yang
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qingqing Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ying Hao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuwen Chen
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
20
|
Hang Y, Wang A, Wu N. Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem Soc Rev 2024; 53:2932-2971. [PMID: 38380656 PMCID: PMC11849058 DOI: 10.1039/d3cs00793f] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Silver and gold nanoparticles have found extensive biomedical applications due to their strong localized surface plasmon resonance (LSPR) and intriguing plasmonic properties. This review article focuses on the correlation among particle geometry, plasmon properties and biomedical applications. It discusses how particle shape and size are tailored via controllable synthetic approaches, and how plasmonic properties are tuned by particle shape and size, which are embodied by nanospheres, nanorods, nanocubes, nanocages, nanostars and core-shell composites. This article summarizes the design strategies for the use of silver and gold nanoparticles in plasmon-enhanced fluorescence, surface-enhanced Raman scattering (SERS), electroluminescence, and photoelectrochemistry. It especially discusses how to use plasmonic nanoparticles to construct optical probes including colorimetric, SERS and plasmonic fluorescence probes (labels/reporters). It also demonstrates the employment of Ag and Au nanoparticles in polymer- and paper-based microfluidic devices for point-of-care testing (POCT). In addition, this article highlights how to utilize plasmonic nanoparticles for in vitro and in vivo bio-imaging based on SERS, fluorescence, photoacoustic and dark-field models. Finally, this article shows perspectives in plasmon-enhanced photothermal and photodynamic therapy.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Anyang Wang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
21
|
Soeiro JF, Sousa FL, Monteiro MV, Gaspar VM, Silva NJO, Mano JF. Advances in screening hyperthermic nanomedicines in 3D tumor models. NANOSCALE HORIZONS 2024; 9:334-364. [PMID: 38204336 PMCID: PMC10896258 DOI: 10.1039/d3nh00305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Hyperthermic nanomedicines are particularly relevant for tackling human cancer, providing a valuable alternative to conventional therapeutics. The early-stage preclinical performance evaluation of such anti-cancer treatments is conventionally performed in flat 2D cell cultures that do not mimic the volumetric heat transfer occurring in human tumors. Recently, improvements in bioengineered 3D in vitro models have unlocked the opportunity to recapitulate major tumor microenvironment hallmarks and generate highly informative readouts that can contribute to accelerating the discovery and validation of efficient hyperthermic treatments. Leveraging on this, herein we aim to showcase the potential of engineered physiomimetic 3D tumor models for evaluating the preclinical efficacy of hyperthermic nanomedicines, featuring the main advantages and design considerations under diverse testing scenarios. The most recent applications of 3D tumor models for screening photo- and/or magnetic nanomedicines will be discussed, either as standalone systems or in combinatorial approaches with other anti-cancer therapeutics. We envision that breakthroughs toward developing multi-functional 3D platforms for hyperthermia onset and follow-up will contribute to a more expedited discovery of top-performing hyperthermic therapies in a preclinical setting before their in vivo screening.
Collapse
Affiliation(s)
- Joana F Soeiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Filipa L Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Nuno J O Silva
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
22
|
Joe A, Han HW, Lim YR, Manivasagan P, Jang ES. Triphenylphosphonium-Functionalized Gold Nanorod/Zinc Oxide Core-Shell Nanocomposites for Mitochondrial-Targeted Phototherapy. Pharmaceutics 2024; 16:284. [PMID: 38399337 PMCID: PMC10893051 DOI: 10.3390/pharmaceutics16020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Phototherapies, such as photothermal therapy (PTT) and photodynamic therapy (PDT), combined with novel all-in-one light-responsive nanocomposites have recently emerged as new therapeutic modalities for the treatment of cancer. Herein, we developed novel all-in-one triphenylphosphonium-functionalized gold nanorod/zinc oxide core-shell nanocomposites (CTPP-GNR@ZnO) for mitochondrial-targeted PTT/PDT owing to their good biocompatibility, tunable and high optical absorption, photothermal conversion efficiency, highest reactive oxygen species (ROS) generation, and high mitochondrial-targeting capability. Under laser irradiation of 780 nm, the CTPP-GNR@ZnO core-shell nanocomposites effectively produced heat in addition to generating ROS to induce cell death, implying a synergistic effect of mild PTT and PDT in combating cancer. Notably, the in vitro PTT/PDT effect of CTPP-GNR@ZnO core-shell nanocomposites exhibited effective cell ablation (95%) and induced significant intracellular ROS after the 780 nm laser irradiation for 50 min, indicating that CTPP in CTPP-GNR@ZnO core-shell nanocomposites can specifically target the mitochondria of CT-26 cells, as well as generate heat and ROS to completely kill cancer cells. Overall, this light-responsive nanocomposite-based phototherapy provides a new approach for cancer synergistic therapy.
Collapse
Affiliation(s)
| | | | | | | | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 730-701, Gyeongbuk, Republic of Korea; (A.J.); (H.-W.H.); (Y.-R.L.) (P.M.)
| |
Collapse
|
23
|
Bao Y, Oluwafemi A. Recent advances in surface modified gold nanorods and their improved sensing performance. Chem Commun (Camb) 2024; 60:469-481. [PMID: 38105689 DOI: 10.1039/d3cc04056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Gold nanorods (AuNRs) have received tremendous attention recently in the fields of sensing and detection applications due to their unique characteristic of surface plasmon resonance. Surface modification of the AuNRs is a necessary path to effectively utilize their properties for these applications. In this Article, we have focused both on demonstrating the recent advances in methods for surface functionalization of AuNRs as well as their use for improved sensing performance using various techniques. The main surface modification methods discussed include ligand exchange with the assistance of a thiol-group, the layer by layer assembly method, and depositing inorganic materials with the desired surface and morphology. Covered techniques that can then be applied for using these functionalized AuNRs include colourimetric sensing, refractive index sensing and surface enhance Raman scattering sensing. Finally, the outlook on the future development of surface modified AuNRs for improved sensing performance is considered.
Collapse
Affiliation(s)
- Ying Bao
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| | - Ayomide Oluwafemi
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| |
Collapse
|
24
|
Maheshwari N, Sharma MC. Photoresponsive 'chemo-free' phytotherapy: formulation development for the treatment of triple-negative breast cancer. Nanomedicine (Lond) 2024; 19:5-24. [PMID: 38179960 DOI: 10.2217/nnm-2023-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Aim: The present investigation aimed to develop a chemo-free, nanophytosomal system to treat triple-negative breast cancer (TNBC) via a phyto-photo dual treatment strategy. Method: Size, shape, surface analysis, photoprovoked release profile, photothermal stability, (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide assay, apoptotic assay, DNA fragmentation, in vitro cellular uptake evaluation, mitochondrial membrane potential and caspase-3 assay, and photodynamic evaluation. Results: Biological experiments using MDA-MB-231 cells displayed dose-dependent synergistic anti-TNBC activity of PhytoS/Houttuynia cordata extract (HCE)/IR780 as compared with Phyto/HCE, PhytoS/IR780 and even more promising under laser treatment. Apoptotic assay and DNA fragmentation analysis also showed enhanced anti-TNBC effects. Investigation found that HCE acts via suppression of mitochondrial membrane potential and inducing caspase-3 activity in cells. Conclusion: Our findings suggested that photo-empowered phytotherapy can be employed effectively and safely against TNBC.
Collapse
Affiliation(s)
- Neha Maheshwari
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshila Campus, Indore, Madhya Pradesh, 452001, India
| | - Mukesh C Sharma
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshila Campus, Indore, Madhya Pradesh, 452001, India
| |
Collapse
|
25
|
Gamal H, Tawfik W, El-Sayyad HI, Emam AN, Fahmy HM, El-Ghaweet HA. A new vision of photothermal therapy assisted with gold nanorods for the treatment of mammary cancers in adult female rats. NANOSCALE ADVANCES 2023; 6:170-187. [PMID: 38125593 PMCID: PMC10729923 DOI: 10.1039/d3na00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Over the past decade, the therapeutic landscape has markedly changed for patients with breast cancers (BCs), yet few studies have evaluated the power of the photothermal therapy (PTT) technique. The present study aimed to assess the potency of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary cancer treatment with this technique. In total, forty-two adult virgin female Wistar rats were categorized into seven groups, negative control, polyvinylpyrrolidone-capped gold nanorods (PVP-AuNRs) positive control (400 μL per rat ∼ 78 ppm), NIR laser irradiation 808 nm positive control with an intensity of (808 nm NIR CW diode laser, 200 mW cm-2 for 5 min), DMBA-treatment, DMBA-induced mammary cancer group treated with polyvinylpyrrolidone-capped gold nanorods, DMBA-induced mammary cancer group treated with NIR laser irradiation, and DMBA-induced mammary cancer group treated with polyvinylpyrrolidone-capped gold nanorods and NIR laser irradiation. Treatment with polyvinylpyrrolidone-capped gold nanorods and/or NIR laser irradiation was performed after three weeks of DMBA-induced mammary cancer. The mammary tumor lesions in the rat model induced with DMBA are highly invasive. Synthesis and characterization of gold nanorods (AuNRs) with an aspect ratio ranging from 2.8 to 3 were employed to validate the nanostructure and polyvinylpyrrolidone capping and their stability in absorbing near-infrared light. As a result, the therapy strategy, DMBA + PVP-AuNRs + NIR, effectively treated the tumor and halted its growth. The mammary glands were dissected and subjected to biochemical analysis for serum and tissue. Our treatment technique improved the histological aspects of mammary cancer in various forms of mammary cancer detected. Immuno-histochemical localization and TEM images supported these results reflecting the efficacy of this technique. Finally, our findings uncover for the first time the revolutionary effect of the PTT strategy using PVP-capped AuNRs in selectively destroying mammary cancer cells in rats.
Collapse
Affiliation(s)
- Hend Gamal
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| | - Walid Tawfik
- National Institute of Laser Enhanced Sciences (NILES), Cairo University Cairo Egypt
| | - Hassan Ih El-Sayyad
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC) El Bohouth St. Dokki Cairo Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre El Bohouth St., Dokki 12622 Cairo Egypt
| | - Heba Mohamed Fahmy
- Department of Biophysics, Faculty of Science Cairo University Cairo Egypt
| | - Heba A El-Ghaweet
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| |
Collapse
|
26
|
Beltran O, Luna M, Gastelum M, Costa-Santos A, Cambón A, Taboada P, López-Mata MA, Topete A, Juarez J. Novel Gold Nanorods@Thiolated Pectin on the Killing of HeLa Cells by Photothermal Ablation. Pharmaceutics 2023; 15:2571. [PMID: 38004550 PMCID: PMC10675277 DOI: 10.3390/pharmaceutics15112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Gold nanorods (AuNRs) have attracted attention in the field of biomedicine, particularly for their potential as photothermal agents capable of killing tumor cells by photothermic ablation. In this study, the synthesis of novel AuNRs stabilized with thiolated pectin (AuNR@SH-PEC) is reported. To achieve this, thiolated pectin (SH-PEC) was obtained by chemically binding cysteamine motifs to the pectin backbone. The success of the reaction was ascertained using FTIR-ATR. Subsequently, the SH-PEC was used to coat and stabilize the surface of AuNRs (AuNR@SH-PEC). In this context, different concentrations of SH-PEC (0.25, 0.50, 1.0, 2.0, 4.0, and 8.0 mg/mL) were added to 0.50 mL of AuNRs suspended in CTAB, aiming to determine the experimental conditions under which AuNR@SH-PEC maintains stability. The results show that SH-PEC effectively replaced the CTAB adsorbed on the surface of AuNRs, enhancing the stability of AuNRs without affecting their optical properties. Additionally, scanning electron and atomic force microscopy confirmed that SH-PEC is adsorbed into the surface of the AuNRs. Importantly, the dimension size (60 × 15 nm) and the aspect ratio (4:1) remained consistent with those of AuNRs stabilized with CTAB. Then, the photothermal properties of gold nanorods were evaluated by irradiating the aqueous suspension of AuNR@SH-PEC with a CW laser (808 nm, 1 W). These results showed that photothermal conversion efficiency is similar to the photothermal conversion observed for AuNR-CTAB. Lastly, the cell viability assays confirmed that the SH-PEC coating enhanced the biocompatibility of AuNR@SH-PEC. Most important, the viability cell assays subjected to laser irradiation in the presence of AuNR@SH-PEC showed a decrease in the cell viability relative to the non-irradiated cells. These results suggest that AuNRs stabilized with thiolated pectin can potentially be exploited in the implementation of photothermal therapy.
Collapse
Affiliation(s)
- Osvaldo Beltran
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
| | - Mariangel Luna
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
| | - Marisol Gastelum
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
| | - Alba Costa-Santos
- Grupo de Física de Coloides y Polímeros, Área de Materia Condensada, Departamento de Física de Partículas, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.-S.); (A.C.); (P.T.)
- Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adriana Cambón
- Grupo de Física de Coloides y Polímeros, Área de Materia Condensada, Departamento de Física de Partículas, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.-S.); (A.C.); (P.T.)
- Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Área de Materia Condensada, Departamento de Física de Partículas, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.-S.); (A.C.); (P.T.)
- Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marco A. López-Mata
- Departamento de Ciencias de la Salud, Universidad de Sonora, Campus Cajeme, Blvd. Bordo Nuevo s/n, Antiguo Providencia, Ciudad Obregón 85040, Sonora, Mexico;
| | - Antonio Topete
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico;
| | - Josue Juarez
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
- Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico
| |
Collapse
|
27
|
Kobal MB, Camacho SA, Moreira LG, Toledo KA, Tada DB, Aoki PHB. Unveiling the mechanisms underlying photothermal efficiency of gold shell-isolated nanoparticles (AuSHINs) on ductal mammary carcinoma cells (BT-474). Biophys Chem 2023; 300:107077. [PMID: 37515949 DOI: 10.1016/j.bpc.2023.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Gold nanoparticles are valuable photothermal agents owing to their efficient photothermal conversion, photobleaching resistance, and potential surface functionalization. Herein, we combined bioinspired membranes with in vitro assays to elicit the molecular mechanisms of gold shell-isolated nanoparticles (AuSHINs) on ductal mammary carcinoma cells (BT-474). Langmuir and Langmuir-Schaefer (LS) films were handled to build biomembranes from BT-474 lipid extract. AuSHINs incorporation led to surface pressure-area (π-A) isotherms expansion, increasing membrane flexibility. Fourier-transform infrared spectroscopy (FTIR) of LS multilayers revealed electrostatic AuSHINs interaction with head portions of BT-474 lipid extract, causing lipid chain disorganization. Limited AuSHINs insertion into monolayer contributed to hydroperoxidation of the unsaturated lipids upon irradiation, consistently with the surface area increments of ca. 2.0%. In fact, membrane disruption of irradiated BT-474 cells containing AuSHINs was confirmed by confocal microscopy and LDH leakage, with greater damage at 2.2 × 1013 AuSHINs/mL. Furthermore, the decrease in nuclei dimensions indicates cell death through photoinduced damage.
Collapse
Affiliation(s)
- M B Kobal
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - S A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; University of São Paulo (USP), São Carlos Institute of Physics (IFSC), São Carlos, SP 13566-590, Brazil
| | - L G Moreira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - K A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Letters and Exact Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - D B Tada
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, São José dos Campos, SP 12231-280, Brazil
| | - P H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.
| |
Collapse
|
28
|
Najaflou M, Bani F, Khosroushahi AY. Immunotherapeutic effect of photothermal-mediated exosomes secreted from breast cancer cells. Nanomedicine (Lond) 2023; 18:1535-1552. [PMID: 37815086 DOI: 10.2217/nnm-2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Aim: Exosomal damage-associated molecular patterns can play a key role in immunostimulation and changing the cold tumor microenvironment to hot. Materials & methods: This study examined the immunostimulation effect of photothermal and hyperthermia-treated 4T1 cell-derived exosomes on 4T1 cell-induced breast tumors in BALB/c animal models. Exosomes were characterized for HSP70, HSP90 and HMGB-1 before injection into mice and tumor tissues were analyzed for IL-6, IL-12 and IL-1β, CD4 and CD8 T-cell permeability, and PD-L1 expression. Results: Thermal treatments increased high damage-associated molecular patterns containing exosome secretion and the permeability of T cells to tumors, leading to tumor growth inhibition. Conclusion: Photothermal-derived exosomes showed higher damage-associated molecular patterns than hyperthermia with a higher immunostimulation and inhibiting tumor growth effect.
Collapse
Affiliation(s)
- Meysam Najaflou
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| |
Collapse
|
29
|
Domingo-Diez J, Souiade L, Manzaneda-González V, Sánchez-Díez M, Megias D, Guerrero-Martínez A, Ramírez-Castillejo C, Serrano-Olmedo J, Ramos-Gómez M. Effectiveness of Gold Nanorods of Different Sizes in Photothermal Therapy to Eliminate Melanoma and Glioblastoma Cells. Int J Mol Sci 2023; 24:13306. [PMID: 37686114 PMCID: PMC10488215 DOI: 10.3390/ijms241713306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Gold nanorods are the most commonly used nanoparticles in photothermal therapy for cancer treatment due to their high efficiency in converting light into heat. This study aimed to investigate the efficacy of gold nanorods of different sizes (large and small) in eliminating two types of cancer cell: melanoma and glioblastoma cells. After establishing the optimal concentration of nanoparticles and determining the appropriate time and power of laser irradiation, photothermal therapy was applied to melanoma and glioblastoma cells, resulting in the highly efficient elimination of both cell types. The efficiency of the PTT was evaluated using several methods, including biochemical analysis, fluorescence microscopy, and flow cytometry. The dehydrogenase activity, as well as calcein-propidium iodide and Annexin V staining, were employed to determine the cell viability and the type of cell death triggered by the PTT. The melanoma cells exhibited greater resistance to photothermal therapy, but this resistance was overcome by irradiating cells at physiological temperatures. Our findings revealed that the predominant cell-death pathway activated by the photothermal therapy mediated by gold nanorods was apoptosis. This is advantageous as the presence of apoptotic cells can stimulate antitumoral immunity in vivo. Considering the high efficacy of these gold nanorods in photothermal therapy, large nanoparticles could be useful for biofunctionalization purposes. Large nanorods offer a greater surface area for attaching biomolecules, thereby promoting high sensitivity and specificity in recognizing target cancer cells. Additionally, large nanoparticles could also be beneficial for theranostic applications, involving both therapy and diagnosis, due to their superior detection sensitivity.
Collapse
Affiliation(s)
- Javier Domingo-Diez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
| | - Lilia Souiade
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
| | - Vanesa Manzaneda-González
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain (A.G.-M.)
| | - Marta Sánchez-Díez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Diego Megias
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain (A.G.-M.)
| | - Carmen Ramírez-Castillejo
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento Biotecnología-B.V. ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Oncología, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Javier Serrano-Olmedo
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
- Centro de Investigación Biomédica en Red para Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Milagros Ramos-Gómez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
- Centro de Investigación Biomédica en Red para Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Experimental Neurology Unit, Center for Biomedical Technology, Universidad Politécnica de Madrid, Campus de Montegancedo s/n, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
30
|
Nie X, Yang X, Peng D, Wang J, He S, Yu CY, Wei H. Aqueous green synthesis of organic/inorganic nanohybrids with an unprecedented synergistic mechanism for enhanced near-infrared photothermal performance. Biomater Sci 2023; 11:5576-5589. [PMID: 37401669 DOI: 10.1039/d3bm00495c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Silver sulfide (Ag2S) nanoparticles (NPs) represent one of the most popular inorganic reagents for near-infrared (NIR) photothermal therapy (PTT). However, the extensive biomedical applications of Ag2S NPs are greatly compromised by the hydrophobicity of the NPs prepared in organic solvents, their low photothermal conversion efficiency, certain surface modification-induced damage to their intrinsic properties and short circulation time. To develop a facile yet efficient green approach to overcome these shortcomings for improved properties and performance of Ag2S NPs, we report herein the construction of Ag2S@polydopamine (PDA) nanohybrids via a "one-pot" organic-inorganic hybridization strategy, which produces uniform Ag2S@PDA nanohybrids with well-modulated sizes in the range of 100-300 nm via the self-polymerization of dopamine (DA) and subsequent synergistic assembly of PDA with Ag2S NPs in a three-phase mixed medium containing water, ethanol and trimethylbenzene (TMB). Integration of dual photothermal moieties, i.e., Ag2S and PDA at a molecular level, endows Ag2S@PDA nanohybrids with synergistically enhanced NIR photothermal properties that are much better than those of either PDA or Ag2S NPs due to calculated combination indexes (CIs) of 0.3-0.7 between Ag2S NPs and PDA based on a modified Chou-Talalay method. Therefore, this study not only developed a facile "one-pot" green approach toward producing uniform Ag2S@PDA nanohybrids with well-modulated dimensions, but also revealed an unprecedented synergistic mechanism for organic/inorganic nanohybrids that is based on dual photothermal moieties providing enhanced near-infrared photothermal performance.
Collapse
Affiliation(s)
- Xiaobo Nie
- College of Chemistry and Chemical Engineering, Postdoctoral Mobile Station of Basic Medical Science, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China.
| | - Xu Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China.
| | - Dongdong Peng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China.
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China.
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
31
|
Songca SP. Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections. Int J Mol Sci 2023; 24:10875. [PMID: 37446050 DOI: 10.3390/ijms241310875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid rise in research and development following the discovery of photodynamic therapy to establish novel photosensitizers and overcome the limitations of the technology soon after its clinical translation has given rise to a few significant milestones. These include several novel generations of photosensitizers, the widening of the scope of applications, leveraging of the offerings of nanotechnology for greater efficacy, selectivity for the disease over host tissue and cells, the advent of combination therapies with other similarly minimally invasive therapeutic technologies, the use of stimulus-responsive delivery and disease targeting, and greater penetration depth of the activation energy. Brought together, all these milestones have contributed to the significant enhancement of what is still arguably a novel technology. Yet the major applications of photodynamic therapy still remain firmly located in neoplasms, from where most of the new innovations appear to launch to other areas, such as microbial, fungal, viral, acne, wet age-related macular degeneration, atherosclerosis, psoriasis, environmental sanitization, pest control, and dermatology. Three main value propositions of combinations of photodynamic therapy include the synergistic and additive enhancement of efficacy, the relatively low emergence of resistance and its rapid development as a targeted and high-precision therapy. Combinations with established methods such as chemotherapy and radiotherapy and demonstrated applications in mop-up surgery promise to enhance these top three clinical tools. From published in vitro and preclinical studies, clinical trials and applications, and postclinical case studies, seven combinations with photodynamic therapy have become prominent research interests because they are potentially easily applied, showing enhanced efficacy, and are rapidly translating to the clinic. These include combinations with chemotherapy, photothermal therapy, magnetic hyperthermia, cold plasma therapy, sonodynamic therapy, immunotherapy, and radiotherapy. Photochemical internalization is a critical mechanism for some combinations.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| |
Collapse
|
32
|
Kesharwani P, Ma R, Sang L, Fatima M, Sheikh A, Abourehab MAS, Gupta N, Chen ZS, Zhou Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol Cancer 2023; 22:98. [PMID: 37344887 DOI: 10.1186/s12943-023-01798-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is a grievous disease whose treatment requires a more efficient, non-invasive therapy, associated with minimal side effects. Gold nanoparticles possessing greatly impressive optical properties have been a forerunner in bioengineered cancer therapy. This theranostic system has gained immense popularity and finds its application in the field of molecular detection, biological imaging, cancer cell targeting, etc. The photothermal property of nanoparticles, especially of gold nanorods, causes absorption of the light incident by the light source, and transforms it into heat, resulting in tumor cell destruction. This review describes the different optical features of gold nanoparticles and summarizes the advance research done for the application of gold nanoparticles and precisely gold nanorods for combating various cancers including breast, lung, colon, oral, prostate, and pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York City, NY, 11439, USA
| | - Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
33
|
Guo K, Ren S, Zhang H, Cao Y, Zhao Y, Wang Y, Qiu W, Tian Y, Song L, Wang Z. Biomimetic Gold Nanorods Modified with Erythrocyte Membranes for Imaging-Guided Photothermal/Gene Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25285-25299. [PMID: 37207282 DOI: 10.1021/acsami.3c00865] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pancreatic cancer (PC) is one of the most malignant cancers that develops rapidly and carries a poor prognosis. Synergistic cancer therapy strategy could enhance the clinical efficacy compared to either treatment alone. In this study, gold nanorods (AuNRs) were used as siRNA delivery vehicles to interfere with the oncogenes of KRAS. In addition, AuNRs were one of anisotropic nanomaterials that can absorb near-infrared (NIR) laser and achieve rapid photothermal therapy for malignant cancer cells. Modification of the erythrocyte membrane and antibody Plectin-1 occurred on the surface of the AuNRs, making them a promising target nanocarrier for enhancing antitumor effects. As a result, biomimetic nanoprobes presented advantages in biocompatibility, targeting capability, and drug-loading efficiency. Moreover, excellent antitumor effects have been achieved by synergistic photothermal/gene treatment. Therefore, our study would provide a general strategy to construct a multifunctional biomimetic theranostic multifunctional nanoplatform for preclinical studies of PC.
Collapse
Affiliation(s)
- Kai Guo
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Huifeng Zhang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yingying Cao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yatong Zhao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yajie Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
34
|
Romshin AM, Zeeb V, Glushkov E, Radenovic A, Sinogeikin AG, Vlasov II. Nanoscale thermal control of a single living cell enabled by diamond heater-thermometer. Sci Rep 2023; 13:8546. [PMID: 37236978 DOI: 10.1038/s41598-023-35141-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
We report a new approach to controllable thermal stimulation of a single living cell and its compartments. The technique is based on the use of a single polycrystalline diamond particle containing silicon-vacancy (SiV) color centers. Due to the presence of amorphous carbon at its intercrystalline boundaries, such a particle is an efficient light absorber and becomes a local heat source when illuminated by a laser. Furthermore, the temperature of such a local heater is tracked by the spectral shift of the zero-phonon line of SiV centers. Thus, the diamond particle acts simultaneously as a heater and a thermometer. In the current work, we demonstrate the ability of such a Diamond Heater-Thermometer (DHT) to locally alter the temperature, one of the numerous parameters that play a decisive role for the living organisms at the nanoscale. In particular, we show that the local heating of 11-12 °C relative to the ambient temperature (22 °C) next to individual HeLa cells and neurons, isolated from the mouse hippocampus, leads to a change in the intracellular distribution of the concentration of free calcium ions. For individual HeLa cells, a long-term (about 30 s) increase in the integral intensity of Fluo-4 NW fluorescence by about three times is observed, which characterizes an increase in the [Ca2+]cyt concentration of free calcium in the cytoplasm. Heating near mouse hippocampal neurons also caused a calcium surge-an increase in the intensity of Fluo-4 NW fluorescence by 30% and a duration of ~ 0.4 ms.
Collapse
Affiliation(s)
- Alexey M Romshin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, 119991, Russia.
| | - Vadim Zeeb
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia.
| | - Evgenii Glushkov
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Andrey G Sinogeikin
- NanThermix SA, Ecole Polytechnique Federale de Lausanne (EPFL) Innovation Park, 1015, Lausanne, Switzerland
| | - Igor I Vlasov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, 119991, Russia
| |
Collapse
|
35
|
Quiñones J, Miranda-Castro FC, Encinas-Basurto D, Ibarra J, Moran-Palacio EF, Zamora-Alvarez LA, Almada M. Gold Nanorods with Mesoporous Silica Shell: A Promising Platform for Cisplatin Delivery. MICROMACHINES 2023; 14:mi14051031. [PMID: 37241654 DOI: 10.3390/mi14051031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023]
Abstract
The versatile combination of metal nanoparticles with chemotherapy agents makes designing multifunctional drug delivery systems attractive. In this work, we reported cisplatin's encapsulation and release profile using a mesoporous silica-coated gold nanorods system. Gold nanorods were synthesized by an acidic seed-mediated method in the presence of cetyltrimethylammonium bromide surfactant, and the silica-coated state was obtained by modified Stöber method. The silica shell was modified first with 3-aminopropyltriethoxysilane and then with succinic anhydride to obtain carboxylates groups to improve cisplatin encapsulation. Gold nanorods with an aspect ratio of 3.2 and silica shell thickness of 14.74 nm were obtained, and infrared spectroscopy and ζ potential studies corroborated surface modification with carboxylates groups. On the other hand, cisplatin was encapsulated under optimal conditions with an efficiency of ~58%, and it was released in a controlled manner over 96 h. Furthermore, acidic pH promoted a faster release of 72% cisplatin encapsulated compared to 51% in neutral pH.
Collapse
Affiliation(s)
- Jaime Quiñones
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Regional Centro, Hermosillo 83000, Mexico
| | | | - David Encinas-Basurto
- Departamento de Física, Matemáticas e Ingeniería, Universidad de Sonora, Campus Navojoa, Navojoa 85880, Mexico
| | - Jaime Ibarra
- Departamento de Física, Matemáticas e Ingeniería, Universidad de Sonora, Campus Navojoa, Navojoa 85880, Mexico
| | - Edgar Felipe Moran-Palacio
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa 85880, Mexico
| | - Luis Alberto Zamora-Alvarez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa 85880, Mexico
| | - Mario Almada
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa 85880, Mexico
| |
Collapse
|
36
|
Arellano LG, Villar-Alvarez EM, Velasco B, Domínguez-Arca V, Prieto G, Cambón A, Barbosa S, Taboada P. Light excitation of gold Nanorod-Based hybrid nanoplatforms for simultaneous bimodal phototherapy. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
37
|
Gold nanoparticles-based photothermal therapy for breast cancer. Photodiagnosis Photodyn Ther 2023; 42:103312. [PMID: 36731732 DOI: 10.1016/j.pdpdt.2023.103312] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/01/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
AuNPs-mediated photothermal therapy (PTT) is gaining popularity in both laboratory research and medical applications. It has proven clear advantages in breast cancer therapy over conventional thermal ablation because of its easily-tuned features of irradiation light with inside hyperthermia ability. Notwithstanding this significant progress, the therapeutic potential of AuNPs-mediated PTT in cancer treatments is still impeded by several challenges, including inherent non-specificity, low photothermal conversion effectiveness, and the limitation of excitation light tissue penetration. Given the rapid progress of AuNPs-mediated PTT, we present a comprehensive overview of significant breakthroughs in the recent advancements of AuNPs for PTT, focusing on breast cancer cells. With the improvement of chemical synthesis technology, AuNPs of various sizes and shapes with desired properties can be synthesized, allowing breast cancer targeting and treatment. In this study, we summarized the different sizes and features of four major types of AuNPs in this review: Au nanospheres, Au nanocages, Au nanoshells, and Au nanorods, and explored their benefits and drawbacks in PTT. We also discussed the diagnostic, bioconjugation, targeting, and cellular uptake of AuNPs, which could improve the performance of AuNP-based PTT. Besides that, potential challenges and future developments of AuNP-mediated PTT for clinical applications are discussed. AuNP-mediated PTT is expected to become a highly promising avenue in cancer treatment in the near future.
Collapse
|
38
|
Zheng BD, Xiao MT. Polysaccharide-based hydrogel with photothermal effect for accelerating wound healing. Carbohydr Polym 2023; 299:120228. [PMID: 36876827 DOI: 10.1016/j.carbpol.2022.120228] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Polysaccharide-based hydrogel has excellent biochemical function, abundant sources, good biocompatibility and other advantages, and has a broad application prospect in biomedical fields, especially in the field of wound healing. With its inherent high specificity and low invasive burden, photothermal therapy has shown great application prospect in preventing wound infection and promoting wound healing. Combining polysaccharide-based hydrogel with photothermal therapy (PTT), multifunctional hydrogel with photothermal, bactericidal, anti-inflammatory and tissue regeneration functions can be designed, so as to achieve better therapeutic effect. This review first focuses on the basic principles of hydrogel and PTT, and the types of polysaccharides that can be used to design hydrogels. In addition, according to the different materials that produce photothermal effects, the design considerations of several representative polysaccharide-based hydrogels are emphatically introduced. Finally, the challenges faced by polysaccharide-based hydrogels with photothermal properties are discussed, and the future prospects of this field are put forward.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
39
|
Henglei R, Chunli G, Min L, Liang Z. Bimetallic Au–Pd nanoparticles/RGO as theranostic nanoplatform for photothermal therapy of throat cancer - an in vitro approach. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Wang X, Jiang W, Du Y, Zhu D, Zhang J, Fang C, Yan F, Chen ZS. Targeting feedback activation of signaling transduction pathways to overcome drug resistance in cancer. Drug Resist Updat 2022; 65:100884. [DOI: 10.1016/j.drup.2022.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/03/2022]
|
41
|
Suarasan S, Campu A, Vulpoi A, Banciu M, Astilean S. Assessing the Efficiency of Triangular Gold Nanoparticles as NIR Photothermal Agents In Vitro and Melanoma Tumor Model. Int J Mol Sci 2022; 23:ijms232213724. [PMID: 36430201 PMCID: PMC9695152 DOI: 10.3390/ijms232213724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Photothermal therapy (PTT) is gaining a lot of interest as a cancer treatment option with minimal side effects due to the efficient photothermal agents employed. They are based on nanomaterials that, upon laser irradiation, absorb photon energy and convert it into heat to induce hyperthermia, which destroys the cancer cells. Here, the unique light-to-heat conversion features of three different gold nanotriangular nanoparticles (AuNTs) are evaluated with respect to their absorption properties to select the most efficient nanoheater with the highest potential to operate as an efficient photothermal agent. AuNTs with LSPR response in- and out- of resonance with the 785 nm near-infrared (NIR) excitation wavelength are investigated. Upon 15 min laser exposure, the AuNTs that exhibit a plasmonic response in resonance with the 785 nm laser line show the highest photothermal conversion efficacy of 80%, which correlates with a temperature increase of 22 °C. These photothermal properties are well-preserved in agarose-based skin biological phantoms that mimic the melanoma tumoral tissue and surrounding healthy tissue. Finally, in vitro studies on B16.F10 melanoma cells prove by fluorescence staining and MTT assay that the highest phototoxic effect after NIR laser exposure is induced by AuNTs with LSPR response in resonance with the employed laser line, thus demonstrating their potential implementation as efficient photothermal agents in PTT.
Collapse
Affiliation(s)
- Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
- Correspondence:
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Manuela Banciu
- Center of Systems Biology, Biodiversity and Bioresources, Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Str., 400006 Cluj-Napoca, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| |
Collapse
|
42
|
Peng I, Jokhio S, Alkhaldi S, Peng CA. Inactivation of SARS-CoV-2 Spike Protein Pseudotyped Virus Infection Using ACE2-Tethered Gold Nanorods under Near-Infrared Laser Irradiation. ACS APPLIED NANO MATERIALS 2022; 5:15942-15953. [PMID: 37552748 PMCID: PMC9578643 DOI: 10.1021/acsanm.2c04275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/29/2023]
Abstract
Since the angiotensin-converting enzyme 2 (ACE2) protein is abundant on the surface of respiratory cells in the lungs, it has been confirmed to be the entry-point receptor for the spike glycoprotein of SARS-CoV-2. As such, gold nanorods (AuNRs) functionalized with ACE2 ectodomain (ACE2ED) act not only as decoys for these viruses to keep them from binding with the ACE2-expressing cells but also as agents to ablate infectious virions through heat generated from AuNRs under near-infrared (NIR) laser irradiation. Using plasmid containing the SARS-CoV-2 spike protein gene (with a D614G mutation), spike protein pseudotyped viral particles with a lentiviral core and green fluorescent protein reporter were constructed and used for transfecting ACE2-expressing HEK293T cells. Since these viral particles behave like their coronavirus counterparts, they are the ideal surrogates of native virions for studying viral entry into host cells. Our results showed that, once the surrogate pseudoviruses with spike protein encounter ACE2ED-tethered AuNRs, these virions are entrapped, resulting in decreased viral infection to ACE2-expressing HEK293T cells. Moreover, the effect of photothermolysis created by ACE2ED-tagged AuNRs under 808-nm NIR laser irradiation for 5 min led to viral breakdown. In summary, ACE2ED-tethered AuNRs with dual functions (virus decoy and destruction) could have an intriguing advantage in the treatment of diseases involving rapidly mutating viral species such as SARS-CoV-2.
Collapse
Affiliation(s)
- Ian Peng
- Department of Chemical and Biological Engineering,
University of Idaho, Moscow, Idaho83844, United
States
| | - Sharjeel Jokhio
- Department of Chemical and Biological Engineering,
University of Idaho, Moscow, Idaho83844, United
States
| | - Soha Alkhaldi
- Department of Chemical and Biological Engineering,
University of Idaho, Moscow, Idaho83844, United
States
| | - Ching-An Peng
- Department of Chemical and Biological Engineering,
University of Idaho, Moscow, Idaho83844, United
States
| |
Collapse
|
43
|
Arellano-Galindo L, Villar-Alvarez E, Varela A, Figueroa V, Fernandez-Vega J, Cambón A, Prieto G, Barbosa S, Taboada P. Hybrid Gold Nanorod-Based Nanoplatform with Chemo and Photothermal Activities for Bimodal Cancer Therapy. Int J Mol Sci 2022; 23:13109. [PMID: 36361892 PMCID: PMC9659131 DOI: 10.3390/ijms232113109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2023] Open
Abstract
Metal nanoparticles (NPs), particularly gold nanorods (AuNRs), appear as excellent platforms not only to transport and deliver bioactive cargoes but also to provide additional therapeutic responses for diseased cells and tissues and/or to complement the action of the carried molecules. In this manner, here, we optimized a previous developed metal-based nanoplatform composed of an AuNR core surrounded by a polymeric shell constructed by means of the layer-by-layer approach, and in which very large amounts of the antineoplasic drug doxorubicin (DOXO) in a single loading step and targeting capability thanks to an outer hyaluronic acid layer were incorporated by means of an optimized fabrication process (PSS/DOXO/PLL/HA-coated AuNRs). The platform retained its nanometer size with a negative surface charge and was colloidally stable in a range of physiological conditions, in which only in some of them some particle clustering was noted with no precipitation. In addition, the dual stimuli-responsiveness of the designed nanoplatform to both endogenous proteases and external applied light stimuli allows to perfectly manipulate the chemodrug release rates and profiles to achieve suitable pharmacodynamics. It was observed that the inherent active targeting abilities of the nanoplatfom allow the achievement of specific cell toxicity in tumoral cervical HeLa cells, whilst healthy ones such as 3T3-Balb fibroblast remain safe and alive in agreement with the detected levels of internalization in each cell line. In addition, the bimodal action of simultaneous chemo- and photothermal bioactivity provided by the platform largely enhances the therapeutic outcomes. Finally, it was observed that our PSS/DOXO/PLL/HA-coated AuNRs induced cell mortality mainly through apoptosis in HeLa cells even in the presence of NIR light irradiation, which agrees with the idea of the chemo-activity of DOXO predominating over the photothermal effect to induce cell death, favoring an apoptotic pathway over necrosis for cell death.
Collapse
Affiliation(s)
- Lilia Arellano-Galindo
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eva Villar-Alvarez
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Nanostructured Funtional Group, Catalonian Institute of Nanotechnology (ICN2), Universidad Autónoma de Barcelona Campus, Av. Serragalliners s/n, 08193 Barcelona, Spain
| | - Alejandro Varela
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Valeria Figueroa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento de Ingeniería Química, CUCEI, Universidad de Guadalajara, Guadalajara 44100, Mexico
| | - Javier Fernandez-Vega
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adriana Cambón
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gerardo Prieto
- Grupo de Biofísica e Interfases, Departamento de Física Aplicada, Facultad de Física, Instituto de Materiales (IMATUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
44
|
NIR-Absorbing Mesoporous Silica-Coated Copper Sulphide Nanostructures for Light-to-Thermal Energy Conversion. NANOMATERIALS 2022; 12:nano12152545. [PMID: 35893513 PMCID: PMC9330451 DOI: 10.3390/nano12152545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Plasmonic nanostructures, featuring near infrared (NIR)-absorption, are rising as efficient nanosystems for in vitro photothermal (PT) studies and in vivo PT treatment of cancer diseases. Among the different materials, new plasmonic nanostructures based on Cu2−xS nanocrystals (NCs) are emerging as valuable alternatives to Au nanorods, nanostars and nanoshells, largely exploited as NIR absorbing nanoheaters. Even though Cu2−xS plasmonic properties are not linked to geometry, the role played by their size, shape and surface chemistry is expected to be fundamental for an efficient PT process. Here, Cu2−xS NCs coated with a hydrophilic mesoporous silica shell (MSS) are synthesized by solution-phase strategies, tuning the core geometry, MSS thickness and texture. Besides their loading capability, the silica shell has been widely reported to provide a more robust plasmonic core protection than organic molecular/polymeric coatings, and improved heat flow from the NC to the environment due to a reduced interfacial thermal resistance and direct electron–phonon coupling through the interface. Systematic structural and morphological analysis of the core-shell nanoparticles and an in-depth thermoplasmonic characterization by using a pump beam 808 nm laser, are carried out. The results suggest that large triangular nanoplates (NPLs) coated by a few tens of nanometers thick MSS, show good photostability under laser light irradiation and provide a temperature increase above 38 °C and a 20% PT efficiency upon short irradiation time (60 s) at 6 W/cm2 power density.
Collapse
|