1
|
Kliuchnikov E, Marx KA, Barsegov V, Mogilner A. Optimal strategies for correcting merotelic chromosome attachments in anaphase. Proc Natl Acad Sci U S A 2025; 122:e2416459122. [PMID: 39883838 PMCID: PMC11804472 DOI: 10.1073/pnas.2416459122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025] Open
Abstract
Accurate chromosome segregation in mitosis depends on proper connections of sister chromatids, through microtubules, to the opposite poles of the early mitotic spindle. Transiently, many inaccurate connections are formed and rapidly corrected throughout the mitotic stages, but a small number of merotelic connections, in which a chromatid is connected to both spindle poles, remain lagging at the spindle's equator in anaphase. Most of the lagging chromatids are eventually moved to one or the other pole, likely by a combination of microtubules' turnover and the brute force of pulling by the microtubules' majority from the one pole against the microtubules' minority from the other pole. We use computer simulations from two stochastic models (1D and full 3D CellDynaMo model) combining force balances and microtubules' dynamics for the lagging chromatids to investigate what maximizes the percentage of segregated laggards. We find that a) brute force tug-of-war with slow (< 0.0001 s-1) microtubules' detachment rate can move asymmetric laggards to the poles in limited time, b) rapid (> 0.01 s-1) microtubules' detachment rate leads to a significant loss of the laggards, and c) intermediate (~ 0.001 s-1) microtubules' detachment rate ensures higher than 90% accuracy of segregation. The simulations also shed light on the waiting time required to correct the merotelic errors in anaphase and on the roles of chromatid-attached microtubule number and Aurora B-mediated, spatially graded regulation of microtubule kinetics in anaphase.
Collapse
Affiliation(s)
| | - Kenneth A. Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA01854
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA01854
| | - Alex Mogilner
- Courant Institute for Mathematical Sciences and Department of Biology, New York University, New York, NY10012
| |
Collapse
|
2
|
Xu Y, Chao A, Rinaldin M, Kickuth A, Brugués J, Di Talia S. The cell cycle oscillator and spindle length set the speed of chromosome separation in Drosophila embryos. Curr Biol 2025; 35:655-664.e3. [PMID: 39793565 PMCID: PMC11794037 DOI: 10.1016/j.cub.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/23/2024] [Accepted: 11/20/2024] [Indexed: 01/13/2025]
Abstract
Anaphase is tightly controlled spatiotemporally to ensure proper separation of chromosomes.1,2,3 The mitotic spindle, the self-organized microtubule structure driving chromosome segregation, scales in size with the available cytoplasm.4,5,6,7 Yet, the relationship between spindle size and chromosome movement remains poorly understood. Here, we address this relationship during the cleavage divisions of the Drosophila blastoderm. We show that the speed of chromosome separation gradually decreases during the four nuclear divisions of the blastoderm. This reduction in speed is accompanied by a similar reduction in spindle length, ensuring that these two quantities are tightly linked. Using a combination of genetic and quantitative imaging approaches, we find that two processes contribute to controlling the speed at which chromosomes move in anaphase: the activity of molecular motors important for microtubule depolymerization and sliding and the cell cycle oscillator. Specifically, we found that the levels of multiple kinesin-like proteins important for microtubule depolymerization, as well as kinesin-5, contribute to setting the speed of chromosome separation. This observation is further supported by the scaling of poleward flux rate with the length of the spindle. Perturbations of the cell cycle oscillator using heterozygous mutants of mitotic kinases and phosphatases revealed that the duration of anaphase increases during the blastoderm cycles and is the major regulator of chromosome velocity. Thus, our work suggests a link between the biochemical rate of mitotic exit and the forces exerted by the spindle. Collectively, we propose that the cell cycle oscillator and spindle length set the speed of chromosome separation in anaphase.
Collapse
Affiliation(s)
- Yitong Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA; Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC 27710, USA
| | - Anna Chao
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA; Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC 27710, USA
| | - Melissa Rinaldin
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; Center of Systems Biology, Dresden 01307, Germany
| | - Alison Kickuth
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; Center of Systems Biology, Dresden 01307, Germany
| | - Jan Brugués
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; Center of Systems Biology, Dresden 01307, Germany
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA; Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Cieslinski K, Wu YL, Nechyporenko L, Hörner SJ, Conti D, Skruzny M, Ries J. Nanoscale structural organization and stoichiometry of the budding yeast kinetochore. J Cell Biol 2023; 222:213833. [PMID: 36705601 PMCID: PMC9929930 DOI: 10.1083/jcb.202209094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023] Open
Abstract
Proper chromosome segregation is crucial for cell division. In eukaryotes, this is achieved by the kinetochore, an evolutionarily conserved multiprotein complex that physically links the DNA to spindle microtubules and takes an active role in monitoring and correcting erroneous spindle-chromosome attachments. Our mechanistic understanding of these functions and how they ensure an error-free outcome of mitosis is still limited, partly because we lack a complete understanding of the kinetochore structure in the cell. In this study, we use single-molecule localization microscopy to visualize individual kinetochore complexes in situ in budding yeast. For major kinetochore proteins, we measured their abundance and position within the metaphase kinetochore. Based on this comprehensive dataset, we propose a quantitative model of the budding yeast kinetochore. While confirming many aspects of previous reports based on bulk imaging, our results present a unifying nanoscale model of the kinetochore in budding yeast.
Collapse
Affiliation(s)
- Konstanty Cieslinski
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Translational Radiation Oncology Unit, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Yu-Le Wu
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Faculty of Biosciences, Collaboration for Joint PhD Degree Between European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| | - Lisa Nechyporenko
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,https://ror.org/04p61dj41Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany,Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg, Germany
| | - Duccio Conti
- https://ror.org/03vpj4s62Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michal Skruzny
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jonas Ries
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
4
|
Bunning AR, Gupta Jr. ML. The importance of microtubule-dependent tension in accurate chromosome segregation. Front Cell Dev Biol 2023; 11:1096333. [PMID: 36755973 PMCID: PMC9899852 DOI: 10.3389/fcell.2023.1096333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Accurate chromosome segregation is vital for cell and organismal viability. The mitotic spindle, a bipolar macromolecular machine composed largely of dynamic microtubules, is responsible for chromosome segregation during each cell replication cycle. Prior to anaphase, a bipolar metaphase spindle must be formed in which each pair of chromatids is attached to microtubules from opposite spindle poles. In this bipolar configuration pulling forces from the dynamic microtubules can generate tension across the sister kinetochores. The tension status acts as a signal that can destabilize aberrant kinetochore-microtubule attachments and reinforces correct, bipolar connections. Historically it has been challenging to isolate the specific role of tension in mitotic processes due to the interdependency of attachment and tension status at kinetochores. Recent technical and experimental advances have revealed new insights into how tension functions during mitosis. Here we summarize the evidence that tension serves as a biophysical signal that unifies multiple aspects of kinetochore and centromere function to ensure accurate chromosome segregation.
Collapse
|
5
|
Murase Y, Yamagishi M, Okada N, Toya M, Yajima J, Hamada T, Sato M. Fission yeast Dis1 is an unconventional TOG/XMAP215 that induces microtubule catastrophe to drive chromosome pulling. Commun Biol 2022; 5:1298. [PMID: 36435910 PMCID: PMC9701203 DOI: 10.1038/s42003-022-04271-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022] Open
Abstract
The shortening of microtubules attached to kinetochores is the driving force of chromosome movement during cell division. Specific kinesins are believed to shorten microtubules but are dispensable for viability in yeast, implying the existence of additional factors responsible for microtubule shortening. Here, we demonstrate that Dis1, a TOG/XMAP215 ortholog in fission yeast, promotes microtubule shortening to carry chromosomes. Although TOG/XMAP215 orthologs are generally accepted as microtubule polymerases, Dis1 promoted microtubule catastrophe in vitro and in vivo. Notably, microtubule catastrophe was promoted when the tip was attached to kinetochores, as they steadily anchored Dis1 at the kinetochore-microtubule interface. Engineered Dis1 oligomers artificially tethered at a chromosome arm region induced the shortening of microtubules in contact, frequently pulling the chromosome arm towards spindle poles. This effect was not brought by oligomerised Alp14. Thus, unlike Alp14 and other TOG/XMAP215 orthologs, Dis1 plays an unconventional role in promoting microtubule catastrophe, thereby driving chromosome movement.
Collapse
Affiliation(s)
- Yuichi Murase
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan
| | - Masahiko Yamagishi
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo Japan
| | - Naoyuki Okada
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5808.50000 0001 1503 7226Instituto de Biologia Molecular e Celular, Instituto de Investigacao e Inovacao em Saude (i3S), Universidade do Porto, 208 Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Mika Toya
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5290.e0000 0004 1936 9975Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan ,grid.5290.e0000 0004 1936 9975Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan
| | - Junichiro Yajima
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo Japan ,grid.26999.3d0000 0001 2151 536XKomaba Institute for Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902 Tokyo Japan ,grid.26999.3d0000 0001 2151 536XResearch Center for Complex Systems Biology, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902 Tokyo Japan
| | - Takahiro Hamada
- grid.444568.f0000 0001 0672 2184Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi 700-0005 Japan
| | - Masamitsu Sato
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5290.e0000 0004 1936 9975Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan ,grid.5290.e0000 0004 1936 9975Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan
| |
Collapse
|
6
|
Zucca F, Visintin C, Li J, Gygi SP, Visintin R. APC/CCdc20-mediated degradation of Clb4 prompts astral microtubule stabilization at anaphase onset. J Cell Biol 2022; 222:213563. [PMID: 36269172 PMCID: PMC9595209 DOI: 10.1083/jcb.202203089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Key for accurate chromosome partitioning to the offspring is the ability of mitotic spindle microtubules to respond to different molecular signals and remodel their dynamics accordingly. Spindle microtubules are conventionally divided into three classes: kinetochore, interpolar, and astral microtubules (kMTs, iMTs, and aMTs, respectively). Among all, aMT regulation remains elusive. Here, we show that aMT dynamics are tightly regulated. aMTs remain unstable up to metaphase and are stabilized at anaphase onset. This switch in aMT dynamics, important for proper spindle orientation, specifically requires the degradation of the mitotic cyclin Clb4 by the Anaphase Promoting Complex bound to its activator subunit Cdc20 (APC/CCdc20). These data highlight a unique role for mitotic cyclin Clb4 in controlling aMT regulating factors, of which Kip2 is a prime candidate, provide a framework to understand aMT regulation in vertebrates, and uncover mechanistic principles of how the APC/CCdc20 choreographs the timing of late mitotic events by sequentially impacting on the three classes of spindle microtubules.
Collapse
Affiliation(s)
- Federico Zucca
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Clara Visintin
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Rosella Visintin
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy,Correspondence to Rosella Visintin:
| |
Collapse
|
7
|
Xu K, Wang C, Keinänen K, Li H, Cai C. Mitotic spindle disassembly in human cells relies on CRIPT having hierarchical redox signals. J Cell Sci 2022; 135:276793. [PMID: 36148798 DOI: 10.1242/jcs.259657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Swift and complete spindle disassembly in late mitosis is essential for cell survival, yet how it happens is largely unknown in mammalian cells. Here we used real-time live cell microscopy and biochemical assays to show that the primordial dwarfism (PD)-related cysteine-rich protein CRIPT dictates the spindle disassembly in a redox-dependent manner in human cells. This previously reported cytoplasmic protein was found to have a confined nuclear localization with a nucleolar concentration during interphase but was distributed to spindles and underwent redox modifications to form disulfide bonds in CXXC pairs during mitosis. Then, it directly interacted with, and might transfer a redox response to, tubulin subunits via a putative redox exchange among cysteine residues to induce microtubule depolymerization. Expression of CRIPT proteins with mutations of these cysteine residues blocked spindle disassembly, generating two cell types with long-lasting metaphase spindles or spindle remnants. Live-cell recordings of a disease-relevant mutant (CRIPTC3Y) revealed that microtubule depolymerization at spindle ends during anaphase and the entire spindle dissolution during telophase might share a common CRIPT-bearing redox-controlled mechanism.
Collapse
Affiliation(s)
- Kehan Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chunxue Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Kari Keinänen
- Research Program in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Hong Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chunlin Cai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.,Anhui Duoneng Biotechnology Co., Ltd., Hefei, Anhui 230088, China
| |
Collapse
|
8
|
Tudureanu R, Handrea-Dragan IM, Boca S, Botiz I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int J Mol Sci 2022; 23:7731. [PMID: 35887079 PMCID: PMC9315624 DOI: 10.3390/ijms23147731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
It is well known that surface topography plays an important role in cell behavior, including adhesion, migration, orientation, elongation, proliferation and differentiation. Studying these cell functions is essential in order to better understand and control specific characteristics of the cells and thus to enhance their potential in various biomedical applications. This review proposes to investigate the extent to which various surface relief patterns, imprinted in biopolymer films or in polymeric films coated with biopolymers, by utilizing specific lithographic techniques, influence cell behavior and development. We aim to understand how characteristics such as shape, dimension or chemical functionality of surface relief patterns alter the orientation and elongation of cells, and thus, finally make their mark on the cell proliferation and differentiation. We infer that such an insight is a prerequisite for pushing forward the comprehension of the methodologies and technologies used in tissue engineering applications and products, including skin or bone implants and wound or fracture healing.
Collapse
Affiliation(s)
- Raluca Tudureanu
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Iuliana M. Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| |
Collapse
|
9
|
Thompson AF, Blackburn PR, Arons NS, Stevens SN, Babovic-Vuksanovic D, Lian JB, Klee EW, Stumpff J. Pathogenic mutations in the chromokinesin KIF22 disrupt anaphase chromosome segregation. eLife 2022; 11:e78653. [PMID: 35730929 PMCID: PMC9302971 DOI: 10.7554/elife.78653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
The chromokinesin KIF22 generates forces that contribute to mitotic chromosome congression and alignment. Mutations in the α2 helix of the motor domain of KIF22 have been identified in patients with abnormal skeletal development, and we report the identification of a patient with a novel mutation in the KIF22 tail. We demonstrate that pathogenic mutations do not result in a loss of KIF22's functions in early mitosis. Instead, mutations disrupt chromosome segregation in anaphase, resulting in reduced proliferation, abnormal daughter cell nuclear morphology, and, in a subset of cells, cytokinesis failure. This phenotype could be explained by a failure of KIF22 to inactivate in anaphase. Consistent with this model, constitutive activation of the motor via a known site of phosphoregulation in the tail phenocopied the effects of pathogenic mutations. These results suggest that the motor domain α2 helix may be an important site for regulation of KIF22 activity at the metaphase to anaphase transition. In support of this conclusion, mimicking phosphorylation of α2 helix residue T158 also prevents inactivation of KIF22 in anaphase. These findings demonstrate the importance of both the head and tail of the motor in regulating the activity of KIF22 and offer insight into the cellular consequences of preventing KIF22 inactivation and disrupting force balance in anaphase.
Collapse
Affiliation(s)
- Alex F Thompson
- Department of Molecular Physiology and Biophysics, University of VermontBurlingtonUnited States
| | - Patrick R Blackburn
- Laboratory Medicine and Pathology, Mayo ClinicRochesterUnited States
- Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Noah S Arons
- Department of Molecular Physiology and Biophysics, University of VermontBurlingtonUnited States
| | - Sarah N Stevens
- Department of Molecular Physiology and Biophysics, University of VermontBurlingtonUnited States
| | - Dusica Babovic-Vuksanovic
- Laboratory Medicine and Pathology, Mayo ClinicRochesterUnited States
- Clinical Genomics, Mayo ClinicRochesterUnited States
| | - Jane B Lian
- Department of Biochemistry, University of VermontBurlingtonUnited States
| | - Eric W Klee
- Biomedical Informatics, Mayo ClinicRochesterUnited States
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of VermontBurlingtonUnited States
| |
Collapse
|
10
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
11
|
Velle KB, Kennard AS, Trupinić M, Ivec A, Swafford AJM, Nolton E, Rice LM, Tolić IM, Fritz-Laylin LK, Wadsworth P. Naegleria's mitotic spindles are built from unique tubulins and highlight core spindle features. Curr Biol 2022; 32:1247-1261.e6. [PMID: 35139359 PMCID: PMC9036621 DOI: 10.1016/j.cub.2022.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/02/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Naegleria gruberi is a unicellular eukaryote whose evolutionary distance from animals and fungi has made it useful for developing hypotheses about the last common eukaryotic ancestor. Naegleria amoebae lack a cytoplasmic microtubule cytoskeleton and assemble microtubules only during mitosis and thus represent a unique system for studying the evolution and functional specificity of mitotic tubulins and the spindles they assemble. Previous studies show that Naegleria amoebae express a divergent α-tubulin during mitosis, and we now show that Naegleria amoebae express a second mitotic α- and two mitotic β-tubulins. The mitotic tubulins are evolutionarily divergent relative to typical α- and β-tubulins and contain residues that suggest distinct microtubule properties. These distinct residues are conserved in mitotic tubulin homologs of the "brain-eating amoeba" Naegleria fowleri, making them potential drug targets. Using quantitative light microscopy, we find that Naegleria's mitotic spindle is a distinctive barrel-like structure built from a ring of microtubule bundles. Similar to those of other species, Naegleria's spindle is twisted, and its length increases during mitosis, suggesting that these aspects of mitosis are ancestral features. Because bundle numbers change during metaphase, we hypothesize that the initial bundles represent kinetochore fibers and secondary bundles function as bridging fibers.
Collapse
Affiliation(s)
- Katrina B Velle
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Andrew S Kennard
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Monika Trupinić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Arian Ivec
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Andrew J M Swafford
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Emily Nolton
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lillian K Fritz-Laylin
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA.
| | - Patricia Wadsworth
- Department of Biology, University of Massachusetts, 611 N. Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
12
|
The Aurora B gradient sustains kinetochore stability in anaphase. Cell Rep 2021; 37:109818. [PMID: 34758321 PMCID: PMC8595645 DOI: 10.1016/j.celrep.2021.109818] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022] Open
Abstract
Kinetochores assemble on chromosomes in mitosis to allow microtubules to attach and bring about accurate chromosome segregation. The kinases Cyclin B-Cdk1 and Aurora B are crucial for the formation of stable kinetochores. However, the activity of these two kinases appears to decline dramatically at centromeres during anaphase onset, precisely when microtubule attachments are required to move chromosomes toward opposite poles of the dividing cell. We find that, although Aurora B leaves centromeres at anaphase, a gradient of Aurora B activity centered on the central spindle is still able to phosphorylate kinetochore substrates such as Dsn1 to modulate kinetochore stability in anaphase and to regulate kinetochore disassembly as cells enter telophase. We provide a model to explain how Aurora B co-operates with Cyclin B-Cdk1 to maintain kinetochore function in anaphase. Central spindle Aurora B targets kinetochore substrates in anaphase Phosphorylation of Dsn1 by Aurora B stabilizes kinetochores in anaphase Dsn1 phosphorylation modulates chromosome movements in anaphase
Collapse
|
13
|
Campos Medina MA, Iemura K, Kimura A, Tanaka K. A mathematical model of kinetochore-microtubule attachment regulated by Aurora A activity gradient describes chromosome oscillation and correction of erroneous attachments. Biomed Res 2021; 42:203-219. [PMID: 34544996 DOI: 10.2220/biomedres.42.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chromosome oscillation during metaphase is attenuated in cancer cell lines, concomitant with the reduction of Aurora A activity on kinetochores, which results in reduced mitotic fidelity. To verify the correlation between Aurora A activity, chromosome oscillation, and error correction efficiency, we developed a mathematical model of kinetochore-microtubule dynamics, based on stochastic attachment/detachment events regulated by Aurora A activity gradient centered at spindle poles. The model accurately reproduced the oscillatory movements of chromosomes, which were suppressed not only when Aurora A activity was inhibited, but also when it was upregulated, mimicking the situation in cancer cells. Our simulation also predicted efficient correction of erroneous attachments through chromosome oscillation, which was hampered by both inhibition and upregulation of Aurora A activity. Our model provides a framework to understand the physiological role of chromosome oscillation in the correction of erroneous attachments that is intrinsically related to Aurora A activity.
Collapse
Affiliation(s)
- Manuel Alejandro Campos Medina
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University.,Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Department of Chromosome Science, National Institute of Genetics; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI)
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University
| |
Collapse
|
14
|
Pandey H, Popov M, Goldstein-Levitin A, Gheber L. Mechanisms by Which Kinesin-5 Motors Perform Their Multiple Intracellular Functions. Int J Mol Sci 2021; 22:6420. [PMID: 34203964 PMCID: PMC8232732 DOI: 10.3390/ijms22126420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bipolar kinesin-5 motor proteins perform multiple intracellular functions, mainly during mitotic cell division. Their specialized structural characteristics enable these motors to perform their essential functions by crosslinking and sliding apart antiparallel microtubules (MTs). In this review, we discuss the specialized structural features of kinesin-5 motors, and the mechanisms by which these features relate to kinesin-5 functions and motile properties. In addition, we discuss the multiple roles of the kinesin-5 motors in dividing as well as in non-dividing cells, and examine their roles in pathogenetic conditions. We describe the recently discovered bidirectional motility in fungi kinesin-5 motors, and discuss its possible physiological relevance. Finally, we also focus on the multiple mechanisms of regulation of these unique motor proteins.
Collapse
Affiliation(s)
| | | | | | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel; (H.P.); (M.P.); (A.G.-L.)
| |
Collapse
|
15
|
Vukušić K, Ponjavić I, Buđa R, Risteski P, Tolić IM. Microtubule-sliding modules based on kinesins EG5 and PRC1-dependent KIF4A drive human spindle elongation. Dev Cell 2021; 56:1253-1267.e10. [PMID: 33910056 PMCID: PMC8098747 DOI: 10.1016/j.devcel.2021.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/03/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Proper chromosome segregation into two future daughter cells requires the mitotic spindle to elongate in anaphase. However, although some candidate proteins are implicated in this process, the molecular mechanism that drives spindle elongation in human cells is unknown. Using combined depletion and inactivation assays together with CRISPR technology to explore redundancy between multiple targets, we discovered that the force-generating mechanism of spindle elongation consists of EG5/kinesin-5 together with the PRC1-dependent motor KIF4A/kinesin-4, with contribution from kinesin-6 and kinesin-8. Disruption of EG5 and KIF4A leads to total failure of chromosome segregation due to blocked spindle elongation, despite poleward chromosome motion. Tubulin photoactivation, stimulated emission depletion (STED), and expansion microscopy show that perturbation of both proteins impairs midzone microtubule sliding without affecting microtubule stability. Thus, two mechanistically distinct sliding modules, one based on a self-sustained and the other on a crosslinker-assisted motor, power the mechanism that drives spindle elongation in human cells.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivana Ponjavić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Renata Buđa
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Patrik Risteski
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
16
|
Mechanical Mechanisms of Chromosome Segregation. Cells 2021; 10:cells10020465. [PMID: 33671543 PMCID: PMC7926803 DOI: 10.3390/cells10020465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation—the partitioning of genetic material into two daughter cells—is one of the most crucial processes in cell division. In all Eukaryotes, chromosome segregation is driven by the spindle, a microtubule-based, self-organizing subcellular structure. Extensive research performed over the past 150 years has identified numerous commonalities and contrasts between spindles in different systems. In this review, we use simple coarse-grained models to organize and integrate previous studies of chromosome segregation. We discuss sites of force generation in spindles and fundamental mechanical principles that any understanding of chromosome segregation must be based upon. We argue that conserved sites of force generation may interact differently in different spindles, leading to distinct mechanical mechanisms of chromosome segregation. We suggest experiments to determine which mechanical mechanism is operative in a particular spindle under study. Finally, we propose that combining biophysical experiments, coarse-grained theories, and evolutionary genetics will be a productive approach to enhance our understanding of chromosome segregation in the future.
Collapse
|
17
|
Vicars H, Karg T, Warecki B, Bast I, Sullivan W. Kinetochore-independent mechanisms of sister chromosome separation. PLoS Genet 2021; 17:e1009304. [PMID: 33513180 PMCID: PMC7886193 DOI: 10.1371/journal.pgen.1009304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/16/2021] [Accepted: 12/08/2020] [Indexed: 11/19/2022] Open
Abstract
Although kinetochores normally play a key role in sister chromatid separation and segregation, chromosome fragments lacking kinetochores (acentrics) can in some cases separate and segregate successfully. In Drosophila neuroblasts, acentric chromosomes undergo delayed, but otherwise normal sister separation, revealing the existence of kinetochore- independent mechanisms driving sister chromosome separation. Bulk cohesin removal from the acentric is not delayed, suggesting factors other than cohesin are responsible for the delay in acentric sister separation. In contrast to intact kinetochore-bearing chromosomes, we discovered that acentrics align parallel as well as perpendicular to the mitotic spindle. In addition, sister acentrics undergo unconventional patterns of separation. For example, rather than the simultaneous separation of sisters, acentrics oriented parallel to the spindle often slide past one another toward opposing poles. To identify the mechanisms driving acentric separation, we screened 117 RNAi gene knockdowns for synthetic lethality with acentric chromosome fragments. In addition to well-established DNA repair and checkpoint mutants, this candidate screen identified synthetic lethality with X-chromosome-derived acentric fragments in knockdowns of Greatwall (cell cycle kinase), EB1 (microtubule plus-end tracking protein), and Map205 (microtubule-stabilizing protein). Additional image-based screening revealed that reductions in Topoisomerase II levels disrupted sister acentric separation. Intriguingly, live imaging revealed that knockdowns of EB1, Map205, and Greatwall preferentially disrupted the sliding mode of sister acentric separation. Based on our analysis of EB1 localization and knockdown phenotypes, we propose that in the absence of a kinetochore, microtubule plus-end dynamics provide the force to resolve DNA catenations required for sister separation.
Collapse
Affiliation(s)
- Hannah Vicars
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Travis Karg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Brandt Warecki
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Ian Bast
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
18
|
Taylor SJ, Pelisch F. Chromosome segregation during female meiosis in C. elegans: A tale of pushing and pulling. J Cell Biol 2020; 219:e202011035. [PMID: 33211077 PMCID: PMC7716380 DOI: 10.1083/jcb.202011035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of the kinetochore during meiotic chromosome segregation in C. elegans oocytes has been a matter of controversy. Danlasky et al. (2020. J. Cell. Biol.https://doi.org/10.1083/jcb.202005179) show that kinetochore proteins KNL-1 and KNL-3 are required for early stages of anaphase during female meiosis, suggesting a new kinetochore-based model of chromosome segregation.
Collapse
Affiliation(s)
| | - Federico Pelisch
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
19
|
Pavin N, Tolić IM. Mechanobiology of the Mitotic Spindle. Dev Cell 2020; 56:192-201. [PMID: 33238148 DOI: 10.1016/j.devcel.2020.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
The mitotic spindle is a microtubule-based assembly that separates the chromosomes during cell division. As the spindle is basically a mechanical micro machine, the understanding of its functioning is constantly motivating the development of experimental approaches based on mechanical perturbations, which are complementary to and work together with the classical genetics and biochemistry methods. Recent data emerging from these approaches in combination with theoretical modeling led to novel ideas and significant revisions of the basic concepts in the field. In this Perspective, we discuss the advances in the understanding of spindle mechanics, focusing on microtubule forces that control chromosome movements.
Collapse
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
20
|
Nuclear Isoforms of Neurofibromin Are Required for Proper Spindle Organization and Chromosome Segregation. Cells 2020; 9:cells9112348. [PMID: 33114250 PMCID: PMC7690890 DOI: 10.3390/cells9112348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Mitotic spindles are highly organized, microtubule (MT)-based, transient structures that serve the fundamental function of unerring chromosome segregation during cell division and thus of genomic stability during tissue morphogenesis and homeostasis. Hence, a multitude of MT-associated proteins (MAPs) regulates the dynamic assembly of MTs in preparation for mitosis. Some tumor suppressors, normally functioning to prevent tumor development, have now emerged as significant MAPs. Among those, neurofibromin, the product of the Neurofibromatosis-1 gene (NF1), a major Ras GTPase activating protein (RasGAP) in neural cells, controls also the critical function of chromosome congression in astrocytic cellular contexts. Cell type- and development-regulated splicings may lead to the inclusion or exclusion of NF1exon51, which bears a nuclear localization sequence (NLS) for nuclear import at G2; yet the functions of the produced NLS and ΔNLS neurofibromin isoforms have not been previously addressed. By using a lentiviral shRNA system, we have generated glioblastoma SF268 cell lines with conditional knockdown of NLS or ΔNLS transcripts. In dissecting the roles of NLS or ΔNLS neurofibromins, we found that NLS-neurofibromin knockdown led to increased density of cytosolic MTs but loss of MT intersections, anastral spindles featuring large hollows and abnormal chromosome positioning, and finally abnormal chromosome segregation and increased micronuclei frequency. Therefore, we propose that NLS neurofibromin isoforms exert prominent mitotic functions.
Collapse
|
21
|
Nazockdast E, Redemann S. Mechanics of the spindle apparatus. Semin Cell Dev Biol 2020; 107:91-102. [PMID: 32747191 DOI: 10.1016/j.semcdb.2020.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 12/01/2022]
Abstract
During mitosis microtubules self-organize to form a bipolar mitotic spindle structure, which positions the sister chromatids on the spindle mid-plane and separates them afterwards. Previous studies have identified many spindle associated proteins. Yet, we do not fully understand how these nanoscopic proteins lead to force generation through interactions of individual microtubules, motor proteins and chromosomes, and how a large number of these local interactions ultimately determine the structure and mechanics of the spindle in micron scale. Here we review the current understanding and open questions related to the structure and mechanics of the mitotic spindle. We then discuss how a combination of electron microscopy and computational modeling can be used to tackle some of these open questions.
Collapse
Affiliation(s)
- Ehssan Nazockdast
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA.
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology & Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
22
|
Warecki B, Sullivan W. Mechanisms driving acentric chromosome transmission. Chromosome Res 2020; 28:229-246. [PMID: 32712740 DOI: 10.1007/s10577-020-09636-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore-microtubule association is a core, conserved event that drives chromosome transmission during mitosis. Failure to establish this association on even a single chromosome results in aneuploidy leading to cell death or the development of cancer. However, although many chromosomes lacking centromeres, termed acentrics, fail to segregate, studies in a number of systems reveal robust alternative mechanisms that can drive segregation and successful poleward transport of acentrics. In contrast to the canonical mechanism that relies on end-on microtubule attachments to kinetochores, mechanisms of acentric transmission largely fall into three categories: direct attachments to other chromosomes, kinetochore-independent lateral attachments to microtubules, and long-range tether-based attachments. Here, we review these "non-canonical" methods of acentric chromosome transmission. Just as the discovery and exploration of cell cycle checkpoints provided insight into both the origins of cancer and new therapies, identifying mechanisms and structures specifically involved in acentric segregation may have a significant impact on basic and applied cancer research.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
23
|
Fabig G, Kiewisz R, Lindow N, Powers JA, Cota V, Quintanilla LJ, Brugués J, Prohaska S, Chu DS, Müller-Reichert T. Male meiotic spindle features that efficiently segregate paired and lagging chromosomes. eLife 2020; 9:50988. [PMID: 32149606 PMCID: PMC7101234 DOI: 10.7554/elife.50988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/08/2020] [Indexed: 01/25/2023] Open
Abstract
Chromosome segregation during male meiosis is tailored to rapidly generate multitudes of sperm. Little is known about mechanisms that efficiently partition chromosomes to produce sperm. Using live imaging and tomographic reconstructions of spermatocyte meiotic spindles in Caenorhabditis elegans, we find the lagging X chromosome, a distinctive feature of anaphase I in C. elegans males, is due to lack of chromosome pairing. The unpaired chromosome remains tethered to centrosomes by lengthening kinetochore microtubules, which are under tension, suggesting that a ‘tug of war’ reliably resolves lagging. We find spermatocytes exhibit simultaneous pole-to-chromosome shortening (anaphase A) and pole-to-pole elongation (anaphase B). Electron tomography unexpectedly revealed spermatocyte anaphase A does not stem solely from kinetochore microtubule shortening. Instead, movement of autosomes is largely driven by distance change between chromosomes, microtubules, and centrosomes upon tension release during anaphase. Overall, we define novel features that segregate both lagging and paired chromosomes for optimal sperm production.
Collapse
Affiliation(s)
- Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - James A Powers
- Light Microscopy Imaging Center, Indiana University, Bloomington, United States
| | - Vanessa Cota
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Luis J Quintanilla
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Centre for Systems Biology Dresden, Dresden, Germany
| | | | - Diana S Chu
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Yu CH, Redemann S, Wu HY, Kiewisz R, Yoo TY, Conway W, Farhadifar R, Müller-Reichert T, Needleman D. Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B. Mol Biol Cell 2019; 30:2503-2514. [PMID: 31339442 PMCID: PMC6743361 DOI: 10.1091/mbc.e19-01-0074] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 01/05/2023] Open
Abstract
Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, that is, on the region between chromosomes and poles. In comparison, microtubules in the central-spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central-spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move toward spindle poles. In these systems, damaging central-spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central-spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central-spindle microtubules during chromosome segregation in diverse spindles and suggest that central-spindle microtubules and chromosomes are strongly coupled in anaphase.
Collapse
Affiliation(s)
- Che-Hang Yu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Stefanie Redemann
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Membrane and Cell Physiology & Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Hai-Yin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tae Yeon Yoo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - William Conway
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Reza Farhadifar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Daniel Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
25
|
Pamula MC, Carlini L, Forth S, Verma P, Suresh S, Legant WR, Khodjakov A, Betzig E, Kapoor TM. High-resolution imaging reveals how the spindle midzone impacts chromosome movement. J Cell Biol 2019; 218:2529-2544. [PMID: 31248912 PMCID: PMC6683753 DOI: 10.1083/jcb.201904169] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Microtubule bundles in the spindle midzone have been reported to either promote or hinder chromosome movement. Pamula et al. examine the assembly dynamics of midzone microtubule bundles during anaphase and how chromosome segregation is impacted by aberrant bundle assembly. In the spindle midzone, microtubules from opposite half-spindles form bundles between segregating chromosomes. Microtubule bundles can either push or restrict chromosome movement during anaphase in different cellular contexts, but how these activities are achieved remains poorly understood. Here, we use high-resolution live-cell imaging to analyze individual microtubule bundles, growing filaments, and chromosome movement in dividing human cells. Within bundles, filament overlap length marked by the cross-linking protein PRC1 decreases during anaphase as chromosome segregation slows. Filament ends within microtubule bundles appear capped despite dynamic PRC1 turnover and submicrometer proximity to growing microtubules. Chromosome segregation distance and rate are increased in two human cell lines when microtubule bundle assembly is prevented via PRC1 knockdown. Upon expressing a mutant PRC1 with reduced microtubule affinity, bundles assemble but chromosome hypersegregation is still observed. We propose that microtubule overlap length reduction, typically linked to pushing forces generated within filament bundles, is needed to properly restrict spindle elongation and position chromosomes within daughter cells.
Collapse
Affiliation(s)
- Melissa C Pamula
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Lina Carlini
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Scott Forth
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Priyanka Verma
- Department of Cancer Biology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Subbulakshmi Suresh
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA.,Department of Physics and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| |
Collapse
|
26
|
Helical Twist and Rotational Forces in the Mitotic Spindle. Biomolecules 2019; 9:biom9040132. [PMID: 30939864 PMCID: PMC6523234 DOI: 10.3390/biom9040132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 01/14/2023] Open
Abstract
The mitotic spindle segregates chromosomes into two daughter cells during cell division. This process relies on the precise regulation of forces acting on chromosomes as the cell progresses through mitosis. The forces in the spindle are difficult to directly measure using the available experimental techniques. Here, we review the ideas and recent advances of how forces can be determined from the spindle shape. By using these approaches, it has been shown that tension and compression coexist along a single kinetochore fiber, which are balanced by a bridging fiber between sister kinetochore fibers. An extension of this approach to three dimensions revealed that microtubule bundles have rich shapes, and extend not simply like meridians on the Earth’s surface but, rather, twisted in a helical manner. Such complex shapes are due to rotational forces, which, in addition to linear forces, act in the spindle and may be generated by motor proteins such as kinesin-5. These findings open new questions for future studies, to understand the mechanisms of rotational forces and reveal their biological roles in cells.
Collapse
|
27
|
The Tubulin Detyrosination Cycle: Function and Enzymes. Trends Cell Biol 2019; 29:80-92. [DOI: 10.1016/j.tcb.2018.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/24/2022]
|
28
|
Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 2018; 234:7923-7937. [PMID: 30536951 DOI: 10.1002/jcp.27978] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Microtubules (MT) and actin microfilaments are dynamic cytoskeleton components involved in a range of intracellular processes. MTs play a role in cell division, beating of cilia and flagella, and intracellular transport. Over the past decades, much knowledge has been gained regarding MT function and structure, and its role in underlying disease progression. This makes MT potential therapeutic targets for various disorders. Disturbances in MT and their associated proteins are the underlying cause of diseases such as Alzheimer's disease, cancer, and several genetic diseases. Some of the advances in the field of MT research, as well as the potenti G beta gamma, is needed al uses of MT-targeting agents in various conditions have been reviewed here.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
29
|
Vicente-Blázquez A, González M, Álvarez R, Del Mazo S, Medarde M, Peláez R. Antitubulin sulfonamides: The successful combination of an established drug class and a multifaceted target. Med Res Rev 2018; 39:775-830. [PMID: 30362234 DOI: 10.1002/med.21541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Tubulin, the microtubules and their dynamic behavior are amongst the most successful antitumor, antifungal, antiparasitic, and herbicidal drug targets. Sulfonamides are exemplary drugs with applications in the clinic, in veterinary and in the agrochemical industry. This review summarizes the actual state and recent progress of both fields looking from the double point of view of the target and its drugs, with special focus onto the structural aspects. The article starts with a brief description of tubulin structure and its dynamic assembly and disassembly into microtubules and other polymers. Posttranslational modifications and the many cellular means of regulating and modulating tubulin's biology are briefly presented in the tubulin code. Next, the structurally characterized drug binding sites, their occupying drugs and the effects they induce are described, emphasizing on the structural requirements for high potency, selectivity, and low toxicity. The second part starts with a summary of the favorable and highly tunable combination of physical-chemical and biological properties that render sulfonamides a prototypical example of privileged scaffolds with representatives in many therapeutic areas. A complete description of tubulin-binding sulfonamides is provided, covering the different species and drug sites. Some of the antimitotic sulfonamides have met with very successful applications and others less so, thus illustrating the advances, limitations, and future perspectives of the field. All of them combine in a mechanism of action and a clinical outcome that conform efficient drugs.
Collapse
Affiliation(s)
- Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sara Del Mazo
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
30
|
Novak M, Polak B, Simunić J, Boban Z, Kuzmić B, Thomae AW, Tolić IM, Pavin N. The mitotic spindle is chiral due to torques within microtubule bundles. Nat Commun 2018; 9:3571. [PMID: 30177685 PMCID: PMC6120957 DOI: 10.1038/s41467-018-06005-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/06/2018] [Indexed: 11/08/2022] Open
Abstract
Mitosis relies on forces generated in the spindle, a micro-machine composed of microtubules and associated proteins. Forces are required for the congression of chromosomes to the metaphase plate and their separation in anaphase. However, besides forces, torques may exist in the spindle, yet they have not been investigated. Here we show that the spindle is chiral. Chirality is evident from the finding that microtubule bundles in human spindles follow a left-handed helical path, which cannot be explained by forces but rather by torques. Kinesin-5 (Kif11/Eg5) inactivation abolishes spindle chirality. Our theoretical model predicts that bending and twisting moments may generate curved shapes of bundles. We found that bundles turn by about -2 deg µm-1 around the spindle axis, which we explain by a twisting moment of roughly -10 pNµm. We conclude that torques, in addition to forces, exist in the spindle and determine its chiral architecture.
Collapse
Grants
- This work was funded by the European Research Council (ERC Consolidator Grant, GA number 647077, granted to I.M.T.), Unity through Knowledge Fund (UKF, project 18/15, granted to N.P. and I.M.T.), and the European Social Fund (HR.3.2.01-0022, co-leader I.M.T.). We also acknowledge support from the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004, element leader N.P.), and the Croatian Science Foundation (HRZZ, project IP-2014-09- 4753, granted to I.M.T.).
Collapse
Affiliation(s)
- Maja Novak
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Bruno Polak
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Juraj Simunić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Zvonimir Boban
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Barbara Kuzmić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Andreas W Thomae
- Walter Brendel Centre of Experimental Medicine and Core Facility Bioimaging at the Biomedical Center, University of Munich, 82152, Planegg-Martinsried, Germany
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia.
| |
Collapse
|
31
|
Suzuki A, Gupta A, Long SK, Evans R, Badger BL, Salmon ED, Biggins S, Bloom K. A Kinesin-5, Cin8, Recruits Protein Phosphatase 1 to Kinetochores and Regulates Chromosome Segregation. Curr Biol 2018; 28:2697-2704.e3. [PMID: 30174190 DOI: 10.1016/j.cub.2018.08.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023]
Abstract
Kinesin-5 is a highly conserved homo-tetrameric protein complex responsible for crosslinking microtubules and pushing spindle poles apart. The budding yeast Kinesin-5, Cin8, is highly concentrated at kinetochores in mitosis before anaphase, but its functions there are largely unsolved. Here, we show that Cin8 localizes to kinetochores in a cell-cycle-dependent manner and concentrates near the microtubule binding domains of Ndc80 at metaphase. Cin8's kinetochore localization depends on the Ndc80 complex, kinetochore microtubules, and the Dam1 complex. Consistent with its kinetochore localization, a Cin8 deletion induces a loss of tension at the Ndc80 microtubule binding domains and a major delay in mitotic progression. Cin8 associates with Protein Phosphatase 1 (PP1), and mutants that inhibit its PP1 binding also induce a loss of tension at the Ndc80 microtubule binding domains and delay mitotic progression. Taken together, our results suggest that Cin8-PP1 plays a critical role at kinetochores to promote accurate chromosome segregation by controlling Ndc80 attachment to microtubules.
Collapse
Affiliation(s)
- Aussie Suzuki
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Amitabha Gupta
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sarah K Long
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rena Evans
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Benjamin L Badger
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward D Salmon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Jenni S, Harrison SC. Structure of the DASH/Dam1 complex shows its role at the yeast kinetochore-microtubule interface. Science 2018; 360:552-558. [PMID: 29724956 DOI: 10.1126/science.aar6436] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Kinetochores connect mitotic-spindle microtubules with chromosomes, allowing microtubule depolymerization to pull chromosomes apart during anaphase while resisting detachment as the microtubule shortens. The heterodecameric DASH/Dam1 complex (DASH/Dam1c), an essential component of yeast kinetochores, assembles into a microtubule-encircling ring. The ring associates with rodlike Ndc80 complexes to organize the kinetochore-microtubule interface. We report the cryo-electron microscopy structure (at ~4.5-angstrom resolution) of a DASH/Dam1c ring and a molecular model of its ordered components, validated by evolutionary direct-coupling analysis. Integrating this structure with that of the Ndc80 complex and with published interaction data yields a molecular picture of kinetochore-microtubule attachment, including how flexible, C-terminal extensions of DASH/Dam1c subunits project and contact widely separated sites on the Ndc80 complex rod and how phosphorylation at previously identified sites might regulate kinetochore assembly.
Collapse
Affiliation(s)
- Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA. .,Howard Hughes Medical Institute, Harvard University, 250 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
33
|
McIntosh JR. Assessing the Contributions of Motor Enzymes and Microtubule Dynamics to Mitotic Chromosome Motions. Annu Rev Cell Dev Biol 2018; 33:1-22. [PMID: 28992437 DOI: 10.1146/annurev-cellbio-100616-060827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During my graduate work with Keith Porter, I became fascinated by the mitotic spindle, an interest that has motivated much of my scientific work ever since. I began spindle studies by using electron microscopes, instruments that have made significant contributions to our understanding of spindle organization. Such instruments have helped to elucidate the distributions of spindle microtubules, the interactions among them, their molecular polarity, and their associations with both kinetochores and spindle poles. Our lab has also investigated some processes of spindle physiology: microtubule dynamics, the actions of microtubule-associated proteins (including motor enzymes), the character of forces generated by specific spindle components, and factors that control mitotic progression. Here, I give a personal perspective on some of this intellectual history and on what recent discoveries imply about the mechanisms of chromosome motion.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347;
| |
Collapse
|
34
|
Singh SK, Pandey H, Al-Bassam J, Gheber L. Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles. Cell Mol Life Sci 2018; 75:1757-1771. [PMID: 29397398 PMCID: PMC11105280 DOI: 10.1007/s00018-018-2754-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 01/27/2023]
Abstract
Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942-4954, 2011; Roostalu et al., Science 332:94-99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.
Collapse
Affiliation(s)
- Sudhir Kumar Singh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Himanshu Pandey
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Jawdat Al-Bassam
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
35
|
Tolić IM. Mitotic spindle: kinetochore fibers hold on tight to interpolar bundles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:191-203. [PMID: 28725997 PMCID: PMC5845649 DOI: 10.1007/s00249-017-1244-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/24/2022]
Abstract
When a cell starts to divide, it forms a spindle, a micro-machine made of microtubules, which separates the duplicated chromosomes. The attachment of microtubules to chromosomes is mediated by kinetochores, protein complexes on the chromosome. Spindle microtubules can be divided into three major classes: kinetochore microtubules, which form k-fibers ending at the kinetochore; interpolar microtubules, which extend from the opposite sides of the spindle and interact in the middle; and astral microtubules, which extend towards the cell cortex. Recent work in human cells has shown a close relationship between interpolar and kinetochore microtubules, where interpolar bundles are attached laterally to kinetochore fibers almost all along their length, acting as a bridge between sister k-fibers. Most of the interpolar bundles are attached to a pair of sister kinetochore fibers and vice versa. Thus, the spindle is made of modules consisting of a pair of sister kinetochore fibers and a bundle of interpolar microtubules that connects them. These interpolar bundles, termed bridging fibers, balance the forces acting at kinetochores and support the rounded shape of the spindle during metaphase. This review discusses the structure, function, and formation of kinetochore fibers and interpolar bundles, with an emphasis on how they interact. Their connections have an impact on the force balance in the spindle and on chromosome movement during mitosis because the forces in interpolar bundles are transmitted to kinetochore fibers and hence to kinetochores through these connections.
Collapse
Affiliation(s)
- Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
36
|
Vázquez-Diez C, FitzHarris G. Causes and consequences of chromosome segregation error in preimplantation embryos. Reproduction 2018; 155:R63-R76. [DOI: 10.1530/rep-17-0569] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
Errors in chromosome segregation are common during the mitotic divisions of preimplantation development in mammalian embryos, giving rise to so-called ‘mosaic’ embryos possessing a mixture of euploid and aneuploid cells. Mosaicism is widely considered to be detrimental to embryo quality and is frequently used as criteria to select embryos for transfer in human fertility clinics. However, despite the clear clinical importance, the underlying defects in cell division that result in mosaic aneuploidy remain elusive. In this review, we summarise recent findings from clinical and animal model studies that provide new insights into the fundamental mechanisms of chromosome segregation in the highly unusual cellular environment of early preimplantation development and consider recent clues as to why errors should commonly occur in this setting. We furthermore discuss recent evidence suggesting that mosaicism is not an irrevocable barrier to a healthy pregnancy. Understanding the causes and biological impacts of mosaic aneuploidy will be pivotal in the development and fine-tuning of clinical embryo selection methods.
Collapse
|
37
|
Vukušić K, Buđa R, Bosilj A, Milas A, Pavin N, Tolić IM. Microtubule Sliding within the Bridging Fiber Pushes Kinetochore Fibers Apart to Segregate Chromosomes. Dev Cell 2017; 43:11-23.e6. [PMID: 29017027 PMCID: PMC5637169 DOI: 10.1016/j.devcel.2017.09.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/21/2017] [Accepted: 09/13/2017] [Indexed: 01/06/2023]
Abstract
During cell division, mitotic spindle microtubules segregate chromosomes by exerting forces on kinetochores. What forces drive chromosome segregation in anaphase remains a central question. The current model for anaphase in human cells includes shortening of kinetochore fibers and separation of spindle poles. Both processes require kinetochores to be linked with the poles. Here we show, by combining laser ablation, photoactivation, and theoretical modeling, that kinetochores can separate without any attachment to one spindle pole. This separation requires the bridging fiber, a microtubule bundle that connects sister kinetochore fibers. Bridging fiber microtubules in intact spindles slide apart with kinetochore fibers, indicating strong crosslinks between them. We conclude that sliding of microtubules within the bridging fibers drives pole separation and pushes kinetochore fibers poleward by the friction of passive crosslinks between these fibers. Thus, sliding within the bridging fiber works together with the shortening of kinetochore fibers to segregate chromosomes.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Renata Buđa
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Agneza Bosilj
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Ana Milas
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
38
|
Abstract
FtsZ, a homolog of tubulin, is found in almost all bacteria and archaea where it has a primary role in cytokinesis. Evidence for structural homology between FtsZ and tubulin came from their crystal structures and identification of the GTP box. Tubulin and FtsZ constitute a distinct family of GTPases and show striking similarities in many of their polymerization properties. The differences between them, more so, the complexities of microtubule dynamic behavior in comparison to that of FtsZ, indicate that the evolution to tubulin is attributable to the incorporation of the complex functionalities in higher organisms. FtsZ and microtubules function as polymers in cell division but their roles differ in the division process. The structural and partial functional homology has made the study of their dynamic properties more interesting. In this review, we focus on the application of the information derived from studies on FtsZ dynamics to study microtubule dynamics and vice versa. The structural and functional aspects that led to the establishment of the homology between the two proteins are explained to emphasize the network of FtsZ and microtubule studies and how they are connected.
Collapse
Affiliation(s)
- Rachana Rao Battaje
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
39
|
Li YR, Zhong A, Dong H, Ni LH, Tan FQ, Yang WX. Myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability. Oncotarget 2017; 8:54654-54671. [PMID: 28903372 PMCID: PMC5589611 DOI: 10.18632/oncotarget.17920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
Myosin Va, a member of Class V myosin, functions in organelle motility, spindle formation, nuclear morphogenesis and cell motility. The purpose of this study is to explore the expression and localization of myosin Va in testicular cancer and prostate cancer, and its specific roles in tumor progression including cell division, migration and proliferation. We detected myosin Va in testicular and prostate tumor tissues using sqRT-PCR, western blot, and immunofluorescence. Tumor samples showed an increased expression of myosin Va, abnormal actin and myosin Va distribution. Immunofluorescence images during the cell cycle showed that myosin Va tended to gather at cytoplasm during anaphase but co-localized with nucleus during other phases, suggesting the roles of myosin Va in disassembly of spindle microtubule, movement of chromosomes and normal cytokinesis. In addition, multi-nucleation and aberrant nuclear morphology were observed in myosin Va-knockdown cells. Wounding assay and CCK-8-based cell counting were conducted to explore myosin Va roles in cell migration, viability and proliferation. Our results suggest that myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability, and these properties are the hallmark of tumor progression and metastasis development. Therefore, an increased understanding of myosin Va expression and function will assist in the development of future oncodiagnosis and -therapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ai Zhong
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Han Dong
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lu-Han Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|