1
|
Mokhtarabadi E, Iranbakhsh A, Oraghi Ardebili Z, Saadatmand S, Ebadi M. Selenium nanoparticles affected growth and secondary metabolism in chicory seedlings epigenetically by modifying DNA methylation and transcriptionally by upregulating DREB1A transcription factor and stimulating genes involved in phenylpropanoid metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125907. [PMID: 39993707 DOI: 10.1016/j.envpol.2025.125907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/24/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
In this biosafety risk assessment project, the molecular and physiological responses of chicory seedlings to the introduction of selenate (0, 0.1, 0.5, 1, and 5 mgl-1) or nanoscale red elemental Se product (nSe) into the culture medium were investigated. The application of nSe at low concentrations improved the fresh weight of shoots and roots, while 5 mgl-1 nSe caused severe phytotoxicity. Molecular analysis confirmed partially different epigenetic responses to nSe and selenate. DNA hypomethylation is an important mechanism by which Se exerts its influence at the pre-transcriptional level. With increasing nSe concentration, the transcription factor DREB1A (dehydration-responsive element-binding) showed a linear upward trend. The use of nSe contributed to the transcriptional upregulation of the genes for phenylalanine ammonia-lyase (PAL), hydroxycinnamoyl-CoA: quinate-hydroxycinnamoyl transferases (HQT) and hydroxycinnamoyl-CoA: shikimate/quinate-hydroxycinnamoyl transferase (HCT). Proline concentrations were increased in both leaves and roots in response to the nano-supplement. Cytotoxicity of Se at toxic concentrations decreased protein levels, in contrast to the positive nSe treatments, 0.1 and 0.5. Notably, nSe supplementation acted as an efficient elicitor, stimulating the accumulation of phenylpropanoid derivatives, including caffeic acid, chlorogenic acid, and cichoric acid metabolites. The concentration of ascorbate and glutathione displayed a similar upward trend in response to the nSe supplementation. Further comprehensive comparative molecular studies in different stress-sensitive and tolerant species are necessary to gain a better understanding of the underlying mechanisms. This will allow for the optimization of functional protocols for nSe-based supplements to meet the expectations of sustainable agriculture.
Collapse
Affiliation(s)
- Elham Mokhtarabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sara Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
2
|
Molina-Hernandez JB, Grande-Tovar CD, Neri L, Delgado-Ospina J, Rinaldi M, Cordero-Bueso GA, Chaves-López C. Enhancing postharvest food safety: the essential role of non-thermal technologies in combating fungal contamination and mycotoxins. Front Microbiol 2025; 16:1543716. [PMID: 40135060 PMCID: PMC11934074 DOI: 10.3389/fmicb.2025.1543716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
During the production and storage of agricultural products, molds frequently occur as contaminants that can produce a wide range of secondary metabolites, the most important of which are mycotoxins. To solve these problems, the industry uses various methods, products and processes. This review examines the latest advances in novel non-thermal technologies for post-harvest inactivation of filamentous fungi and reduction of mycotoxins. These technologies include high pressure processes (HPP), ozone treatment, UV light, blue light, pulsed light, pulsed electric fields (PEF), cold atmospheric plasma (CAP), electron beams, ultrasound (US) and nanoparticles. Using data from previous studies, this review provides an overview of the primary mechanisms of action and recent results obtained using these technologies and emphasizes the limitations and challenges associated with each technology. The innovative non-thermal methods discussed here have been shown to be safe and efficient tools for reducing food mold contamination and infection. However, the effectiveness of these technologies is highly dependent on the fungal species and the structural characteristics of the mycotoxins. New findings related to the inactivation of fungi and mycotoxins underline that for a successful application it is essential to carefully determine and optimize certain key parameters in order to achieve satisfactory results. Finally, this review highlights and discusses future directions for non-thermal technologies. It emphasizes that they meet consumer demand for clean and safe food without compromising nutritional and sensory qualities.
Collapse
Affiliation(s)
- Junior Bernardo Molina-Hernandez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Lilia Neri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Cali, Colombia
| | | | - Gustavo Adolfo Cordero-Bueso
- Laboratorio de Microbiología, CASEM, Dpto. Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
3
|
Coelho MJ, Araújo MD, Carvalho M, Cardoso IL, Manso MC, Pina C. Antimicrobial Potential of Cannabinoids: A Scoping Review of the Past 5 Years. Microorganisms 2025; 13:325. [PMID: 40005695 PMCID: PMC11858408 DOI: 10.3390/microorganisms13020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
In the scenario of fighting bacterial resistance to antibiotics, natural products have been extensively investigated for their potential antibacterial activities. Among these, cannabinoids-bioactive compounds derived from cannabis-have garnered attention for their diverse biological activities, including anxiolytic, anti-inflammatory, analgesic, antioxidant, and neuroprotective properties. Emerging evidence suggests that cannabinoids may also possess significant antimicrobial properties, with potential applications in enhancing the efficacy of conventional antimicrobial agents. Therefore, this review examines evidence from the past five years on the antimicrobial properties of cannabinoids, focusing on underlying mechanisms such as microbial membrane disruption, immune response modulation, and interference with microbial virulence factors. In addition, their synergistic potential, when used alongside standard therapies, underscores their promise as a novel strategy to address drug resistance, although further research and clinical trials are needed to validate their therapeutic use. Overall, cannabinoids offer a promising avenue for the development of innovative treatments to combat drug-resistant infections and reduce the reliance on traditional antimicrobial agents.
Collapse
Affiliation(s)
- Maria João Coelho
- RISE-Health, Faculty of Health Sciences, Fernando Pessoa University, Fernando Pessoa Teaching and Culture Foundation, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal; (M.C.); (I.L.C.); (C.P.)
| | - Maria Duarte Araújo
- FCS-UFP, Faculdade de Ciências da Saúde (Health Sciences Faculty), Fernando Pessoa University, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal;
| | - Márcia Carvalho
- RISE-Health, Faculty of Health Sciences, Fernando Pessoa University, Fernando Pessoa Teaching and Culture Foundation, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal; (M.C.); (I.L.C.); (C.P.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Inês Lopes Cardoso
- RISE-Health, Faculty of Health Sciences, Fernando Pessoa University, Fernando Pessoa Teaching and Culture Foundation, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal; (M.C.); (I.L.C.); (C.P.)
| | - Maria Conceição Manso
- RISE-Health, Faculty of Health Sciences, Fernando Pessoa University, Fernando Pessoa Teaching and Culture Foundation, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal; (M.C.); (I.L.C.); (C.P.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cristina Pina
- RISE-Health, Faculty of Health Sciences, Fernando Pessoa University, Fernando Pessoa Teaching and Culture Foundation, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal; (M.C.); (I.L.C.); (C.P.)
| |
Collapse
|
4
|
Zhou X, El-Sappah AH, Khaskhoussi A, Huang Q, Atif AM, Elhamid MAA, Ihtisham M, El-Maati MFA, Soaud SA, Tahri W. Nanoparticles: a promising tool against environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1509047. [PMID: 39931338 PMCID: PMC11808028 DOI: 10.3389/fpls.2024.1509047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025]
Abstract
With a focus on plant tolerance to environmental challenges, nanotechnology has emerged as a potent instrument for assisting crops and boosting agricultural production in the face of a growing worldwide population. Nanoparticles (NPs) and plant systems may interact molecularly to change stress response, growth, and development. NPs may feed nutrients to plants, prevent plant diseases and pathogens, and detect and monitor trace components in soil by absorbing their signals. More excellent knowledge of the processes of NPs that help plants survive various stressors would aid in creating more long-term strategies to combat these challenges. Despite the many studies on NPs' use in agriculture, we reviewed the various types of NPs and their anticipated molecular and metabolic effects upon entering plant cells. In addition, we discussed different applications of NPs against all environmental stresses. Lastly, we introduced agricultural NPs' risks, difficulties, and prospects.
Collapse
Affiliation(s)
- Xu Zhou
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| | - Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amani Khaskhoussi
- Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Amr M. Atif
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad Ihtisham
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Mohamed F. Abo El-Maati
- Agriculture Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Salma A. Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Walid Tahri
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
5
|
Plokhovska S, García-Villaraco A, Lucas JA, Gutierrez-Mañero FJ, Ramos-Solano B. Silver nanoparticles coated with metabolites of Pseudomonas sp. N5.12 inhibit bacterial pathogens and fungal phytopathogens. Sci Rep 2025; 15:1522. [PMID: 39789101 PMCID: PMC11717911 DOI: 10.1038/s41598-024-84503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
The synthesis of nanomaterials from PGPB is an exciting approach and it's often used in agriculture as nano-fertilizers and nano-pesticides. The present study reports a new approach to biosynthesis of silver nanoparticles (AgNP), using bacterial metabolites as agents to reduce Ag+, which will remain as coating agents able to prevent microbial growth. Silver NP were biosynthesized using the bacterial metabolites produced by the beneficial strain Pseudomonas sp. N5.12. Optimization of physicochemical parameters (temperature, pH, and AgNO3 concentration) for the synthesis of AgNP was carried out. In each condition, success on AgNP synthesis was determined by UV-Visible spectra showing peaks between 400 and 450 nm. TEM analysis showed that the AgNP are spherical in shape with an average particle size ranging from 13.75 ± 0.47 nm to 20.71 ± 0.43 nm, covered with a unique organic matter corona of bacterial metabolites. The best parameters for AgNP biosynthesis by Pseudomonas sp. N5.12 occurred with 24 h bacterial metabolites, temperature of 37 °C, pH 9 and a ratio of 2:4 (v: v; bacterial supernatant: 1 mM AgNO3). The biosynthesized AgNP inhibited growth of human pathogenic bacteria better than equivalent AgNO3 concentration. Growth of bacterial and fungal phytopathogens was also inhibited with striking effects on Alternaria sp. (74% inhibition) and Stemphylium sp. (52% inhibition), appearing as promising tools to biocontrol fungal diseases in agriculture.
Collapse
Affiliation(s)
- Svitlana Plokhovska
- Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668-Boadilla del Monte, Madrid, Spain.
- Institute of Food Biotechnology and Genomics, NAS of Ukraine, Baidy-Vyshnevetskoho Str. 2а, Kyiv, Ukraine.
| | - Ana García-Villaraco
- Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668-Boadilla del Monte, Madrid, Spain
| | - Jose Antonio Lucas
- Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668-Boadilla del Monte, Madrid, Spain
| | | | - Beatriz Ramos-Solano
- Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668-Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
6
|
Elshaer MAA, Abd-Elraheem MAM, Taha AS, Abo-Elgat WAA, Abdel-Megeed A, Salem MZM. Green Synthesis of Silver and Ferric Oxide Nanoparticles Using Syzygium cumini leaf Extract and Their Antifungal Activity when Applied to Oak Wood and Paper Pulp from Imperata cylindrica Grass Biomass. WASTE AND BIOMASS VALORIZATION 2024; 15:6191-6211. [DOI: 10.1007/s12649-024-02555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/28/2024] [Indexed: 01/06/2025]
|
7
|
Kaleem Z, Xu W, Ulhassan Z, Shahbaz H, He D, Naeem S, Ali S, Shah AM, Sheteiwy MS, Zhou W. Harnessing the potential of copper-based nanoparticles in mitigating abiotic and biotic stresses in crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59727-59748. [PMID: 39373837 DOI: 10.1007/s11356-024-35174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
The demand for crops production continues to intensify with the rapid increase in population. Agricultural crops continue to encounter abiotic and biotic stresses, which can substantially hamper their productivity. Numerous strategies have been focused to tackle the abiotic and biotic stress factors in various plants. Nanotechnology has displayed great potential to minimize the phytotoxic impacts of these environmental constraints. Copper (Cu)-based nanoparticles (NPs) have displayed beneficial effects on plant growth and stress tolerance. Cu-based NPs alone or in combination with plant growth hormones or microorganisms have been documented to induce plant tolerance and mitigate abiotic or biotic stresses in different plants. In this review, we have comprehensively discussed the uptake and translocation of Cu-based NPs in plants, and beneficial roles in improving the plant growth and development at various growth stages. Moreover, we have discussed how Cu-based NPs mechanistically modulate the physiological, biochemical, metabolic, cellular, and metabolic functions to enhance plant tolerance against both biotic (viruses, bacterial and fungal diseases, etc.) and abiotic stresses (heavy metals or metalloids, salt, and drought stress, etc.). We elucidated recent advancements, knowledge gaps, and recommendations for future research. This review would help plant and soil scientists to adapt Cu-based novel strategies such as nanofertilizers and nanopesticides to detoxify the abiotic or biotic stresses. These outcomes may contribute to the promotion of healthy food production and food security, thus providing new avenues for sustainable agriculture production.
Collapse
Affiliation(s)
- Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Wan Xu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Hafsah Shahbaz
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Di He
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Shoaib Naeem
- Agriculture Officer (Extension) Jauharabad, Office of Assistant Director Agriculture (Extension) Khushab, Punjab, 41000, Pakistan
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Aamir Mehmood Shah
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al-Ain, United Arab Emirates University, Abu-Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Nizamani MM, Hughes AC, Zhang HL, Wang Y. Revolutionizing agriculture with nanotechnology: Innovative approaches in fungal disease management and plant health monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172473. [PMID: 38615773 DOI: 10.1016/j.scitotenv.2024.172473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Nanotechnology has emerged as a transformative force in modern agriculture, offering innovative solutions to address challenges related to fungal plant diseases and overall agricultural productivity. Specifically, the antifungal activities of metal, metal oxide, bio-nanoparticles, and polymer nanoparticles were examined, highlighting their unique mechanisms of action against fungal pathogens. Nanoparticles can be used as carriers for fungicides, offering advantages in controlled release, targeted delivery, and reduced environmental toxicity. Nano-pesticides and nano-fertilizers can enhance nutrient uptake, plant health, and disease resistance were explored. The development of nanosensors, especially those utilizing quantum dots and plasmonic nanoparticles, promises early and accurate detection of fungal pathogens, a crucial step in timely disease management. However, concerns about their potential toxic effects on non-target organisms, environmental impacts, and regulatory hurdles underscore the importance of rigorous research and impact assessments. The review concludes by emphasizing the significant prospects of nanotechnology in reshaping the future of agriculture but advocates for a balanced approach that prioritizes safety, sustainability, and environmental stewardship.
Collapse
Affiliation(s)
- Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, China
| | - Hai-Li Zhang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
9
|
Izadi A, Paknia F, Roostaee M, Mousavi SAA, Barani M. Advancements in nanoparticle-based therapies for multidrug-resistant candidiasis infections: a comprehensive review. NANOTECHNOLOGY 2024; 35:332001. [PMID: 38749415 DOI: 10.1088/1361-6528/ad4bed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Candida auris, a rapidly emerging multidrug-resistant fungal pathogen, poses a global health threat, with cases reported in over 47 countries. Conventional detection methods struggle, and the increasing resistance ofC. auristo antifungal agents has limited treatment options. Nanoparticle-based therapies, utilizing materials like silver, carbon, zinc oxide, titanium dioxide, polymer, and gold, show promise in effectively treating cutaneous candidiasis. This review explores recent advancements in nanoparticle-based therapies, emphasizing their potential to revolutionize antifungal therapy, particularly in combatingC. aurisinfections. The discussion delves into mechanisms of action, combinations of nanomaterials, and their application against multidrug-resistant fungal pathogens, offering exciting prospects for improved clinical outcomes and reduced mortality rates. The aim is to inspire further research, ushering in a new era in the fight against multidrug-resistant fungal infections, paving the way for more effective and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Alireza Izadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Seyed Amin Ayatollahi Mousavi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran
| |
Collapse
|
10
|
Raza A, Malan P, Ahmad I, Khan A, Haris M, Zahid Z, Jameel M, Ahmad A, Seth CS, Asseri TAY, Hashem M, Ahmad F. Polyalthia longifolia-mediated green synthesis of zinc oxide nanoparticles: characterization, photocatalytic and antifungal activities. RSC Adv 2024; 14:17535-17546. [PMID: 38828272 PMCID: PMC11140454 DOI: 10.1039/d4ra01035c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
The biological synthesis of zinc oxide nanoparticles (ZnO NPs) from plant extracts has emerged as a novel method for producing NPs with great scalability and biocompatibility. The present study is focused on bio-fabricated zinc oxide nanomaterial characterization and investigation of its photocatalytic and antifungal activities. ZnO NPs were biosynthesized using the leaf extract of Polyalthia longifolia without using harmful reducing or capping chemicals, which demonstrated fungicidal activity against Fusarium oxysporum f. sp. ciceris. The results showed that the inhibition of the radial growth of F. oxysporum f. sp. ciceris was enhanced as the concentration increased from 100 ppm to 300 ppm. The effectiveness of the photocatalytic activity of biosynthesized ZnO NPs was analyzed using MB dye degradation in aqueous medium under ultraviolet (UV) radiation and natural sunlight. After four consecutive cycles, the photocatalytic degradation of MB was stable and was 84%, 83%, 83%, and 83%, respectively, during natural sunlight exposure. Under the UV sources, degradation reached 92%, 89%, 88%, and 87%, respectively, in 90 minutes. This study suggests that the ZnO NPs obtained from plant extract have outstanding photocatalytic and antifungal activities against F. oxysporum f. sp. ciceris and have the potential for application as a natural pest control agent to reduce pathogenesis.
Collapse
Affiliation(s)
- Azam Raza
- Interdisciplinary Nanotechnology Centre, Zakir Husain College of Engineering and Technology, Aligarh Muslim University Aligarh 202002 India
| | - Pieter Malan
- Unit for Environmental Sciences and Management, North-West University (Mafikeng Campus) Mmabatho 2735 South Africa
| | - Irfan Ahmad
- Department of Plant Protection, Aligarh Muslim University Aligarh 202002 India
| | - Amir Khan
- SSLD Varshney Institute of Management & Engineering Aligarh 202001 India
| | - Mohammad Haris
- Department of Botany, Aligarh Muslim University Aligarh 202002 India
| | - Zainab Zahid
- Interdisciplinary Nanotechnology Centre, Zakir Husain College of Engineering and Technology, Aligarh Muslim University Aligarh 202002 India
| | - Mohd Jameel
- Department of Zoology, Aligarh Muslim University Aligarh 202002 India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre, Zakir Husain College of Engineering and Technology, Aligarh Muslim University Aligarh 202002 India
| | | | - Tahani A Y Asseri
- Department of Biology, College of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Mohamed Hashem
- Department of Botany and Microbiology, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University Aligarh 202002 India
| |
Collapse
|
11
|
Khadanga V, Mishra PC. A review on toxicity mechanism and risk factors of nanoparticles in respiratory tract. Toxicology 2024; 504:153781. [PMID: 38493948 DOI: 10.1016/j.tox.2024.153781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
This comprehensive review focuses on various dimensions of nanoparticle toxicity, emphasizing toxicological characteristics, assessment techniques, and examinations of relevant studies on the effects on biological systems. The primary objective is to comprehend the potential risks associated with nanoparticles and to provide efficient strategies for mitigating them by consolidating current research discoveries. For in-depth insights, the discussions extend to crucial aspects such as toxicity associated with different nanoparticles, human exposure, and nanoparticle deposition in the human respiratory tract. The analysis utilizes the multiple-path particle dosimetry (MPPD) modeling for computational simulation. The SiO2 nanoparticles with a volume concentration of 1% and a particle size of 50 nm are used to depict the MPPD modeling of the Left upper (LU), left lower (LL), right upper (RU), right middle (RM), and right lower (RL) lobes in the respiratory tract. The analysis revealed a substantial 67.5% decrease in the deposition fraction as the particle size increased from 10 nm to 100 nm. Graphical representation emphasizes the significant impact of exposure path selection on nanoparticle deposition, with distinct deposition values observed for nasal, oral, oronasal-mouth breather, oronasal - normal augmenter, and endotracheal paths (0.00291 μg, 0.00332 μg, 0.00297 μg, 0.00291 μg, and 0.00383 μg, respectively). Consistent with the focus of the review, the article also addresses crucial mitigation strategies for managing nanoparticle toxicity.
Collapse
Affiliation(s)
- Vidyasri Khadanga
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Purna Chandra Mishra
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
12
|
Kim DY, Patel SKS, Rasool K, Lone N, Bhatia SK, Seth CS, Ghodake GS. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168318. [PMID: 37956842 DOI: 10.1016/j.scitotenv.2023.168318] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Plant pathogens, including bacteria, fungi, and viruses, pose significant challenges to the farming community due to their extensive diversity, the rapidly evolving phenomenon of multi-drug resistance (MDR), and the limited availability of effective control measures. Amid mounting global pressure, particularly from the World Health Organization, to limit the use of antibiotics in agriculture and livestock management, there is increasing consideration of engineered nanomaterials (ENMs) as promising alternatives for antimicrobial applications. Studies focusing on the application of ENMs in the fight against MDR pathogens are receiving increasing attention, driven by significant losses in agriculture and critical knowledge gaps in this crucial field. In this review, we explore the potential contributions of silver nanoparticles (AgNPs) and their nanocomposites in combating plant diseases, within the emerging interdisciplinary arena of nano-phytopathology. AgNPs and their nanocomposites are increasingly acknowledged as promising countermeasures against plant pathogens, owing to their unique physicochemical characteristics and inherent antimicrobial properties. This review explores recent advancements in engineered nanocomposites, highlights their diverse mechanisms for pathogen control, and draws attention to their potential in antibacterial, antifungal, and antiviral applications. In the discussion, we briefly address three crucial dimensions of combating plant pathogens: green synthesis approaches, toxicity-environmental concerns, and factors influencing antimicrobial efficacy. Finally, we outline recent advancements, existing challenges, and prospects in scholarly research to facilitate the integration of nanotechnology across interdisciplinary fields for more effective treatment and prevention of plant diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | | | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nasreena Lone
- School of Allied Healthcare and Sciences, JAIN Deemed University, Whitefield, Bangalore 560066, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
13
|
Balu SK, Andra S, Jeevanandam J, Kulabhusan PK, Khamari A, Vedarathinam V, Hamimed S, Chan YS, Danquah MK. Exploring the potential of metal oxide nanoparticles as fungicides and plant nutrient boosters. CROP PROTECTION 2023; 174:106398. [DOI: 10.1016/j.cropro.2023.106398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Kumar R, Nehra M, Kumar D, Saharan BS, Chawla P, Sadh PK, Manuja A, Duhan JS. Evaluation of Cytotoxicity, Release Behavior and Phytopathogens Control by Mancozeb-Loaded Guar Gum Nanoemulsions for Sustainable Agriculture. J Xenobiot 2023; 13:270-283. [PMID: 37367496 DOI: 10.3390/jox13020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Chemical fungicides are the backbone of modern agriculture, but an alternative formulation is necessary for sustainable crop production to address human health issues and soil/water environmental pollution. So, a green chemistry approach was used to form guar gum nanoemulsions (NEs) of 186.5-394.1 nm containing the chemical fungicide mancozeb and was characterized using various physio-chemical techniques. An 84.5% inhibition was shown by 1.5 mg/mL mancozeb-loaded NEs (GG-1.5) against A. alternata, comparable to commercial mancozeb (86.5 ± 0.7%). The highest mycelial inhibition was exhibited against S. lycopersici and S. sclerotiorum. In tomatoes and potatoes, NEs showed superior antifungal efficacy in pot conditions besides plant growth parameters (germination percentage, root/shoot ratio and dry biomass). About 98% of the commercial mancozeb was released in just two h, while only about 43% of mancozeb was released from nanoemulsions (0.5, 1.0 and 1.5) for the same time. The most significant results for cell viability were seen at 1.0 mg/mL concentration of treatment, where wide gaps in cell viability were observed for commercial mancozeb (21.67%) and NEs treatments (63.83-71.88%). Thus, this study may help to combat the soil and water pollution menace of harmful chemical pesticides besides protecting vegetable crops.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Manju Nehra
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India
| | - Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar 144411, India
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Anju Manuja
- ICAR-National Research Centre on Equines, Hisar 125001, India
| | | |
Collapse
|
15
|
Mubeen I, Fawzi Bani Mfarrej M, Razaq Z, Iqbal S, Naqvi SAH, Hakim F, Mosa WFA, Moustafa M, Fang Y, Li B. Nanopesticides in comparison with agrochemicals: Outlook and future prospects for sustainable agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107670. [PMID: 37018866 DOI: 10.1016/j.plaphy.2023.107670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Agrochemicals are products of advanced technologies that use inorganic pesticides and fertilizers. Widespread use of these compounds has adverse environmental effects, leading to acute and chronic exposure. Globally, scientists are adopting numerous green technologies to ensure a healthy and safe food supply and a livelihood for everyone. Nanotechnologies significantly impact all aspects of human activity, including agriculture, even if synthesizing certain nanomaterials is not environmentally friendly. Numerous nanomaterials may therefore make it easier to create natural insecticides, which are more effective and environmentally friendly. Nanoformulations can improve efficacy, reduce effective doses, and extend shelf life, while controlled-release products can improve the delivery of pesticides. Nanotechnology platforms enhance the bioavailability of conventional pesticides by changing kinetics, mechanisms, and pathways. This allows them to bypass biological and other undesirable resistance mechanisms, increasing their efficacy. The development of nanomaterials is expected to lead to a new generation of pesticides that are more effective and safer for life, humans, and the environment. This article aims to express at how nanopesticides are being used in crop protection now and in the future. This review aims to shed some light on the various impacts of agrochemicals, their benefits, and the function of nanopesticide formulations in agriculture.
Collapse
Affiliation(s)
- Iqra Mubeen
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates.
| | - Zarafshan Razaq
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Shehzad Iqbal
- Laboratorio de Patología Frutal, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, 3460000, Maule, Chile.
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Fahad Hakim
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Walid F A Mosa
- Plant Production Department (Horticulture- Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt.
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bin Li
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
El-Sayed ESR, Mohamed SS, Mousa SA, El-Seoud MAA, Elmehlawy AA, Abdou DAM. Bifunctional role of some biogenic nanoparticles in controlling wilt disease and promoting growth of common bean. AMB Express 2023; 13:41. [PMID: 37119397 PMCID: PMC10148937 DOI: 10.1186/s13568-023-01546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/16/2023] [Indexed: 05/01/2023] Open
Abstract
In the present era, nanomaterials are emerging as a powerful tool for management of plant disease and improving crop production to meet the growing global need for food. Thus, this paper was conducted to explore the effectiveness of five different types of nanoparticles (NPs) viz., Co3O4NPs, CuONPs, Fe3O4NPs, NiONPs, and ZnONPs as treatments for Fusarium wilt as well as their role in promoting growth of the common bean plant. The five types of NPs were applied as a treatment for wilt in two ways, therapeutic and protective plans under greenhouse conditions. In vivo experiments showed that all types of NPs significantly increased disease control and diminished the symptoms of Fusarium wilt for both incidence and severity. The recorded values for disease control using the respective NPs during the protective plan were 82.77, 60.17, 49.67, 38.23, and 70.59%. Meanwhile these values were 92.84, 64.67, 51.33, 45.61, 73.84% during the therapeutic plan. Moreover, CuONPs during the protective plan were the best among the five types of NPs employed in terms of wilt disease management. Regarding the use of these NPs as growth promoters, the obtained results confirmed the effectiveness of the five types of NPs in enhancing vegetative growth of the plant under greenhouse conditions, in comparison with control. Among the five NPs, CuONPs improved the plant vegetative growth and particularly increased the content of the photosynthetic pigments; chlorophyll-a (2.96 mg/g), -b (1.93 mg/g), and total carotenoids (1.16 mg/g). These findings suggest the successful and potential exploitation of nanomaterials in agriculture deployed as nano-based products including nano-fungicides and nano-fertilizers. In terms of sustainability, this promising and exceptional multifunctional role of these nanomaterials will surely exert positive impacts on both the environment and sustainable agriculture.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Samar S Mohamed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Shaimaa A Mousa
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed A Abo El-Seoud
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Adel A Elmehlawy
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Dalia A M Abdou
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
17
|
Yuan YG, Xing YT, Liu SZ, Li L, Reza AMMT, Cai HQ, Wang JL, Wu P, Zhong P, Kong IK. Identification of circular RNAs expression pattern in caprine fetal fibroblast cells exposed to a chronic non-cytotoxic dose of graphene oxide-silver nanoparticle nanocomposites. Front Bioeng Biotechnol 2023; 11:1090814. [PMID: 37020511 PMCID: PMC10069586 DOI: 10.3389/fbioe.2023.1090814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
The widespread use of graphene oxide-silver nanoparticle nanocomposites (GO-AgNPs) in biomedical sciences is increasing the chances of human and animal exposure to its chronic non-toxic doses. Exposure to AgNPs-related nanomaterials may result in the negative effect on the dam, fetus and offspring. However, there are only little available information for profound understanding of the epigenetic alteration in the cells and animals caused by low-dose chronic exposure of GO-AgNPs. The present study investigated the effect of 0.5 μg/mL GO-AgNPs for 10 weeks on the differential expression of circular RNAs (circRNAs) in caprine fetal fibroblast cells (CFFCs), and this dose of GO-AgNPs did not affect cell viability and ROS level. We predicted the functions of those differentially expressed (DE) circRNAs in CFFCs by bioinformatics analysis. Furthermore, we validated the expression of ten DE circRNAs using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) to ensure the reliability of the sequencing data. Our results showed that the DE circRNAs may potentially regulate the GO-AgNPs-inducing epigenetic toxicity through a regulatory network consisted of circRNAs, miRNAs and messenger RNAs (mRNAs). Therefore, the epigenetics toxicity is essential to assess the biosafety level of GO-AgNPs.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| | - Yi-Tian Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Song-Zi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ling Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Basic Sciences, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | - He-Qing Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jia-Lin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Pengfei Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ping Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| |
Collapse
|
18
|
Nanofungicides with Selenium and Silicon Can Boost the Growth and Yield of Common Bean (Phaseolus vulgaris L.) and Control Alternaria Leaf Spot Disease. Microorganisms 2023; 11:microorganisms11030728. [PMID: 36985301 PMCID: PMC10051325 DOI: 10.3390/microorganisms11030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
There is an urgent need to reduce the intensive use of chemical fungicides due to their potential damage to human health and the environment. The current study investigated whether nano-selenium (nano-Se) and nano-silica (nano-SiO2) could be used against the leaf spot disease caused by Alternaria alternata in a common bean (Phaseolus vulgaris L.). The engineered Se and SiO2 nanoparticles were compared to a traditional fungicide and a negative control with no treatment, and experiments were repeated during two successive seasons in fields and in vitro. The in vitro study showed that 100 ppm nano-Se had an efficacy rate of 85.1% on A. alternata mycelial growth, followed by the combined applications (Se + SiO2 at half doses) with an efficacy rate of 77.8%. The field study showed that nano-Se and the combined application of nano-Se and nano-SiO2 significantly decreased the disease severity of A. alternata. There were no significant differences among nano-Se, the combined application, and the fungicide treatment (positive control). As compared to the negative control (no treatment), leaf weight increased by 38.3%, the number of leaves per plant by 25.7%, chlorophyll A by 24%, chlorophyll B by 17.5%, and total dry seed yield by 30%. In addition, nano-Se significantly increased the enzymatic capacity (i.e., CAT, POX, PPO) and antioxidant activity in the leaves. Our current study is the first to report that the selected nano-minerals are real alternatives to chemical fungicides for controlling A. alternata in common beans. This work suggests the potential of nanoparticles as alternatives to fungicides. Further studies are needed to better understand the mechanisms and how different nano-materials could be used against phytopathogens.
Collapse
|
19
|
Khoshru B, Mitra D, Joshi K, Adhikari P, Rion MSI, Fadiji AE, Alizadeh M, Priyadarshini A, Senapati A, Sarikhani MR, Panneerselvam P, Mohapatra PKD, Sushkova S, Minkina T, Keswani C. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon 2023; 9:e13825. [PMID: 36873502 PMCID: PMC9981932 DOI: 10.1016/j.heliyon.2023.e13825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.
Collapse
Affiliation(s)
- Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj - 733 134, West Bengal, India
| | - Kuldeep Joshi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India
| | - Priyanka Adhikari
- Centre for Excellence on GMP Extraction Facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research. Guwahati-781101, Assam, India
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Mehrdad Alizadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ankita Priyadarshini
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Periyasamy Panneerselvam
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| |
Collapse
|
20
|
Tryfon P, Kamou NN, Pavlou A, Mourdikoudis S, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Nanocapsules of ZnO Nanorods and Geraniol as a Novel Mean for the Effective Control of Botrytis cinerea in Tomato and Cucumber Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1074. [PMID: 36903940 PMCID: PMC10005723 DOI: 10.3390/plants12051074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Inorganic-based nanoparticle formulations of bioactive compounds are a promising nanoscale application that allow agrochemicals to be entrapped and/or encapsulated, enabling gradual and targeted delivery of their active ingredients. In this context, hydrophobic ZnO@OAm nanorods (NRs) were firstly synthesized and characterized via physicochemical techniques and then encapsulated within the biodegradable and biocompatible sodium dodecyl sulfate (SDS), either separately (ZnO NCs) or in combination with geraniol in the effective ratios of 1:1 (ZnOGer1 NCs), 1:2 (ZnOGer2 NCs), and 1:3 (ZnOGer2 NCs), respectively. The mean hydrodynamic size, polydispersity index (PDI), and ζ-potential of the nanocapsules were determined at different pH values. The efficiency of encapsulation (EE, %) and loading capacity (LC, %) of NCs were also determined. Pharmacokinetics of ZnOGer1 NCs and ZnOGer2 NCs showed a sustainable release profile of geraniol over 96 h and a higher stability at 25 ± 0.5 °C rather than at 35 ± 0.5 °C. ZnOGer1 NCs, ZnOGer2 NCs and ZnO NCs were evaluated in vitro against B. cinerea, and EC50 values were calculated at 176 μg/mL, 150 μg/mL, and > 500 μg/mL, respectively. Subsequently, ZnOGer1 NCs and ZnOGer2 NCs were tested by foliar application on B. cinerea-inoculated tomato and cucumber plants, showing a significant reduction of disease severity. The foliar application of both NCs resulted in more effective inhibition of the pathogen in the infected cucumber plants as compared to the treatment with the chemical fungicide Luna Sensation SC. In contrast, tomato plants treated with ZnOGer2 NCs demonstrated a better inhibition of the disease as compared to the treatment with ZnOGer1 NCs and Luna. None of the treatments caused phytotoxic effects. These results support the potential for the use of the specific NCs as plant protection agents against B. cinerea in agriculture as an effective alternative to synthetic fungicides.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nathalie N. Kamou
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Akrivi Pavlou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Urania Menkissoglu-Spiroudi
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Antonelli C, Biscontri M, Tabet D, Vettraino AM. The Never-Ending Presence of Phytophthora Species in Italian Nurseries. Pathogens 2022; 12:15. [PMID: 36678363 PMCID: PMC9863022 DOI: 10.3390/pathogens12010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Plant trade coupled with climate change has led to the increased spread of well-known and new Phytophthora species, a group of fungus-like organisms placed in the Kingdom Chromista. Their presence in plant nurseries is of particular concern because they are responsible for many plant diseases, with high environmental, economic and social impacts. This paper offers a brief overview of the current status of Phytophthora species in European plant nurseries. Focus was placed on Italian sites. Despite the increasing awareness of the risk of Phytophthora spread and the management strategies applied for controlling it, the complexity of the Phytophthora community in the horticulture industry is increasing over time. Since the survey carried out by Jung et al. (2016), new Phytophthora taxa and Phytophthora-host associations were identified. Phytophthorahydropathica, P. crassamura, P. pseudocryptogea and P. meadii were reported for the first time in European plant nurseries, while P. pistaciae, P. mediterranea and P. heterospora were isolated from Italian ornamental nurseries. Knowledge of Phytophthora diversity in plant nurseries and the potential damage caused by them will help to contribute to the development of early detection methods and sustainable management strategies to control Phytophthora spread in the future.
Collapse
Affiliation(s)
| | | | | | - Anna Maria Vettraino
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
22
|
Ahmad V, Ansari MO. Antimicrobial Activity of Graphene-Based Nanocomposites: Synthesis, Characterization, and Their Applications for Human Welfare. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224002. [PMID: 36432288 PMCID: PMC9694244 DOI: 10.3390/nano12224002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
Graphene (GN)-related nanomaterials such as graphene oxide, reduced graphene oxide, quantum dots, etc., and their composites have attracted significant interest owing to their efficient antimicrobial properties and thus newer GN-based composites are being readily developed, characterized, and explored for clinical applications by scientists worldwide. The GN offers excellent surface properties, i.e., a large surface area, pH sensitivity, and significant biocompatibility with the biological system. In recent years, GN has found applications in tissue engineering owing to its impressive stiffness, mechanical strength, electrical conductivity, and the ability to innovate in two-dimensional (2D) and three-dimensional (3D) design. It also offers a photothermic effect that potentiates the targeted killing of cells via physicochemical interactions. It is generally synthesized by physical and chemical methods and is characterized by modern and sophisticated analytical techniques such as NMR, Raman spectroscopy, electron microscopy, etc. A lot of reports show the successful conjugation of GN with existing repurposed drugs, which improves their therapeutic efficacy against many microbial infections and also its potential application in drug delivery. Thus, in this review, the antimicrobial potentialities of GN-based nanomaterials, their synthesis, and their toxicities in biological systems are discussed.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | | |
Collapse
|
23
|
Lahuta LB, Szablińska-Piernik J, Stałanowska K, Głowacka K, Horbowicz M. The Size-Dependent Effects of Silver Nanoparticles on Germination, Early Seedling Development and Polar Metabolite Profile of Wheat ( Triticum aestivum L.). Int J Mol Sci 2022; 23:13255. [PMID: 36362042 PMCID: PMC9657336 DOI: 10.3390/ijms232113255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 10/15/2023] Open
Abstract
The phytotoxicity of silver nanoparticles (Ag NPs) to plant seeds germination and seedlings development depends on nanoparticles properties and concentration, as well as plant species and stress tolerance degrees. In the present study, the effect of citrate-stabilized spherical Ag NPs (20 mg/L) in sizes of 10, 20, 40, 60, and 100 nm, on wheat grain germination, early seedlings development, and polar metabolite profile in 3-day-old seedlings were analyzed. Ag NPs, regardless of their sizes, did not affect the germination of wheat grains. However, the smaller nanoparticles (10 and 20 nm in size) decreased the growth of seedling roots. Although the concentrations of total polar metabolites in roots, coleoptile, and endosperm of seedlings were not affected by Ag NPs, significant re-arrangements of carbohydrates profiles in seedlings were noted. In roots and coleoptile of 3-day-old seedlings, the concentration of sucrose increased, which was accompanied by a decrease in glucose and fructose. The concentrations of most other polar metabolites (amino acids, organic acids, and phosphate) were not affected by Ag NPs. Thus, an unknown signal is released by small-sized Ag NPs that triggers affection of sugars metabolism and/or distribution.
Collapse
Affiliation(s)
- Lesław Bernard Lahuta
- Department of Plant Physiology, University of Warmia and Mazury, Genetics and Biotechnology, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | | | | | | | | |
Collapse
|
24
|
Impact of Geraniol and Geraniol Nanoemulsions on Botrytis cinerea and Effect of Geraniol on Cucumber Plants’ Metabolic Profile Analyzed by LC-QTOF-MS. PLANTS 2022; 11:plants11192513. [PMID: 36235379 PMCID: PMC9571098 DOI: 10.3390/plants11192513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
In the present study, the bioactive substance geraniol was tested in vitro and in planta against B. cinerea on cucumber plants, and the changes in the metabolic profile of cucumber plants inoculated with the pathogen and/or treated with geraniol were monitored by a novel LC-QTOF-MS method employing target and suspect screening. The aforementioned treatments were also studied for their impact on membrane lipid peroxidation calculated as malondialdehyde (MDA) content. Additionally, geraniol-loaded nanoemulsions (GNEs) were synthesized and tested against B. cinerea as an integrated formulation mode of geraniol application. The EC50 values calculated for geraniol and GNEs against B. cinerea were calculated at 235 μg/mL and 105 μg/mL, respectively. The in planta experiment on cucumber plants demonstrated the ability of geraniol and GNEs to significantly inhibit B. cinerea under greenhouse conditions. The LC-QTOF-MS analysis of the metabolic profile of the cucumber plants treated with geraniol demonstrated an increase in the concentration levels of myricetin, chlorogenic acid, and kaempferol rhamnoside, as compared to control plants and the presence of B. cinerea caused an increase in sinapic acid and genistein. These compounds are part of important biosynthetic pathways mostly related to responses against a pathogen attack.
Collapse
|
25
|
Karamchandani BM, Maurya PA, Dalvi SG, Waghmode S, Sharma D, Rahman PKSM, Ghormade V, Satpute SK. Synergistic Activity of Rhamnolipid Biosurfactant and Nanoparticles Synthesized Using Fungal Origin Chitosan Against Phytopathogens. Front Bioeng Biotechnol 2022; 10:917105. [PMID: 36017342 PMCID: PMC9396382 DOI: 10.3389/fbioe.2022.917105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Phytopathogens pose severe implications in the quantity and quality of food production by instigating several diseases. Biocontrol strategies comprising the application of biomaterials have offered endless opportunities for sustainable agriculture. We explored multifarious potentials of rhamnolipid-BS (RH-BS: commercial), fungal chitosan (FCH), and FCH-derived nanoparticles (FCHNPs). The high-quality FCH was extracted from Cunninghamella echinulata NCIM 691 followed by the synthesis of FCHNPs. Both, FCH and FCHNPs were characterized by UV-visible spectroscopy, DLS, zeta potential, FTIR, SEM, and Nanoparticle Tracking Analysis (NTA). The commercial chitosan (CH) and synthesized chitosan nanoparticles (CHNPs) were used along with test compounds (FCH and FCHNPs). SEM analysis revealed the spherical shape of the nanomaterials (CHNPs and FCHNPs). NTA provided high-resolution visual validation of particle size distribution for CHNPs (256.33 ± 18.80 nm) and FCHNPs (144.33 ± 10.20 nm). The antibacterial and antifungal assays conducted for RH-BS, FCH, and FCHNPs were supportive to propose their efficacies against phytopathogens. The lower MIC of RH-BS (256 μg/ml) was observed than that of FCH and FCHNPs (>1,024 μg/ml) against Xanthomonas campestris NCIM 5028, whereas a combination study of RH-BS with FCHNPs showed a reduction in MIC up to 128 and 4 μg/ml, respectively, indicating their synergistic activity. The other combination of RH-BS with FCH resulted in an additive effect reducing MIC up to 128 and 256 μg/ml, respectively. Microdilution plate assay conducted for three test compounds demonstrated inhibition of fungi, FI: Fusarium moniliforme ITCC 191, FII: Fusarium moniliforme ITCC 4432, and FIII: Fusarium graminearum ITCC 5334 (at 0.015% and 0.020% concentration). Furthermore, potency of test compounds performed through the in vitro model (poisoned food technique) displayed dose-dependent (0.005%, 0.010%, 0.015%, and 0.020% w/v) antifungal activity. Moreover, RH-BS and FCHNPs inhibited spore germination (61–90%) of the same fungi. Our efforts toward utilizing the combination of RH-BS with FCHNPs are significant to develop eco-friendly, low cytotoxic formulations in future.
Collapse
Affiliation(s)
| | - Priya A. Maurya
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
- *Correspondence: Sunil G. Dalvi, ; Surekha K. Satpute,
| | | | - Deepansh Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| | - Pattanathu K. S. M. Rahman
- TeeGene and TARA Biologics, Life Science Accelerator, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
- *Correspondence: Sunil G. Dalvi, ; Surekha K. Satpute,
| |
Collapse
|
26
|
Akhtari A, Davari M, Habibi-Yangjeh A, Ebadollahi A, Feizpour S. Antifungal Activities of Pure and ZnO-Encapsulated Essential Oil of Zataria multiflora on Alternaria solani as the Pathogenic Agent of Tomato Early Blight Disease. FRONTIERS IN PLANT SCIENCE 2022; 13:932475. [PMID: 35865290 PMCID: PMC9294508 DOI: 10.3389/fpls.2022.932475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The utilization of plant essential oils (EOs) and nanomaterials due to their safety compared with synthetic chemicals has been considered in the management of plant diseases. In this study, the inhibitory effects of Zataria multiflora, Nepeta haussknechtii, Artemisia sieberi, and Citrus aurantifolia EOs in pure and Zinc Oxide (ZnO) nanocapsulated formulations were evaluated on the mycelial growth of Alternaria solani to find a suitable alternative for synthetic chemicals. The crystal structure and morphological properties of the fabricated nanomaterials were assessed via X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses. The textural features of the prepared nanoparticles were investigated with Brunauer-Emmett-Teller (BET) analysis, and the presence of elements in the samples was studied with energy-dispersive X-ray (EDX) technique. The mycelial growth inhibitory (MGI) was performed in the laboratory by mixing with potato dextrose agar (PDA) medium at concentrations of 100, 300, 600, 1,000, 1,500, and 2,000 ppm. Based on the results, major differences were monitored between different concentrations. At the highest studied concentration, the inhibition of Z. multiflora EO was 100%, which was 43.20, 42.37, and 21.19% for N. haussknechtii, A. sieberi, and C. aurantifolia, respectively, and the inhibition of their nanocapsules was 100, 51.32, 55.23, and 26.58%, respectively. In the greenhouse study, Z. multiflora EO and its nanocapsule (ZnO-ZmEO) were compared with the ZnO and chlorothalonil fungicide based on the highest inhibitory of Z. multiflora in vitro. The highest antifungal effect was related to the ZnO-ZmEO by 53.33%. Therefore, the ZnO-ZmEO formulation can be recommended as a biofungicide for managing and controlling tomato early blight disease after further research.
Collapse
Affiliation(s)
- Arezou Akhtari
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahdi Davari
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Solmaz Feizpour
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
27
|
Agrawal S, Kumar V, Kumar S, Shahi SK. Plant development and crop protection using phytonanotechnology: A new window for sustainable agriculture. CHEMOSPHERE 2022; 299:134465. [PMID: 35367229 DOI: 10.1016/j.chemosphere.2022.134465] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 05/12/2023]
Abstract
Most developing nations' economies are built on agriculture and most of their citizens rely on it for survival. Global agricultural systems are experiencing tough and unprecedented challenges in the age of changing climate. Every year, the world's population grows, necessitating increased agrarian productivity. As a result, there has been a movement toward utilizing emerging technologies, such as nanotechnology. Nanotechnology with plant systems has inspired great interest in the current scenario in developing areas that come under the umbrella of agriculture and develop environmental remediation strategies. Plant-mediated synthesized nanoparticle (NPs) are eco-friendly, less time consuming, less expensive, and provide long-term product safety. Simultaneously, it provides tools that have the potentiality as "magic bullets" containing nutrients, fungicides, fertilizers, herbicides, or nucleic acids that target specific plant tissues and deliver their payload to the targeting location of the plant to achieve the intended results for environmental monitoring and pollution resistance. In this perspective, the classification and biological activities of different NPs on agroecosystem are focused. Furthermore, absorption, transport, and modification of NPs in plants were thoroughly examined. Some of the most promising new technologies e.g., nanotechnology to increase crop agricultural input efficiency and reduce biotic and abiotic stresses are also discussed. Potential development and implementation challenges were explored, highlighting the importance of using a systems approach when creating suggested nanotechnologies.
Collapse
Affiliation(s)
- Sakshi Agrawal
- Bio-Resource Tech Laboratory, Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Vineet Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Sunil Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Sushil Kumar Shahi
- Bio-Resource Tech Laboratory, Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
28
|
Dikilitaş A, Taşpınar M, İnanç B. Evaluation of the Effects of Enamel Matrix Protein Derivatives on Clinical Attachment Gain in Periodontal Defects and on Proliferation and Differentiation of Periodontal Ligament Fibroblasts <i>In Vitro</i>: A Double-blind Study. MEANDROS MEDICAL AND DENTAL JOURNAL 2022. [DOI: 10.4274/meandros.galenos.2021.72602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Sreelatha S, Kumar N, Yin TS, Rajani S. Evaluating the Antibacterial Activity and Mode of Action of Thymol-Loaded Chitosan Nanoparticles Against Plant Bacterial Pathogen Xanthomonas campestris pv. campestris. Front Microbiol 2022; 12:792737. [PMID: 35095804 PMCID: PMC8795685 DOI: 10.3389/fmicb.2021.792737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
The bacterium Xanthomonas campestris pv. campestris (Xcc) causes black rot disease in cruciferous crops, resulting in severe yield loss worldwide. The excessive use of chemical pesticides in agriculture to control diseases has raised significant concern about the impact on the environment and human health. Nanoparticles have recently gained significant attention in agriculture owing to their promising application in plant disease control, increasing soil fertility and nutrient availability. In the current study, we synthesized thymol-loaded chitosan nanoparticles (TCNPs) and assessed their antibacterial activity against Xcc. The synthesis of TCNPs was confirmed by using ultraviolet–visible spectroscopy. Fourier-transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy analysis revealed the functional groups, size, and shape of TCNPs, with sizes ranging from 54 to 250 nm, respectively. The antibacterial activity of TCNPs against Xcc was investigated in vitro by liquid broth, cell viability, and live dead staining assay, and all of them demonstrated the antibacterial activity of TCNPs. Furthermore, TCNPs were found to directly inhibit the growth of Xcc by suppressing the growth of biofilm formation and the production of exopolysaccharides and xanthomonadin. The ultrastructure studies revealed membrane damage in TCNP-treated Xcc cells, causing a release of intracellular contents. Headspace/gas chromatography (GC)–mass spectrometry (MS) analysis showed changes in the volatile profile of Xcc cells treated with TCNPs. Increased amounts of carbonyl components (mainly ketones) and production of new volatile metabolites were observed in Xcc cells incubated with TCNPs. Overall, this study reveals TCNPs as a promising antibacterial candidate against Xcc.
Collapse
Affiliation(s)
- Sarangapani Sreelatha
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Nadimuthu Kumar
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Tan Si Yin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sarojam Rajani
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- *Correspondence: Sarojam Rajani,
| |
Collapse
|
30
|
Murugan K, Abd-Elsalam KA. Sustainable nanoemulsions for agri-food applications: Today and future trends. BIO-BASED NANOEMULSIONS FOR AGRI-FOOD APPLICATIONS 2022:1-11. [DOI: 10.1016/b978-0-323-89846-1.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
31
|
Cruz-Luna AR, Cruz-Martínez H, Vásquez-López A, Medina DI. Metal Nanoparticles as Novel Antifungal Agents for Sustainable Agriculture: Current Advances and Future Directions. J Fungi (Basel) 2021; 7:1033. [PMID: 34947015 PMCID: PMC8706727 DOI: 10.3390/jof7121033] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 01/21/2023] Open
Abstract
The use of metal nanoparticles is considered a good alternative to control phytopathogenic fungi in agriculture. To date, numerous metal nanoparticles (e.g., Ag, Cu, Se, Ni, Mg, and Fe) have been synthesized and used as potential antifungal agents. Therefore, this proposal presents a critical and detailed review of the use of these nanoparticles to control phytopathogenic fungi. Ag nanoparticles have been the most investigated nanoparticles due to their good antifungal activities, followed by Cu nanoparticles. It was also found that other metal nanoparticles have been investigated as antifungal agents, such as Se, Ni, Mg, Pd, and Fe, showing prominent results. Different synthesis methods have been used to produce these nanoparticles with different shapes and sizes, which have shown outstanding antifungal activities. This review shows the success of the use of metal nanoparticles to control phytopathogenic fungi in agriculture.
Collapse
Affiliation(s)
- Aida R. Cruz-Luna
- Instituto Politécnico Nacional, CIIDIR-OAXACA, Hornos Núm 1003, Col. Noche Buena, Santa Cruz Xoxocotlán 71230, Mexico;
| | - Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo 68230, Mexico;
| | - Alfonso Vásquez-López
- Instituto Politécnico Nacional, CIIDIR-OAXACA, Hornos Núm 1003, Col. Noche Buena, Santa Cruz Xoxocotlán 71230, Mexico;
| | - Dora I. Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| |
Collapse
|