1
|
Liu P, Chen Z, Guo Y, He Q, Pan C. Recent advances in small molecule inhibitors of deubiquitinating enzymes. Eur J Med Chem 2025; 287:117324. [PMID: 39908798 DOI: 10.1016/j.ejmech.2025.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Proteins play a pivotal role in maintaining cellular homeostasis. Their degradation primarily orchestrated through the ubiquitin-proteasome system (UPS) and cellular autophagy. Dysfunction of the UPS is associated with various human diseases, including cancer, autoimmune disorders, and neurodegenerative conditions. Consequently, the UPS has emerged as a promising therapeutic target. Deubiquitinases (DUBs) have garnered significant attention as potential targets for therapeutic intervention due to their role in modulating protein stability and function. This review focuses on recent advancements of DUBs, particularly their relevance in the UPS and their potential as drug targets. Notably, inhibitors targeting specific DUBs, such as USP1, USP7, USP14, and USP30 have shown promise in preclinical and clinical studies for cancer therapy. Additionally, DUB inhibitors have been involved in novel therapeutic approaches lately, including as targets for proteolysis-targeting chimeras (PROTACs) or as tools in deubiquitinase-targeting chimeras (DUBTACs).
Collapse
Affiliation(s)
- Pengwei Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Zhengyang Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Yiting Guo
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| | - Chenghao Pan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
Tarjányi O, Olasz K, Rátky F, Sétáló G, Boldizsár F. Proteasome Inhibitors: Potential in Rheumatoid Arthritis Therapy? Int J Mol Sci 2025; 26:2943. [PMID: 40243560 PMCID: PMC11988683 DOI: 10.3390/ijms26072943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to the destruction of peripheral joint cartilage and bone tissue. Despite the advent of biological therapies in the past decades, the complete remission of RA patients is still out of reach. Therefore, the search for novel therapeutic approaches is still open in the field of RA. Proteasome inhibitors (PIs) were originally designed to be used in hematological malignancies like multiple myeloma. However, evidence has shown that they are potent inhibitors of the NF-κB pathway, which plays a pivotal role in inflammatory processes and RA. Furthermore, inhibition of cell activation and induction of apoptosis was also reported about PIs. In the present review, we summarize the current knowledge about the potential effects of PIs in RA based on reports from animal and human studies. We believe that there is substantial potential in the use of PIs in RA therapy either alone or in combination with the medications already used.
Collapse
Affiliation(s)
- Oktávia Tarjányi
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| | - Fanni Rátky
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - György Sétáló
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| |
Collapse
|
3
|
Zheng B, Wang Y, Zhou B, Qian F, Liu D, Ye D, Zhou X, Fang L. Urolithin A inhibits breast cancer progression via activating TFEB-mediated mitophagy in tumor macrophages. J Adv Res 2025; 69:125-138. [PMID: 38615740 PMCID: PMC11954813 DOI: 10.1016/j.jare.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Urolithin A (UA) is a naturally occurring compound that is converted from ellagitannin-like precursors in pomegranates and nuts by intestinal flora. Previous studies have found that UA exerts tumor-suppressive effects through antitumor cell proliferation and promotion of memory T-cell expansion, but its role in tumor-associated macrophages remains unknown. OBJECTIVES Our study aims to reveal how UA affects tumor macrophages and tumor cells to inhibit breast cancer progression. METHODS Observe the effect of UA treatment on breast cancer progression though in vivo and in vitro experiments. Western blot and PCR assays were performed to discover that UA affects tumor macrophage autophagy and inflammation. Co-ip and Molecular docking were used to explore specific molecular mechanisms. RESULTS We observed that UA treatment could simultaneously inhibit harmful inflammatory factors, especially for InterleuKin-6 (IL-6) and tumor necrosis factor α (TNF-α), in both breast cancer cells and tumor-associated macrophages, thereby improving the tumor microenvironment and delaying tumor progression. Mechanistically, UA induced the key regulator of autophagy, transcription factor EB (TFEB), into the nucleus in a partially mTOR-dependent manner and inhibited the ubiquitination degradation of TFEB, which facilitated the clearance of damaged mitochondria via the mitophagy-lysosomal pathway in macrophages under tumor supernatant stress, and reduced the deleterious inflammatory factors induced by the release of nucleic acid from damaged mitochondria. Molecular docking and experimental studies suggest that UA block the recognition of TFEB by 1433 and induce TFEB nuclear localization. Notably, UA treatment demonstrated inhibitory effects on tumor progression in multiple breast cancer models. CONCLUSION Our study elucidated the anti-breast cancer effect of UA from the perspective of tumor-associated macrophages. Specifically, TFEB is a crucial downstream target in macrophages.
Collapse
Affiliation(s)
- Bowen Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fengyuan Qian
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
4
|
Shi X, Shen L, Chen S, Liu M, Wang J, Wen X, Liu W, Mao L, Ding Y, Yu L, Xu J. Swine RNF5 positively regulates the antiviral activity of IFITM1 by mediating the degradation of ABHD16A. J Virol 2025; 99:e0127724. [PMID: 39601593 PMCID: PMC11784460 DOI: 10.1128/jvi.01277-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Interferon-inducible transmembrane (IFITM) proteins are broad-spectrum antiviral factors that confer cellular resistance to virus invasion. α/β-Hydrolase domain-containing 16A (ABHD16A) has recently been identified as a novel depalmitoylase that can inhibit the antiviral activity of IFITM proteins by catalyzing the depalmitoyl reaction; this pattern may be crucial for the host to avoid damage caused by excessive immune response. However, it remains largely elusive about how host cells regulate the activity of ABHD16A. In the present study, we performed the AlphaFold2-based protein-protein interaction prediction and identified swine E3 ubiquitin ligase ring finger protein 5 (sRNF5) as a sABHD16A-interacting protein and negatively regulated the stability of sABHD16A. Using immunofluorescence and co-immunoprecipitation techniques, we uncovered that sRNF5 targeted sABHD16A for ubiquitination and degradation via the proteasomal pathway at residues K3 and K452. Furthermore, sABHD16A catalyzed the depalmitoylation of sIFITM1, which obstructed the antiviral function of sIFITM1, while sRNF5 caused ubiquitination of sABHD16A, which attenuated the depalmitoylation effect on sIFITM1, and consequently restored the antiviral activity of sIFITM1. Collectively, our findings demonstrate for the first time that sRNF5 positively regulates the antiviral function of sIFITM1 by mediating the degradation of sABHD16A, which expands the biological functions of RNF5 and ABHD16A in immune regulation. Moreover, our work highlights the well-designed interplay between RNF5, ABHD16A, and IFITM, which balances antiviral immune responses to avoid the disorders induced by excessive immune response. IMPORTANCE Interferon and interferon-stimulated genes play significant and protective roles in the host's defense against viral infection. IFITM family proteins, which can be strongly induced by interferon, have been identified as the first line of defense to prevent invasion of various viruses. Further analysis reveals the antiviral activity of IFITMs depends on palmitoylation/depalmitoylation. Recently, we reported that ABHD16A, as the first depalmitoylase of IFITMs, negatively regulated the antiviral activity of IFITMs. However, these raise crucial questions: how ABHD16A is regulated and remained in a balanced manner? Here, we show that swine RNF5 attenuates the negative regulation of sIFITM1 against virus invasion by modifying sABHD16A through ubiquitination and guiding sABHD16A for degradation. Thus, sRNF5-sABHD16A interplay plays an indispensable role in regulating immune response and avoiding the disorders induced by elevated interferon levels. Overall, our findings extend the upstream subtle regulatory molecular mechanism of IFITMs and provide potential targets for viral disease therapy.
Collapse
Affiliation(s)
- Xuemeng Shi
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lingyi Shen
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shuaiwu Chen
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Mingyang Liu
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jingyi Wang
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xin Wen
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wei Liu
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lin Mao
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yunyun Ding
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Li Yu
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jun Xu
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Ückert AK, Suciu I, Land A, Spreng AS, Welte H, Herzog D, Basler M, Leist M. Chemical and Biological Mechanisms Relevant to the Rescue of MG-132-Treated Neurons by Cysteine. Antioxidants (Basel) 2025; 14:128. [PMID: 40002315 PMCID: PMC11851368 DOI: 10.3390/antiox14020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Proteasome dysfunctions are observed in many human pathologies. To study their role and potential treatment strategies, models of proteasome inhibition are widely used in biomedical research. One frequently used tool is the proteasome inhibitor MG-132. It triggers the degeneration of human neurons, and several studies show protection from pathological events by glutathione or its precursors. It has therefore been concluded that glutathione protects cells from proteasome dysfunction. However, an alternative explanation is that MG-132, which is a peptide aldehyde, is chemically inactivated by thiols, and the apparent protection by glutathione from proteasome dysfunction is an artefact. To clarify this issue, we examined the chemical inactivation of MG-132 by thiols and the role of such reactions for neuroprotection. Using mass spectrometry and nuclear magnetic resonance spectroscopy, we found that MG-132 reacted with L-cysteine to form a stable end product and with glutathione to form an unstable intermediate. Using a cell-free proteasome inhibition assay, we found that high concentrations of L-cysteine can scavenge a substantial fraction of MG-132 and thus reduce proteasome inhibition. Glutathione (or N-acetyl-cysteine) did not alter proteasome inhibition (even at high concentrations). In a final step, we studied human neuronal cultures. We exposed them to MG-132, supplemented the culture medium with various thiols, and assessed intracellular L-cysteine concentrations. The transcriptome response pattern also indicated an inhibition of the proteasome by MG-132 in the presence of L-cysteine. We conclude that thiol concentrations that can be reached in cells do not inactivate MG-132 in pathological models. They rather act in a cytoprotective way as antioxidants.
Collapse
Affiliation(s)
- Anna-Katharina Ückert
- In Vitro Toxicology and Biomedicine, Chair Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Chair Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Anja Land
- In Vitro Toxicology and Biomedicine, Chair Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Anna-Sophie Spreng
- In Vitro Toxicology and Biomedicine, Chair Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Hannah Welte
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Doreen Herzog
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, P1101 Universitätsstrasse 10, 78457 Konstanz, Germany
- Institute of Cell Biology and Immunology Thurgau (BITG), University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Chair Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Pradhan G, Juvale K. Structure activity relationship for anticancer activities of spirooxindole derivatives: A comprehensive review. Bioorg Chem 2025; 154:107975. [PMID: 39591685 DOI: 10.1016/j.bioorg.2024.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Cancer remains one of the leading causes of mortality worldwide, necessitating the continuous search for novel therapeutic agents. Spirooxindole derivatives have recently emerged as a class of compounds with significant potential for cancer treatment owing to their diverse pharmacological activities and unique structural features. The structural diversity of spirooxindole derivatives enables a wide range of modifications, facilitating optimization of their pharmacokinetic and pharmacodynamic properties. Moreover, their ability to interact with multiple molecular targets involved in cancer progression, including kinases, receptors, and enzymes, makes them attractive candidates for multi-targeted therapy. In preclinical studies, numerous spirooxindole derivatives have demonstrated promising antiproliferative activity against various cancer cell lines, including breast, lung, colon, and prostate cancers. Mechanistic investigations have revealed their ability to induce cell cycle arrest and apoptosis and inhibit angiogenesis and metastasis, underscoring their potential as effective anticancer agents. However, challenges such as off-target effects, drug resistance, and limited bioavailability need to be addressed to maximize the therapeutic potential of these compounds. Continued research efforts to elucidate their molecular mechanisms, optimize their pharmacological properties, and conduct rigorous clinical evaluations are warranted to harness their full therapeutic benefits for cancer treatment. This review provides a comprehensive overview of recent advancements in developing spirooxindole derivatives as anticancer agents with structure-activity relationships.
Collapse
Affiliation(s)
- Gandhar Pradhan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
7
|
Fajtova P, Hurysz BM, Miyamoto Y, Serafim MSM, Jiang Z, Vazquez JM, Trujillo DF, Liu LJ, Somani U, Almaliti J, Myers SA, Caffrey CR, Gerwick WH, McMinn DL, Kirk CJ, Boura E, Eckmann L, O'Donoghue AJ. Distinct substrate specificities of the three catalytic subunits of the Trichomonas vaginalis proteasome. Protein Sci 2024; 33:e5225. [PMID: 39589076 PMCID: PMC11590128 DOI: 10.1002/pro.5225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
The protozoan parasite Trichomonas vaginalis (Tv) causes trichomoniasis, the most common non-viral sexually transmitted infection in the world. Although Tv has been linked to significant health complications, only two closely related 5-nitroimidazole drugs are approved for its treatment. The emergence of resistance to these drugs and lack of alternative treatment options poses an increasing threat to public health, making development of novel anti-Trichomonas compounds an urgent need. The proteasome, a critical enzyme complex found in all eukaryotes has three catalytic subunits, β1, β2, and β5 and has been validated as a drug target to treat trichomoniasis. With the goal of developing tools to study the Tv proteasome, we isolated the enzyme complex and identified inhibitors that preferentially inactivate either one or two of the three catalytic subunits. Using a mass spectrometry-based peptide digestion assay, these inhibitors were used to define the substrate preferences of the β1, β2 and β5 subunits. Subsequently, three model fluorogenic substrates were designed, each specific for one of the catalytic subunits. This novel substrate profiling methodology will allow for individual subunit characterization of other proteasomes of interest. Using the new substrates, we screened a library of 284 peptide epoxyketone inhibitors against Tv and determined the subunits targeted by the most active compounds. The data show that inhibition of the Tv β5 subunit alone is toxic to the parasite. Taken together, the optimized proteasome subunit substrates will be instrumental for understanding the molecular determinants of proteasome specificity and for accelerating drug development against trichomoniasis.
Collapse
Affiliation(s)
- Pavla Fajtova
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPrague 6Czech Republic
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Brianna M. Hurysz
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Yukiko Miyamoto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Mateus Sá M. Serafim
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
- Departamento de Microbiologia, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteMinas GeraisBrazil
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Julia M. Vazquez
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Diego F. Trujillo
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Lawrence J. Liu
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Urvashi Somani
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Jehad Almaliti
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Samuel A. Myers
- Division of Signaling and Gene ExpressionLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Conor R. Caffrey
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - William H. Gerwick
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | | | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPrague 6Czech Republic
| | - Lars Eckmann
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| |
Collapse
|
8
|
Akintola OA, Patterson MB, Smith JG, DeMartino GN, Mitra AK, Kisselev AF. Inhibition of proteolytic and ATPase activities of the proteasome by the BTK inhibitor CGI-1746. iScience 2024; 27:110961. [PMID: 39759071 PMCID: PMC11700655 DOI: 10.1016/j.isci.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 01/07/2025] Open
Abstract
Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been shown to synergize in vitro with proteasome inhibitors (PIs) in reducing the viability of cells derived from B cell malignancies, but the mechanism is not known. We report here that an off-target effect of ibrutinib causes synergy because not all BTK inhibitors exhibited the synergistic effect, and those that synergized did so even in cells that do not express BTK. The allosteric BTK inhibitor CGI-1746 showed the strongest synergy. Co-treatment of cells with CGI-1746 increased PI-induced accumulation of ubiquitin conjugates and expression of heat shock proteins and NOXA and decreased a ratio of reduced to oxidized glutathione. CGI-1746, but not other BTK inhibitors, inhibited ATPase activity and all three peptidase activities of the 26S proteasome. The effect demonstrates a conceptually novel mode of proteasome inhibition that may aid the development of more potent PIs.
Collapse
Affiliation(s)
- Olasubomi A. Akintola
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - Mitchell B. Patterson
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - John G. Smith
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amit K. Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - Alexei F. Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| |
Collapse
|
9
|
Chen SJ, Tsai CC, Lin SR, Lee MH, Huang SS, Zeng HY, Wang LH, Chiang MF, Sheu HM, Chang NS. Dissociation of the nuclear WWOX/TRAF2 switch renders UV/cold shock-mediated nuclear bubbling cell death at low temperatures. Cell Commun Signal 2024; 22:505. [PMID: 39420317 PMCID: PMC11487720 DOI: 10.1186/s12964-024-01866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Normal cells express functional tumor suppressor WW domain-containing oxidoreductase (WWOX), designated WWOXf. UV irradiation induces WWOXf cells to undergo bubbling cell death (BCD) - an event due to the accumulation of nuclear nitric oxide (NO) gas that forcefully pushes the nuclear and cell membranes to form one or two bubbles at room temperature (22 °C) and below. In contrast, when WWOX-deficient or -dysfunctional (WWOXd) cells are exposed to UV and/or cold shock, the cells undergo nuclear pop-out explosion death (POD). We aimed to determine the morphological and biochemical changes in WWOXf cells during BCD versus apoptosis. METHODS WWOXf and WWOXd cells were exposed to UV followed by measuring BCD or POD by time-lapse microscopy and/or time-lapse holographic microscopy at 4, 22, or 37 °C to visualize morphological changes. Live cell stains were used to measure the kinetics of nitric oxide (NO) production and Ca2+ influx. Extent of cell death was measured by uptake of propidium iodide and by internucleosomal DNA fragmentation using agarose gel electrophoresis. RESULTS WWOXf cells were exposed to UV and then cold shock, or cold shock and then UV, and cultured at 4, 10, and 22 °C, respectively. Initially, UV induced calcium influx and NO production, which led to nuclear bubbling and final death. Cold shock pretreatment completely suppressed UV-mediated bubbling at 37 °C, so the UV/cold shock-treated cells underwent apoptosis. Without cold shock, UV only induced bubbling at all temperatures, whereas the efficiency of bubbling at 37 °C was reduced by greater than 50%. Morphologically, the WWOXf cell height or thickness was significantly increased during cell division or apoptosis, but the event did not occur in BCD. In comparison, when WWOXd cancer cells received UV or UV/cold shock, these cells underwent NO-independent POD. UV/cold shock effectively downregulated the expression of many proteins such as the housekeeping α-tubulin (> 70%) and β-actin (< 50%), and cortactin (> 70%) in WWOXf COS7 cells. UV/cold shock induced relocation of α-tubulin to the nucleus and nuclear bubbles in damaged cells. UV induced co-translocation of the WWOX/TRAF2 complex to the nuclei, in which the prosurvival TRAF2 blocked the proapoptotic WWOX via its zinc finger domain. Without WWOX, TRAF2 did not relocate to the nuclei. Cold shock caused the dissociation of the WWOX/TRAF2 complex in the nucleus needed for BCD. In contrast, the formation of the WWOX/TRAF2 complex, plus p53, was strengthened at 37 °C required for apoptosis. CONCLUSIONS The temperature-sensitive nuclear WWOX/TRAF2 complex acts as a molecular switch, whose dissociation favors BCD at low temperatures, and the association supports apoptosis at 37 °C in UV-treated WWOXf cells.
Collapse
Affiliation(s)
- Szu-Jung Chen
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Cheng-Chang Tsai
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Sing-Ru Lin
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Hui Lee
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shenq-Shyang Huang
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Han-Yan Zeng
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Lu-Hai Wang
- Chinese Medicine Research Center, Institute of Integrated Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Fu Jen Catholic University Hospital, Taipei, 24352, Taiwan.
| | - Hamm-Ming Sheu
- Department of Dermatology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Nan-Shan Chang
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
10
|
Xavier A, Dikic I. Feeding cancer to death - a triad of aromatic acids reduces tumor growth. Cell Death Differ 2024; 31:1239-1241. [PMID: 39266718 PMCID: PMC11445509 DOI: 10.1038/s41418-024-01372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Affiliation(s)
- Audrey Xavier
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Nieskens NM, Miyamoto Y, Hurysz BM, O’Donoghue AJ, Eckmann L. Vaginal Tritrichomonas foetus infection in mice as an in vivo model for drug development against Trichomonas vaginalis. PLoS One 2024; 19:e0308672. [PMID: 39352907 PMCID: PMC11444383 DOI: 10.1371/journal.pone.0308672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Trichomonas vaginalis is the causative agent of the common sexually transmitted disease, trichomoniasis, which affects more than a hundred million people worldwide. Metronidazole and tinidazole, agents belonging to the 5-nitroheterocyclic class of antimicrobials, are most often used to treat infection, but increased resistance has been reported and adverse effects of these drugs can be significant. Consequently, an urgent need exists for the development of novel drug entities against trichomoniasis. Critical for antimicrobial drug development is the demonstration of in vivo efficacy. Murine models of vaginal T. vaginalis infection are unreliable for unknown reasons. Meanwhile, murine infections with the related bovine pathogen, Tritrichomonas foetus, tend to be more robust, although susceptibility to different antimicrobials might differ from T. vaginalis. Here, we explored the utility of T. foetus infection as a surrogate model for drug development against T. vaginalis. Four different T. foetus strains caused robust vaginal infection in young mice, while none of four diverse T. vaginalis strains did. Comparison of drug susceptibility profiles revealed that T. foetus and T. vaginalis were similarly susceptible to a range of 5-nitroheterocyclic and gold(I) compounds. By comparison, proteasome inhibitors were 10- to 15-fold less active against T. foetus than T. vaginalis, although one of the proteasome inhibitors, bortezomib, had low micromolar activity or better against multiple strains of both trichomonads. Different strains of T. foetus were used to demonstrate the utility of the murine vaginal infection models for in vivo efficacy testing, including for bortezomib and a gold(I) compound. The differences in susceptibility to proteasome inhibitors may be partially explained by differences in the proteasome subunit sequences between the two trichomonads, although the functional relevance of the proteasome was similar in both organisms. These findings indicate that T. foetus can serve as a reliable surrogate model for T. vaginalis in vitro and in murine infections in vivo, but caution must be exercised for specific drug classes with targets, such as the proteasome, that may display genetic divergence between the trichomonads.
Collapse
Affiliation(s)
- Noelle M. Nieskens
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Brianna M. Hurysz
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Anthony J. O’Donoghue
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
12
|
Ito M, Koido S, Iwamoto T, Morimoto S, Fujiki F, Sugiyama H, Matsumoto S, Effenberger C, Kiyotani K, Shiba K. Enhancing the immunogenicity of Wilms tumor 1 epitope in mesothelioma cells with immunoproteasome inhibitors. PLoS One 2024; 19:e0308330. [PMID: 39116074 PMCID: PMC11309442 DOI: 10.1371/journal.pone.0308330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
The immunogenicity of cancer cells is influenced by several factors, including the expression of the major histocompatibility complex class I (MHC-I), antigen expression, and the repertoire of proteasome-produced epitope peptides. The malignant pleural mesothelioma cell line ACC-MEOS-4 (MESO-4) expresses high levels of MHC-I and Wilms tumor 1 (WT1) tumor antigens. Using a functional T cell reporter assay specific for the HLA-A*24:02 restricted WT1 epitope (WT1235, CMTWNQMNL), we searched for factors that augmented the immunogenicity of MESO-4, focusing on proteasomes, which have a central role in the antigen processing machinery. ONX-0914, a selective inhibitor of the immunoproteasome subunit β5i, enhanced immunogenicity dose-dependently at low concentrations without cytotoxicity. In addition, CD8+ T lymphocytes recognizing WT1 showed greater cytotoxicity against MESO-4 pre-treated with ONX-0914. MESO-4 expresses a standard proteasome (SP) and immunoproteasome (IP). Notably, IP has distinct catalytic activity from SP, favoring the generation of antigenic peptides with high affinity for MHC-I in antigen-presenting cells and cancer cells. In vitro, immunoproteasome digestion assay and mass spectrometry analysis showed that IP cleaved WT1235 internally after the hydrophobic residues. Importantly, this internal cleavage of the WT1235 epitope was mitigated by ONX-0914. These results suggest that ONX-0914 prevents the internal destructive cleavage of WT1235 by IP, thereby promoting the specific presentation of the WT1 epitope by MESO-4. In conclusion, selective IP inhibitors might offer a means to modulate cancer cell immunogenicity by directing the presentation of particular tumor epitopes.
Collapse
Affiliation(s)
- Masaki Ito
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigeo Koido
- The Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Takeo Iwamoto
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Soyoko Morimoto
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumihiro Fujiki
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Saki Matsumoto
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Clara Effenberger
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kiyotaka Shiba
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
13
|
Park JE, Chaudhary CL, Bhattarai D, Kim KB. Brain-Permeable Immunoproteasome-Targeting Macrocyclic Peptide Epoxyketones for Alzheimer's Disease. J Med Chem 2024; 67:7146-7157. [PMID: 38636481 PMCID: PMC11733980 DOI: 10.1021/acs.jmedchem.3c02488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Previously, we demonstrated that linear peptide epoxyketones targeting the immunoproteasome (iP) could ameliorate cognitive deficits in mouse models of Alzheimer's disease (AD) independently of amyloid deposition. We also reported the first iP-targeting macrocyclic peptide epoxyketones, which exhibit improved metabolic stability compared with their linear counterparts. Here, we prepared additional macrocyclic peptide epoxyketones and compared them with existing macrocyclic iP inhibitors by assessing Caco2 cell-based permeability and microsomal stability, providing the four best macrocyclic iP inhibitors. We then evaluated the four compounds using the Ames test and the potency assays in BV2 cells, selecting compound 5 as our AD drug lead. When 5 was administered intravenously (40 mg/kg) or orally (150 mg/kg) into healthy BALB/c mice, we observed considerable iP inhibition in the mouse brain, indicating good blood-brain barrier permeability and target engagement. Combined results suggest that 5 is a promising AD drug lead that may need further investigation.
Collapse
Affiliation(s)
- Ji Eun Park
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987, United States
| | - Chhabi L. Chaudhary
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Kyung Bo Kim
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987, United States; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
14
|
Lahey KC, Varsanyi C, Wang Z, Aquib A, Gadiyar V, Rodrigues AA, Pulica R, Desind S, Davra V, Calianese DC, Liu D, Cho JH, Kotenko SV, De Lorenzo MS, Birge RB. Regulation of Mertk Surface Expression via ADAM17 and γ-Secretase Proteolytic Processing. Int J Mol Sci 2024; 25:4404. [PMID: 38673989 PMCID: PMC11050108 DOI: 10.3390/ijms25084404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/γ-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and γ-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of γ-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active γ-carboxylated Gas6, but not inactive Warfarin-treated non-γ-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk.
Collapse
Affiliation(s)
- Kevin C. Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Alcina A. Rodrigues
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Samuel Desind
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - David C. Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA; (D.L.); (J.-H.C.)
| | - Jong-Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA; (D.L.); (J.-H.C.)
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Mariana S. De Lorenzo
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA;
| | - Raymond B. Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| |
Collapse
|
15
|
Wu L, Zhang L, Feng S, Chen L, Lin C, Wang G, Zhu Y, Wang P, Cheng G. An evolutionarily conserved ubiquitin ligase drives infection and transmission of flaviviruses. Proc Natl Acad Sci U S A 2024; 121:e2317978121. [PMID: 38593069 PMCID: PMC11032495 DOI: 10.1073/pnas.2317978121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.
Collapse
Affiliation(s)
- Linjuan Wu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
| | - Liming Zhang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
| | - Lu Chen
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
| | - Cai Lin
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
| | - Gang Wang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
- Southwest United Graduate School, Kunming650092, China
| |
Collapse
|
16
|
Hui YJ, Yu TT, Li LG, Peng XC, Di MJ, Liu H, Gu WL, Li TF, Zhao KL, Wang WX. B-Myb deficiency boosts bortezomib-induced immunogenic cell death in colorectal cancer. Sci Rep 2024; 14:7733. [PMID: 38565963 PMCID: PMC10987531 DOI: 10.1038/s41598-024-58424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
B-Myb has received considerable attention for its critical tumorigenic function of supporting DNA repair. However, its modulatory effects on chemotherapy and immunotherapy have rarely been reported in colorectal cancer. Bortezomib (BTZ) is a novel compound with chemotherapeutic and immunotherapeutic effects, but it fails to work in colorectal cancer with high B-Myb expression. The present study was designed to investigate whether B-Myb deletion in colorectal cancer could potentiate the immune efficacy of BTZ against colorectal cancer and to clarify the underlying mechanism. Stable B-Myb knockdown was induced in colorectal cancer cells, which increased apoptosis of the cancer cells relative to the control group in vitro and in vivo. We found that BTZ exhibited more favourable efficacy in B-Myb-defective colorectal cancer cells and tumor-bearing mice. BTZ treatment led to differential expression of genes enriched in the p53 signaling pathway promoted more powerful downstream DNA damage, and arrested cell cycle in B-Myb-defective colorectal cancer. In contrast, recovery of B-Myb in B-Myb-defective colorectal cancer cells abated BTZ-related DNA damage, cell cycle arrest, and anticancer efficacy. Moreover, BTZ promoted DNA damage-associated enhancement of immunogenicity, as indicated by potentiated expression of HMGB1 and HSP90 in B-Myb-defective cells, thereby driving M1 polarization of macrophages. Collectively, B-Myb deletion in colorectal cancer facilitates the immunogenic death of cancer cells, thereby further promoting the immune efficacy of BTZ by amplifying DNA damage. The present work provides an effective molecular target for colorectal cancer immunotherapy with BTZ.
Collapse
Affiliation(s)
- Yuan-Jian Hui
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, Hubei Province, China
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei Province, China
| | - Ting-Ting Yu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin South Road No. 30, Shiyan, 442000, Hubei Province, China
- Department of Pathology, Renmin Hospital of Shiyan, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Liu-Gen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin South Road No. 30, Shiyan, 442000, Hubei Province, China
| | - Xing-Chun Peng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin South Road No. 30, Shiyan, 442000, Hubei Province, China
| | - Mao-Jun Di
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei Province, China
| | - Hui Liu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei Province, China
| | - Wen-Long Gu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei Province, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin South Road No. 30, Shiyan, 442000, Hubei Province, China
| | - Kai-Liang Zhao
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, Hubei Province, China.
| | - Wei-Xing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
17
|
Mitsiades CS. Proteasome Inhibitors in Multiple Myeloma: Biological Insights on Mechanisms of Action or Resistance Informed by Functional Genomics. Hematol Oncol Clin North Am 2024; 38:321-336. [PMID: 38278626 DOI: 10.1016/j.hoc.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
During the last 20 years, proteasome inhibitors have been a cornerstone for the therapeutic management of multiple myeloma (MM). This review highlights how MM research has evolved over time in terms of our understanding of the mechanistic basis for the pronounced clinical activity of proteasome inhibitors in MM, compared with the limited clinical applications of this drug class outside the setting of plasma cell dyscrasias.
Collapse
Affiliation(s)
- Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
18
|
Jiao QH, Wang Y, Zhang AN, Liu QQ, Zhou QB. PSMA7 promotes the malignant proliferation of esophageal cancer. Heliyon 2024; 10:e23173. [PMID: 38173490 PMCID: PMC10761361 DOI: 10.1016/j.heliyon.2023.e23173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background It is important to explore novel molecules that play a key role in esophageal cancer (ESCA) progression. Methods Two ESCA tissue expression profile microarrays (GSE92396 and GSE17351) data from GEO were downloaded, and differentially expressed genes (DEGs) were analyzed using GEO2R. The DEGs common to both microarrays were analyzed for protein-protein interactions, KEGG and GO. The altered expression of proteasome 20S subunit α 7 (PSMA7) in ESCA tissues was analyzed using information from publicly available databases (GEO, TCGA, TNMplot). PSMA7 was overexpressed or knocked down in Eca109 and KYSE150 cells using transfection, and the effects on cell proliferation, migration, invasion and apoptosis were examined using CCK-8, Transwell, and flow cytometry experiments. Results 284 common DEGs were identified, and 10 core proteins, HSP90AA1, AURKA, CDC6, PCNA, MCM5, KAT2B, GRB2, MYBL2, PSMA7, and CKAP5, involved in ESCA progression were identified. PSMA7 mRNA level was significantly increased in ESCA tissues. PSMA7 overexpression significantly promoted the proliferation, migration and invasion of Eca109 and KYSE150 cells, and significantly promoted apoptosis. In contrast, PSMA7 knockdown inhibited their proliferation and motility, and significantly suppressed apoptosis. Conclusion This study analyzed multiple proteins that may play a key role in ESCA progression, and identified the pro-cancer role of PSMA7.
Collapse
Affiliation(s)
- Qing-hua Jiao
- Department of Geriatrics, The Second Hospital Cheeloo College of Medicine Shandong University, Jinan 250000, Shandong, China
| | - Yan Wang
- Department of Geriatrics, The Second Hospital Cheeloo College of Medicine Shandong University, Jinan 250000, Shandong, China
| | - An-na Zhang
- Department of Geriatrics, The Second Hospital Cheeloo College of Medicine Shandong University, Jinan 250000, Shandong, China
| | - Qian-qian Liu
- Department of Geriatrics, The Second Hospital Cheeloo College of Medicine Shandong University, Jinan 250000, Shandong, China
| | - Qing-bo Zhou
- Department of Geriatrics, The Second Hospital Cheeloo College of Medicine Shandong University, Jinan 250000, Shandong, China
| |
Collapse
|
19
|
Jin S, Li B, Zhang B, Gao X, Jia X, Xu L, Chang S, Hu K, Wang G, Xu Z, Zhang T, Song D, Yang G, Wu X, Zhu H, Huang C, Lu Y, Shi J, Zhu W, Chen G. Dihydrocelastrol induces antitumor activity and enhances the sensitivity of bortezomib in resistant multiple myeloma by inhibiting STAT3-dependent PSMB5 regulation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1884-1891. [PMID: 38009004 PMCID: PMC11294055 DOI: 10.3724/abbs.2023260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/01/2023] [Indexed: 11/28/2023] Open
Abstract
Multiple myeloma (MM) is characterized by excessive aggregation of B-cell-derived malignant plasma cells in the hematopoietic system of bone marrow. Previously, we synthesized an innovative molecule named dihydrocelastrol (DHCE) from celastrol, a triterpene purified from medicinal plant Tripterygium wilfordii. Herein, we explore the therapeutic properties and latent signal transduction mechanism of DHCE action in bortezomib (BTZ)-resistant (BTZ-R) MM cells. In this study, we first report that DHCE shows antitumor activities in vitro and in vivo and exerts stronger inhibitory effects than celastrol on BTZ-R cells. We find that DHCE inhibits BTZ-R cell viability by promoting apoptosis via extrinsic and intrinsic pathways and suppresses BTZ-R MM cell proliferation by inducing G0/G1 phase cell cycle arrest. In addition, inactivation of JAK2/STAT3 and PI3K/Akt pathways are involved in the DHCE-mediated antitumor effect. Simultaneously, DHCE acts synergistically with BTZ on BTZ-R cells. PSMB5, a molecular target of BTZ, is overexpressed in BTZ-R MM cells compared with BTZ-S MM cells and is demonstrated to be a target of STAT3. Moreover, DHCE downregulates PSMB5 overexpression in BTZ-R MM cells, which illustrates that DHCE overcomes BTZ resistance through increasing the sensitivity of BTZ in resistant MM via inhibiting STAT3-dependent PSMB5 regulation. Overall, our findings imply that DHCE may become a potential therapeutic option that warrants clinical evaluation for BTZ-R MM.
Collapse
Affiliation(s)
- Shuhan Jin
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Bo Li
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Bibo Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- of Hematologythe Affiliated People’s Hospital of Ningbo UniversityNingbo315000China
| | - Xuejie Gao
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xinyan Jia
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Li Xu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Shuaikang Chang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Ke Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Guanli Wang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhijian Xu
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ting Zhang
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Dongliang Song
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Guang Yang
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Xiaosong Wu
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Huabin Zhu
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Cheng Huang
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Yumeng Lu
- Department of HematologyShanghai Tenth People’s HospitalTongji University School of MedicineShanghai200072China
| | - Jumei Shi
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Weiliang Zhu
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Gege Chen
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| |
Collapse
|
20
|
Gozdz A. Proteasome Inhibitors against Glioblastoma-Overview of Molecular Mechanisms of Cytotoxicity, Progress in Clinical Trials, and Perspective for Use in Personalized Medicine. Curr Oncol 2023; 30:9676-9688. [PMID: 37999122 PMCID: PMC10670062 DOI: 10.3390/curroncol30110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Proteasome inhibitors are moieties targeting the proteolytic activity of a proteasome, with demonstrated efficacy in certain hematological malignancies and candidate drugs in other types of cancer, including glioblastoma (GBM). They disturb the levels of proteasome-regulated proteins and lead to the cell cycle inhibition and apoptosis of GBM cells. The accumulation of cell cycle inhibitors p21 and p27, and decreased levels of prosurvival molecules NFKB, survivin, and MGMT, underlie proteasome inhibitors' cytotoxicity when used alone or in combination with the anti-GBM cytostatic drug temozolomide (TMZ). The evidence gathered in preclinical studies substantiated the design of clinical trials that employed the two most promising proteasome inhibitors, bortezomib and marizomib. The drug safety profile, maximum tolerated dose, and interaction with other drugs were initially evaluated, mainly in recurrent GBM patients. A phase III study on newly diagnosed GBM patients who received marizomib as an adjuvant to the Stupp protocol was designed and completed in 2021, with the Stupp protocol receiving patients as a parallel control arm. The data from this phase III study indicate that marizomib does not improve the PFS and OS of GBM patients; however, further analysis of the genetic and epigenetic background of each patient tumor may shed some light on the sensitivity of individual patients to proteasome inhibition. The mutational and epigenetic makeup of GBM cells, like genetic alterations to TP53 and PTEN, or MGMT promoter methylation levels may actually determine the response to proteasome inhibition.
Collapse
Affiliation(s)
- Agata Gozdz
- Department of Histology and Embryology, Centre for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
21
|
Gazzaroli G, Angeli A, Giacomini A, Ronca R. Proteasome inhibitors as anticancer agents. Expert Opin Ther Pat 2023; 33:775-796. [PMID: 37847492 DOI: 10.1080/13543776.2023.2272648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION The therapeutic targeting of the ubiquitin-proteasome pathway (UPP) through inhibitors of the 20S proteasome core proteolytic activities has revolutionized the treatment of hematological malignancies and is paving the way for its extension to solid tumors. AREAS COVERED This review covers the progress made in the field of proteasome inhibitors, ranging from the first-generation bortezomib to the latest second-generation inhibitors such as carfilzomib and ixazomib as well as the proteasome inhibitors in clinical phase such as oprozomib and marizomib. The development of selective and potent proteasome inhibitors with improved pharmacological properties is described from the synthesis to their basic biological, and clinical validation. EXPERT OPINION Proteasome inhibitors have transformed the treatment landscape for hematological malignancies and hold great promise for cancer therapy. Combination therapies targeting multiple pathways, the development of novel inhibitors or 'hybrid-inhibitors,' and the optimization of treatment protocols are key areas for future exploration. The extension of proteasome inhibitors for the treatment of solid tumors, and their ability to pass the blood-brain barrier open new possibilities for treating central nervous system cancers. However, managing adverse effects, particularly those affecting the central nervous system, remains a critical consideration and a strategic 'working on' aspect for the near future.
Collapse
Affiliation(s)
- Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
22
|
Gao J, Su HX, Li PB, Shi KN, Li HH. TCH-165 attenuates cardiac ischaemia/reperfusion injury by balancing mitochondrial dynamics via increasing proteasome activity. Eur J Pharmacol 2023; 957:176011. [PMID: 37633323 DOI: 10.1016/j.ejphar.2023.176011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The proteasome is the main complex responsible for maintaining intracellular protein homeostasis, impairment of which is associated with cardiac ischaemia/reperfusion (I/R) injury. The small molecule TCH-165 has been found to activate the 20S proteasome to remove disordered proteins in multiple myeloma and glioblastoma. However, the preventive effect of TCH-165 against I/R-mediated cardiac impairment in mice remains largely unknown. Here, a cardiac I/R model was established in mice. Heart function was assessed with echocardiography. Cardiac infarction, myocyte death, and superoxide level were evaluated by 2,3,5-triphenyltetrazolium chloride (TTC)-Evans blue staining, terminal deoxynucleotidyl transferase-mediated dUTP nick and labelling (TUNEL) assay and immunostaining, respectively. Our results showed that TCH-165 treatment markedly ameliorated I/R-mediated cardiac dysfunction and decreased the infarct size, apoptosis, and superoxide levels. Mechanistically, TCH-165 increased immunoproteasome subunit expression/activity, increasing pro-fission protein dynamin-1-like protein (DNM1L, also known as DRP1) degradation and the expression of the pro-fusion proteins mitofusin 1/2 (Mfn1/2) and thereby leading to mitochondrial fission/fusion balance. In vitro experiments confirmed that inhibition of proteasome activity by epoxomicin abolished the protective effect of TCH-165 against hypoxia/reoxygenation (H/R)-induced increases in cardiomyocyte apoptosis, superoxide production and mitochondrial fission. In summary, TCH-165 is a newly discovered inducer of immunoproteasome activity that exerts a preventive effect against cardiac I/R damage by targeting Drp1 degradation, indicating that it may be as a potential therapeutic candidate for ischaemic heart disease.
Collapse
Affiliation(s)
- Jing Gao
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Hui-Xiang Su
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Pang-Bo Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Kai-Na Shi
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China.
| |
Collapse
|
23
|
Luo ZY, Jiang TX, Zhang T, Xu P, Qiu XB. Ubiquitin Ligase Nrdp1 Controls Autophagy-Associated Acrosome Biogenesis and Mitochondrial Arrangement during Spermiogenesis. Cells 2023; 12:2211. [PMID: 37759433 PMCID: PMC10527437 DOI: 10.3390/cells12182211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is critical to acrosome biogenesis and mitochondrial quality control, but the underlying mechanisms remain unclear. The ubiquitin ligase Nrdp1/RNF41 promotes ubiquitination of the mitophagy-associated Parkin and interacts with the pro-autophagic protein SIP/CacyBP. Here, we report that global deletion of Nrdp1 leads to formation of the round-headed sperm and male infertility by disrupting autophagy. Quantitative proteome analyses demonstrated that the expression of many proteins associated with mitochondria, lysosomes, and acrosomes was dysregulated in either spermatids or sperm of the Nrdp1-deficient mice. Deletion of Nrdp1 increased the levels of Parkin but decreased the levels of SIP, the mitochondrial fission protein Drp1 and the mitochondrial protein Tim23 in sperm, accompanied by the inhibition of autophagy, the impairment of acrosome biogenesis and the disruption of mitochondrial arrangement in sperm. Thus, our results uncover an essential role of Nrdp1 in spermiogenesis and male fertility by promoting autophagy, providing important clues to cope with the related male reproductive diseases.
Collapse
Affiliation(s)
- Zi-Yu Luo
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China; (Z.-Y.L.); (T.-X.J.)
| | - Tian-Xia Jiang
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China; (Z.-Y.L.); (T.-X.J.)
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China;
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China;
| | - Xiao-Bo Qiu
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China; (Z.-Y.L.); (T.-X.J.)
| |
Collapse
|
24
|
Cerruti F, Borrelli A, Degiovanni A, Mengozzi G, Borella F, Cascio P. Detection and biochemical characterization of circulating proteasomes in dog plasma. Res Vet Sci 2023; 162:104950. [PMID: 37453228 DOI: 10.1016/j.rvsc.2023.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A growing body of evidence convincingly indicates that proteasomes are not located exclusively within cells but also in different extracellular compartments. In humans, in fact, this large multimeric protease has been identified in many body fluids and secretions such as blood, urine, tears, sweat, saliva, milk, and cerebrospinal and pericardial fluid. Intriguingly, the exact origins of these extracellular proteasomes as well as the specific biological functions they perform are largely unknown. As no data on this important subject is yet available in domestic animals, the present study was undertaken to investigate the presence of extracellular proteasomes in canine blood. As a result, for the first time, circulating proteasomes could be clearly detected in the plasma of a cohort of 20 healthy dogs. Furthermore, all three main proteasomal peptidase activities were measured and characterized using fluorogenic peptides and highly specific inhibitors. Finally, the effect of ATP and PA28 family activators on this circulating proteasome was investigated. Collectively, our data indicate that at least a part of the proteasome present in dog plasma consists of a particle that in vitro displays the enzymatic properties of the 20S proteasome.
Collapse
Affiliation(s)
- F Cerruti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - A Borrelli
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - A Degiovanni
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - G Mengozzi
- Department of Public Health and Pediatric Sciences, University of Turin, C.so Bramante, 88/90, 10100 Turin, Italy
| | - F Borella
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - P Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
25
|
Chari A, Stark H. Prospects and Limitations of High-Resolution Single-Particle Cryo-Electron Microscopy. Annu Rev Biophys 2023; 52:391-411. [PMID: 37159297 DOI: 10.1146/annurev-biophys-111622-091300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Single particle cryo-electron microscopy (cryo-EM) has matured into a robust method for the determination of biological macromolecule structures in the past decade, complementing X-ray crystallography and nuclear magnetic resonance. Constant methodological improvements in both cryo-EM hardware and image processing software continue to contribute to an exponential growth in the number of structures solved annually. In this review, we provide a historical view of the many steps that were required to make cryo-EM a successful method for the determination of high-resolution protein complex structures. We further discuss aspects of cryo-EM methodology that are the greatest pitfalls challenging successful structure determination to date. Lastly, we highlight and propose potential future developments that would improve the method even further in the near future.
Collapse
Affiliation(s)
- Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
26
|
Ajay AK, Chu P, Patel P, Deban C, Roychowdhury C, Heda R, Halawi A, Saad A, Younis N, Zhang H, Jiang X, Nasr M, Hsiao LL, Lin G, Azzi JR. High-Throughput/High Content Imaging Screen Identifies Novel Small Molecule Inhibitors and Immunoproteasomes as Therapeutic Targets for Chordoma. Pharmaceutics 2023; 15:1274. [PMID: 37111759 PMCID: PMC10145398 DOI: 10.3390/pharmaceutics15041274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Chordomas account for approximately 1-4% of all malignant bone tumors and 20% of primary tumors of the spinal column. It is a rare disease, with an incidence estimated to be approximately 1 per 1,000,000 people. The underlying causative mechanism of chordoma is unknown, which makes it challenging to treat. Chordomas have been linked to the T-box transcription factor T (TBXT) gene located on chromosome 6. The TBXT gene encodes a protein transcription factor TBXT, or brachyury homolog. Currently, there is no approved targeted therapy for chordoma. Here, we performed a small molecule screening to identify small chemical molecules and therapeutic targets for treating chordoma. We screened 3730 unique compounds and selected 50 potential hits. The top three hits were Ribociclib, Ingenol-3-angelate, and Duvelisib. Among the top 10 hits, we found a novel class of small molecules, including proteasomal inhibitors, as promising molecules that reduce the proliferation of human chordoma cells. Furthermore, we discovered that proteasomal subunits PSMB5 and PSMB8 are increased in human chordoma cell lines U-CH1 and U-CH2, confirming that the proteasome may serve as a molecular target whose specific inhibition may lead to better therapeutic strategies for chordoma.
Collapse
Affiliation(s)
- Amrendra K. Ajay
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Philip Chu
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
| | - Poojan Patel
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Christa Deban
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
| | - Chitran Roychowdhury
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
| | - Radhika Heda
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
| | - Ahmad Halawi
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Anis Saad
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nour Younis
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mahmoud Nasr
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Li-Li Hsiao
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jamil R. Azzi
- Transplant Research Centre, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA (R.H.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Goutas A, Outskouni Z, Papathanasiou I, Georgakopoulou A, Karpetas GE, Gonos ES, Trachana V. The establishment of mitotic errors-driven senescence depends on autophagy. Redox Biol 2023; 62:102701. [PMID: 37094517 PMCID: PMC10149375 DOI: 10.1016/j.redox.2023.102701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
We and others have reported that senescence onset is accompanied by genomic instability that is evident by several defects, such as aneuploidy or erroneous mitosis features. Here, we report that these defects also appear in young cells upon oxidative insult. We provide evidence that these errors could be the consequence of oxidative stress (OS)- either exogenous or senescence-associated - overriding the spindle assembly checkpoint (SAC). Young cells treated with Η2Ο2 as well as older cells fail to maintain mitotic arrest in the presence of spindle poisons and a significant higher percentage of them have supernumerary centrosomes and centrosome related anomalous characteristics. We also report that aging is escorted by expression modifications of SAC components, and especially of Bub1b/BubR1. Bub1b/BubR1 has been previously reported to decrease naturally upon aging. Here, we show that there is an initial increase in Bub1b/BubR1 levels, feasibly as part of the cells' response against OS-driven genomic instability, that is followed by its autophagy dependent degradation. This provides an explanation that was missing regarding the molecular entity responsible for the downregulation of Bub1b/BubR1 upon aging, especially since it is well established, by us and others, that the proteasome function decays as cells age. These results, not only serve the previously reported notion of a shift from proteasome to autophagy-dependent degradation upon aging, but also provide a mechanistic insight for mitotic errors-driven senescence. We believe that our conclusions deepen our understanding regarding the homeostatic function of autophagy that serves the establishment of senescence as a barrier against cellular transformation.
Collapse
Affiliation(s)
- Andreas Goutas
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| | - Zozo Outskouni
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| | - Ioanna Papathanasiou
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| | - Aphrodite Georgakopoulou
- Hematology Department, Hematopoietic Cell Transplant (HCT) Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, 57010, Greece.
| | - Georgios E Karpetas
- Department of Medical Informatics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| | - Efstathios S Gonos
- Hellenic Pasteur Institute, Athens, 11521, Greece; Institute of Biology, Medical Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, 11635, Greece.
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| |
Collapse
|
28
|
Bittmann S, Villalon G, Moschuring-Alieva E, Luchter E, Bittmann L. Current and Novel Therapeutical Approaches of Classical Homocystinuria in Childhood With Special Focus on Enzyme Replacement Therapy, Liver-Directed Therapy and Gene Therapy. J Clin Med Res 2023; 15:76-83. [PMID: 36895619 PMCID: PMC9990725 DOI: 10.14740/jocmr4843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/09/2023] [Indexed: 03/05/2023] Open
Abstract
Classical homocystinuria is a hereditary defect of the enzyme cystathionine beta synthase, which is produced in the liver. If this enzyme fails, the synthesis pathway of cysteine from methionine is interrupted, leading to the accumulation of homocysteine in the blood plasma and homocysteine in the urine. After birth, the children are unremarkable except for the characteristic laboratory findings. Symptoms rarely appear before the second year of life. The most common symptom is a prolapse of the crystalline lens. This finding is seen in 70% of untreated 10-year-old affected individuals. As the earliest symptom, psychomotor retardation occurs in the majority of patients already during the first two years of life. Limiting factors in terms of life expectancy are thromboembolism, peripheral arterial disease, myocardial infarction, and stroke. These symptoms are due to the damage to the vessels caused by the elevated amino acid levels. About 30% suffer a thromboembolic event by the age of 20, about half by the age of 30. This review focus on present and new therapeutical approaches like the role of enzyme replacement with presentation of different novel targets in research like pegtibatinase, pegtarviliase, CDX-6512, erymethionase, chaperones, proteasome inhibitors and probiotic treatment with SYNB 1353. Furthermore, we analyze the role of liver-directed therapy with three dimensional (3D) bioprinting, liver bioengineering of liver organoids in vitro and liver transplantation. The role of different gene therapy options to treat and cure this extremely rare disease in childhood will be discussed.
Collapse
Affiliation(s)
- Stefan Bittmann
- Ped Mind Institute, Department of Pediatrics, Medical and Finance Center Epe, D-48599 Gronau, Germany
| | - Gloria Villalon
- Ped Mind Institute, Department of Pediatrics, Medical and Finance Center Epe, D-48599 Gronau, Germany
| | - Elena Moschuring-Alieva
- Ped Mind Institute, Department of Pediatrics, Medical and Finance Center Epe, D-48599 Gronau, Germany
| | - Elisabeth Luchter
- Ped Mind Institute, Department of Pediatrics, Medical and Finance Center Epe, D-48599 Gronau, Germany
| | - Lara Bittmann
- Ped Mind Institute, Department of Pediatrics, Medical and Finance Center Epe, D-48599 Gronau, Germany
| |
Collapse
|
29
|
Zhan W, Li D, Saha P, Wang R, Zhang H, Ajay AK, Deban C, Sukenick G, Azzi J, Lin G. Discovery of Highly Selective Inhibitors of the Human Constitutive Proteasome β5c Chymotryptic Subunit. J Med Chem 2023; 66:1172-1185. [PMID: 36608337 PMCID: PMC10157300 DOI: 10.1021/acs.jmedchem.2c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe our discovery and development of potent and highly selective inhibitors of human constitutive proteasome chymotryptic activity (β5c). Structure-activity relationship studies of the novel class of inhibitors focused on optimization of N-cap, C-cap, and side chain of the chemophore asparagine. Compound 32 is the most potent and selective β5c inhibitor in this study. A docking study provides a structure rationale for potency and selectivity. Kinetic studies show a reversible and noncompetitive inhibition mechanism. It enters the cells to engage the proteasome target, potently and selectively kills multiple myeloma cells, and does so by synergizing with a β5i-selective inhibitor.
Collapse
Affiliation(s)
- Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| | - Daqiang Li
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| | - Priya Saha
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| | - Rong Wang
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| | - Amrendra K. Ajay
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christa Deban
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - George Sukenick
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Jamil Azzi
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| |
Collapse
|
30
|
Hu LT, Xie XY, Zhou GF, Wen QX, Song L, Luo B, Deng XJ, Pan QL, Chen GJ. HMGCS2-Induced Autophagic Degradation of Tau Involves Ketone Body and ANKRD24. J Alzheimers Dis 2023; 91:407-426. [PMID: 36442191 DOI: 10.3233/jad-220640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Accumulation of hyperphosphorylated Tau (pTau) contributes to the formation of neurofibrillary tangles in Alzheimer's disease (AD), and targeting Tau/pTau metabolism has emerged as a therapeutic approach. We have previously reported that mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2 (HMGCS2) is involved in AD by promoting autophagic clearance of amyloid-β protein precursor via ketone body-associated mechanism, whether HMGCS2 may also regulate Tau metabolism remains elusive. OBJECTIVE The present study was to investigate the role of HMGCS2 in Tau/p degradation. METHODS The protein levels of Tau and pTau including pT217 and pT181, as well as autophagic markers LAMP1 and LC3-II were assessed by western blotting. The differentially regulated genes by HMGCS2 were analyzed by RNA sequencing. Autophagosomes were assessed by transmission electron microscopy. RESULTS HMGCS2 significantly decreased Tau/pTau levels, which was paralleled by enhanced formation of autophagic vacuoles and prevented by autophagic regulators chloroquine, bafilomycin A1, 3-methyladenine, and rapamycin. Moreover, HMGCS2-induced alterations of LAMP1/LC3-II and Tau/pTau levels were mimicked by ketone body acetoacetate or β-hydroxybutyrate. Further RNA-sequencing identified ankyrin repeat domain 24 (ANKRD24) as a target gene of HMGCS2, and silencing of ANKRD24 reduced LAMP1/LC3-II levels, which was accompanied by the altered formation of autophagic vacuoles, and diminished the effect of HMGCS2 on Tau/pTau. CONCLUSION HMGCS2 promoted autophagic clearance of Tau/pTau, in which ketone body and ANKRD24 played an important role.
Collapse
Affiliation(s)
- Li-Tian Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qiu-Ling Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Hackerova L, Klusackova B, Zigo M, Zelenkova N, Havlikova K, Krejcirova R, Sedmikova M, Sutovsky P, Komrskova K, Postlerova P, Simonik O. Modulatory effect of MG-132 proteasomal inhibition on boar sperm motility during in vitro capacitation. Front Vet Sci 2023; 10:1116891. [PMID: 37035827 PMCID: PMC10077870 DOI: 10.3389/fvets.2023.1116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
A series of biochemical and biophysical changes during sperm capacitation initiates various signaling pathways related to protein phosphorylation leading to sperm hyperactivation, simultaneously with the regulation of proteasomal activity responsible for protein degradation and turnover. Our study aimed to unveil the role of the proteasome in the regulation of boar sperm motility, hyperactivated status, tyrosine phosphorylation, and total protein ubiquitination. The proteolytic activity of the 20S proteasomal core was inhibited by MG-132 in concentrations of 10, 25, 50, and 100 μM; and monitored parameters were analyzed every hour during 3 h of in vitro capacitation (IVC). Sperm motility and kinematic parameters were analyzed by Computer Assisted Sperm Analysis (CASA) during IVC, showing a significant, negative, dose-dependent effect of MG-132 on total and progressive sperm motility (TMOT, PMOT, respectively). Furthermore, proteasomal inhibition by 50 and 100 μM MG-132 had a negative impact on velocity-based kinematic sperm parameters (VSL, VAP, and VCL). Parameters related to the progressivity of sperm movement (LIN, STR) and ALH were the most affected by the highest inhibitor concentration (100 μM). Cluster analysis revealed that the strongest proteasome-inhibiting treatment had a significant effect (p ≤ 0.05) on the hyperactivated sperm subpopulation. The flow cytometric viability results proved that reduced TMOT and PMOT were not caused by disruption of the integrity of the plasma membrane. Neither the protein tyrosine phosphorylation profile changes nor the accumulation of protein ubiquitination was observed during the course of capacitation under proteasome inhibition. In conclusion, inhibition of the proteasome reduced the ability of spermatozoa to undergo hyperactivation; however, there was no significant effect on the level of protein tyrosine phosphorylation and accumulation of ubiquitinated proteins. These effects might be due to the presence of compensatory mechanisms or the alteration of various ubiquitin-proteasome system-regulated pathways.
Collapse
Affiliation(s)
- Lenka Hackerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Barbora Klusackova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Natalie Zelenkova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Katerina Havlikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Romana Krejcirova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marketa Sedmikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, United States
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- *Correspondence: Pavla Postlerova
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Ondrej Simonik
| |
Collapse
|
32
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
33
|
Zhou L, Liang H, Ge Y, Ding W, Chen Q, Zhang T, Xiao L, Li Y, Dong J, He X, Xue F, Jiang L. Precisely Targeted Nano-Controller of PD-L1 Level for Non-Small Cell Lung Cancer Spinal Metastasis Immunotherapy. Adv Healthc Mater 2022; 11:e2200938. [PMID: 35904523 DOI: 10.1002/adhm.202200938] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Indexed: 01/28/2023]
Abstract
Although immune checkpoint inhibitors (ICIs) have been widely applied to treat non-small cell lung cancer (NSCLC), a significant proportion of patients, especially those with spinal metastasis (NSCLC-SM), are insensitive to anti-programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) ICIs. A drug delivery nano-controller of PD-L1 that targets NSCLC-SM can solve this problem, however, none have been developed to date. In this study, it is shown that integrin β3 (β3-int) is strongly upregulated in NSCLC-SM. Its inhibitor RGDyK promotes PD-L1 ubiquitination, indicating the potential application of RGDyK as a new PD-L1 inhibitor in nano-controller and a targeting peptide for NSCLC-SM treatment. According to the synergistic effect of photodynamic therapy and ICIs on T-cell activation through the release of tumor antigens, RGDyK-modified and zinc protoporphyrin (ZnPP)-loaded mesoporous silicon nanoparticles (ZnPP@MSN-RGDyK) are fabricated. The ZnPP@MSN-RGDyK nanoparticles precisely target β3-int to inhibit PD-L1, exhibiting high photodynamic therapy efficiency, and excellent immunotherapeutic effects in an NSCLC-SM mouse model. Collectively, the findings indicate that ZnPP@MSN-RGDyK is a promising immunotherapeutic agent for treating NSCLC-SM.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.,Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Haifeng Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.,Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yuxiang Ge
- Department of Orthopaedics Surgery, Minhang Hospital, School of Materials Science and Engineering, Fudan University, Shanghai, 200237, P. R. China
| | - Wang Ding
- Department of Orthopaedics Surgery, Minhang Hospital, School of Materials Science and Engineering, Fudan University, Shanghai, 200237, P. R. China
| | - Qing Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.,Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, P. R. China
| | - Taiwei Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.,Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, P. R. China
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, 4059, Australia
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.,Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.,Department of Orthopaedic Surgery, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200940, P. R. China
| | - Xiaowen He
- Department of Orthopaedic Surgery, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200940, P. R. China
| | - Fengfeng Xue
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, P. R. China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.,Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
34
|
Polo-Like Kinase 2 Plays an Essential Role in Cytoprotection against MG132-Induced Proteasome Inhibition via Phosphorylation of Serine 19 in HSPB5. Int J Mol Sci 2022; 23:ijms231911257. [PMID: 36232565 PMCID: PMC9569985 DOI: 10.3390/ijms231911257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Protein homeostasis, including protein folding, refolding, and degradation, is thought to decline with aging. HSPB5 (also known as αB-crystallin) prevents target protein aggregation as a molecular chaperone and exhibits a cytoprotective function against various cell stresses. To elucidate the effect of HSPB5 on endoplasmic reticulum (ER) stress, we searched for novel binding proteins of HSPB5 using the proximity-dependent biotin labeling method. Proteins presumed to interact with HSPB5 in cells treated with the proteasome inhibitor MG132 were identified by a reversible biotin-binding capacity method combining tamavidin2-REV magnetic beads and mass spectrometry. We discovered a new binding protein for HSPB5, polo-like kinase 2 (PLK2), which is an apoptosis-related enzyme. The expression of PLK2 was upregulated by MG132 treatment, and it was co-localized with HSPB5 near the ER in L6 muscle cells. Inhibition of PLK2 decreased ER stress-induced phosphorylation of serine 19 in HSPB5 and increased apoptosis by activation of caspase 3 under ER stress. Overexpression of HSPB5 (WT) suppressed the ER stress-induced caspase 3 activity, but this was not observed with phospho-deficient HSPB5 (3A) mutants. These results clarify the role of HSPB5 phosphorylation during ER stress and suggest that the PLK2/HSPB5 pathway plays an essential role in cytoprotection against proteasome inhibition-induced ER stress.
Collapse
|
35
|
Arroyo M, Hastert FD, Zhadan A, Schelter F, Zimbelmann S, Rausch C, Ludwig AK, Carell T, Cardoso MC. Isoform-specific and ubiquitination dependent recruitment of Tet1 to replicating heterochromatin modulates methylcytosine oxidation. Nat Commun 2022; 13:5173. [PMID: 36056023 PMCID: PMC9440122 DOI: 10.1038/s41467-022-32799-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/15/2022] [Indexed: 01/26/2023] Open
Abstract
Oxidation of the epigenetic DNA mark 5-methylcytosine by Tet dioxygenases is an established route to diversify the epigenetic information, modulate gene expression and overall cellular (patho-)physiology. Here, we demonstrate that Tet1 and its short isoform Tet1s exhibit distinct nuclear localization during DNA replication resulting in aberrant cytosine modification levels in human and mouse cells. We show that Tet1 is tethered away from heterochromatin via its zinc finger domain, which is missing in Tet1s allowing its targeting to these regions. We find that Tet1s interacts with and is ubiquitinated by CRL4(VprBP). The ubiquitinated Tet1s is then recognized by Uhrf1 and recruited to late replicating heterochromatin. This leads to spreading of 5-methylcytosine oxidation to heterochromatin regions, LINE 1 activation and chromatin decondensation. In summary, we elucidate a dual regulation mechanism of Tet1, contributing to the understanding of how epigenetic information can be diversified by spatio-temporal directed Tet1 catalytic activity.
Collapse
Affiliation(s)
- María Arroyo
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Florian D. Hastert
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.425396.f0000 0001 1019 0926Section AIDS and newly emerging pathogens, Paul Ehrlich Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Andreas Zhadan
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Florian Schelter
- grid.5252.00000 0004 1936 973XDepartment of Chemistry, Ludwig Maximilians University, Butenandstr. 5-13, 81377 Munich, Germany
| | - Susanne Zimbelmann
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Cathia Rausch
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.16008.3f0000 0001 2295 9843Present Address: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Anne K. Ludwig
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.5253.10000 0001 0328 4908Present Address: Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Thomas Carell
- grid.5252.00000 0004 1936 973XDepartment of Chemistry, Ludwig Maximilians University, Butenandstr. 5-13, 81377 Munich, Germany
| | - M. Cristina Cardoso
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
36
|
Celesia A, Notaro A, Franzò M, Lauricella M, D’Anneo A, Carlisi D, Giuliano M, Emanuele S. The Histone Deacetylase Inhibitor ITF2357 (Givinostat) Targets Oncogenic BRAF in Melanoma Cells and Promotes a Switch from Pro-Survival Autophagy to Apoptosis. Biomedicines 2022; 10:biomedicines10081994. [PMID: 36009541 PMCID: PMC9405675 DOI: 10.3390/biomedicines10081994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylase inhibitors (HDACI) are epigenetic compounds that have been widely considered very promising antitumor agents. Here, we focus on the effects of the pan-HDAC inhibitor ITF2357 (Givinostat) in comparison with SAHA (Vorinostat) in melanoma cells bearing BRAF V600E oncogenic mutation. Our results indicate both ITF2357 and SAHA dose-dependently reduce the viability of BRAF-mutated SK-MEL-28 and A375 melanoma cells. The comparison of IC50 values revealed that ITF2357 was much more effective than SAHA. Interestingly, both inhibitors markedly decreased oncogenic BRAF protein expression levels, ITF2357 being the most effective compound. Moreover, the BRAF decrease induced by ITF2357 was accompanied by a decrease in the level of phospho-ERK1/2. The inhibitor of upstream MEK activity, U0126, reduced ERK1/2 phosphorylation and dramatically potentiated the antitumor effect of ITF2357, exacerbating the reduction in the BRAF level. ITF2357 stimulated an early pro-survival autophagic response, which was followed by apoptosis, as indicated by apoptotic markers evaluation and the protective effects exerted by the pan-caspase inhibitor z-VADfmk. Overall, our data indicate for the first time that ITF2357 targets oncogenic BRAF in melanoma cells and induces a switch from autophagy to classic apoptosis, thus representing a possible candidate in melanoma targeted therapy.
Collapse
Affiliation(s)
- Adriana Celesia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Antonietta Notaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Marzia Franzò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
- Correspondence: (M.G.); (S.E.)
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
- Correspondence: (M.G.); (S.E.)
| |
Collapse
|
37
|
Regulating Proteasome Activity. Biomolecules 2022; 12:biom12030343. [PMID: 35327535 PMCID: PMC8945711 DOI: 10.3390/biom12030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023] Open
Abstract
Strictly controlled degradation of the proteome is a key factor in maintaining cellular homeostasis and allows a rapid and effective response to a variety of different stress challenges [...]
Collapse
|
38
|
Guo X. Localized Proteasomal Degradation: From the Nucleus to Cell Periphery. Biomolecules 2022; 12:biom12020229. [PMID: 35204730 PMCID: PMC8961600 DOI: 10.3390/biom12020229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
The proteasome is responsible for selective degradation of most cellular proteins. Abundantly present in the cell, proteasomes not only diffuse in the cytoplasm and the nucleus but also associate with the chromatin, cytoskeleton, various membranes and membraneless organelles/condensates. How and why the proteasome gets to these specific subcellular compartments remains poorly understood, although increasing evidence supports the hypothesis that intracellular localization may have profound impacts on the activity, substrate accessibility and stability/integrity of the proteasome. In this short review, I summarize recent advances on the functions, regulations and targeting mechanisms of proteasomes, especially those localized to the nuclear condensates and membrane structures of the cell, and I discuss the biological significance thereof in mediating compartmentalized protein degradation.
Collapse
Affiliation(s)
- Xing Guo
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| |
Collapse
|