1
|
Yasseen BA, Elkhodiry AA, El-sayed H, Zidan M, Kamel AG, Badawy MA, Hamza MS, El-Messiery RM, El Ansary M, Abdel-Rahman EA, Ali SS. The role of neutrophilia in hyperlactatemia, blood acidosis, impaired oxygen transport, and mortality outcome in critically ill COVID-19 patients. Front Mol Biosci 2025; 11:1510592. [PMID: 39834785 PMCID: PMC11743367 DOI: 10.3389/fmolb.2024.1510592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction COVID-19 severity and high in-hospital mortality are often associated with severe hypoxemia, hyperlactatemia, and acidosis, yet the key players driving this association remain unclear. It is generally assumed that organ damage causes toxic acidosis, but since neutrophil numbers in severe COVID-19 can exceed 80% of the total circulating leukocytes, we asked if metabolic acidosis mediated by the glycolytic neutrophils is associated with lung damage and impaired oxygen delivery in critically ill patients. Methods Based on prospective mortality outcome, critically ill COVID-19 patients were divided into ICU- survivors and ICU-non-survivors. Samples were analyzed to explore if correlations exist between neutrophil counts, lung damage, glycolysis, blood lactate, blood pH, hemoglobin oxygen saturation, and mortality outcome. We also interrogated isolated neutrophils, platelets, and PBMCs for glycolytic activities. Results Arterial blood gas analyses showed remarkable hypoxemia in non-survivors with no consistent differences in PCO2 or [HCO3 -]. The hemoglobin oxygen dissociation curve revealed a right-shift, consistent with lower blood-pH and elevated blood lactate in non-survivors. Metabolic analysis of different blood cells revealed increased glycolytic activity only when considering the total number of neutrophils. Conclusion This indicates the role of neutrophilia in hyperlactatemia and lung damage, subsequently contributing to mortality outcomes in severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Basma A. Yasseen
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Aya A. Elkhodiry
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Hajar El-sayed
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Mona Zidan
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Azza G. Kamel
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | | | - Marwa S. Hamza
- Department of Clinical Pharmacy Practice, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Riem M. El-Messiery
- Infectious Disease Unit, Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed El Ansary
- Department of Intensive Care, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy A. Abdel-Rahman
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
- Pharmacology Department, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Sameh S. Ali
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| |
Collapse
|
2
|
Turan YB. Risk factors affecting the development of pneumothorax in patients followed up in intensive care with a diagnosis of COVID-19. BMC Infect Dis 2024; 24:1243. [PMID: 39501177 PMCID: PMC11536842 DOI: 10.1186/s12879-024-10147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/29/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Pneumothorax is a little known and reported complication of COVID-19. These patients have poorer general outcomes and greater respiratory support requirements, longer hospitalization times, and higher mortality rates. The purpose of this study was to determine which factors predict mortality in patients with tube thoracostomy diagnosed with COVID-19, admitted to the COVID-19 intensive care unit (ICU), and developing pneumothorax. METHODS This respective, observational study was conducted in all COVID-19 ICUs at the Marmara University Pendik Training and Research Hospital, Türkiye. Patients admitted to the ICU with diagnoses of COVID-19 pneumonia and with chest tubes inserted due to pneumothorax were investigated retrospectively. RESULTS One hundred patients with tube thoracostomy were included in the study. Their median age was 68 (57-78), and 63% were men. The median follow-up time was 20 [10-29] days, and the median time from initial reverse transcriptase polymerase chain reaction (RT-PCR) results to tube thoracostomy was 17 [9-23] days. Initial RT-PCR results were positive in 90% of the patients, while 8% were negative, and 2% were unknown. Half the patients exhibited pulmonary involvement at thoracic computed tomography (CT) (n = 50), while 22 patients had COVID-19 reporting and data system (CO-RADS) scores of 5 (22%). Sixty-two patients underwent right tube thoracostomy, 24 left side placement, and 14 bilateral placement. The patients' mean positive end expiratory pressure (PEEP) level was 10.31 (4.48) cm H2O, with a mean peak inspiratory pressure (PIP) level of 26.69 (5.95) cm H2O, a mean fraction of inspired oxygen (FiO2) level of 80.06 (21.11) %, a mean respiratory rate of 23.71 (5.62) breaths/min, and a mean high flow nasal cannula (HFNC) flow rate of 70 (8.17) L/min. Eighty-seven patients were intubated (87%), six used non-rebreathable reservoir masks, four HFNC, two non-invasive mechanical ventilation (NIV), and one a simple face mask. Comorbidity was present in 70 patients, 25 had no comorbidity, and the comorbidity status of five was unknown. Comorbidities included hypertension (38%), diabetes mellitus (23%), cardiovascular disease (12%), chronic obstructive pulmonary disease (5%), malignancy (3%), rheumatological diseases (3%), dementia (2%) and other diseases (9%). Twelve of the 100 patients survived. The median survival time was 20 (17.82-22.18) days, and the median 28-day overall survival rate was 29% (20-38%). The multivariate Cox proportional hazards model indicated that age over 68 (HR = 2.23 [95% CI: 1.39-3.56]; p = 0.001), oxygenation status other than by intubation (HR = 2.24 [95% CI: 1.11-4.52]; p = 0.024), and HCO3- below 22 compared with a normal range of 22 to 26 (HR = 1.95 [95% CI: 1.08-3.50]; p = 0.026) were risk factors associated with mortality in patients in the ICU. CONCLUSIONS Age over 68, receipt of oxygenation other than by intubation, and HCO3- values lower than 22 in patients with COVID-19 pneumonia emerged as prognostic factors associated with mortality in terms of pneumothorax.
Collapse
Affiliation(s)
- Yasemin Bozkurt Turan
- Department of Critical Care, Marmara University Pendik Training and Research Hospital, Pendik, Istanbul, Turkey.
| |
Collapse
|
3
|
Pulgar-Sánchez M, Chamorro K, Casella C, Ballaz SJ. Insights into the baseline blood pH homeostasis at admission and the risk of in-hospital mortality in COVID-19 patients. Biomark Med 2024; 18:795-800. [PMID: 39255012 PMCID: PMC11497984 DOI: 10.1080/17520363.2024.2395800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Aim: A laboratory finding in critically ill COVID-19 patients is blood academia (pH <7.35). We investigated its cause in connection with the admission baseline blood pH homeostasis.Patients & methods: We retrospectively monitored the baseline blood pH homeostasis of 1215 COVID-19 patients who were admitted with pneumonia using data-driven knowledge. Two categories of patients were identified: non-survivors (107) and survivors (1108).Results: Non-survivors showed greater levels of lactate and lower blood pH, saturation, and partial pressure of oxygen than survivors. A bivariate Spearman's correlation matrix showed that the [HCO3-]/pCO2 and pCO2 of non-survivors exhibited an unmatched connection, but not in the survivor group. When comparing non-survivors to survivors, the dendrograms derived from the bivariate comparison matrix showed differences in gasometry parameters like blood pH, [HCO3-]/pCO2 ratio, anion gap and pO2.Conclusion: The little variations in the gasometry readings between survivors and non-survivors upon admission suggested abnormal changes in the complementary renal and respiratory systems that bring blood pH back to normal. In advanced COVID-19, modest blood acid-base imbalances could become blood acidemia if these compensatory strategies were overused. Data-driven monitoring of acid-base parameters may help predict abnormal blood pH and the advancement of metabolic acidemia before it is too late.
Collapse
Affiliation(s)
- Mary Pulgar-Sánchez
- Institute of Pharmacology & Toxicology, University Hospital Bonn, Bonn, 53127, Germany
| | - Kevin Chamorro
- School of Mathematics & Computational Sciences, Universidad Yachay Tech, Urcuquí, 100115, Ecuador
| | - Claudio Casella
- Department of Chemical, Environmental & Bionutritional Engineering, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Santiago J Ballaz
- Medical School, Universidad Espíritu Santo, Samborondón, 0901952, Ecuador
| |
Collapse
|
4
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Pulse oximetry in pediatric care: Balancing advantages and limitations. World J Clin Pediatr 2024; 13:96950. [PMID: 39350904 PMCID: PMC11438930 DOI: 10.5409/wjcp.v13.i3.96950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/06/2024] [Accepted: 07/30/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Pulse oximetry has become a cornerstone technology in healthcare, providing non-invasive monitoring of oxygen saturation levels and pulse rate. Despite its widespread use, the technology has inherent limitations and challenges that must be addressed to ensure accurate and reliable patient care. AIM To comprehensively evaluate the advantages, limitations, and challenges of pulse oximetry in clinical practice, as well as to propose recommendations for optimizing its use. METHODS A systematic literature review was conducted to identify studies related to pulse oximetry and its applications in various clinical settings. Relevant articles were selected based on predefined inclusion and exclusion criteria, and data were synthesized to provide a comprehensive overview of the topic. RESULTS Pulse oximetry offers numerous advantages, including non-invasiveness, real-time feedback, portability, and cost-effectiveness. However, several limitations and challenges were identified, including motion artifacts, poor peripheral perfusion, ambient light interference, and patient-specific factors such as skin pigmentation and hemoglobin variants. Recommendations for optimizing pulse oximetry use include technological advancements, education and training initiatives, quality assurance protocols, and interdisciplinary collaboration. CONCLUSION Pulse oximetry is crucial in modern healthcare, offering invaluable insights into patients' oxygenation status. Despite its limitations, pulse oximetry remains an indispensable tool for monitoring patients in diverse clinical settings. By implementing the recommendations outlined in this review, healthcare providers can enhance the effectiveness, accessibility, and safety of pulse oximetry monitoring, ultimately improving patient outcomes and quality of care.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Manama, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 26671, Manama, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon in Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Manama, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
5
|
Akpoviroro O, Sauers NK, Uwandu Q, Castagne M, Akpoviroro OP, Humayun S, Mirza W, Woodard J. Severe COVID-19 infection: An institutional review and literature overview. PLoS One 2024; 19:e0304960. [PMID: 39163410 PMCID: PMC11335168 DOI: 10.1371/journal.pone.0304960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/21/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Our study aimed to describe the group of severe COVID-19 patients at an institutional level, and determine factors associated with different outcomes. METHODS A retrospective chart review of patients admitted with severe acute hypoxic respiratory failure due to COVID-19 infection. Based on outcomes, we categorized 3 groups of severe COVID-19: (1) Favorable outcome: progressive care unit admission and discharge (2) Intermediate outcome: ICU care (3) Poor outcome: in-hospital mortality. RESULTS Eighty-nine patients met our inclusion criteria; 42.7% were female. The average age was 59.7 (standard deviation (SD):13.7). Most of the population were Caucasian (95.5%) and non-Hispanic (91.0%). Age, sex, race, and ethnicity were similar between outcome groups. Medicare and Medicaid patients accounted for 62.9%. The average BMI was 33.5 (SD:8.2). Moderate comorbidity was observed, with an average Charlson Comorbidity index (CCI) of 3.8 (SD:2.6). There were no differences in the average CCI between groups(p = 0.291). Many patients (67.4%) had hypertension, diabetes (42.7%) and chronic lung disease (32.6%). A statistical difference was found when chronic lung disease was evaluated; p = 0.002. The prevalence of chronic lung disease was 19.6%, 27.8%, and 40% in the favorable, intermediate, and poor outcome groups, respectively. Smoking history was associated with poor outcomes (p = 0.04). Only 7.9% were fully vaccinated. Almost half (46.1%) were intubated and mechanically ventilated. Patients spent an average of 12.1 days ventilated (SD:8.5), with an average of 6.0 days from admission to ventilation (SD:5.1). The intermediate group had a shorter average interval from admission to ventilator (77.2 hours, SD:67.6), than the poor group (212.8 hours, SD:126.8); (p = 0.001). The presence of bacterial pneumonia was greatest in the intermediate group (72.2%), compared to the favorable group (17.4%), and the poor group (56%); this was significant (p<0.0001). In-hospital mortality was seen in 28.1%. CONCLUSION Most patients were male, obese, had moderate-level comorbidity, a history of tobacco abuse, and government-funded insurance. Nearly 50% required mechanical ventilation, and about 28% died during hospitalization. Bacterial pneumonia was most prevalent in intubated groups. Patients who were intubated with a good outcome were intubated earlier during their hospital course, with an average difference of 135.6 hours. A history of cigarette smoking and chronic lung disease were associated with poor outcomes.
Collapse
Affiliation(s)
- Ogheneyoma Akpoviroro
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Nathan Kyle Sauers
- Department of Engineering, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Queeneth Uwandu
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Myriam Castagne
- Clinical & Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | | | - Sara Humayun
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Wasique Mirza
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Jameson Woodard
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| |
Collapse
|
6
|
de Fátima Cobre A, Alves AC, Gotine ARM, Domingues KZA, Lazo REL, Ferreira LM, Tonin FS, Pontarolo R. Novel COVID-19 biomarkers identified through multi-omics data analysis: N-acetyl-4-O-acetylneuraminic acid, N-acetyl-L-alanine, N-acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate. Intern Emerg Med 2024; 19:1439-1458. [PMID: 38416303 DOI: 10.1007/s11739-024-03547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
This study aims to apply machine learning models to identify new biomarkers associated with the early diagnosis and prognosis of SARS-CoV-2 infection.Plasma and serum samples from COVID-19 patients (mild, moderate, and severe), patients with other pneumonia (but with negative COVID-19 RT-PCR), and healthy volunteers (control) from hospitals in four different countries (China, Spain, France, and Italy) were analyzed by GC-MS, LC-MS, and NMR. Machine learning models (PCA and PLS-DA) were developed to predict the diagnosis and prognosis of COVID-19 and identify biomarkers associated with these outcomes.A total of 1410 patient samples were analyzed. The PLS-DA model presented a diagnostic and prognostic accuracy of around 95% of all analyzed data. A total of 23 biomarkers (e.g., spermidine, taurine, L-aspartic, L-glutamic, L-phenylalanine and xanthine, ornithine, and ribothimidine) have been identified as being associated with the diagnosis and prognosis of COVID-19. Additionally, we also identified for the first time five new biomarkers (N-Acetyl-4-O-acetylneuraminic acid, N-Acetyl-L-Alanine, N-Acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate) that are also associated with the severity and diagnosis of COVID-19. These five new biomarkers were elevated in severe COVID-19 patients compared to patients with mild disease or healthy volunteers.The PLS-DA model was able to predict the diagnosis and prognosis of COVID-19 around 95%. Additionally, our investigation pinpointed five novel potential biomarkers linked to the diagnosis and prognosis of COVID-19: N-Acetyl-4-O-acetylneuraminic acid, N-Acetyl-L-Alanine, N-Acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate. These biomarkers exhibited heightened levels in severe COVID-19 patients compared to those with mild COVID-19 or healthy volunteers.
Collapse
Affiliation(s)
| | - Alexessander Couto Alves
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | | | - Luana Mota Ferreira
- Department of Pharmacy, Universidade Federal do Paraná, Campus III, Av. Pref. Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil
| | - Fernanda Stumpf Tonin
- H&TRC - Health & Technology Research Centre, ESTeSL, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Roberto Pontarolo
- Department of Pharmacy, Universidade Federal do Paraná, Campus III, Av. Pref. Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
| |
Collapse
|
7
|
Abstract
Coronavirus Disease-19 (COVID-19) pandemic is caused by SARS-CoV-2 that has infected more than 600 million people and killed more than 6 million people worldwide. This infection affects mainly certain groups of people that have high susceptibility to present severe COVID-19 due to comorbidities. Moreover, the long-COVID-19 comprises a series of symptoms that may remain in some patients for months after infection that further compromises their health. Thus, since this pandemic is profoundly affecting health, economy, and social life of societies, a deeper understanding of viral replication cycle could help to envisage novel therapeutic alternatives that limit or stop COVID-19. Several findings have unexpectedly discovered that mitochondria play a critical role in SARS-CoV-2 cell infection. Indeed, it has been suggested that this organelle could be the origin of its replication niches, the double membrane vesicles (DMV). In this regard, mitochondria derived vesicles (MDV), involved in mitochondria quality control, discovered almost 15 years ago, comprise a subpopulation characterized by a double membrane. MDV shedding is induced by mitochondrial stress, and it has a fast assembly dynamic, reason that perhaps has precluded their identification in electron microscopy or tomography studies. These and other features of MDV together with recent SARS-CoV-2 protein interactome and other findings link SARS-CoV-2 to mitochondria and support that these vesicles are the precursors of SARS-CoV-2 induced DMV. In this work, the morphological, biochemical, molecular, and cellular evidence that supports this hypothesis is reviewed and integrated into the current model of SARS-CoV-2 cell infection. In this scheme, some relevant questions are raised as pending topics for research that would help in the near future to test this hypothesis. The intention of this work is to provide a novel framework that could open new possibilities to tackle SARS-CoV-2 pandemic through mitochondria and DMV targeted therapies.
Collapse
Affiliation(s)
- Pavel Montes de Oca-B
- Neurociencia Cognitiva, Instituto de Fisiologia-UNAM, CDMX, CDMX, 04510, Mexico
- Unidad de Neurobiologia Dinamica, Instituto Nacional de Neurologia y Neurocirugia, CDMX, CDMX, 14269, Mexico
| |
Collapse
|
8
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
9
|
Álvarez-Herms J. Summatory Effects of Anaerobic Exercise and a 'Westernized Athletic Diet' on Gut Dysbiosis and Chronic Low-Grade Metabolic Acidosis. Microorganisms 2024; 12:1138. [PMID: 38930520 PMCID: PMC11205432 DOI: 10.3390/microorganisms12061138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Anaerobic exercise decreases systemic pH and increases metabolic acidosis in athletes, altering the acid-base homeostasis. In addition, nutritional recommendations advising athletes to intake higher amounts of proteins and simple carbohydrates (including from sport functional supplements) could be detrimental to restoring acid-base balance. Here, this specific nutrition could be classified as an acidic diet and defined as 'Westernized athletic nutrition'. The maintenance of a chronic physiological state of low-grade metabolic acidosis produces detrimental effects on systemic health, physical performance, and inflammation. Therefore, nutrition must be capable of compensating for systemic acidosis from anaerobic exercise. The healthy gut microbiota can contribute to improving health and physical performance in athletes and, specifically, decrease the systemic acidic load through the conversion of lactate from systemic circulation to short-chain fatty acids in the proximal colon. On the contrary, microbial dysbiosis results in negative consequences for host health and physical performance because it results in a greater accumulation of systemic lactate, hydrogen ions, carbon dioxide, bacterial endotoxins, bioamines, and immunogenic compounds that are transported through the epithelia into the blood circulation. In conclusion, the systemic metabolic acidosis resulting from anaerobic exercise can be aggravated through an acidic diet, promoting chronic, low-grade metabolic acidosis in athletes. The individuality of athletic training and nutrition must take into consideration the acid-base homeostasis to modulate microbiota and adaptive physiological responses.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab, Physiology and Molecular Laboratory, 40170 Collado Hermoso, Segovia, Spain
| |
Collapse
|
10
|
Kell DB, Khan MA, Kane B, Lip GYH, Pretorius E. Possible Role of Fibrinaloid Microclots in Postural Orthostatic Tachycardia Syndrome (POTS): Focus on Long COVID. J Pers Med 2024; 14:170. [PMID: 38392604 PMCID: PMC10890060 DOI: 10.3390/jpm14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a common accompaniment of a variety of chronic, inflammatory diseases, including long COVID, as are small, insoluble, 'fibrinaloid' microclots. We here develop the argument, with accompanying evidence, that fibrinaloid microclots, through their ability to block the flow of blood through microcapillaries and thus cause tissue hypoxia, are not simply correlated with but in fact, by preceding it, may be a chief intermediary cause of POTS, in which tachycardia is simply the body's exaggerated 'physiological' response to hypoxia. Similar reasoning accounts for the symptoms bundled under the term 'fatigue'. Amyloids are known to be membrane disruptors, and when their targets are nerve membranes, this can explain neurotoxicity and hence the autonomic nervous system dysfunction that contributes to POTS. Taken together as a system view, we indicate that fibrinaloid microclots can serve to link POTS and fatigue in long COVID in a manner that is at once both mechanistic and explanatory. This has clear implications for the treatment of such diseases.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Muhammed Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester M23 9LT, UK;
| | - Binita Kane
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Manchester University Foundation Trust and School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
11
|
Shaker O, El Amir M, Elfatah YA, Elwi HM. Expression patterns of lncRNA MALAT-1 in SARS-COV-2 infection and its potential effect on disease severity via miR-200c-3p and SIRT1. Biochem Biophys Rep 2023; 36:101562. [PMID: 37965063 PMCID: PMC10641570 DOI: 10.1016/j.bbrep.2023.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Downregulating Angiotensin Converting Enzyme2 (ACE2) expression may be a shared mechanism for RNA viruses. Aim Evaluate the expressions of ACE2 effectors: the long non-coding RNA 'MALAT-1', the micro-RNA 'miR-200c-3p' and the histone deacetylase 'SIRT1' in SARS-COV-2 patients and correlate to disease severity. Sera samples from 98 SARS-COV-2 patients and 30 healthy control participants were collected. qRT-PCR was used for MALAT-1 and miR-200c-3p expression. SIRT1 was measured using ELISA. Results In sera of COVID-19 patients, gene expression of miR-200c-3p is increased while MALAT-1 is decreased. SIRT1 protein level is decreased (P value < 0.001). Findings are accentuated with increased disease severity. Serum MALAT-1, miR-200c-3p and SIRT1 could be used as diagnostic markers at cut off values of 0.04 (95.9 % sensitivity), 5.59 (94.9 % sensitivity, 99 % specificity), and 7.4 (98 % sensitivity) respectively. A novel MALAT-1-miR-200c-3p-SIRT1 pathway may be involved in the regulation of SARS-COV-2 severity.
Collapse
Affiliation(s)
- Olfat Shaker
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Monica El Amir
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Yasmine Abd Elfatah
- Internal Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Heba M. Elwi
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| |
Collapse
|
12
|
Kim Y, Kwon S, Kim SG, Lee J, Han CH, Yu S, Kim B, Paek JH, Park WY, Jin K, Han S, Kim DK, Lim CS, Kim YS, Lee JP. Impact of decreased levels of total CO2 on in-hospital mortality in patients with COVID-19. Sci Rep 2023; 13:16717. [PMID: 37794030 PMCID: PMC10550989 DOI: 10.1038/s41598-023-41988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Decreased total CO2 (tCO2) is significantly associated with all-cause mortality in critically ill patients. Because of a lack of data to evaluate the impact of tCO2 in patients with COVID-19, we assessed the impact of tCO2 on all-cause mortality in this study. We retrospectively reviewed the data of hospitalized patients with COVID-19 in two Korean referral hospitals between February 2020 and September 2021. The primary outcome was in-hospital mortality. We assessed the impact of tCO2 as a continuous variable on mortality using the Cox-proportional hazard model. In addition, we evaluated the relative factors associated with tCO2 ≤ 22 mmol/L using logistic regression analysis. In 4,423 patients included, the mean tCO2 was 24.8 ± 3.0 mmol/L, and 17.9% of patients with tCO2 ≤ 22 mmol/L. An increase in mmol/L of tCO2 decreased the risk of all-cause mortality by 4.8% after adjustment for age, sex, comorbidities, and laboratory values. Based on 22 mmol/L of tCO2, the risk of mortality was 1.7 times higher than that in patients with lower tCO2. This result was maintained in the analysis using a cutoff value of tCO2 24 mmol/L. Higher white blood cell count; lower hemoglobin, serum calcium, and eGFR; and higher uric acid, and aspartate aminotransferase were significantly associated with a tCO2 value ≤ 22 mmol/L. Decreased tCO2 significantly increased the risk of all-cause mortality in patients with COVID-19. Monitoring of tCO2 could be a good indicator to predict prognosis and it needs to be appropriately managed in patients with specific conditions.
Collapse
Affiliation(s)
- Yaerim Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Soie Kwon
- Department of Internal Medicine, Chung-Ang University Heukseok Hospital, Seoul, Korea
| | - Seong Geun Kim
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Chung-Hee Han
- Department of Obstetrics and Gynecology, Bagae Hospital, Pyeongtaek, Gyeonggi-Do, Korea
| | - Sungbong Yu
- Department of General Surgery, Bagae Hospital, Pyeongtaek, Gyeonggi-Do, Korea
| | - Byunggun Kim
- Department of Orthopedic Surgery, Bagae Hospital, Pyeongtaek, Gyeonggi-Do, Korea
| | - Jin Hyuk Paek
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Woo Yeong Park
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Kyubok Jin
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Seungyeup Han
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Hensen T, Fässler D, O’Mahony L, Albrich WC, Barda B, Garzoni C, Kleger GR, Pietsch U, Suh N, Hertel J, Thiele I. The Effects of Hospitalisation on the Serum Metabolome in COVID-19 Patients. Metabolites 2023; 13:951. [PMID: 37623894 PMCID: PMC10456321 DOI: 10.3390/metabo13080951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
COVID-19, a systemic multi-organ disease resulting from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is known to result in a wide array of disease outcomes, ranging from asymptomatic to fatal. Despite persistent progress, there is a continued need for more accurate determinants of disease outcomes, including post-acute symptoms after COVID-19. In this study, we characterised the serum metabolomic changes due to hospitalisation and COVID-19 disease progression by mapping the serum metabolomic trajectories of 71 newly hospitalised moderate and severe patients in their first week after hospitalisation. These 71 patients were spread out over three hospitals in Switzerland, enabling us to meta-analyse the metabolomic trajectories and filter consistently changing metabolites. Additionally, we investigated differential metabolite-metabolite trajectories between fatal, severe, and moderate disease outcomes to find prognostic markers of disease severity. We found drastic changes in serum metabolite concentrations for 448 out of the 901 metabolites. These results included markers of hospitalisation, such as environmental exposures, dietary changes, and altered drug administration, but also possible markers of physiological functioning, including carboxyethyl-GABA and fibrinopeptides, which might be prognostic for worsening lung injury. Possible markers of disease progression included altered urea cycle metabolites and metabolites of the tricarboxylic acid (TCA) cycle, indicating a SARS-CoV-2-induced reprogramming of the host metabolism. Glycerophosphorylcholine was identified as a potential marker of disease severity. Taken together, this study describes the metabolome-wide changes due to hospitalisation and COVID-19 disease progression. Moreover, we propose a wide range of novel potential biomarkers for monitoring COVID-19 disease course, both dependent and independent of the severity.
Collapse
Affiliation(s)
- Tim Hensen
- School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
- School of Microbiology, University of Galway, H91 TK33 Galway, Ireland
- Ryan Institute, University of Galway, H91 TK33 Galway, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
| | - Daniel Fässler
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Liam O’Mahony
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
- Department of Medicine and School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Werner C. Albrich
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Beatrice Barda
- Fondazione Epatocentro Ticino, Via Soldino 5, 6900 Lugano, Switzerland; (B.B.); (C.G.)
| | - Christian Garzoni
- Fondazione Epatocentro Ticino, Via Soldino 5, 6900 Lugano, Switzerland; (B.B.); (C.G.)
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Gian-Reto Kleger
- Division of Intensive Care, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland;
| | - Urs Pietsch
- Department of Anesthesia, Intensive Care, Emergency and Pain Medicine, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland;
| | - Noémie Suh
- Division of Intensive Care, Geneva University Hospitals, The Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Johannes Hertel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Ines Thiele
- School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
- School of Microbiology, University of Galway, H91 TK33 Galway, Ireland
- Ryan Institute, University of Galway, H91 TK33 Galway, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
| |
Collapse
|
14
|
Moghaddam RR, Khorasanchi Z, Noor AR, Moghadam MSF, Esfahani AJ, Alyakobi AKM, Alboresha ML, Sharifan P, Bahari A, Rezvani R, Aghasizade M, Heshmati M, Darban RA, Ferns G, Mobarhan MG. High-dose vitamin D supplementation is related to an improvement in serum alkaline phosphatase in COVID-19 patients; a randomized double-blinded clinical trial. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:71. [PMID: 37491318 PMCID: PMC10369932 DOI: 10.1186/s41043-023-00409-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND The benefits and harms of vitamin D supplementation in the treatment of COVID-19 have not yet been fully documented. In this study, we aimed to evaluate the effects of high-dose vitamin D supplementation on liver function tests in COVID-19. METHOD This double-blinded randomized clinical trial was conducted on 140 hospitalized patients aged > 30 years. Patients were randomly allocated to receive either intervention group (n = 70 receiving 50,000 IU of vitamin D capsules orally as a single dose and then 10,000 IU syrup daily from the second day of admission for 30 days) and the control group (n = 70 receiving 1000 IU vitamin D syrup orally per day). Liver function tests (LFT), including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), and Lactate Dehydrogenase (LDH) were evaluated at baseline and at the end of the intervention. Decision tree analysis was performed to identify the predictors for change in liver enzymes. RESULTS Among COVID-19 patients, a significant decrease was observed in serum level of ALP between intervention and placebo groups (p = 0.04). In addition, decision tree analysis revealed that GGT, temperature, serum magnesium level at baseline and gender were the most important predictors of ALT changes in COVID-19 patients. CONCLUSION High-dose vitamin D supplementation improved ALP markers among COVID-19 patients. More randomized controlled trials with longer follow-up times will be required.
Collapse
Affiliation(s)
- Reza Rezvani Moghaddam
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khorasanchi
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ayad Rasool Noor
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | | | | | - Payam Sharifan
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Bahari
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Rezvani
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Aghasizade
- International UNESCO Center for Health Related Basic Sciences and Human Nutrition, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Heshmati
- Department of Clinical Care Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Assaran Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Gordon Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Brighton, UK
| | - Majid Ghayour Mobarhan
- International UNESCO Center for Health Related Basic Sciences and Human Nutrition, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Adzic-Vukicevic T, Mladenovic M, Jovanovic S, Soldatović I, Radovanovic-Spurnic A. Invasive fungal disease in COVID-19 patients: a single-center prospective observational study. Front Med (Lausanne) 2023; 10:1084666. [PMID: 37359005 PMCID: PMC10288186 DOI: 10.3389/fmed.2023.1084666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/05/2023] [Indexed: 06/28/2023] Open
Abstract
Background Invasive fungal diseases (IFDs) are caused by fungal infections that manifest as serious secondary infections in patients with COVID-19. The increased morbidity and mortality rates are most frequently observed in patients with COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated candidiasis (CAC). CAPA is the most frequently encountered infection with an incidence rate of 0.7-7.7%, while CAC is a less common and less studied fungal infection in COVID-19 patients. Materials and methods The present article is a prospective observational single-center study that was conducted between 1 September 2021 and 24 December 2021, involving 6,335 patients who were admitted to COVID Hospital "Batajnica," University Clinical Center of Serbia, Belgrade. Results Of the 6,335 patients hospitalized during the four-month period of the study, 120 patients (1.86%) who had a proven diagnosis of IFD were included in the study. These patients were divided into two groups: CAPA patients (n = 63) and CAC patients (n = 56); however, one of the 120 patients was diagnosed with Cryptoccocus neoformans infection. The mean age of the study population was 65.7 ± 13.9 years, and 78 (65.5%) of them were men. The patients were identified to have the following non-malignant comorbidities: arterial hypertension in 62 (52.1%) patients, diabetes mellitus in 34 (28.65), pre-existing lung damage similar to that observed in COPD and asthma in 20 (16.8%), and chronic renal insufficiency in 13 (10.9%) patients. The hematological malignancies were found to be the most prevalent malignancies and were identified in 20 (16.8%) patients, particularly in CAPA patients [11 (17.5%); p < 0.041]. Fiberoptic bronchoscopy with bronchoalveolar lavage fluid (BALF) and microscopic examination confirmed the presence of fungal infections in 17 (14.3%) patients. Serology testing was also performed in the majority of cases. Antibodies against Aspergillus spp. and Candida spp. were predominantly found in CAPA patients (p < 0.001). The patients were also tested for the presence of (1-3)-β-D glucan (p < 0.019), galactomannan, and mannan in the specimens. Blood cultures were found to be positive in 45 (37.8%) patients, mostly in CAC patients. Mechanical ventilation was applied in 41 (34.5%) patients, while a non-invasive technique, such as continuous positive airway pressure (CPAP) or high-flow nasal cannula (HFNC), was used in 20 (16.8%) patients. The following antifungals were administered: echinocandins in 42 (35.3%), voriconazole in 30 (25.2%), and fluconazole in 27 (22.7%) patients. Most of the patients received systemic corticosteroids (mainly methylprednisolone), while 11 (9.16%) received favipiravir, 32 (26.67%) remdesivir, 8 (6.67%) casirivimab/imdevimab, and 5 (4.16%) sotrovimab. The outcome was lethal in 76 (63.9%) patients, predominantly CAC patients (p < 0.001). Conclusion Invasive fungal disease is a severe complication associated with COVID-19 and accounts for increased mortality in these patients. Early identification and appropriate treatment may provide a favorable outcome.
Collapse
Affiliation(s)
- Tatjana Adzic-Vukicevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Covid Hospital Batajnica, University Clinical Center of Serbia, Belgrade, Serbia
- Clinic for Pulmonology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Milos Mladenovic
- Covid Hospital Batajnica, University Clinical Center of Serbia, Belgrade, Serbia
| | - Snezana Jovanovic
- Covid Hospital Batajnica, University Clinical Center of Serbia, Belgrade, Serbia
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivan Soldatović
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Radovanovic-Spurnic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Covid Hospital Batajnica, University Clinical Center of Serbia, Belgrade, Serbia
- Center for Microbiology, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
16
|
Brescia V, Varraso L, Antonucci M, Lovero R, Schirinzi A, Mascolo E, Di Serio F. Analysis of Quality Indicators of the Pre-Analytical Phase on Blood Gas Analyzers, Point-Of-Care Analyzer in the Period of the COVID-19 Pandemic. Diagnostics (Basel) 2023; 13:diagnostics13061044. [PMID: 36980352 PMCID: PMC10047429 DOI: 10.3390/diagnostics13061044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Aim of the study: We evaluated and compared blood gas analysis (EGA) non-conformities (NC) considered operator-dependent performed in Point-Of-Care (POC) analyzer as quality indicators (IQ) of the pre-analytical phase. To this end, four different NC registered in the resuscitation departments of the Hospital Polyclinic Bari from the beginning of the pandemic (March 2020) until February 2022 were evaluated. The results obtained were compared with those recorded in the pre-COVID period (March 2018–February 2020) to check if there were differences in number and type. Material and methods: GEM 4000 series blood gas analyzers (Instrumentation Laboratory, Bedford, MA, United States) are installed with integrated Intelligent Quality Management (iQM®), which automatically identify and log pre-analytical errors. All blood gas analyzers are connected to the company intranet and interfaced with the GEM Web Plus (Werfen Instrumentation Laboratory, Bedford, MA, United States) data management information system, which allows the core laboratory to remotely supervise all decentralized POC stations. The operator-dependent process NC were expressed in terms of absolute and relative proportions (percentiles and percentage changes). For performance evaluation, the Mann–Whitney U test, Chi-squared test and Six-Sigma Metric calculation for performance classification were performed. Results: In the COVID period, 31,364 blood gas tests were performed vs. 16,632 tests in the pre-COVID period. The NC related to the suitability of the EGA sample and manageable by the operators were totals of 652 (3.9%) and 749 (2.4%), respectively, in the pre-COVID and COVID periods. The pre-analytical phase IQs used did not show statistically significant differences in the two periods evaluated. The Sigma evaluation did not show an increase in error rates. Conclusions: Considering the increase in the number of EGAs performed in the two periods, the training procedures performed by the core laboratory staff were effective; the clinical users of the POC complied with the indications and procedures shared with the core laboratory without increasing the operator-dependent NCs. Furthermore, the core laboratory developed monitoring activities capable of guaranteeing the maintenance of the pre-analytical quality.
Collapse
|
17
|
Zemlin AE, Sigwadhi LN, Wiese OJ, Jalavu TP, Chapanduka ZC, Allwood BW, Tamuzi JL, Koegelenberg CF, Irusen EM, Lalla U, Ngah VD, Yalew A, Erasmus RT, Matsha TE, Zumla A, Nyasulu PS. The association between acid-base status and clinical outcome in critically ill COVID-19 patients admitted to intensive care unit with an emphasis on high anion gap metabolic acidosis. Ann Clin Biochem 2023; 60:86-91. [PMID: 36220779 PMCID: PMC9643107 DOI: 10.1177/00045632221134687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to identify arterial blood gas (ABG) abnormalities, with a focus on a high anion gap (AG) metabolic acidosis and evaluate outcomes in coronavirus disease 2019 (COVID-19) patients admitted to the ICU. METHODS A retrospective, observational study was conducted in a tertiary hospital in Cape Town during the first and second COVID-19 waves. Age, gender, sodium (Na), potassium (K), chloride (Cl), bicarbonate (HCO3std), pH, partial pressure of carbon dioxide (pCO2), creatinine, estimated glomerular filtration rate (eGFR), lactate levels and ABG results were obtained. The Pearson χ2 test or Fisher exact test and the Wilcoxon rank-sum test were used to compare mortality and survival. To identify factors associated with non-survival, a multivariable model was developed. RESULTS This study included 465 patients, 226 (48%) of whom were female. The sample population's median (IQR) age was 54.2 (46.1-61.3) years, and 63% of the patients died. ABG analyses found that 283 (61%) of the 465 patients had alkalosis (pH ≥ 7.45), 65 (14%) had acidosis (pH ≤ 7.35) and 117 (25%) had normal pH (7.35-7.45). In the group with alkalosis, 199 (70.3%) had a metabolic alkalosis and in the group with acidosis, 42 (64%) had a metabolic acidosis with an increased AG of more than 17. Non-survivors were older than survivors (56.4 years versus 50.3 years, p < .001). CONCLUSION Most of the COVID-19 patients admitted to the ICU had an alkalosis, and those with acidosis had a much worse prognosis. Higher AG metabolic acidosis was not associated with patients' characteristics.
Collapse
Affiliation(s)
- Annalise E Zemlin
- Division of Chemical Pathology, Department of Pathology, 121470Faculty of Medicine & Health Sciences, Stellenbosch University & NHLS Tygerberg Hospital, Cape Town, South Africa
| | - Lovemore N Sigwadhi
- Division of Epidemiology and Biostatistics, Department of Global Health, 121470Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Owen J Wiese
- Division of Chemical Pathology, Department of Pathology, 121470Faculty of Medicine & Health Sciences, Stellenbosch University & NHLS Tygerberg Hospital, Cape Town, South Africa
| | - Thumeka P Jalavu
- Division of Chemical Pathology, Department of Pathology, 121470Faculty of Medicine & Health Sciences, Stellenbosch University & NHLS Tygerberg Hospital, Cape Town, South Africa
| | - Zivanai C Chapanduka
- Division of Haematological Pathology, Department of Pathology, 121470Faculty of Medicine & Health Sciences, Stellenbosch University & NHLS Tygerberg Hospital, Cape Town, South Africa
| | - Brian W Allwood
- Division of Pulmonology, Department of Medicine, 121470Faculty of Medicine & Health Sciences, Stellenbosch University & Tygerberg Hospital, Cape Town, South Africa
| | - Jacques L Tamuzi
- Division of Epidemiology and Biostatistics, Department of Global Health, 121470Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Coenraad F Koegelenberg
- Division of Pulmonology, Department of Medicine, 121470Faculty of Medicine & Health Sciences, Stellenbosch University & Tygerberg Hospital, Cape Town, South Africa
| | - Elvis M Irusen
- Division of Pulmonology, Department of Medicine, 121470Faculty of Medicine & Health Sciences, Stellenbosch University & Tygerberg Hospital, Cape Town, South Africa
| | - Usha Lalla
- Division of Pulmonology, Department of Medicine, 121470Faculty of Medicine & Health Sciences, Stellenbosch University & Tygerberg Hospital, Cape Town, South Africa
| | - Veranyuy D Ngah
- Division of Epidemiology and Biostatistics, Department of Global Health, 121470Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anteneh Yalew
- Division of Epidemiology and Biostatistics, Department of Global Health, 121470Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rajiv T Erasmus
- Division of Chemical Pathology, Department of Pathology, 121470Faculty of Medicine & Health Sciences, Stellenbosch University & NHLS Tygerberg Hospital, Cape Town, South Africa
| | - Tandi E Matsha
- Department of Biomedical Sciences, 146301Cape Peninsula University of Technology, Bellville Campus, Cape Town.,Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| | - Alimuddin Zumla
- Division of Infection and Immunity, Centre for Clinical Microbiology, 159057University College London Royal Free Campus, London, UK; NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Peter S Nyasulu
- Division of Epidemiology and Biostatistics, Department of Global Health, 121470Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.,Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
18
|
Muacevic A, Adler JR. Effect of COVID-19 on Glycemic Control, Insulin Resistance, and pH in Elderly Patients With Type 2 Diabetes. Cureus 2023; 15:e35390. [PMID: 36846644 PMCID: PMC9954760 DOI: 10.7759/cureus.35390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
Background The coronavirus disease of 2019 (COVID-19) was spread all over the world, while diabetes mellitus (DM) remains the most prevalent chronic disease worldwide. Aims This study aims to investigate the effect of COVID-19 on glycemic control, insulin resistance (IR), and pH in elderly patients with type 2 diabetes. Methods A retrospective study was conducted on patients with type 2 DM who were diagnosed with COVID-19 infection in the central hospitals of the Tabuk region. Patient data were collected from September 2021 to August 2022. Four non-insulin-based insulin resistance indexes were calculated for patients: the triglyceride-glucose (TyG) index, the triglyceride glucose-body mass index (TyG-BMI) index, the triglyceride to high-density lipoprotein cholesterol (TG/HDL) ratio, and the metabolic score for insulin resistance (METS-IR). Results Patients showed increased serum fasting glucose and blood HbA1c associated with a high TyG index, TyG-BMI index, TG/HDL ratio, and METS-IR as compared with results before COVID-19. Moreover, during COVID-19, patients revealed a reduction in pH, associated with a reduction in cBase and bicarbonate, and an elevation in PaCO2 as compared with their results before COVID-19. After complete remission, all patients' results turn back to their level before COVID-19. Conclusions Patients with type 2 DM who catch the COVID-19 infection suffer from dysregulation of glycemic control and elevated insulin resistance associated with a significant reduction in their pH.
Collapse
|
19
|
SARS-CoV-2 N protein mediates intercellular nucleic acid dispersion, a feature reduced in Omicron. iScience 2023; 26:105995. [PMID: 36687314 PMCID: PMC9841735 DOI: 10.1016/j.isci.2023.105995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The coronavirus nucleocapsid (N) protein is known to bind to nucleic acids and facilitate viral genome encapsulation. Here we report that the N protein can mediate RNA or DNA entering neighboring cells through ACE2-independent, receptor (STEAP2)-mediated endocytosis, and achieve gene expression. The effect is more pronounced for the N protein of wild-type SARS-CoV-2 than that of the Omicron variant and other human coronaviruses. This effect is enhanced by RANTES (CCL5), a chemokine induced by N protein, and lactate, a metabolite produced in hypoxia, to cause more damage. These findings might explain the clinical observations in SARS-CoV-2-infected cases. Moreover, the N protein-mediated function can be inhibited by N protein-specific monoclonal antibodies or p38 mitogen-activated protein kinase inhibitors. Since the N-protein-mediated nucleic acid endocytosis involves a receptor commonly expressed in many types of cells, our findings suggest that N protein may have an additional role in SARS-CoV-2 pathogenesis.
Collapse
|
20
|
van der Togt V, Rossman JS. Hypothesis: inflammatory acid-base disruption underpins Long Covid. Front Immunol 2023; 14:1150105. [PMID: 37122723 PMCID: PMC10140510 DOI: 10.3389/fimmu.2023.1150105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
The mechanism of Long Covid (Post-Acute Sequelae of COVID-19; PASC) is currently unknown, with no validated diagnostics or therapeutics. SARS-CoV-2 can cause disseminated infections that result in multi-system tissue damage, dysregulated inflammation, and cellular metabolic disruptions. The tissue damage and inflammation has been shown to impair microvascular circulation, resulting in hypoxia, which coupled with virally-induced metabolic reprogramming, increases cellular anaerobic respiration. Both acute and PASC patients show systemic dysregulation of multiple markers of the acid-base balance. Based on these data, we hypothesize that the shift to anaerobic respiration causes an acid-base disruption that can affect every organ system and underpins the symptoms of PASC. This hypothesis can be tested by longitudinally evaluating acid-base markers in PASC patients and controls over the course of a month. If our hypothesis is correct, this could have significant implications for our understanding of PASC and our ability to develop effective diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Vicky van der Togt
- Research-Aid Networks, Chicago, IL, United States
- *Correspondence: Jeremy S. Rossman, ; Vicky van der Togt,
| | - Jeremy S. Rossman
- Research-Aid Networks, Chicago, IL, United States
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- *Correspondence: Jeremy S. Rossman, ; Vicky van der Togt,
| |
Collapse
|
21
|
Matveeva O, Nechipurenko Y, Lagutkin D, Yegorov YE, Kzhyshkowska J. SARS-CoV-2 infection of phagocytic immune cells and COVID-19 pathology: Antibody-dependent as well as independent cell entry. Front Immunol 2022; 13:1050478. [PMID: 36532011 PMCID: PMC9751203 DOI: 10.3389/fimmu.2022.1050478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Our review summarizes the evidence that COVID-19 can be complicated by SARS-CoV-2 infection of immune cells. This evidence is widespread and accumulating at an increasing rate. Research teams from around the world, studying primary and established cell cultures, animal models, and analyzing autopsy material from COVID-19 deceased patients, are seeing the same thing, namely that some immune cells are infected or capable of being infected with the virus. Human cells most vulnerable to infection include both professional phagocytes, such as monocytes, macrophages, and dendritic cells, as well as nonprofessional phagocytes, such as B-cells. Convincing evidence has accumulated to suggest that the virus can infect monocytes and macrophages, while data on infection of dendritic cells and B-cells are still scarce. Viral infection of immune cells can occur directly through cell receptors, but it can also be mediated or enhanced by antibodies through the Fc gamma receptors of phagocytic cells. Antibody-dependent enhancement (ADE) most likely occurs during the primary encounter with the pathogen through the first COVID-19 infection rather than during the second encounter, which is characteristic of ADE caused by other viruses. Highly fucosylated antibodies of vaccinees seems to be incapable of causing ADE, whereas afucosylated antibodies of persons with acute primary infection or convalescents are capable. SARS-CoV-2 entry into immune cells can lead to an abortive infection followed by host cell pyroptosis, and a massive inflammatory cascade. This scenario has the most experimental evidence. Other scenarios are also possible, for which the evidence base is not yet as extensive, namely productive infection of immune cells or trans-infection of other non-immune permissive cells. The chance of a latent infection cannot be ruled out either.
Collapse
Affiliation(s)
- Olga Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Denis Lagutkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases under the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| |
Collapse
|
22
|
Gupta GS. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022; 45:2091-2123. [PMID: 35588340 PMCID: PMC9117991 DOI: 10.1007/s10753-022-01680-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Lactate dehydrogenase (LDH) is a terminating enzyme in the metabolic pathway of anaerobic glycolysis with end product of lactate from glucose. The lactate formation is crucial in the metabolism of glucose when oxygen is in inadequate supply. Lactate can also be formed and utilised by different cell types under fully aerobic conditions. Blood LDH is the marker enzyme, which predicts mortality in many conditions such as ARDS, serious COVID-19 and cancer patients. Lactate plays a critical role in normal physiology of humans including an energy source, a signaling molecule and a pH regulator. Depending on the pH, lactate exists as the protonated acidic form (lactic acid) at low pH or as sodium salt (sodium lactate) at basic pH. Lactate can affect the immune system and act as a signaling molecule, which can provide a "danger" signal for life. Several reports provide evidence that the serum lactate represents a chemical marker of severity of disease similar to LDH under inflammatory conditions. Since the mortality rate is much higher among COVID-19 patients, associated with high serum LDH, this article is aimed to review the LDH as a therapeutic target and lactate as potential marker for monitoring treatment response of inflammatory diseases. Finally, the review summarises various LDH inhibitors, which offer potential applications as therapeutic agents for inflammatory diseases, associated with high blood LDH. Both blood LDH and blood lactate are suggested as risk factors for the mortality of patients in serious inflammatory diseases.
Collapse
Affiliation(s)
- G S Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
23
|
Gonçalves CA, Bobermin LD, Sesterheim P, Netto CA. SARS-CoV-2-Induced Amyloidgenesis: Not One, but Three Hypotheses for Cerebral COVID-19 Outcomes. Metabolites 2022; 12:1099. [PMID: 36422238 PMCID: PMC9692683 DOI: 10.3390/metabo12111099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 01/17/2024] Open
Abstract
The main neuropathological feature of Alzheimer's disease (AD) is extracellular amyloid deposition in senile plaques, resulting from an imbalance between the production and clearance of amyloid beta peptides. Amyloid deposition is also found around cerebral blood vessels, termed cerebral amyloid angiopathy (CAA), in 90% of AD cases. Although the relationship between these two amyloid disorders is obvious, this does not make CAA a characteristic of AD, as 40% of the non-demented population presents this derangement. AD is predominantly sporadic; therefore, many factors contribute to its genesis. Herein, the starting point for discussion is the COVID-19 pandemic that we are experiencing and how SARS-CoV-2 may be able to, both directly and indirectly, contribute to CAA, with consequences for the outcome and extent of the disease. We highlight the role of astrocytes and endothelial cells in the process of amyloidgenesis, as well as the role of other amyloidgenic proteins, such as fibrinogen and serum amyloid A protein, in addition to the neuronal amyloid precursor protein. We discuss three independent hypotheses that complement each other to explain the cerebrovascular amyloidgenesis that may underlie long-term COVID-19 and new cases of dementia.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| | - Patricia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Centro Estadual de Vigilância Sanitária do Rio Grande do Sul (CEVS-RS), Porto Alegre 90450-190, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| |
Collapse
|
24
|
Makhfudli M, Machin A, Nasir A, Wahyudi AS, Harianto S, Rindayati R, Muhalla HI, Sulpat E, Okviasanti F, Susanto J, Ilkafah I, Kartini Y. Understanding Patients with COVID in the Isolation Rooms from the Perspective of Care: A Qualitative Study. J Multidiscip Healthc 2022; 15:2539-2551. [PMID: 36388629 PMCID: PMC9642087 DOI: 10.2147/jmdh.s386066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION Being treated in isolation rooms for people infected with COVID-19, creates various perceptions of uncertainty, especially when strict "health protocols" are applied. This study aims to determine the understanding patients with COVID in the intensive care unit from the perspective of care. MATERIALS AND METHODS The research design used phenomenological qualitative with in-depth interviews. Purposive sampling was used with interpretive phenomenological analysis. Participants were 25 patients who had been exposed to COVID-19, consisting of 10 men and 15 women. RESULTS This study resulted in the theme of the perception of COVID-19 sufferers while undergoing treatment in isolation rooms, with four themes, namely, 1) mental attacks, 2) feel like fighting alone, 3) expecting Concern, 4) positive attitude. CONCLUSION This analysis shows that various perceptions of uncertainty that are felt while being treated in the isolation room due to suffering from COVID-19 disease can be anticipated by increasing the awareness of nurses to be closer to patients through caring-based nursing practices by emphasizing meaningful interpersonal relationships.
Collapse
Affiliation(s)
| | - Abdulloh Machin
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Abd Nasir
- Faculty of Nursing, Airlangga University, Surabaya, Indonesia
- Faculty of Vocational, Airlangga University, Surabaya, Indonesia
| | | | - Susilo Harianto
- Faculty of Nursing, Airlangga University, Surabaya, Indonesia
- Faculty of Vocational, Airlangga University, Surabaya, Indonesia
| | - Rindayati Rindayati
- Faculty of Nursing, Airlangga University, Surabaya, Indonesia
- Faculty of Vocational, Airlangga University, Surabaya, Indonesia
| | - Hafna Ilmy Muhalla
- Faculty of Nursing, Airlangga University, Surabaya, Indonesia
- Faculty of Vocational, Airlangga University, Surabaya, Indonesia
| | - Emuliana Sulpat
- Faculty of Nursing, Airlangga University, Surabaya, Indonesia
- Faculty of Vocational, Airlangga University, Surabaya, Indonesia
| | - Fanni Okviasanti
- Faculty of Nursing, Airlangga University, Surabaya, Indonesia
- Faculty of Vocational, Airlangga University, Surabaya, Indonesia
| | - Joko Susanto
- Faculty of Nursing, Airlangga University, Surabaya, Indonesia
- Faculty of Vocational, Airlangga University, Surabaya, Indonesia
| | - Ilkafah Ilkafah
- Faculty of Vocational, Airlangga University, Surabaya, Indonesia
| | - Yanis Kartini
- Department of Nursing, and Midwifery Faculty, Universitas Nahdlatul Ulama Surabaya, East Java, Indonesia
| |
Collapse
|
25
|
More TH, Mozafari B, Märtens A, Herr C, Lepper PM, Danziger G, Volk T, Hoersch S, Krawczyk M, Guenther K, Hiller K, Bals R. Plasma Metabolome Alterations Discriminate between COVID-19 and Non-COVID-19 Pneumonia. Metabolites 2022; 12:1058. [PMID: 36355140 PMCID: PMC9693035 DOI: 10.3390/metabo12111058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 03/10/2024] Open
Abstract
Pneumonia is a common cause of morbidity and mortality and is most often caused by bacterial pathogens. COVID-19 is characterized by lung infection with potential progressive organ failure. The systemic consequences of both disease on the systemic blood metabolome are not fully understood. The aim of this study was to compare the blood metabolome of both diseases and we hypothesize that plasma metabolomics may help to identify the systemic effects of these diseases. Therefore, we profiled the plasma metabolome of 43 cases of COVID-19 pneumonia, 23 cases of non-COVID-19 pneumonia, and 26 controls using a non-targeted approach. Metabolic alterations differentiating the three groups were detected, with specific metabolic changes distinguishing the two types of pneumonia groups. A comparison of venous and arterial blood plasma samples from the same subjects revealed the distinct metabolic effects of pulmonary pneumonia. In addition, a machine learning signature of four metabolites was predictive of the disease outcome of COVID-19 subjects with an area under the curve (AUC) of 86 ± 10 %. Overall, the results of this study uncover systemic metabolic changes that could be linked to the etiology of COVID-19 pneumonia and non-COVID-19 pneumonia.
Collapse
Affiliation(s)
- Tushar H. More
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Bahareh Mozafari
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421 Homburg, Germany
| | - Andre Märtens
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421 Homburg, Germany
| | - Philipp M. Lepper
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421 Homburg, Germany
| | - Guy Danziger
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421 Homburg, Germany
| | - Thomas Volk
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Saarland University, 66421 Homburg, Germany
| | - Sabrina Hoersch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Saarland University, 66421 Homburg, Germany
| | - Marcin Krawczyk
- Department of Internal Medicine II-Gastroenterology, Saarland University, 66421 Homburg, Germany
| | - Katharina Guenther
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421 Homburg, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421 Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| |
Collapse
|
26
|
Tang H, Liu Y, Ruan Y, Ge L, Zhang Q. Reconstructed Genome-Scale Metabolic Model Characterizes Adaptive Metabolic Flux Changes in Peripheral Blood Mononuclear Cells in Severe COVID-19 Patients. Int J Mol Sci 2022; 23:12400. [PMID: 36293257 PMCID: PMC9604493 DOI: 10.3390/ijms232012400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a mortal threat to human health. The elucidation of the relationship between peripheral immune cells and the development of inflammation is essential for revealing the pathogenic mechanism of COVID-19 and developing related antiviral drugs. The immune cell metabolism-targeting therapies exhibit a desirable anti-inflammatory effect in some treatment cases. In this study, based on differentially expressed gene (DEG) analysis, a genome-scale metabolic model (GSMM) was reconstructed by integrating transcriptome data to characterize the adaptive metabolic changes in peripheral blood mononuclear cells (PBMCs) in severe COVID-19 patients. Differential flux analysis revealed that metabolic changes such as enhanced aerobic glycolysis, impaired oxidative phosphorylation, fluctuating biogenesis of lipids, vitamins (folate and retinol), and nucleotides played important roles in the inflammation adaptation of PBMCs. Moreover, the main metabolic enzymes such as the solute carrier (SLC) family 2 member 3 (SLC2A3) and fatty acid synthase (FASN), responsible for the reactions with large differential fluxes, were identified as potential therapeutic targets. Our results revealed the inflammation regulation potentials of partial metabolic reactions with differential fluxes and their metabolites. This study provides a reference for developing potential PBMC metabolism-targeting therapy strategies against COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Qingye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
28
|
Coronavirus Disease 2019 (COVID-19). BIOLOGY 2022; 11:biology11081250. [PMID: 36009877 PMCID: PMC9404726 DOI: 10.3390/biology11081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
|
29
|
Zhang YF, Qiu LK, Li ZP, He LP, Zhou LL. Underlying reasons for the decline in physical activity during COVID-19. World J Psychiatry 2022; 12:999-1001. [PMID: 36051604 PMCID: PMC9331448 DOI: 10.5498/wjp.v12.i7.999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
The article not only successfully evaluated regular physical activities can improve mental well-being during self-isolation and social distancing policies related to the coronavirus disease 2019 (COVID-19), but also concluded that the COVID-19 pandemic may lead to augmented levels of angiotensin-converting enzyme-2. By reading the article of Walid Kamal Abdelbasset, we have some questions and put forward some suggestions on the content of the article.
Collapse
Affiliation(s)
- Yang-Fen Zhang
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Li-Ke Qiu
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Zhi-Peng Li
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Lian-Ping He
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Ling-Ling Zhou
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| |
Collapse
|
30
|
Nursyifa Fadiyah N, Megawati G, Erlangga Luftimas D. Potential of Omega 3 Supplementation for Coronavirus Disease 2019 (COVID-19): A Scoping Review. Int J Gen Med 2022; 15:3915-3922. [PMID: 35431568 PMCID: PMC9012318 DOI: 10.2147/ijgm.s357460] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/31/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 can cause fever, cough, headache, and shortness of breath but patients with comorbidities can experience worsening and death. An action is needed to treat this condition in COVID-19 patients. Omega 3 fatty acids may be one possibility associated with COVID-19 prevention, management, and treatment. Therefore, this review aimed to identify the existing studies on potency of omega 3 fatty acid supplementation on COVID-19. We searched studies from PubMed, Google Scholar, Springer Link, and Emerald Insight databases published on January 31, 2020, to September 1, 2021. The studies selected were the full-text, non-review ones which focused on the omega 3 fatty acid intervention in COVID-19 with COVID-19 patients and people affected by COVID-19 as their subjects and clinical manifestations or the results of supporting examinations as their outcomes. No quality assessment was performed in this review. Of the 211, there were 4 studies selected for this review. They showed that severe COVID-19 patients have low levels of omega 3 in their blood. Omega 3 was considered to reduce the risk of positive for SARS-CoV-infection and the duration of symptoms, overcome the renal and respiratory dysfunction, and increase survival rate in COVID-19 patients. Omega 3 fatty acid supplementations were thought to have a potential effect in preventing and treating COVID-19. This can be a reference for further research about omega 3 fatty acid supplementation and COVID-19.
Collapse
Affiliation(s)
| | - Ginna Megawati
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Dimas Erlangga Luftimas
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Nutrition Working Group (NWG), SKIP-NAKES Study Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
31
|
Chiumello D, Pozzi T, Fratti I, Modafferi L, Montante M, Papa GFS, Coppola S. Acid-Base Disorders in COVID-19 Patients with Acute Respiratory Distress Syndrome. J Clin Med 2022; 11:jcm11082093. [PMID: 35456186 PMCID: PMC9024702 DOI: 10.3390/jcm11082093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 01/08/2023] Open
Abstract
Our aim was to investigate the distribution of acid-base disorders in patients with COVID-19 ARDS using both the Henderson–Hasselbalch and Stewart’s approach and to explore if hypoxemia can influence acid-base disorders. COVID-19 ARDS patients, within the first 48 h of the need for a non-invasive respiratory support, were retrospectively enrolled. Respiratory support was provided by helmet continuous positive airway pressure (CPAP) or by non-invasive ventilation. One hundred and four patients were enrolled, 84% treated with CPAP and 16% with non-invasive ventilation. Using the Henderson–Hasselbalch approach, 40% and 32% of patients presented respiratory and metabolic alkalosis, respectively; 13% did not present acid-base disorders. Using Stewart’s approach, 43% and 33% had a respiratory and metabolic alkalosis, respectively; 12% of patients had a mixed disorder characterized by normal pH with a lower SID. The severe hypoxemic and moderate hypoxemic group presented similar frequencies of respiratory and metabolic alkalosis. The most frequent acid-base disorders were respiratory and metabolic alkalosis using both the Henderson–Hasselbalch and Stewart’s approach. Stewart’s approach detected mixed disorders with a normal pH probably generated by the combined effect of strong ions and weak acids. The impairment of oxygenation did not affect acid-base disorders.
Collapse
Affiliation(s)
- Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, 20122 Milan, Italy;
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (T.P.); (I.F.); (L.M.); (M.M.); (G.F.S.P.)
- Coordinated Research Center on Respiratory Failure, University of Milan, 20122 Milan, Italy
- Correspondence:
| | - Tommaso Pozzi
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (T.P.); (I.F.); (L.M.); (M.M.); (G.F.S.P.)
| | - Isabella Fratti
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (T.P.); (I.F.); (L.M.); (M.M.); (G.F.S.P.)
| | - Leo Modafferi
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (T.P.); (I.F.); (L.M.); (M.M.); (G.F.S.P.)
| | - Marialaura Montante
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (T.P.); (I.F.); (L.M.); (M.M.); (G.F.S.P.)
| | - Giuseppe Francesco Sferrazza Papa
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (T.P.); (I.F.); (L.M.); (M.M.); (G.F.S.P.)
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144 Milan, Italy
| | - Silvia Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, 20122 Milan, Italy;
| |
Collapse
|
32
|
Huzum B, Curpan AS, Puha B, Serban DN, Veliceasa B, Necoara RM, Alexa O, Serban IL. Connections between Orthopedic Conditions and Oxidative Stress: Current Perspective and the Possible Relevance of Other Factors, Such as Metabolic Implications, Antibiotic Resistance, and COVID-19. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:439. [PMID: 35334615 PMCID: PMC8951198 DOI: 10.3390/medicina58030439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022]
Abstract
The general opinion in the literature is that these topics remain clearly understudied and underrated, with many unknown aspects and with controversial results in the respective areas of research. Based on the previous experience of our groups regarding such matters investigated separately, here we attempt a short overview upon their links. Thus, we summarize here the current state of knowledge regarding the connections between oxidative stress and: (a) orthopedic conditions; (b) COVID-19. We also present the reciprocal interferences among them. Oxidative stress is, of course, an interesting and continuously growing area, but what exactly is the impact of COVID-19 in orthopedic patients? In the current paper we also approached some theories on how oxidative stress, metabolism involvement, and even antibiotic resistance might be influenced by either orthopedic conditions or COVID-19. These manifestations could be relevant and of great interest in the context of this current global health threat; therefore, we summarize the current knowledge and/or the lack of sufficient evidence to support the interactions between these conditions.
Collapse
Affiliation(s)
- Bogdan Huzum
- Department of Orthopaedic and Traumatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.H.); (B.P.); (B.V.); (O.A.)
- Department of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Alexandrina Stefania Curpan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700554 Iasi, Romania
| | - Bogdan Puha
- Department of Orthopaedic and Traumatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.H.); (B.P.); (B.V.); (O.A.)
| | - Dragomir Nicolae Serban
- Department of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Bogdan Veliceasa
- Department of Orthopaedic and Traumatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.H.); (B.P.); (B.V.); (O.A.)
| | - Riana Maria Necoara
- Radiology-Imaging Clinic, “Sf. Spiridon” Clinical Emergency Hospital, 700111 Iasi, Romania;
| | - Ovidiu Alexa
- Department of Orthopaedic and Traumatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.H.); (B.P.); (B.V.); (O.A.)
| | - Ionela Lacramioara Serban
- Department of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
33
|
Ahmed N, Mahmood MS, Ullah MA, Araf Y, Rahaman TI, Moin AT, Hosen MJ. COVID-19-Associated Candidiasis: Possible Patho-Mechanism, Predisposing Factors, and Prevention Strategies. Curr Microbiol 2022; 79:127. [PMID: 35287179 PMCID: PMC8918595 DOI: 10.1007/s00284-022-02824-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening public health. A large number of affected people need to be hospitalized. Immunocompromised patients and ICU-admitted patients are predisposed to further bacterial and fungal infections, making patient outcomes more critical. Among them, COVID-19-associated candidiasis is becoming more widely recognized as a part of severe COVID-19 sequelae. While the molecular pathophysiology is not fully understood, some factors, including a compromised immune system, iron and zinc deficiencies, and nosocomial and iatrogenic transmissions, predispose COVID-19 patients to candidiasis. In this review, we discuss the existing knowledge of the virulence characteristics of Candida spp. and summarize the key concepts in the possible molecular pathogenesis. We analyze the predisposing factors that make COVID-19 patients more susceptible to candidiasis and the preventive measures which will provide valuable insights to guide the effective prevention of candidiasis in COVID-19 patients.
Collapse
Affiliation(s)
- Nafisa Ahmed
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Maiesha Samiha Mahmood
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
34
|
Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J 2022; 479:537-559. [PMID: 35195253 PMCID: PMC8883497 DOI: 10.1042/bcj20220016] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Post-acute sequelae of COVID (PASC), usually referred to as 'Long COVID' (a phenotype of COVID-19), is a relatively frequent consequence of SARS-CoV-2 infection, in which symptoms such as breathlessness, fatigue, 'brain fog', tissue damage, inflammation, and coagulopathies (dysfunctions of the blood coagulation system) persist long after the initial infection. It bears similarities to other post-viral syndromes, and to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Many regulatory health bodies still do not recognize this syndrome as a separate disease entity, and refer to it under the broad terminology of 'COVID', although its demographics are quite different from those of acute COVID-19. A few years ago, we discovered that fibrinogen in blood can clot into an anomalous 'amyloid' form of fibrin that (like other β-rich amyloids and prions) is relatively resistant to proteolysis (fibrinolysis). The result, as is strongly manifested in platelet-poor plasma (PPP) of individuals with Long COVID, is extensive fibrin amyloid microclots that can persist, can entrap other proteins, and that may lead to the production of various autoantibodies. These microclots are more-or-less easily measured in PPP with the stain thioflavin T and a simple fluorescence microscope. Although the symptoms of Long COVID are multifarious, we here argue that the ability of these fibrin amyloid microclots (fibrinaloids) to block up capillaries, and thus to limit the passage of red blood cells and hence O2 exchange, can actually underpin the majority of these symptoms. Consistent with this, in a preliminary report, it has been shown that suitable and closely monitored 'triple' anticoagulant therapy that leads to the removal of the microclots also removes the other symptoms. Fibrin amyloid microclots represent a novel and potentially important target for both the understanding and treatment of Long COVID and related disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| |
Collapse
|
35
|
|
36
|
Aristov VV, Buchelnikov AS, Nechipurenko YD. The Use of the Statistical Entropy in Some New Approaches for the Description of Biosystems. ENTROPY (BASEL, SWITZERLAND) 2022; 24:172. [PMID: 35205467 PMCID: PMC8871276 DOI: 10.3390/e24020172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/13/2023]
Abstract
Some problems of describing biological systems with the use of entropy as a measure of the complexity of these systems are considered. Entropy is studied both for the organism as a whole and for its parts down to the molecular level. Correlation of actions of various parts of the whole organism, intercellular interactions and control, as well as cooperativity on the microlevel lead to a more complex structure and lower statistical entropy. For a multicellular organism, entropy is much lower than entropy for the same mass of a colony of unicellular organisms. Cooperativity always reduces the entropy of the system; a simple example of ligand binding to a macromolecule carrying two reaction centers shows how entropy is consistent with the ambiguity of the result in the Bernoulli test scheme. Particular attention is paid to the qualitative and quantitative relationship between the entropy of the system and the cooperativity of ligand binding to macromolecules. A kinetic model of metabolism. corresponding to Schrödinger's concept of the maintenance biosystems by "negentropy feeding", is proposed. This model allows calculating the nonequilibrium local entropy and comparing it with the local equilibrium entropy inherent in non-living matter.
Collapse
Affiliation(s)
- Vladimir V. Aristov
- Dorodnicyn Computing Centre, Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Vavilova Str. 40, 119333 Moscow, Russia
| | - Anatoly S. Buchelnikov
- Laboratory of Molecular and Cellular Biophysics, Sevastopol State University, Universitetskaya Str. 33, 299053 Sevastopol, Russia;
| | - Yury D. Nechipurenko
- Laboratory of DNA–Protein Recognition, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia;
| |
Collapse
|
37
|
Mohammadpour M, Hassani SA, Sharifzadeh M, Tahernia L, Mamishi S, Yaghmaie B, Najafi Z, Beirami F, Afsharipour M, Minuyeefar M, Dolatzadeh M, Pak N, Majmaa A, Zamani Z, Mahmoudi S. COVID-19 Pandemic Experiences in Pediatric Intensive Care Unit: An Iranian Referral Hospital-Based Study. Int J Clin Pract 2022; 2022:1682986. [PMID: 36380748 PMCID: PMC9626193 DOI: 10.1155/2022/1682986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION In late February 2020, after we had informed about the presence of some cases of COVID-19 in Iran and its rapid spread throughout the country, we decided to make the necessary arrangements for patients with critical conditions in Pediatric Intensive Care Unit (PICU) at Children's Medical Center. There are a little data on critically ill children with COVID-19 infection with ICU requirements. The aim of this study was to describe clinical characteristics, laboratory parameters, treatment, and outcomes of the pediatrics population infected by SARS-CoV-2 admitted to PICU. MATERIALS AND METHODS This study was performed between February 2020 and May 2020 in the COVID PICU of the Children's Medical Center Hospital in Tehran, Iran. Patients were evaluated in terms of demographic categories, primary symptoms and signs at presentation, underlying disease, SARS-CoV-2 RT-PCR test result, laboratory findings at PICU admission, chest X-ray (CXR) and lung CT findings, and treatment. Moreover, the need to noninvasive ventilation (NIV) or mechanical ventilation, the length of hospital stay in the PICU, and outcomes were assessed. RESULTS In total, 99 patients were admitted to COVID PICU, 42.4% (42 patients) were males, and 66 patients had positive SARS-CoV-2 real-time reverse transcriptase-polymerase chain reaction (RT-PCR). There was no statistically significant difference in the frequency of clinical signs and symptoms (except for fever) among patients with positive SARS-CoV-2 RT-PCR and negative ones. Among all admitted patients, the presence of underlying diseases was noticed in 81 (82%) patients. Of 99 patients, 34 patients were treated with NIV during their admission. Furthermore, 35 patients were intubated and treated with mechanical ventilation. Unfortunately, 11 out of 35 mechanically ventilated patients (31%) passed away. CONCLUSION No laboratory and radiological findings in children infected with COVID-19 were diagnostic in cases with COVID-19 admitted to PICU. There are higher risks of severe COVID-19, PICU admission, and mortality in children with comorbidities.
Collapse
Affiliation(s)
- Masoud Mohammadpour
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Hassani
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Meisam Sharifzadeh
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Tahernia
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Infectious Disease Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Bahareh Yaghmaie
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Najafi
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Beirami
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoush Afsharipour
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Minuyeefar
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Dolatzadeh
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Majmaa
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zamani
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Mahmoudi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Science, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Barazorda-Ccahuana HL, Nedyalkova M, Mas F, Madurga S. Unveiling the Effect of Low pH on the SARS-CoV-2 Main Protease by Molecular Dynamics Simulations. Polymers (Basel) 2021; 13:3823. [PMID: 34771379 PMCID: PMC8587287 DOI: 10.3390/polym13213823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Main Protease (Mpro) is an attractive therapeutic target that acts in the replication and transcription of the SARS-CoV-2 coronavirus. Mpro is rich in residues exposed to protonation/deprotonation changes which could affect its enzymatic function. This work aimed to explore the effect of the protonation/deprotonation states of Mpro at different pHs using computational techniques. (2) Methods: The different distribution charges were obtained in all the evaluated pHs by the Semi-Grand Canonical Monte Carlo (SGCMC) method. A set of Molecular Dynamics (MD) simulations was performed to consider the different protonation/deprotonation during 250 ns, verifying the structural stability of Mpro at different pHs. (3) Results: The present findings demonstrate that active site residues and residues that allow Mpro dimerisation was not affected by pH changes. However, Mpro substrate-binding residues were altered at low pHs, allowing the increased pocket volume. Additionally, the results of the solvent distribution around Sγ, Hγ, Nδ1 and Hδ1 atoms of the catalytic residues Cys145 and His41 showed a low and high-water affinity at acidic pH, respectively. It which could be crucial in the catalytic mechanism of SARS-CoV-2 Mpro at low pHs. Moreover, we analysed the docking interactions of PF-00835231 from Pfizer in the preclinical phase, which shows excellent affinity with the Mpro at different pHs. (4) Conclusion: Overall, these findings indicate that SARS-CoV-2 Mpro is highly stable at acidic pH conditions, and this inhibitor could have a desirable function at this condition.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Miroslava Nedyalkova
- Department of Inorganic Chemistry, University of Sofia “St. Kl. Okhridski”, 1164 Sofia, Bulgaria;
| | - Francesc Mas
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| | - Sergio Madurga
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|