1
|
Kondakova I, Sereda E, Sidenko E, Vtorushin S, Vedernikova V, Burov A, Spirin P, Prassolov V, Lebedev T, Morozov A, Karpov V. Association of Proteasome Activity and Pool Heterogeneity with Markers Determining the Molecular Subtypes of Breast Cancer. Cancers (Basel) 2025; 17:159. [PMID: 39796785 PMCID: PMC11720674 DOI: 10.3390/cancers17010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed. Breast cancer (BC) therapy depends on the subtype of the tumor, determined by the expression level of Ki67, HER-2, estrogen and progesterone receptors. Relationships between the presence of specific proteasome forms and proteins that determine the BC subtype remain unclear. Here, using gene expression data in 19,145 tumor samples from 144 datasets and tissues from 159 patients with different subtypes of BC, we investigated the association between the activity and expression of proteasomes and levels of BC subtype markers. METHODS Bioinformatic analysis of proteasome subunit (PSMB1-10) gene expression in BC was performed. Proteasome heterogeneity in BC cell lines was investigated by qPCR. By Western blotting, proteasome composition was assessed in cells and patient tissue lysates. Proteasome activities were studied using fluorogenic substrates. BC molecular subtypes were determined by immunohistochemistry. RESULTS BC subtypes demonstrate differing proteasome subunit expression pattern and strong PSMB8-10 co-correlation in tumors. A significant increase in chymotrypsin- and caspase-like proteasome activities in BC compared to adjacent tissues was revealed. The subunit composition of proteasomes in tumor tissues of BC subtypes varied. Regression analysis demonstrated a positive correlation between proteasome activities and the expression of Ki67, estrogen receptors and progesterone receptors. CONCLUSION BC subtypes demonstrate differences within the proteasome pool. Correlations between the proteasome activity, hormone receptors and Ki67 indicate possible mutual influence. Obtained results facilitate development of novel drug combinations for BC therapy.
Collapse
Affiliation(s)
- Irina Kondakova
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
| | - Elena Sereda
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeniya Sidenko
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Sergey Vtorushin
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Valeria Vedernikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Moscow Center for Advanced Studies, Kulakova 20, 123592 Moscow, Russia
| | - Alexander Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| |
Collapse
|
2
|
Neagu AN, Josan CL, Jayaweera TM, Morrissiey H, Johnson KR, Darie CC. Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer. Molecules 2024; 29:4156. [PMID: 39275004 PMCID: PMC11397409 DOI: 10.3390/molecules29174156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell-cell and cell-extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| |
Collapse
|
3
|
Olayoku FR, Verhoog NJD, Louw A. Cyclopia extracts act as selective estrogen receptor subtype downregulators in estrogen receptor positive breast cancer cell lines: Comparison to standard of care breast cancer endocrine therapies and a selective estrogen receptor agonist and antagonist. Front Pharmacol 2023; 14:1122031. [PMID: 36992834 PMCID: PMC10040842 DOI: 10.3389/fphar.2023.1122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Breast cancer is the most diagnosed type of cancer amongst women in economically developing countries and globally. Most breast cancers express estrogen receptor alpha (ERα) and are categorized as positive (ER+) breast cancer. Endocrine therapies such as, selective estrogen receptor modulators (SERMs), aromatase inhibitors (AIs), and selective estrogen receptor downregulators (SERDs) are used to treat ER+ breast cancer. However, despite their effectiveness, severe side-effects and resistance are associated with these endocrine therapies. Thus, it would be highly beneficial to develop breast cancer drugs that are as effective as current therapies, but less toxic with fewer side effects, and less likely to induce resistance. Extracts of Cyclopia species, an indigenous South African fynbos plant, have been shown to possess phenolic compounds that exhibit phytoestrogenic and chemopreventive activities against breast cancer development and progression. In the current study, three well characterized Cyclopia extracts, SM6Met, cup of tea (CoT) and P104, were examined for their abilities to modulate the levels of the estrogen receptor subtypes, estrogen receptor alpha and estrogen receptor beta (ERβ), which have been recognized as crucial to breast cancer prognosis and treatment. We showed that the Cyclopia subternata Vogel (C. subternata Vogel) extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, reduced estrogen receptor alpha protein levels while elevating estrogen receptor beta protein levels, thereby reducing the ERα:ERβ ratio in a similar manner as standard of care breast cancer endocrine therapies such as fulvestrant (selective estrogen receptor downregulator) and 4-hydroxytamoxifen (elective estrogen receptor modulator). Estrogen receptor alpha expression enhances the proliferation of breast cancer cells while estrogen receptor beta inhibits the proliferative activities of estrogen receptor alpha. We also showed that in terms of the molecular mechanisms involved all the Cyclopia extracts regulated estrogen receptor alpha and estrogen receptor beta protein levels through both transcriptional and translational, and proteasomal degradation mechanisms. Therefore, from our findings, we proffer that the C. subternata Vogel extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, selectively modulate estrogen receptor subtypes levels in a manner that generally supports inhibition of breast cancer proliferation, thereby demonstrating attributes that could be explored as potential therapeutic agents for breast cancer.
Collapse
|
4
|
Promising Perspectives of the Antiproliferative GPER Inverse Agonist ERα17p in Breast Cancer. Cells 2023; 12:cells12040653. [PMID: 36831322 PMCID: PMC9954065 DOI: 10.3390/cells12040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The estrogen receptor α (ERα) corresponds to a large platform in charge of the recruitment of a panel of molecules, including steroids and related heterocyclic derivatives, oligonucleotides, peptides and proteins. Its 295-311 region is particularly targeted by post-translational modifications, suggesting that it could be crucial for the control of transcription. In addition to anionic phospholipids, the ERα 295-311 fragment interacts with Ca2+-calmodulin, the heat shock protein 70 (Hsp70), ERα and possibly importins. More recently, we have demonstrated that it is prone to interacting with the G-protein-coupled estrogen receptor (GPER). In light of these observations, the pharmacological profile of the corresponding peptide, namely ERα17p, has been explored in breast cancer cells. Remarkably, it exerts apoptosis through GPER and induces a significant decrease (more than 50%) of the size of triple-negative breast tumor xenografts in mice. Herein, we highlight not only the promising therapeutic perspectives in the use of the first peptidic GPER modulator ERα17p, but also the opportunity to modulate GPER for clinical purposes.
Collapse
|
5
|
Gómez-Tortosa E, Baradaran-Heravi Y, Dillen L, Choudhury NR, Agüero Rabes P, Pérez-Pérez J, Kocoglu C, Sainz MJ, Ruiz González A, Téllez R, Cremades-Jimeno L, Cárdaba B, Van Broeckhoven C, Michlewski G, van der Zee J. TRIM25 mutation (p.C168*), coding for an E3 ubiquitin ligase, is a cause of early-onset autosomal dominant dementia with amyloid load and parkinsonism. Alzheimers Dement 2022. [PMID: 36576960 DOI: 10.1002/alz.12913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 11/10/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Patients with familial early-onset dementia (EOD) pose a unique opportunity for gene identification studies. METHODS We present the phenotype and whole-exome sequencing (WES) study of an autosomal dominant EOD family. Candidate genes were examined in a set of dementia cases and controls (n = 3712). Western blotting was conducted of the wild-type and mutant protein of the final candidate. RESULTS Age at disease onset was 60 years (range 56 to 63). The phenotype comprised mixed amnestic and behavioral features, and parkinsonism. Cerebrospinal fluid and plasma biomarkers, and a positron emission tomography amyloid study suggested Alzheimer's disease. WES and the segregation pattern pointed to a nonsense mutation in the TRIM25 gene (p.C168*), coding for an E3 ubiquitin ligase, which was absent in the cohorts studied. Protein studies supported a loss-of-function mechanism. DISCUSSION This study supports a new physiopathological mechanism for brain amyloidosis. Furthermore, it extends the role of E3 ubiquitin ligases dysfunction in the development of neurodegenerative diseases. HIGHLIGHTS A TRIM25 nonsense mutation (p.C168*) is associated with autosomal dominant early-onset dementia and parkinsonism with biomarkers suggestive of Alzheimer's disease. TRIM25 protein studies support that the mutation exerts its effect through loss of function. TRIM25, an E3 ubiquitin ligase, is known for its role in the innate immune response but this is the first report of association with neurodegeneration. The role of TRIM25 dysfunction in development of amyloidosis and neurodegeneration merits a new line of research.
Collapse
Affiliation(s)
| | - Yalda Baradaran-Heravi
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lubina Dillen
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nila Roy Choudhury
- Infection Medicine, University of Edinburgh, The Chancellor's Building, Edinburgh, UK
| | | | | | - Cemile Kocoglu
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - M José Sainz
- Department of Neurology, Fundación Jiménez Díaz, Madrid, Spain
| | | | - Raquel Téllez
- Department of Immunology, Fundación Jiménez Díaz, Madrid, Spain
| | | | - Blanca Cárdaba
- Department of Immunology, Fundación Jiménez Díaz, Madrid, Spain
| | -
- Department of Neurology, Fundación Jiménez Díaz, Madrid, Spain
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Gracjan Michlewski
- Infection Medicine, University of Edinburgh, The Chancellor's Building, Edinburgh, UK.,Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Julie van der Zee
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
The Interplay between the Cellular Response to DNA Double-Strand Breaks and Estrogen. Cells 2022; 11:cells11193097. [PMID: 36231059 PMCID: PMC9563627 DOI: 10.3390/cells11193097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer development is often connected to impaired DNA repair and DNA damage signaling pathways. The presence of DNA damage in cells activates DNA damage response, which is a complex cellular signaling network that includes DNA repair, activation of the cell cycle checkpoints, cellular senescence, and apoptosis. DNA double-strand breaks (DSBs) are toxic lesions that are mainly repaired by the non-homologous end joining and homologous recombination repair (HRR) pathways. Estrogen-dependent cancers, like breast and ovarian cancers, are frequently associated with mutations in genes that play a role in HRR. The female sex hormone estrogen binds and activates the estrogen receptors (ERs), ERα, ERβ and G-protein-coupled ER 1 (GPER1). ERα drives proliferation, while ERβ inhibits cell growth. Estrogen regulates the transcription, stability and activity of numerus DDR factors and DDR factors in turn modulate ERα expression, stability and transcriptional activity. Additionally, estrogen stimulates DSB formation in cells as part of its metabolism and proliferative effect. In this review, we will present an overview on the crosstalk between estrogen and the cellular response to DSBs. We will discuss how estrogen regulates DSB signaling and repair, and how DDR factors modulate the expression, stability and activity of estrogen. We will also discuss how the regulation of HRR genes by estrogen promotes the development of estrogen-dependent cancers.
Collapse
|
7
|
Alharbi YM. Associations between ubiquitin, follicle-stimulating hormone, and sex steroid hormones in the failed to conceive female dromedary camels raised in hot climates. Vet World 2022; 15:2046-2051. [PMID: 36313844 PMCID: PMC9615501 DOI: 10.14202/vetworld.2022.2046-2051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: The reproductive management of female dromedary camels involves traditional implications that are widespread among desert camel raisers. Several subfertility clinical manifestations impede pregnancy and elongate the interval between parturitions. Ubiquitin is a novel-specific protein, referred to recently as a biomarker for reproductive performance in male and female mammals. Therefore, this study aimed to investigate the association between subfertility clinical status and the peripheral levels of ubiquitin versus follicle-stimulating hormone (FSH), progesterone, and estradiol. Materials and Methods: According to the clinical diagnoses, 80 female dromedaries admitted to the university clinic were categorized into six female groups suffering from endometritis (EN, 28; 35%), inactive ovaries (IO, 18; 22.5%), ovarian hydrobursitis (BU, 19; 23.75%), vaginal adhesions (VA, 7; 8.75%), salpingitis (SA, 4; 5%), and cervicitis (CE, 4; 5%). In addition, five normal fertile non-pregnant females served as controls (CONs). All animals underwent ultrasonography and blood sampling for hormone and ubiquitin determinations. Results: The results revealed a significant (p < 0.05) increase in ubiquitin in the CE (577.22 pg/mL) and VA (670.92 pg/mL) females. However, lower ubiquitin levels but still higher than the CON were noted in females with other symptoms (225.76, 425.79, 394.02, 414.96, and 393.92 pg/mL in the CON, BU, SA, IO, and EN, respectively). Concomitantly, the mean levels of FSH revealed a similar trend, showing higher (p < 0.05) levels in CE (2.79 mIU/mL) and VA (2.5 pg/mL) females. In contrast, no change was observed in FSH among other groups than CON (2.11, 2.17, 2.01, 2.24, and 2.13 mIU/mL in CON, BU, SA, IO, and EN, respectively). There was no difference in the progesterone levels among groups; however, estradiol-17ß levels significantly differed (p < 0.01), showing the highest level (629.15 pg/mL) in the SA group with no significant difference among other groups. Conclusion: Thus, ubiquitin could be used as a biomarker for genital tract inflammation in female camels raised in hot climates.
Collapse
Affiliation(s)
- Yousef Mesfer Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
8
|
Tian Y, Kim AE, Bien SA, Lin Y, Qu C, Harrison TA, Carreras-Torres R, Díez-Obrero V, Dimou N, Drew DA, Hidaka A, Huyghe JR, Jordahl KM, Morrison J, Murphy N, Obón-Santacana M, Ulrich CM, Ose J, Peoples AR, Ruiz-Narvaez EA, Shcherbina A, Stern MC, Su YR, van Duijnhoven FJB, Arndt V, Baurley JW, Berndt SI, Bishop DT, Brenner H, Buchanan DD, Chan AT, Figueiredo JC, Gallinger S, Gruber SB, Harlid S, Hoffmeister M, Jenkins MA, Joshi AD, Keku TO, Larsson SC, Le Marchand L, Li L, Giles GG, Milne RL, Nan H, Nassir R, Ogino S, Budiarto A, Platz EA, Potter JD, Prentice RL, Rennert G, Sakoda LC, Schoen RE, Slattery ML, Thibodeau SN, Van Guelpen B, Visvanathan K, White E, Wolk A, Woods MO, Wu AH, Campbell PT, Casey G, Conti DV, Gunter MJ, Kundaje A, Lewinger JP, Moreno V, Newcomb PA, Pardamean B, Thomas DC, Tsilidis KK, Peters U, Gauderman WJ, Hsu L, Chang-Claude J. Genome-Wide Interaction Analysis of Genetic Variants With Menopausal Hormone Therapy for Colorectal Cancer Risk. J Natl Cancer Inst 2022; 114:1135-1148. [PMID: 35512400 PMCID: PMC9360460 DOI: 10.1093/jnci/djac094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The use of menopausal hormone therapy (MHT) may interact with genetic variants to influence colorectal cancer (CRC) risk. METHODS We conducted a genome-wide, gene-environment interaction between single nucleotide polymorphisms and the use of any MHT, estrogen only, and combined estrogen-progestogen therapy with CRC risk, among 28 486 postmenopausal women (11 519 CRC patients and 16 967 participants without CRC) from 38 studies, using logistic regression, 2-step method, and 2- or 3-degree-of-freedom joint test. A set-based score test was applied for rare genetic variants. RESULTS The use of any MHT, estrogen only and estrogen-progestogen were associated with a reduced CRC risk (odds ratio [OR] = 0.71, 95% confidence interval [CI] = 0.64 to 0.78; OR = 0.65, 95% CI = 0.53 to 0.79; and OR = 0.73, 95% CI = 0.59 to 0.90, respectively). The 2-step method identified a statistically significant interaction between a GRIN2B variant rs117868593 and MHT use, whereby MHT-associated CRC risk was statistically significantly reduced in women with the GG genotype (OR = 0.68, 95% CI = 0.64 to 0.72) but not within strata of GC or CC genotypes. A statistically significant interaction between a DCBLD1 intronic variant at 6q22.1 (rs10782186) and MHT use was identified by the 2-degree-of-freedom joint test. The MHT-associated CRC risk was reduced with increasing number of rs10782186-C alleles, showing odds ratios of 0.78 (95% CI = 0.70 to 0.87) for TT, 0.68 (95% CI = 0.63 to 0.73) for TC, and 0.66 (95% CI = 0.60 to 0.74) for CC genotypes. In addition, 5 genes in rare variant analysis showed suggestive interactions with MHT (2-sided P < 1.2 × 10-4). CONCLUSION Genetic variants that modify the association between MHT and CRC risk were identified, offering new insights into pathways of CRC carcinogenesis and potential mechanisms involved.
Collapse
Affiliation(s)
- Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kristina M Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Edward A Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Anna Shcherbina
- Biomedical Informatics Program, Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Mariana C Stern
- Division of Biostatistics, Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Stephen B Gruber
- Division of Biostatistics, Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Hongmei Nan
- Department of Global Health, Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura'a University, Mecca, Saudi Arabia
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL,Canada
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peter T Campbell
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Centre Hamburg (UCCH), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Sereda EE, Kolegova ES, Kakurina GV, Korshunov DA, Sidenko EA, Doroshenko AV, Slonimskaya EM, Kondakova IV. Five-year survival in luminal breast cancer patients: relation with intratumoral activity of proteasomes. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2022; 3:23. [PMID: 38751528 PMCID: PMC11093047 DOI: 10.21037/tbcr-22-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 05/18/2024]
Abstract
Background The purpose of the study was to analyze the relationship between the caspase-like (CL) and chymotrypsin-like (ChTL) activities of proteasomes and the 5-year overall and metastasis-free survival rates in patients with luminal breast cancer. Methods The study included 117 patients with primary operable invasive breast cancer (T1-2N0-1M0). Tissue samples from breast cancer patients were obtained as a result of the radical mastectomy or breast conserving surgery, which was a first line of therapy. The ChTL and CL proteasomes activities in the tumor tissue and in the surrounding adjacent breast tissues were assessed using the fluorometric method. The coefficients of ChTL (cChTL) and CL (cCL) proteasomes activities were also determined. The coefficients were calculated as the ratio of the corresponding proteasomes activity in the tumor tissue to the surrounding adjacent breast tissues. Within 5 years of follow-up, hematogenous metastases occurred in 14% of patients with luminal A breast cancer, in 31% of patients with luminal B human epidermal growth factor receptor-2 (HER-2) negative and in 23% of patients with luminal B HER-2 positive breast cancers. The study protocol was approved by the Local Ethics Committee of the Cancer Research Institute of Tomsk National Research Medical Center. Written informed consent was obtained from all patients. Results An increase in the ChTL and CL proteasomes activities was shown in all studied molecular subtypes of breast cancer compared to adjacent tissues. It was found that the cChTL of >35.9 U/mg protein and the cCL of >2.21 in breast cancer patients were associated with the development of distant metastases. In patients with luminal A breast cancer, the 5-year metastasis-free survival rates were associated only with the value of cCL of proteasomes (log-rank test: P=0.008). In patients with luminal B HER-2 negative breast cancer, the 5-year metastasis-free survival rates were associated with the levels of ChTL and cCL proteasomes activities (log-rank test: P=0.02 and P=0.04, respectively). Conclusions The data obtained on the correlation of 5-year metastasis-free survival rates with the level of proteasomes activities indicate the possibility of their use as additional prognostic criteria for breast cancer.
Collapse
Affiliation(s)
- Elena E. Sereda
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, Tomsk, Russia
| | - Elena. S. Kolegova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Gelena V. Kakurina
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, Tomsk, Russia
| | - Dmitriy A. Korshunov
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Evgenia A. Sidenko
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Artem V. Doroshenko
- General Oncology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elena M. Slonimskaya
- General Oncology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina V. Kondakova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
10
|
Waszczykowska K, Prażanowska K, Kałuzińska Ż, Kołat D, Płuciennik E. Discovering biomarkers for hormone-dependent tumors: in silico study on signaling pathways implicated in cell cycle and cytoskeleton regulation. Mol Genet Genomics 2022; 297:947-963. [PMID: 35532795 DOI: 10.1007/s00438-022-01900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/16/2022] [Indexed: 02/07/2023]
Abstract
Malignancies dependent on hormone homeostasis include breast, ovary, cervical, prostate, testis and uterine tumors. Hormones are involved in signal transduction which orchestrate processes, such as apoptosis, proliferation, cell cycle or cytoskeleton organization. Currently, there is a need for novel biomarkers which would help to diagnose cancers efficiently. In this study, the genes implicated in signaling that is important in hormone-sensitive carcinogenesis were investigated regarding their prognostic significance. Data of seven cancer cohorts were collected from FireBrowse. 54 gene sets implicated in specific pathways were browsed through MSig database. Profiling was assessed via Monocle3, while gene ontology through PANTHER. For confirmation, correlation analysis was performed using WGCNA. Protein-protein networks were visualized via Cytoscape and impact of genes on survival, as well as cell cycle or cytoskeleton-related prognostic signatures, was tested. Several differences in expression profile were identified, some of them allowed to distinguish histology. Functional annotation revealed that various regulation of cell cycle, adhesion, migration, apoptosis and angiogenesis underlie these differences. Clinical traits, such as histological type or cancer staging, were found during evaluation of module-trait relationships. Of modules, the TopHubs (COL6A3, TNR, GTF2A1, NKX3-1) interacted directly with, e.g., PDGFB, ITGA10, SP1 or AKT3. Among TopHubs and interacting proteins, many showed an impact on hazard ratio and affected the cell cycle or cytoskeleton-related prognostic signatures, e.g., COL1A1 or PDGFB. In conclusion, this study laid the foundation for further hormone-sensitive carcinogenesis research through identification of genes which prove that crosstalk between cell cycle and cytoskeleton exists, opening avenues for future therapeutic strategies.
Collapse
Affiliation(s)
| | - Karolina Prażanowska
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752, Lodz, Poland
| | - Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland.
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| |
Collapse
|
11
|
Drouault M, Delalande C, Bouraïma-Lelong H, Seguin V, Garon D, Hanoux V. Deoxynivalenol enhances estrogen receptor alpha-induced signaling by ligand-independent transactivation. Food Chem Toxicol 2022; 165:113127. [DOI: 10.1016/j.fct.2022.113127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022]
|
12
|
Karpov NS, Erokhov PA, Sharova NP, Astakhova TM. How Is the Development of the Rat’s Small Intestine Related to Changes in the Proteasome Pool? Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wright EB, Lannigan DA. ERK1/2‐RSK regulation of oestrogen homeostasis. FEBS J 2022; 290:1943-1953. [PMID: 35176205 PMCID: PMC9381647 DOI: 10.1111/febs.16407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
Abstract
The molecular mechanisms regulating oestrogen homeostasis have been primarily studied in the mammary gland, which is the focus of this review. In the non-pregnant adult, the mammary gland undergoes repeated cycles of proliferation and apoptosis in response to the fluctuating levels of oestrogen that occur during the reproductive stage. Oestrogen actions are mediated through the steroid hormone receptors, oestrogen receptor α and β and through a G-protein coupled receptor. In the mammary gland, ERα is of particular importance and thus will be highlighted. Mechanisms regulating oestrogen-induced responses through ERα are necessary to maintain homeostasis given that the signalling pathways that are activated in response to ERα-mediated transcription can also induce transformation. ERK1/2 and its downstream effector, p90 ribosomal S6 kinase (RSK), control homeostasis in the mammary gland by limiting oestrogen-mediated ERα responsiveness. ERK1/2 drives degradation coupled ERα-mediated transcription, whereas RSK2 acts as a negative regulator of ERK1/2 activity to limit oestrogen responsiveness. Moreover, RSK2 acts as a positive regulator of translation. Thus, RSK2 provides both positive and negative signals to maintain oestrogen responsiveness. In addition to transmitting signals through tyrosine kinase receptors, ERK1/2-RSK engages with hedgehog signalling to maintain oestrogen levels and with the HIPPO pathway to regulate ERα-mediated transcription. Additionally, ERK1/2-RSK controls the progenitor populations within the mammary gland to maintain the ERα-positive population. RSK2 is involved in increased breast cancer risk in individuals taking oral contraceptives and in parity-induced protection against breast cancer. RSK2 and ERα may also co-operate in diseases in tissues outside of the mammary gland.
Collapse
Affiliation(s)
- Eric B. Wright
- Biomedical Engineering Vanderbilt University Nashville TN USA
| | - Deborah A. Lannigan
- Biomedical Engineering Vanderbilt University Nashville TN USA
- Pathology, Microbiology & Immunology Vanderbilt University Medical Center Nashville TN USA
- Cell and Developmental Biology Vanderbilt University Nashville TN USA
| |
Collapse
|
14
|
Beamish SB, Frick KM. A Putative Role for Ubiquitin-Proteasome Signaling in Estrogenic Memory Regulation. Front Behav Neurosci 2022; 15:807215. [PMID: 35145382 PMCID: PMC8821141 DOI: 10.3389/fnbeh.2021.807215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Sex steroid hormones such as 17β-estradiol (E2) are critical neuromodulators of hippocampal synaptic plasticity and hippocampus-dependent memory in both males and females. However, the mechanisms through which E2 regulates memory formation in both sexes remain unclear. Research to date suggests that E2 regulates hippocampus-dependent memory by activating numerous cell-signaling cascades to promote the synthesis of proteins that support structural changes at hippocampal synapses. However, this work has largely overlooked the equally important contributions of protein degradation mediated by the ubiquitin proteasome system (UPS) in remodeling the synapse. Despite being critically implicated in synaptic plasticity and successful formation of long-term memories, it remains unclear whether protein degradation mediated by the UPS is necessary for E2 to exert its beneficial effects on hippocampal plasticity and memory formation. The present article provides an overview of the receptor and signaling mechanisms so far identified as critical for regulating hippocampal E2 and UPS function in males and females, with a particular emphasis on the ways in which these mechanisms overlap to support structural integrity and protein composition of hippocampal synapses. We argue that the high degree of correspondence between E2 and UPS activity warrants additional study to examine the contributions of ubiquitin-mediated protein degradation in regulating the effects of sex steroid hormones on cognition.
Collapse
|
15
|
Mondal M, Conole D, Nautiyal J, Tate EW. UCHL1 as a novel target in breast cancer: emerging insights from cell and chemical biology. Br J Cancer 2022; 126:24-33. [PMID: 34497382 PMCID: PMC8727673 DOI: 10.1038/s41416-021-01516-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer has the highest incidence and death rate among cancers in women worldwide. In particular, metastatic estrogen receptor negative (ER-) breast cancer and triple-negative breast cancer (TNBC) subtypes have very limited treatment options, with low survival rates. Ubiquitin carboxyl terminal hydrolase L1 (UCHL1), a ubiquitin C-terminal hydrolase belonging to the deubiquitinase (DUB) family of enzymes, is highly expressed in these cancer types, and several key reports have revealed emerging and important roles for UCHL1 in breast cancer. However, selective and potent small-molecule UCHL1 inhibitors have been disclosed only very recently, alongside chemical biology approaches to detect regulated UHCL1 activity in cancer cells. These tools will enable novel insights into oncogenic mechanisms driven by UCHL1, and identification of substrate proteins deubiquitinated by UCHL1, with the ultimate goal of realising the potential of UCHL1 as a drug target in breast cancer.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Chemistry, Imperial College London, London, UK
| | - Daniel Conole
- Department of Chemistry, Imperial College London, London, UK
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London, UK.
| |
Collapse
|
16
|
McMillin SL, Minchew EC, Lowe DA, Spangenburg EE. Skeletal muscle wasting: the estrogen side of sexual dimorphism. Am J Physiol Cell Physiol 2022; 322:C24-C37. [PMID: 34788147 PMCID: PMC8721895 DOI: 10.1152/ajpcell.00333.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The importance of defining sex differences across various biological and physiological mechanisms is more pervasive now than it has been over the past 15-20 years. As the muscle biology field pushes to identify small molecules and interventions to prevent, attenuate, or even reverse muscle wasting, we must consider the effect of sex as a biological variable. It should not be assumed that a therapeutic will affect males and females with equal efficacy or equivalent target affinities under conditions where muscle wasting is observed. With that said, it is not surprising to find that we have an unclear or even a poor understanding of the effects of sex or sex hormones on muscle wasting conditions. Although recent investigations are beginning to establish experimental approaches that will allow investigators to assess the impact of sex-specific hormones on muscle wasting, the field still needs rigorous scientific tools that will allow the community to address critical hypotheses centered around sex hormones. The focus of this review is on female sex hormones, specifically estrogens, and the roles that these hormones and their receptors play in skeletal muscle wasting conditions. With the overall review goal of assembling the current knowledge in the area of sexual dimorphism driven by estrogens with an effort to provide insights to interested physiologists on necessary considerations when trying to assess models for potential sex differences in cellular and molecular mechanisms of muscle wasting.
Collapse
Affiliation(s)
- Shawna L. McMillin
- 1Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota,2Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Everett C. Minchew
- 3Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Dawn A. Lowe
- 1Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota,2Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Espen E. Spangenburg
- 3Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
17
|
Larson HG, Zakharov AV, Sarkar S, Yang SM, Rai G, Larner JM, Simeonov A, Martinez NJ. A Genome-Edited ERα-HiBiT Fusion Reporter Cell Line for the Identification of ERα Modulators Via High-Throughput Screening and CETSA. Assay Drug Dev Technol 2021; 19:539-549. [PMID: 34662221 DOI: 10.1089/adt.2021.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The estrogen receptor α (ERα) is a target of intense pharmacological intervention and toxicological biomonitoring. Current methods to directly quantify cellular levels of ERα involve antibody-based assays, which are labor-intensive and of limited throughput. In this study, we generated a post-translational reporter cell line, referred to as MCF7-ERα-HiBiT, by fusing a small pro-luminescent nanoluciferase (NLuc) tag (HiBiT) to the C-terminus of endogenous ERα in MCF7 cells. The tag allows the luminescent detection and quantification of endogenous ERα protein by addition of the complementary NLuc enzyme fragment. This MCF7-ERα-HiBiT cell line was optimized for quantitative high-throughput screening (qHTS) to identify compounds that reduce ERα levels. In addition, the same cell line was optimized for a qHTS cellular thermal shift assay to identify compounds that bind and thermally stabilize ERα. Here, we interrogated the MCF7-ERα-HiBiT assay against the NCATS Pharmacological Collection (NPC) of 2,678 approved drugs and identified compounds that potently reduce and thermally stabilize ERα. Our novel post-translational reporter cell line provides a unique opportunity for profiling large pharmacological and toxicological compound libraries for their effect on ERα levels as well as for assessing direct compound binding to the receptor, thus facilitating mechanistic studies by which compounds exert their biological effects on ERα.
Collapse
Affiliation(s)
- Hunter G Larson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Sukumar Sarkar
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - James M Larner
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Natalia J Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
18
|
Qu J, Han Y, Zhao Z, Wu Y, Lu Y, Chen G, Jiang J, Qiu L, Gu A, Wang X. Perfluorooctane sulfonate interferes with non-genomic estrogen receptor signaling pathway, inhibits ERK1/2 activation and induces apoptosis in mouse spermatocyte-derived cells. Toxicology 2021; 460:152871. [PMID: 34303733 DOI: 10.1016/j.tox.2021.152871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is a widespread persistent organic pollutant. Both epidemiological survey and our previous in vivo study have revealed the associations between PFOS exposure and spermatogenesis disorder, while the underlying mechanisms are far from clear. In the present study, GC-2 cells, a mouse spermatocyte-derived cell line, was used to investigate the toxic effects of PFOS and its hypothetical mechanism of action. GC-2 cells were treated with PFOS (0, 50, 100 and 150 μM) for 24 h or 48 h. Results demonstrated that PFOS dose-dependently inhibited cell viability, induced G0/G1 cell cycle arrest and triggered apoptosis, which might be partly explained by the decrease in cyclin D1, PCNA and Bcl-2 protein expression; increase in Bax protein expression; and activation of caspase-9, -3. In addition, PFOS did not directly transactivate or repress estrogen receptors (ERs) in gene reporter assays, whereas the protein levels of both ERα and ERβ were significantly altered and the downstream ERK1/2 phosphorylation was inhibited by PFOS. Furthermore, pretreatment with specific ERα agonist PPT (1 μM) significantly attenuated the above PFOS-induced effects while specific ERβ agonist DPN (1 μM) accelerated them. These results suggest that PFOS may induce growth inhibition and apoptosis via non-genomic estrogen receptor/ERK1/2 signaling pathway in GC-2 cells, which provides a novel insight regarding the potential role of ERs in mediating PFOS-triggered spermatocyte toxicity.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China.
| | - Yu Han
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Ziyan Zhao
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Ying Lu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Gang Chen
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Junkang Jiang
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Aihua Gu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinru Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
19
|
Arcones AC, Martínez-Cignoni MR, Vila-Bedmar R, Yáñez C, Lladó I, Proenza AM, Mayor F, Murga C. Cardiac GRK2 Protein Levels Show Sexual Dimorphism during Aging and Are Regulated by Ovarian Hormones. Cells 2021; 10:673. [PMID: 33803070 PMCID: PMC8002941 DOI: 10.3390/cells10030673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) risk shows a clear sexual dimorphism with age, with a lower incidence in young women compared to age-matched men. However, this protection is lost after menopause. We demonstrate that sex-biased sensitivity to the development of CVD with age runs in parallel with changes in G protein-coupled receptor kinase 2 (GRK2) protein levels in the murine heart and that mitochondrial fusion markers, related to mitochondrial functionality and cardiac health, inversely correlate with GRK2. Young female mice display lower amounts of cardiac GRK2 protein compared to age-matched males, whereas GRK2 is upregulated with age specifically in female hearts. Such an increase in GRK2 seems to be specific to the cardiac muscle since a different pattern is found in the skeletal muscles of aging females. Changes in the cardiac GRK2 protein do not seem to rely on transcriptional modulation since adrbk1 mRNA does not change with age and no differences are found between sexes. Global changes in proteasomal or autophagic machinery (known regulators of GRK2 dosage) do not seem to correlate with the observed GRK2 dynamics. Interestingly, cardiac GRK2 upregulation in aging females is recapitulated by ovariectomy and can be partially reversed by estrogen supplementation, while this does not occur in the skeletal muscle. Our data indicate an unforeseen role for ovarian hormones in the regulation of GRK2 protein levels in the cardiac muscle which correlates with the sex-dependent dynamics of CVD risk, and might have interesting therapeutic applications, particularly for post-menopausal women.
Collapse
Affiliation(s)
- Alba C. Arcones
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC, Universidad Autónoma Madrid, 28049 Madrid, Spain; (A.C.A.); (R.V.-B.); (C.Y.); (F.M.J.)
- Instituto de Investigación Sanitaria Hospital Universitario La Princesa and CIBER Cardiovascular (CIBERCV), ISCIII, 28028 Madrid, Spain
| | - Melanie Raquel Martínez-Cignoni
- Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Institut d’Investigació Sanitària Illes Balears (IdISBa), 07122 Palma, Spain; (M.R.M.-C.); (I.L.); (A.M.P.)
| | - Rocío Vila-Bedmar
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC, Universidad Autónoma Madrid, 28049 Madrid, Spain; (A.C.A.); (R.V.-B.); (C.Y.); (F.M.J.)
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Biología Molecular, URJC, 28922 Madrid, Spain
| | - Claudia Yáñez
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC, Universidad Autónoma Madrid, 28049 Madrid, Spain; (A.C.A.); (R.V.-B.); (C.Y.); (F.M.J.)
| | - Isabel Lladó
- Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Institut d’Investigació Sanitària Illes Balears (IdISBa), 07122 Palma, Spain; (M.R.M.-C.); (I.L.); (A.M.P.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Ana M. Proenza
- Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Institut d’Investigació Sanitària Illes Balears (IdISBa), 07122 Palma, Spain; (M.R.M.-C.); (I.L.); (A.M.P.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC, Universidad Autónoma Madrid, 28049 Madrid, Spain; (A.C.A.); (R.V.-B.); (C.Y.); (F.M.J.)
- Instituto de Investigación Sanitaria Hospital Universitario La Princesa and CIBER Cardiovascular (CIBERCV), ISCIII, 28028 Madrid, Spain
| | - Cristina Murga
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC, Universidad Autónoma Madrid, 28049 Madrid, Spain; (A.C.A.); (R.V.-B.); (C.Y.); (F.M.J.)
- Instituto de Investigación Sanitaria Hospital Universitario La Princesa and CIBER Cardiovascular (CIBERCV), ISCIII, 28028 Madrid, Spain
| |
Collapse
|
20
|
Yunusova NV, Zambalova EA, Patysheva MR, Kolegova ES, Afanas'ev SG, Cheremisina OV, Grigor'eva AE, Tamkovich SN, Kondakova IV. Exosomal Protease Cargo as Prognostic Biomarker in Colorectal Cancer. Asian Pac J Cancer Prev 2021; 22:861-869. [PMID: 33773551 PMCID: PMC8286660 DOI: 10.31557/apjcp.2021.22.3.861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: The aim of the study was to develop a model for predicting cancer risk in colorectal polyps’ patients (CPPs), as well as to reveal additional prognosis factors for Stage III colorectal cancer based on differences in subpopulations of tetraspanins, tetraspanin-associated and tetraspanin-non-associated proteases in blood plasma exosomes of CPPs and colorectal cancer patients (CRCPs). Methods: The subpopulations of CD151- and Tspan8-positive exosomes, the subpopulations of metalloproteinase at the surface of СD9-positive exosomes and the level of 20S proteasomes in plasma exosomes in 15 CPPs (tubulovillous adenomas) and 60 CRCPs were evaluated using flow cytometry and Western blotting. Logistic regression analysis was performed to predict cancer risk of CPPs. Results: The levels of 20S proteasomes in exosomes, MMP9+, MMP9+/MMP2+/EMMPRIN+ in CD9-positive blood plasma exosomes are associated with the risk of malignant transformation of colorectal tubulovillous adenomas. In patients with Stage III CRC, the levels of 20S proteasomes (less than 2 units) and MMP9+ subpopulations (more than 61%) in plasma exosomes are unfavorable prognostic factors for overall survival. The levels of 20S proteasomes and ADAM10+/ADAM17- subpopulations in CD9-positive blood plasma exosomes are the most significant values for predicting relapse-free survival. Conclusion: Protease cargo in CD9-positive blood plasma exosomes is prognostic biomarker for colorectal polyps and colorectal cancer.
Collapse
Affiliation(s)
- Natalia V Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, Tomsk, Russia
| | - Elena A Zambalova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Marina R Patysheva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elena S Kolegova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Olga V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alina E Grigor'eva
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana N Tamkovich
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Clinical Biochemistry, V. Zelman Institute for the Medicine, Novosibirsk, Russia
| | - Irina V Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
21
|
Khatpe AS, Adebayo AK, Herodotou CA, Kumar B, Nakshatri H. Nexus between PI3K/AKT and Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2021; 13:369. [PMID: 33498407 PMCID: PMC7864210 DOI: 10.3390/cancers13030369] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Signaling from estrogen receptor alpha (ERα) and its ligand estradiol (E2) is critical for growth of ≈70% of breast cancers. Therefore, several drugs that inhibit ERα functions have been in clinical use for decades and new classes of anti-estrogens are continuously being developed. Although a significant number of ERα+ breast cancers respond to anti-estrogen therapy, ≈30% of these breast cancers recur, sometimes even after 20 years of initial diagnosis. Mechanism of resistance to anti-estrogens is one of the intensely studied disciplines in breast cancer. Several mechanisms have been proposed including mutations in ESR1, crosstalk between growth factor and ERα signaling, and interplay between cell cycle machinery and ERα signaling. ESR1 mutations as well as crosstalk with other signaling networks lead to ligand independent activation of ERα thus rendering anti-estrogens ineffective, particularly when treatment involved anti-estrogens that do not degrade ERα. As a result of these studies, several therapies that combine anti-estrogens that degrade ERα with PI3K/AKT/mTOR inhibitors targeting growth factor signaling or CDK4/6 inhibitors targeting cell cycle machinery are used clinically to treat recurrent ERα+ breast cancers. In this review, we discuss the nexus between ERα-PI3K/AKT/mTOR pathways and how understanding of this nexus has helped to develop combination therapies.
Collapse
Affiliation(s)
- Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher A. Herodotou
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
22
|
Pathological Maintenance and Evolution of Breast Cancer: The Convergence of Irreversible Biological Actions of ER Alpha. ENDOCRINES 2020. [DOI: 10.3390/endocrines2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a modulator of breast cancer maintenance and evolution. Hence, analysis of underlying mechanisms by which ERα operates is of importance for the improvement of the hormonal therapy of the disease. This review focuses on the irreversible character of the mechanism of action of ERα, which also concerns other members of the steroid hormones receptors family. ERα moves in permanence between targets localized especially at the chromatin level to accomplish gene transcriptions imposed by the estrogenic ligands and specific antagonists. Receptor association as at the plasma membrane, where it interacts with other recruitment sites, extends its regulatory potency to growth factors and related peptides through activation of signal transductions pathways. If the latter procedure is suitable for the transcriptions in which the receptor operates as a coregulator of another transcription factor, it is of marginal influence with regard to the direct estrogenic regulation procedure, especially in the context of the present review. Irreversibility of the successive steps of the underlying transcription cycle guarantees maintenance of homeostasis and evolution according to vital necessities. To justify this statement, reported data are essentially described in a holistic view rather than in the context of exhaustive analysis of a molecular event contributing to a specific function as well as in a complementary perspective to elaborate new therapeutic approaches with antagonistic potencies against those tumors promoting ERα properties.
Collapse
|
23
|
Astakhova TM, Moiseeva EV, Sharova NP. Features of the Proteasome Pool in Spontaneously Occurring Malignant Tumors of the Mammary Gland in Mice. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420050021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|