1
|
Ejiohuo O, Bajia D, Pawlak J, Szczepankiewicz A. In silico identification of novel ligands targeting stress-related human FKBP5 protein in mental disorders. PLoS One 2025; 20:e0320017. [PMID: 40096182 PMCID: PMC11913304 DOI: 10.1371/journal.pone.0320017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
FK506-binding protein 51 (FKBP51 or FKBP5) serves as a crucial stress modulator implicated in mental disorders, presenting a potential target for intervention. Inhibitors like SAFit2, rapamycin, and tacrolimus exhibit promising interactions with this protein. Despite these advances, challenges persist in diversifying FKBP5 ligands, prompting further exploration of interaction partners. Hence, this study aims to identify other potential ligands. Employing molecular docking, we generated complexes with various ligands (rapamycin, tacrolimus, SAFit2-Selective antagonist of FKBP51 by induced fit, ascomycin, pimecrolimus, rosavin, salidroside, curcumin, apigenin, uvaricin, ruscogenin, neoruscogenin, pumicalagin, castalagin, and grandinin). We identified the top 3 best ligands, of which ruscogenin and neoruscogenin had notable abilities to cross the blood-brain barrier and have high gastrointestinal absorption, like curcumin. Toxicity predictions show ruscogenin and neoruscogenin to be the least toxic based on oral toxicity classification (Class VI). Tyrosine (Tyr113) formed consistent interactions with all ligands in the complex, reinforcing their potential and involvement in stress modulation. Molecular dynamic (MD) simulation validated strong interactions between our three key ligands and FKBP5 protein and provided an understanding of the stability of the complex. The binding free energy (ΔG) of the best ligands (based on pharmacological properties) from MD simulation analysis is -31.78 kcal/mol for neoruscogenin, -30.41 kcal/mol for ruscogenin, and -27.6 kcal/mol for curcumin. These molecules, therefore, can serve as therapeutic molecules or biomarkers for research in stress-impacted mental disorders. While offering therapeutic implications for mental disorders by attenuating stress impact, it is crucial to emphasize that these ligands' transition to clinical applications necessitates extensive experimental research, including clinical trials, to unravel the intricate molecular and neural pathways involved in these interactions.
Collapse
Affiliation(s)
- Ovinuchi Ejiohuo
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Donald Bajia
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Department of Pediatric Oncology, Hematology, and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
2
|
van Doeselaar L, Abromeit A, Stark T, Menegaz D, Ballmann M, Mitra S, Yang H, Rehawi G, Huettl RE, Bordes J, Narayan S, Harbich D, Deussing JM, Rammes G, Czisch M, Knauer-Arloth J, Eder M, Lopez JP, Schmidt MV. FKBP51 in glutamatergic forebrain neurons promotes early life stress inoculation in female mice. Nat Commun 2025; 16:2529. [PMID: 40087272 PMCID: PMC11912546 DOI: 10.1038/s41467-025-57952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Early life stress (ELS) can increase vulnerability to psychiatric disorders, but also trigger resilience. FKBP51 has been associated with an increased risk for developing psychiatric disorders, specifically in interaction with ELS exposure. Here, the contribution of FKBP51 in glutamatergic forebrain neurons to the long-term consequences of ELS was investigated in both sexes. In female wild-type Fkbp5lox/lox mice, ELS exposure led to an anxiolytic phenotype and improved memory performance in a stressful context, however this ELS effect was absent in Fkbp5Nex mice. These interactive FKBP51 x ELS effects in female mice were also reflected in reduced brain region volumes, and on structural and electrophysiological properties of CA1 pyramidal neurons of the dorsal hippocampus. In contrast, the behavioral, structural and functional effects in male ELS mice were less pronounced and independent of FKBP51. RNA sequencing of the hippocampus revealed the transcription factor 4 (TCF4) as a potential regulator of the female interactive effects. Cre-dependent viral overexpression of TCF4 in female Nex-Cre mice led to similar beneficial effects on behavior as the ELS exposure. This study demonstrates a sex-specific role for FKBP51 in mediating the adaptive effects of ELS on emotional regulation, cognition, and neuronal function, implicating TCF4 as a downstream effector.
Collapse
Affiliation(s)
- Lotte van Doeselaar
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Alexandra Abromeit
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tibor Stark
- Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Markus Ballmann
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | - Shiladitya Mitra
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ghalia Rehawi
- Department Genes & Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rosa-Eva Huettl
- Core Unit Virus Production, Max Planck Institute of Psychiatry, Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Daniela Harbich
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Gerhard Rammes
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | - Michael Czisch
- Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Janine Knauer-Arloth
- Department Genes & Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| | - Matthias Eder
- Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juan Pablo Lopez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
3
|
Moore M, Cetinkaya-Un B, Sarkar P, Kayisli UA, Semerci-Gunay N, Teng M, Lockwood CJ, Guzeloglu-Kayisli O. Depletion of Fkbp5 Protects Against the Rapid Decline in Ovarian Reserve Induced by Prenatal Stress in Female Offspring of Wild-Type Mice. Int J Mol Sci 2025; 26:2471. [PMID: 40141115 PMCID: PMC11942629 DOI: 10.3390/ijms26062471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Prenatal stress (PNS) impairs offspring ovarian development by exerting negative long-term effects on postnatal ovarian function and folliculogenesis. FKBP51 is a stress-responsive protein that inhibits glucocorticoid and progesterone receptors. We hypothesize that FKBP51 contributes to impaired ovarian development and folliculogenesis induced by PNS. Timed-pregnant Fkbp5+/+ (wild-type) and Fkbp5-/- (knockout) mice were randomly assigned to either the undisturbed (nonstress) or PNS group, with exposure to maternal restraint stress from embryonic days 8 to 18. Ovaries from the offspring were harvested and stained, and follicles were counted according to their stages. Ovarian expressions of FKBP51 were evaluated by immunohistochemistry and Fkbp5 and steroidogenic enzymes were evaluated by qPCR. Compared to controls, Fkbp5+/+ PNS offspring had increased peripubertal primordial follicle atresia and fewer total follicles in the adult and middle-aged groups. In adult Fkbp5+/+ offspring, PNS elevated FKBP51 levels in granulosa cells of primary to tertiary follicles. Our results suggest that PNS administration increased FKBP51 levels, depleted the ovarian reserve, and dysregulated ovarian steroid synthesis. However, these PNS effects were tolerated in Fkbp5-/- mice, supporting the conclusion that FKBP51 contributes to reduced ovarian reserve induced by PNS.
Collapse
Affiliation(s)
- Monica Moore
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Busra Cetinkaya-Un
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Papri Sarkar
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Umit A. Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Nihan Semerci-Gunay
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Michael Teng
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Charles J. Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| |
Collapse
|
4
|
Ke H, Chen Z, Chen L, Zhang H, Wang Y, Song T, Bi A, Li Q, Sheng H, Jia Y, Chen W, Xiong H. FK506-binding proteins: Emerging target and therapeutic opportunity in multiple tumors. Int J Biol Macromol 2025; 307:141914. [PMID: 40064252 DOI: 10.1016/j.ijbiomac.2025.141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The FK506-binding protein (FKBP) family plays a key role in a variety of tumors and is involved in the regulation of important signaling pathways including AKT, NF-κB and p53, which affects cell proliferation, migration, and multiple cell death modes. Here, we summarize the findings that different FKBP family members exhibit dual functions of promoting or inhibiting tumorigenesis in different types of tumors. The expression levels of FKBP family members are closely related to the prognosis of patients, thus might be used as potential diagnostic and prognostic biomarkers. In the future, it is necessary to combine single-cell sequencing to resolve the spatial distribution of FKBP isoforms, develop clinical validation to promote the translation from molecular mechanism to precision therapy.
Collapse
Affiliation(s)
- Hang Ke
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zihan Chen
- Surgical Intensive Care Unit, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Long Chen
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tao Song
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aihong Bi
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hailong Sheng
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Weijun Chen
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Du P, Zhang X, Zhu Y, Wang Z, Si X, Zhang H, Huang Y, Chen W. FKBP5 as a key regulator of metabolic processes in birds: Insights from chicken pectoral muscle. Poult Sci 2025; 104:104657. [PMID: 39675107 PMCID: PMC11714397 DOI: 10.1016/j.psj.2024.104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
FK506-binding protein 5 (FKBP5) is a negative regulator of the glucocorticoid response and may play an important role in regulating metabolic homeostasis in birds. However, limited information is available regarding its role in avian species. This study aimed to clarify the spatiotemporal characteristics of chicken FKBP5 and investigate the effects of exogenous stimuli on its expression. Real-time quantitative PCR (RT-qPCR) was utilized to analyze the spatiotemporal expression patterns of FKBP5 in chickens. Additionally, the impact of exogenous stimuli, including fasting, energy restriction, and insulin/pyruvate/glucose injections, on FKBP5 expression in the pectoral muscle was investigated. The results showed that FKBP5 is broadly expressed in various bird tissues, with dominant expression in insulin-sensitive tissues. The FKBP5 levels in birds are dramatically modulated during development in insulin-sensitive tissues, with the highest expression observed in striated muscle and liver at embryonic day 19 (E19) (P < 0.01). The basal level of FKBP5 in the pectoral muscle of broilers is higher than that in Silky chickens. Insulin administration leads to a rapid drop in blood glucose levels in both breeds, with a slower recovery in AA broilers (P < 0.01). However, FKBP5 expression in the pectoral muscle initially shows a slight drop, followed by a sharp increase over time after insulin administration (P < 0.01). Additionally, breed heterogeneity in FKBP5 expression was observed in the pectoral muscle upon insulin stimulation, with broilers showing stronger insulin sensitivity compared to Silky chickens. A 24-hour fasting period downregulated blood glucose levels (P < 0.01) and FKBP5 expression in the pectoral muscle of AA broilers (P < 0.01). A 30% energy restriction over three weeks slightly reduced blood glucose levels (P = 0.075) and significantly decreased FKBP5 levels in the pectoralis muscle of broilers. In addition, pyruvate increased blood glucose and pectoralis FKBP5 transcription levels at 60 min (P < 0.01), whereas glucose increased blood glucose levels but had no effect on FKBP5 expression. Overall analysis showed a negative correlation between FKBP5 expression in the pectoral muscle and blood glucose levels (ρ = -0.405, P < 0.001). In conclusion, FKBP5 is a key player in the metabolic regulation of birds, with its expression being highly dynamic and tissue-specific. Insulin regulates FKBP5 expression in pectoral muscles in a time-dependent manner, while pyruvate increases FKBP5 levels and fasting/energy restriction reduces FKBP5 mRNA expression in the pectoral muscles.
Collapse
Affiliation(s)
- Pengfei Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yao Zhu
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Ziyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
6
|
Baischew A, Engel S, Geiger TM, Taubert MC, Hausch F. Structural and biochemical insights into FKBP51 as a Hsp90 co-chaperone. J Cell Biochem 2024; 125:e30384. [PMID: 36791213 PMCID: PMC11649850 DOI: 10.1002/jcb.30384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
The FK506-binding protein 51 (FKBP51) is a high-molecular-weight immunophilin that emerged as an important drug target for stress-related disorders, chronic pain, and obesity. It has been implicated in a plethora of molecular pathways but remains best characterized as a co-chaperone of Hsp90 in the steroid hormone receptor (SHR) maturation cycle. However, the mechanistic and structural basis for the regulation of SHRs by FKBP51 and the usually antagonistic function compared with its closest homolog FKBP52 remains enigmatic. Here we review recent structural and biochemical studies of FKBPs as regulators in the Hsp90 machinery. These advances provide important insights into the roles of FKBP51 and FKBP52 in SHR regulation.
Collapse
Affiliation(s)
- Asat Baischew
- Department of Chemistry, Institute for Organic Chemistry and BiochemistryTechnical University DarmstadtDarmstadtGermany
| | - Sarah Engel
- Department of Chemistry, Institute for Organic Chemistry and BiochemistryTechnical University DarmstadtDarmstadtGermany
| | - Thomas M. Geiger
- Department of Chemistry, Institute for Organic Chemistry and BiochemistryTechnical University DarmstadtDarmstadtGermany
| | - Martha C. Taubert
- Department of Chemistry, Institute for Organic Chemistry and BiochemistryTechnical University DarmstadtDarmstadtGermany
| | - Felix Hausch
- Department of Chemistry, Institute for Organic Chemistry and BiochemistryTechnical University DarmstadtDarmstadtGermany
| |
Collapse
|
7
|
Gebru NT, Hill SE, Blair LJ. Genetically engineered mouse models of FK506-binding protein 5. J Cell Biochem 2024; 125:e30374. [PMID: 36780339 PMCID: PMC10423308 DOI: 10.1002/jcb.30374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 02/14/2023]
Abstract
FK506 binding protein 51 (FKBP51) is a molecular chaperone that influences stress response. In addition to having an integral role in the regulation of steroid hormone receptors, including glucocorticoid receptor, FKBP51 has been linked with several biological processes including metabolism and neuronal health. Genetic and epigenetic alterations in the gene that encodes FKBP51, FKBP5, are associated with increased susceptibility to multiple neuropsychiatric disorders, which has fueled much of the research on this protein. Because of the complexity of these processes, animal models have been important in understanding the role of FKBP51. This review examines each of the current mouse models of FKBP5, which include whole animal knockout, conditional knockout, overexpression, and humanized mouse models. The generation of each model and observational details are discussed, including behavioral phenotypes, molecular changes, and electrophysiological alterations basally and following various challenges. While much has been learned through these models, there are still many aspects of FKBP51 biology that remain opaque and future studies are needed to help illuminate these current gaps in knowledge. Overall, FKBP5 continues to be an exciting potential target for stress-related disorders.
Collapse
Affiliation(s)
- Niat T. Gebru
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Shannon E. Hill
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Laura J. Blair
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Research Service, James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, United States
| |
Collapse
|
8
|
Martinelli S, Hafner K, Koedel M, Knauer-Arloth J, Gassen NC, Binder EB. Differential Dynamics and Roles of FKBP51 Isoforms and Their Implications for Targeted Therapies. Int J Mol Sci 2024; 25:12318. [PMID: 39596380 PMCID: PMC11594789 DOI: 10.3390/ijms252212318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The expression of FKBP5, and its resulting protein FKBP51, is strongly induced by glucocorticoids. Numerous studies have explored their involvement in a plethora of cellular processes and diseases. There is, however, a lack of knowledge on the role of the different RNA splicing variants and the two protein isoforms, one missing functional C-terminal motifs. In this study, we use in vitro models (HeLa and Jurkat cells) as well as peripheral blood cells of a human cohort (N = 26 male healthy controls) to show that the two expressed variants are both dynamically upregulated following dexamethasone, with significantly earlier increases (starting 1-2 h after stimulation) in the short isoform both in vitro and in vivo. Protein degradation assays in vitro showed a reduced half-life (4 h vs. 8 h) of the shorter isoform. Only the shorter isoform showed a subnuclear cellular localization. The two isoforms also differed in their effects on known downstream cellular pathways, including glucocorticoid receptor function, macroautophagy, immune activation, and DNA methylation regulation. The results shed light on the difference between the two variants and highlight the importance of differential analyses in future studies with implications for targeted drug design.
Collapse
Affiliation(s)
- Silvia Martinelli
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Kathrin Hafner
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Maik Koedel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Janine Knauer-Arloth
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Nils C. Gassen
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Elisabeth B. Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
9
|
Kodila ZN, Shultz SR, Yamakawa GR, Mychasiuk R. Critical Windows: Exploring the Association Between Perinatal Trauma, Epigenetics, and Chronic Pain. Neuroscientist 2024; 30:574-596. [PMID: 37212380 PMCID: PMC11439237 DOI: 10.1177/10738584231176233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chronic pain is highly prevalent and burdensome, affecting millions of people worldwide. Although it emerges at any point in life, it often manifests in adolescence. Given that adolescence is a unique developmental period, additional strains associated with persistent and often idiopathic pain lead to significant long-term consequences. While there is no singular cause for the chronification of pain, epigenetic modifications that lead to neural reorganization may underpin central sensitization and subsequent manifestation of pain hypersensitivity. Epigenetic processes are particularly active during the prenatal and early postnatal years. We demonstrate how exposure to various traumas, such as intimate partner violence while in utero or adverse childhood experiences, can significantly influence epigenetic regulation within the brain and in turn modify pain-related processes. We provide compelling evidence that the burden of chronic pain is likely initiated early in life, often being transmitted from mother to offspring. We also highlight two promising prophylactic strategies, oxytocin administration and probiotic use, that have the potential to attenuate the epigenetic consequences of early adversity. Overall, we advance understanding of the causal relationship between trauma and adolescent chronic pain by highlighting epigenetic mechanisms that underlie this transmission of risk, ultimately informing how to prevent this rising epidemic.
Collapse
Affiliation(s)
- Zoe N. Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Health Sciences, Vancouver Island University, Nanaimo, Canada
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Lafta MS, Sokolov AV, Landtblom AM, Ericson H, Schiöth HB, Abu Hamdeh S. Exploring biomarkers in trigeminal neuralgia patients operated with microvascular decompression: A comparison with multiple sclerosis patients and non-neurological controls. Eur J Pain 2024; 28:929-942. [PMID: 38158702 DOI: 10.1002/ejp.2231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Trigeminal neuralgia (TN) is a severe facial pain condition often associated with a neurovascular conflict. However, neuroinflammation has also been implicated in TN, as it frequently co-occurs with multiple sclerosis (MS). METHODS We analysed protein expression levels of TN patients compared to MS patients and controls. Proximity Extension Assay technology was used to analyse the levels of 92 proteins with the Multiplex Neuro-Exploratory panel provided by SciLifeLab, Uppsala, Sweden. Serum and CSF samples were collected from TN patients before (n = 33 and n = 27, respectively) and after (n = 28 and n = 8, respectively) microvascular decompression surgery. Additionally, we included samples from MS patients (n = 20) and controls (n = 20) for comparison. RESULTS In both serum and CSF, several proteins were found increased in TN patients compared to either MS patients, controls, or both, including EIF4B, PTPN1, EREG, TBCB, PMVK, FKBP5, CD63, CRADD, BST2, CD302, CRIP2, CCL27, PPP3R1, WWP2, KLB, PLA2G10, TDGF1, SMOC1, RBKS, LTBP3, CLSTN1, NXPH1, SFRP1, HMOX2, and GGT5. The overall expression of the 92 proteins in postoperative TN samples seems to shift towards the levels of MS patients and controls in both serum and CSF, as compared to preoperative samples. Interestingly, there was no difference in protein levels between MS patients and controls. CONCLUSIONS We conclude that TN patients showed increased serum and CSF levels of specific proteins and that successful surgery normalizes these protein levels, highlighting its potential as an effective treatment. However, the similarity between MS and controls challenges the idea of shared pathophysiology with TN, suggesting distinct underlying mechanisms in these conditions. SIGNIFICANCE This study advances our understanding of trigeminal neuralgia (TN) and its association with multiple sclerosis (MS). By analysing 92 protein biomarkers, we identified distinctive molecular profiles in TN patients, shedding light on potential pathophysiological mechanisms. The observation that successful surgery normalizes many protein levels suggests a promising avenue for TN treatment. Furthermore, the contrasting protein patterns between TN and MS challenge prevailing assumptions of similarity between the two conditions and point to distinct pathophysiological mechanisms.
Collapse
Affiliation(s)
- Muataz S Lafta
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anne-Marie Landtblom
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hans Ericson
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sami Abu Hamdeh
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Liu T, Wang C, Xia Z. Overexpressed FKBP5 mediates colorectal cancer progression and sensitivity to FK506 treatment via the NF-κB signaling pathway. FEBS J 2024; 291:3128-3146. [PMID: 38602236 DOI: 10.1111/febs.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a common and deadly tumor. FK506-binding protein 5 (FKBP5) is associated with some cancers, but the role of FKBP5 in CRC is not clear. The present study aimed to reveal the relationship between FKBP5 and CRC and to uncover the roles of FK506 in CRC. In total, 96 CRC patients were recruited. Survival analysis was conducted using the Kaplan-Meier method and COX regression analyses. Bioinformatics analyses were performed to explore the functions of FKBP5. The mechanisms of FKBP5 and the roles of FK506 in CRC progression were clarified by immunohistochemistry, MTS, scratch assay, transwell and flow cytometric analyses via in vitro and in vivo experiments. FKBP5 was overexpressed in 77 cancer tissues compared to that in matched normal tissues, and the overall survival rate of these patients was relatively shorter. Bioinformatics analyses showed that FKBP5 regulates proliferation, invasion, migration, epithelial-mesenchymal transition and nuclear factor-kappa B (NF-κB) signaling. The upregulation or downregulation of FKBP5 dramatically increases or decreases the proliferation, invasion and migration abilities of CRC cells. The expression of NF-κB, inhibitor B kinase α, matrix metalloproteinase-2 and metalloproteinase-9 positively correlated with FKBP5. FK506 inhibits the progression of CRC via the FKBP5/NF-κB signaling pathway. Our study identified a regulatory role for FKBP5 in CRC progression. Therefore, targeting FKBP5 may provide a novel treatment approach for CRC. FK506 can inhibit the progression of CRC by restraining the FKBP5/NF-κB signaling pathway and is expected to become a new drug for the treatment of CRC.
Collapse
Affiliation(s)
- Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province, Judicial Authentication Center, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, China
| | - Zhixiu Xia
- Colorectal Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Darlami O, Pun R, Ahn SH, Kim SH, Shin D. Macrocyclization strategy for improving candidate profiles in medicinal chemistry. Eur J Med Chem 2024; 272:116501. [PMID: 38754142 DOI: 10.1016/j.ejmech.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Macrocycles are defined as cyclic compounds with 12 or more members. In medicinal chemistry, they are categorized based on their core chemistry into cyclic peptides and macrocycles. Macrocycles are advantageous because of their structural diversity and ability to achieve high affinity and selectivity towards challenging targets that are often not addressable by conventional small molecules. The potential of macrocyclization to optimize drug-like properties while maintaining adequate bioavailability and permeability has been emphasized as a key innovation in medicinal chemistry. This review provides a detailed case study of the application of macrocyclization over the past 5 years, starting from the initial analysis of acyclic active compounds to optimization of the resulting macrocycles for improved efficacy and drug-like properties. Additionally, it illustrates the strategic value of macrocyclization in contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Om Darlami
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Rabin Pun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea.
| |
Collapse
|
13
|
Krajczy P, Meyners C, Repity ML, Hausch F. Structure-Based Design of Ultrapotent Tricyclic Ligands for FK506-Binding Proteins. Chemistry 2024:e202401405. [PMID: 38837733 DOI: 10.1002/chem.202401405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Access to small, rigid, and sp3-rich molecules is a major limitation in the drug discovery for challenging protein targets. FK506-binding proteins hold high potential as drug targets or enablers of molecular glues but are fastidious in the chemotypes accepted as ligands. We here report an enantioselective synthesis of a highly rigidified pipecolate-mimicking tricyclic scaffold that precisely positions functional groups for interacting with FKBPs. This was enabled by a 14-step gram-scale synthesis featuring anodic oxidation, stereospecific vinylation, and N-acyl iminium cyclization. Structure-based optimization resulted in the discovery of FKBP inhibitors with picomolar biochemical and subnanomolar cellular activity that represent the most potent FKBP ligands known to date.
Collapse
Affiliation(s)
- Patryk Krajczy
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Maximilian L Repity
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, 64283, Germany
| |
Collapse
|
14
|
Agam G, Atawna B, Damri O, Azab AN. The Role of FKBPs in Complex Disorders: Neuropsychiatric Diseases, Cancer, and Type 2 Diabetes Mellitus. Cells 2024; 13:801. [PMID: 38786025 PMCID: PMC11119362 DOI: 10.3390/cells13100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Stress is a common denominator of complex disorders and the FK-506 binding protein (FKBP)51 plays a central role in stress. Hence, it is not surprising that multiple studies imply the involvement of the FKBP51 protein and/or its coding gene, FKBP5, in complex disorders. This review summarizes such reports concentrating on three disorder clusters-neuropsychiatric, cancer, and type 2 diabetes mellitus (T2DM). We also attempt to point to potential mechanisms suggested to mediate the effect of FKBP5/FKBP51 on these disorders. Neuropsychiatric diseases considered in this paper include (i) Huntington's disease for which increased autophagic cellular clearance mechanisms related to decreased FKBP51 protein levels or activity is discussed, Alzheimer's disease for which increased FKBP51 activity has been shown to induce Tau phosphorylation and aggregation, and Parkinson's disease in the context of which FKBP12 is mentioned; and (ii) mental disorders, for which significant association with the single nucleotide polymorphism (SNP) rs1360780 of FKBP5 intron 7 along with decreased DNA methylation were revealed. Since cancer is a large group of diseases that can start in almost any organ or tissue of the body, FKBP51's role depends on the tissue type and differences among pathways expressed in those tumors. The FKBP51-heat-shock protein-(Hsp)90-p23 super-chaperone complex might function as an oncogene or as a tumor suppressor by downregulating the serine/threonine protein kinase (AKt) pathway. In T2DM, two potential pathways for the involvement of FKBP51 are highlighted as affecting the pathogenesis of the disease-the peroxisome proliferator-activated receptor-γ (PPARγ) and AKt.
Collapse
Affiliation(s)
- Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Bayan Atawna
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
15
|
Wu Y, Mou J, Zhou G, Yuan C. CASC19: An Oncogenic Long Non-coding RNA in Different Cancers. Curr Pharm Des 2024; 30:1157-1166. [PMID: 38544395 DOI: 10.2174/0113816128300061240319034243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 06/28/2024]
Abstract
A 324 bp lncRNA called CASC19 is found on chromosome 8q24.21. Recent research works have revealed that CASC19 is involved in the prognosis of tumors and related to the regulation of the radiation tolerance mechanisms during tumor radiotherapy (RT). This review sheds light on the changes and roles that CASC19 plays in many tumors and diseases, such as nasopharyngeal carcinoma (NPC), cervical cancer, colorectal cancer (CRC), non-small cell lung cancer (NSCLC), clear cell renal cell carcinoma (ccRCC), gastric cancer (GC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), glioma, and osteoarthritis (OA). CASC19 provides a new strategy for targeted therapy, and the regulatory networks of CASC19 expression levels play a key role in the occurrence and development of tumors and diseases. In addition, the expression level of CASC19 has predictive roles in the prognosis of some tumors and diseases, which has major implications for clinical diagnoses and treatments. CASC19 is also unique in that it is a key gene affecting the efficacy of RT in many tumors, and its expression level plays a decisive role in improving the success rate of treatments. Further research is required to determine the precise process by which CASC19 causes changes in diseased cells in some tumors and diseases.
Collapse
Affiliation(s)
- Yinxin Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Jie Mou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
16
|
Ma J, Yang Z, Gao H, Huda N, Jiang Y, Liangpunsakul S. FK-binding protein 5: Possible relevance to the pathogenesis of metabolic dysfunction and alcohol-associated liver disease. J Investig Med 2024; 72:128-138. [PMID: 37807186 DOI: 10.1177/10815589231207793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The FK506-binding protein (FKBP5) plays significant roles in mediating stress responses by interacting with glucocorticoids, participating in adipogenesis, and influencing various cellular pathways throughout the body. In this review, we described the potential role of FKBP5 in the pathogenesis of two common chronic liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD), and alcohol-associated liver disease (ALD). We provided an overview of the FK-binding protein family and elucidated their roles in cellular stress responses, metabolic diseases, and adipogenesis. We explored how FKBP5 may mechanistically influence the pathogenesis of MASLD and ALD and provided insights for further investigation into the role of FKBP5 in these two diseases.
Collapse
Affiliation(s)
- Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hui Gao
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
17
|
Baischew A, Engel S, Taubert MC, Geiger TM, Hausch F. Large-scale, in-cell photocrosslinking at single-residue resolution reveals the molecular basis for glucocorticoid receptor regulation by immunophilins. Nat Struct Mol Biol 2023; 30:1857-1866. [PMID: 37945739 DOI: 10.1038/s41594-023-01098-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/16/2023] [Indexed: 11/12/2023]
Abstract
The Hsp90 co-chaperones FKBP51 and FKBP52 play key roles in steroid-hormone-receptor regulation, stress-related disorders, and sexual embryonic development. As a prominent target, glucocorticoid receptor (GR) signaling is repressed by FKBP51 and potentiated by FKBP52, but the underlying molecular mechanisms remain poorly understood. Here we present the architecture and functional annotation of FKBP51-, FKBP52-, and p23-containing Hsp90-apo-GR pre-activation complexes, trapped by systematic incorporation of photoreactive amino acids inside human cells. The identified crosslinking sites clustered in characteristic patterns, depended on Hsp90, and were disrupted by GR activation. GR binding to the FKBPFK1, but not the FKBPFK2, domain was modulated by FKBP ligands, explaining the lack of GR derepression by certain classes of FKBP ligands. Our findings show how FKBPs differentially interact with apo-GR, help to explain the differentiated pharmacology of FKBP51 ligands, and provide a structural basis for the development of improved FKBP ligands.
Collapse
Affiliation(s)
- Asat Baischew
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Sarah Engel
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Martha C Taubert
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Thomas M Geiger
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Felix Hausch
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany.
- Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany.
| |
Collapse
|
18
|
Shen Y, Jiang B, Luo B, Jiang X, Zhang Y, Wang Q. Circular RNA-FK501 binding protein 51 boosts bone marrow mesenchymal stem cell proliferation and osteogenic differentiation via modulating microRNA-205-5p/Runt-associated transcription factor 2 axis. J Orthop Surg Res 2023; 18:782. [PMID: 37853466 PMCID: PMC10583363 DOI: 10.1186/s13018-023-04242-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Osteogenesis is the key process of bone homeostasis differentiation. Numerous studies have manifested that circular RNA (circRNA) is a critical regulator of osteogenesis. The research was to explore circRNA-mediated mechanisms in osteogenesis. METHODS Bone marrow mesenchymal stem cells (BMSCs) were cultured and induced to osteogenic differentiation (OD). Then, oe-circ-FKBP5, oe-NC, si-circ-FKBP5, si-NC, miR-205-5p mimic, mimic NC, miR-205-5p inhibitor, inhibitor NC, sh-RUNX2, or sh-NC were transfected into BMSCs. Alkaline phosphatase (ALP) activity was detected by ALP staining, cell mineralization was detected by alizarin red staining, cell proliferation was detected by CCK-8, and cell apoptosis was detected by flow cytometry. Then, the expression of circ-FKBP5, miR-205-5p, RUNX2 and osteogenic marker genes was detected by RT-qPCR, and the expression of RUNX2 protein was detected by Western blot. Finally, the targeting relationship between miR-205-5p and circ-FKBP5 or RUNX2 was verified by bioinformation website analysis and dual luciferase reporter gene detection. RESULTS Circ-FK501 binding protein 51 (FKBP5) was distinctly elevated during OD of BMSCs. Elevated circ-FKBP5 boosted the proliferation and OD, as well as expression of osteogenic marker genes while reduced apoptosis of BMSCs. Down-regulation of circ-FKBP5 inhibited BMSCs proliferation, OD and osteogenic marker gene expression, and promoted apoptosis of BMSCs. Subsequently, circ-FKBP5 combined with miR-205-5p and constrained miR-205-5p expression. Silenced miR-205-5p boosted proliferation, OD, and expression of osteogenic marker genes and suppressed apoptosis of BMSCs. However, up-regulation of miR-205-5p inhibited BMSC proliferation, OD and osteogenic marker gene expression, and promoted apoptosis. Additionally, miR-205-5p targeted Runt-associated transcription factor 2 (RUNX2). Repression of RUNX2 turned around the effect of circ-FKBP5 overexpression on BMSCs. CONCLUSION In brief, circ-FKBP5 boosted BMSC proliferation and OD by mediating the miR-205-5p/RUNX2 axis.
Collapse
Affiliation(s)
- Yingchao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China
| | - Bo Jiang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, Jiangsu Province, China
| | - Bin Luo
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China
| | - Xiaowei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China.
| | - Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, No. 99, South Third Ring Road, Changshu City, 215500, Jiangsu Province, China.
| | - Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China
| |
Collapse
|
19
|
Chudakova DA, Trubetskoy D, Baida G, Bhalla P, Readhead B, Budunova I. REDD1 (regulated in development and DNA damage 1) modulates the glucocorticoid receptor function in keratinocytes. Exp Dermatol 2023; 32:1725-1733. [PMID: 37483165 DOI: 10.1111/exd.14887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/27/2023] [Accepted: 07/02/2023] [Indexed: 07/25/2023]
Abstract
Glucocorticoids (GCs) are widely used for the treatment of inflammatory skin diseases despite significant adverse effects including skin atrophy. Effects of GCs are mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Previously, we discovered that one of the GR target genes, REDD1, is causatively involved in skin atrophy. Here, we investigated its role in GR function using HaCaT REDD1 knockout (KO) keratinocytes. We found large differences in transcriptome of REDD1 KO and control Cas9 cells in response to glucocorticoid fluocinolone acetonide (FA): both the scope and amplitude of response were significantly decreased in REDD1 KO. The status of REDD1 did not affect GR stability/degradation during self-desensitization, and major steps in GR activation-its nuclear import and phosphorylation at activating Ser211. However, the amount of GR phosphorylated at Ser226 that may play negative role in GR signalling, was increased in the nuclei of REDD1 KO cells. GR nuclear import and transcriptional activity also depend on the composition of GR chaperone complex: exchange of chaperone FKBP51 (FK506-binding protein 5) for FKBP52 (FK506-binding protein 4) being a necessary step in GR activation. We found the increased expression and abnormal nuclear translocation of FKBP51 in both untreated and FA-treated REDD1 KO cells. Overall, our results suggest the existence of a feed-forward loop in GR signalling mediated by its target gene REDD1, which has translational potential for the development of safer GR-targeted therapies.
Collapse
Affiliation(s)
- D A Chudakova
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
- Federal Centre for Brain and Neurotechnologies of the Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - D Trubetskoy
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - G Baida
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - P Bhalla
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
- SBDRC, Northwestern University, Chicago, Illinois, USA
| | - B Readhead
- ASU-Banner Neurodegenerative Disease Research Centre, Arizona State University, Tempe, Arizona, USA
| | - I Budunova
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
- ASU-Banner Neurodegenerative Disease Research Centre, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
20
|
Lemcke R, Egebjerg C, Berendtsen NT, Egerod KL, Thomsen AR, Pers TH, Christensen JP, Kornum BR. Molecular consequences of peripheral Influenza A infection on cell populations in the murine hypothalamus. eLife 2023; 12:RP87515. [PMID: 37698546 PMCID: PMC10497288 DOI: 10.7554/elife.87515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.
Collapse
Affiliation(s)
- René Lemcke
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Christine Egebjerg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Nicolai T Berendtsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Allan R Thomsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
21
|
Sugita Y, Kuwabara Y, Katayama A, Matsuda S, Manabe I, Suzuki S, Oishi Y. Characteristic impairment of progesterone response in cultured cervical fibroblasts obtained from patients with refractory cervical insufficiency. Sci Rep 2023; 13:11709. [PMID: 37474547 PMCID: PMC10359315 DOI: 10.1038/s41598-023-37732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of neonatal mortality, and reducing the PTB rate is one of the most critical issues in perinatal medicine. Cervical insufficiency (CI), a major cause of PTB, is characterised by premature cervical ripening in the second trimester, followed by recurrent pregnancy loss. Although multiple clinical trials have suggested that progesterone inhibits cervical ripening, no studies have focused on progesterone-induced molecular signalling in CI. Here, we established a primary culture system for human uterine cervical fibroblasts using a sample of patients with refractory innate CI who underwent transabdominal cervical cerclage and patients with low Bishop scores who underwent elective caesarean section as controls. RNA sequencing showed that the progesterone response observed in the control group was impaired in the CI group. This was consistent with the finding that progesterone receptor expression was markedly downregulated in CI. Furthermore, the inhibitory effect of progesterone on lipopolysaccharide-induced inflammatory stimuli was also impaired in CI. These results suggest that abnormal cervical ripening in CI is caused by the downregulation of progesterone signalling at the receptor level, and provide a novel insight into the molecular mechanism of PTB.
Collapse
Affiliation(s)
- Yosuke Sugita
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yoshimitsu Kuwabara
- Department of Obstetrics and Gynecology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Akira Katayama
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Shigeru Matsuda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shunji Suzuki
- Department of Obstetrics and Gynecology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
22
|
Liu N, Li R, Cao J, Song X, Ma W, Liu T, Wang L, Zou J, Zhang B, Liu Z, Liang R, Zheng R, Wang S. The inhibition of FKBP5 protects β-cell survival under inflammation stress via AKT/FOXO1 signaling. Cell Death Discov 2023; 9:247. [PMID: 37452039 PMCID: PMC10349081 DOI: 10.1038/s41420-023-01506-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The FK506-binding protein 51 (FKBP51, encoded by FKBP5 gene) has emerged as a critical regulator of mammalian endocrine stress responses and as a potential pharmacological target for metabolic disorders, including type 2 diabetes (T2D). However, in β cells, which secrete the only glucose-lowering hormone-insulin, the expression and function of FKBP5 has not been documented. Here, using human pancreatic tissue and primary human islets, we demonstrated the abundant expression of FKBP5 in β cells, which displayed an responsive induction upon acute inflammatory stress mimicked by in vitro treatment with a cocktail of inflammatory cytokines (IL-1β, IFN-γ, and TNF-α). To explore its function, siRNAs targeting FKBP5 and pharmacological inhibitor SAFit2 were applied both in clonal NIT-1 cells and primary human/mice islets. We found that FKBP5 inhibition promoted β-cell survival, improved insulin secretion, and upregulated β-cell functional gene expressions (MAFA and NKX6.1) in acute-inflammation stressed β cells. In primary human and mice islets, which constitutively suffer from inflammation stress during isolation and culture, FKBP5 inhibition also presented decent performance in improving islet function, in accordance with its protective effect against inflammation. Molecular studies found that FKBP5 is an important regulator for FOXO1 phosphorylation at Serine 256, and silencing of FOXO1 abrogated the protective effect of FKBP5 inhibition, suggesting that it is the key downstream effector of FKBP5 in β cells. At last, in situ detection of FKBP5 protein expression on human and mice pancreases revealed a reduction of FKBP5 expression in β cells in human T2D patients, as well as T2D mice model (db/db), which may indicate a FKBP5-inhibition-mediated pro-survival mechanism against the complex stresses in T2D milieus.
Collapse
Affiliation(s)
- Na Liu
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Rui Li
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, People's Republic of China
| | - Xinyao Song
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Wenmiao Ma
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Le Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China.
| | - Rongxiu Zheng
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China.
| |
Collapse
|
23
|
Wedel S, Hahnefeld L, Schreiber Y, Namendorf C, Heymann T, Uhr M, Schmidt MV, de Bruin N, Hausch F, Thomas D, Geisslinger G, Sisignano M. SAFit2 ameliorates paclitaxel-induced neuropathic pain by reducing spinal gliosis and elevating pro-resolving lipid mediators. J Neuroinflammation 2023; 20:149. [PMID: 37355700 DOI: 10.1186/s12974-023-02835-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Chemotherapy-induced neuropathic pain (CIPN) describes a pathological pain state that occurs dose-dependently as a side effect and can limit or even impede an effective cancer therapy. Unfortunately, current treatment possibilities for CIPN are remarkably confined and mostly inadequate as CIPN therapeutics themselves consist of low effectiveness and may induce severe side effects, pointing out CIPN as pathological entity with an emerging need for novel treatment targets. Here, we investigated whether the novel and highly specific FKBP51 inhibitor SAFit2 reduces paclitaxel-induced neuropathic pain. METHODS In this study, we used a well-established multiple low-dose paclitaxel model to investigate analgesic and anti-inflammatory properties of SAFit2. For this purpose, the behavior of the mice was recorded over 14 days and the mouse tissue was then analyzed using biochemical methods. RESULTS Here, we show that SAFit2 is capable to reduce paclitaxel-induced mechanical hypersensitivity in mice. In addition, we detected that SAFit2 shifts lipid levels in nervous tissue toward an anti-inflammatory and pro-resolving lipid profile that counteracts peripheral sensitization after paclitaxel treatment. Furthermore, SAFit2 reduced the activation of astrocytes and microglia in the spinal cord as well as the levels of pain-mediating chemokines. Its treatment also increased anti-inflammatory cytokines levels in neuronal tissues, ultimately leading to a resolution of neuroinflammation. CONCLUSIONS In summary, SAFit2 shows antihyperalgesic properties as it ameliorates paclitaxel-induced neuropathic pain by reducing peripheral sensitization and resolving neuroinflammation. Therefore, we consider SAFit2 as a potential novel drug candidate for the treatment of paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Saskia Wedel
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Christian Namendorf
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Tim Heymann
- Department of Biochemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Manfred Uhr
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Mathias V Schmidt
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Felix Hausch
- Department of Biochemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Malekpour M, Shekouh D, Safavinia ME, Shiralipour S, Jalouli M, Mortezanejad S, Azarpira N, Ebrahimi ND. Role of FKBP5 and its genetic mutations in stress-induced psychiatric disorders: an opportunity for drug discovery. Front Psychiatry 2023; 14:1182345. [PMID: 37398599 PMCID: PMC10313426 DOI: 10.3389/fpsyt.2023.1182345] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Stress-induced mental health disorders are affecting many people around the world. However, effective drug therapy for curing psychiatric diseases does not occur sufficiently. Many neurotransmitters, hormones, and mechanisms are essential in regulating the body's stress response. One of the most critical components of the stress response system is the hypothalamus-pituitary-adrenal (HPA) axis. The FKBP prolyl isomerase 51 (FKBP51) protein is one of the main negative regulators of the HPA axis. FKBP51 negatively regulates the cortisol effects (the end product of the HPA axis) by inhibiting the interaction between glucocorticoid receptors (GRs) and cortisol, causing reduced transcription of downstream cortisol molecules. By regulating cortisol effects, the FKBP51 protein can indirectly regulate the sensitivity of the HPA axis to stressors. Previous studies have indicated the influence of FKBP5 gene mutations and epigenetic changes in different psychiatric diseases and drug responses and recommended the FKBP51 protein as a drug target and a biomarker for psychological disorders. In this review, we attempted to discuss the effects of the FKBP5 gene, its mutations on different psychiatric diseases, and drugs affecting the FKBP5 gene.
Collapse
Affiliation(s)
- Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dorsa Shekouh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shadi Shiralipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Jalouli
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Mortezanejad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
25
|
Wang A, Wei Z, Yuan H, Zhu Y, Peng Y, Gao Z, Liu Y, Shen J, Xu H, Guan J, Yin S, Liu F, Li X. FKBP5 genetic variants are associated with respiratory- and sleep-related parameters in Chinese patients with obstructive sleep apnea. Front Neurosci 2023; 17:1170889. [PMID: 37274192 PMCID: PMC10233201 DOI: 10.3389/fnins.2023.1170889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Obstructive sleep apnea (OSA) has been associated with psychiatric disorders, especially depression and posttraumatic stress disorder (PTSD). FKBP5 genetic variants have been previously reported to confer the risk of depression and PTSD. This study aimed to investigate the association of single nucleotide polymorphisms (SNPs) in the FKBP5 gene with OSA and OSA-related quantitative traits. Methods Four SNPs within the FKBP5 gene (rs1360780, rs3800373, rs9296158, rs9470080) were genotyped in 5773 participants with anthropometric and polysomnography data. Linear regression and logistic regression analyses were performed to evaluate the relationship between FKBP5 SNPs and OSA-related traits. Binary logistic regression was used to assess the effect of SNPs on OSA susceptibility. Interacting genes of SNPs were assessed based on the 3DSNP database, and expression quantitative trait loci (eQTL) analysis for SNPs was adopted to examine the correlation of SNPs with gene expression. Gene expression analyses in human brains were performed with the aid of Brain Atlas. Results In moderate-to-severe OSA patients, all four SNPs were positively associated with AHIREM, and rs9296158 showed the strongest association (ß = 1.724, p = 0.001). Further stratified analyses showed that in men with moderate OSA, rs1360780, rs3800373 and rs9470080 were positively associated with wake time (p = 0.0267, p = 0.0254 and p = 0.0043, respectively). Rs1360780 and rs3800373 were 28 and 29.4%more likely to rate a higher ordered MAI category (OR (95% CI) = 1.280 (1.042 - 1.575), p = 0.019; OR (95% CI) = 1.294 (1.052 - 1.592), p = 0.015, respectively). Rs9296158 and rs9470080 increased the risk of low sleep efficiency by 25.7 and 28.1% (OR (95% CI) = 1.257 (1.003 - 1.575), p = 0.047; OR (95% CI) = 1.281 (1.026-1.6), p = 0.029, respectively). Integrated analysis of eQTL and gene expression patterns revealed that four SNPs may exert their effects by regulating FKBP5, TULP1, and ARMC12. Conclusion Single nucleotide polymorphisms in the FKBP5 gene were associated with sleep respiratory events in moderate-to-severe OSA patients during REM sleep and associated with sleep architecture variables in men with moderate OSA. FKBP5 variants may be a potential predisposing factor for sleep disorders, especially in REM sleep.
Collapse
Affiliation(s)
- Anzhao Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhicheng Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Haolin Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yaxin Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yu Peng
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhenfei Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yuenan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jinhong Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Huajun Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Feng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Buffa V, Knaup FH, Heymann T, Springer M, Schmidt MV, Hausch F. Analysis of the Selective Antagonist SAFit2 as a Chemical Probe for the FK506-Binding Protein 51. ACS Pharmacol Transl Sci 2023; 6:361-371. [PMID: 36926456 PMCID: PMC10012253 DOI: 10.1021/acsptsci.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 02/16/2023]
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as an important regulator of the mammalian stress response and is involved in persistent pain states and metabolic pathways. The FK506 analog SAFit2 (short for selective antagonist of FKBP51 by induced fit) was the first potent and selective FKBP51 ligand with an acceptable pharmacokinetic profile. At present, SAFit2 represents the gold standard for FKBP51 pharmacology and has been extensively used in numerous biological studies. Here we review the current knowledge on SAFit2 as well as guidelines for its use.
Collapse
Affiliation(s)
- Vanessa Buffa
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Fabian H. Knaup
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Tim Heymann
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Margherita Springer
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mathias V. Schmidt
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Felix Hausch
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
27
|
Liu H, Chen Q, Zheng W, Zhou Y, Bai Y, Pan Y, Zhang J, Shao C. LncRNA CASC19 Enhances the Radioresistance of Nasopharyngeal Carcinoma by Regulating the miR-340-3p/FKBP5 Axis. Int J Mol Sci 2023; 24:ijms24033047. [PMID: 36769373 PMCID: PMC9917593 DOI: 10.3390/ijms24033047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Radioresistance remains a serious obstacle encountered in the radiotherapy of nasopharyngeal carcinoma (NPC). Both mRNAs and non-coding RNAs (ncRNAs), including long ncRNA (lncRNA) and microRNA (miRNA), play essential roles in radiosensitivity. However, the comprehensive expression profiles and competing endogenous RNA (ceRNA) regulatory networks among lncRNAs, miRNAs, and mRNAs in NPC radioresistance are still bewildering. In this study, we performed an RNA-sequencing (RNA-seq) assay in the radioresistant NPC cells CNE2R and its parental cells CNE2 to identify the differentially expressed lncRNAs, miRNAs, and mRNAs. The ceRNA networks containing lncRNAs, miRNAs, and mRNAs were predicted on the basis of the Pearson correlation coefficients and authoritative miRanda databases. In accordance with bioinformatic analysis of the data of the tandem mass tag (TMT) assay of CNE2R and CNE2 cells and the gene chip assay of radioresistant NPC samples in pre- and post-radiotherapy, the radioresistance-related signaling network of lncRNA CASC19, miR-340-3p, and FKBP5 was screened and further verified using an RT-qPCR assay. CASC19 was positively associated with FKBP5 expression while negatively correlated with miR-340-3p, and the target binding sites of CASC19/miR-340-3p and miR-340-3p/FKBP5 were confirmed using a dual-luciferase reporter assay. Moreover, using an mRFP-GFP-LC3 maker, it was found that autophagy contributed to the radioresistance of NPC. MiR-340-3p inhibition or FKBP5 overexpression could rescue the suppression of autophagy and radioresistance induced by CASC19 knockdown in CNE2R cells. In conclusion, the CASC19/miR-340-3p/FKBP5 network may be instrumental in regulating NPC radioresistance by enhancing autophagy, which provides potential new therapeutic targets for NPC.
Collapse
Affiliation(s)
- Hongxia Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- School of Stomatology, Henan University, Kaifeng 475001, China
| | - Qianping Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence:
| |
Collapse
|
28
|
Lerma Romero JA, Meyners C, Rupp N, Hausch F, Kolmar H. A protein engineering approach toward understanding FKBP51 conformational dynamics and mechanisms of ligand binding. Protein Eng Des Sel 2023; 36:gzad014. [PMID: 37903068 DOI: 10.1093/protein/gzad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/15/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
Most proteins are flexible molecules that coexist in an ensemble of several conformations. Point mutations in the amino acid sequence of a protein can trigger structural changes that drive the protein population to a conformation distinct from the native state. Here, we report a protein engineering approach to better understand protein dynamics and ligand binding of the FK506-binding protein 51 (FKBP51), a prospective target for stress-related diseases, metabolic disorders, some types of cancers and chronic pain. By randomizing selected regions of its ligand-binding domain and sorting yeast display libraries expressing these variants, mutants with high affinity to conformation-specific FKBP51 selective ligands were identified. These improved mutants are valuable tools for the discovery of novel selective ligands that preferentially and specifically bind the FKBP51 active site in its open conformation state. Moreover, they will help us understand the conformational dynamics and ligand binding mechanics of the FKBP51 binding pocket.
Collapse
Affiliation(s)
- Jorge A Lerma Romero
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Nicole Rupp
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| |
Collapse
|
29
|
Fang T, Liu MN, Tian XY, Lu GY, Li F, Zhang X, Liu F, Hao W, Wu N, Li H, Li J. The association of FKBP5 polymorphisms with the severity of depressive disorder in patients with methamphetamine use disorders. Front Psychiatry 2023; 14:1147060. [PMID: 37051166 PMCID: PMC10083280 DOI: 10.3389/fpsyt.2023.1147060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/28/2023] [Indexed: 04/14/2023] Open
Abstract
Background Co-occurring depressive disorder (DD) in patients of methamphetamine use disorder (MAUD) impacts the diagnosis, treatment, and prognosis of the disease. Although FKBP5 has been associated with a variety of psychiatric disorders, whether FKBP5 influences depression susceptibility in MAUD is unknown so far. Methods Here, we sequenced six FKBP5 single-nucleotide polymorphism (SNP) sites (rs4713916, rs6926133, rs9470080, rs737054, rs4713902, and rs9470079) in 282 methamphetamine users. MAUD and DD were evaluated by clinical questionnaires. SPSS was used to analyze the relationship between FKBP5 SNPs and DD in individuals with MAUD. Results Of the 282 methamphetamine users, 161 individuals met the MAUD criteria, and among them, 50 patients (31.1%) had DD co-occurring. Importantly, the incidence of DD in individuals with MAUD was 3.314 times greater than that of the methamphetamine users who did not meet the MAUD criteria (p < 0.001). Although none of the six SNPs of FKBP5 were correlated with the co-occurrence of DD in the population with MAUD, two FKBP5 alleles (rs4713916A and rs6926133A) were substantially associated with the higher DD scores in patients with MAUD (p < 0.05). Moreover, those with the two risk alleles do not have much higher scores than those with a single risk allele, and the strong linkage disequilibrium of the two SNPs may be the underlying cause of this result. Despite having weak linkage disequilibrium with either rs4713916 or rs6926133, FKBP5 rs9470079 became risky when paired with either. Conclusion The results of this study revealed that the FKBP5 risk alleles (rs4713916A and rs6926133A) were associated with a greater probability of severe DD in patients with MAUD. These findings here would help with the development of biological early warning markers and the creation of personalized treatment strategies for MAUD.
Collapse
Affiliation(s)
- Ting Fang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Meng-Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao-Yu Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Guan-Yi Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaojie Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Liu
- Compulsory Detoxification Center of Changsha Public Security Bureau, Changsha, Hunan, China
| | - Wei Hao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Hong Li
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Jin Li
| |
Collapse
|
30
|
Barge S, Jade D, Ayyamperumal S, Manna P, Borah J, Nanjan CMJ, Nanjan MJ, Talukdar NC. Potential inhibitors for FKBP51: an in silico study using virtual screening, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2022; 40:13799-13811. [PMID: 34709133 DOI: 10.1080/07391102.2021.1994877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the years, FK506-binding proteins have been targeted for different pharmaceutical interests. The FK506-binding protein, encoded by the FKBP5 gene, is responsible for stress and metabolic-related disorders, including cancer. In addition, the FKBD-I domain of the protein is a potential target for endocrine-related physiological diseases. In the present study, a set of natural compounds from the ZINC database was screened against FKBP51 protein using in silico strategy, namely pharmacophore modeling, molecular docking, and molecular dynamic simulation. A protein-ligand-based pharmacophore model workflow was employed to identify small molecules. The resultant compounds were then assessed for their toxicity using ADMET prediction. Based on ADMET prediction, 4768 compounds were selected for molecular docking to elucidate their binding mode. Based on the binding energy, 857 compounds were selected, and their Similarity Tanimoto coefficient was calculated, followed by clustering according to Jarvis-Patrick clustering methods (Jarp). The clustered singletons resulted in 14 hit compounds. The top 05 hit compounds and 05 known compounds were then subjected to 100 ns MD simulation to check the stability of complexes. The study revealed that the selected complexes are stable throughout the 100 ns simulation; for FKBD-I (4TW6), crystal structure compared with FKBP-51 (1KT0) crystal structure. Finally, the binding free energies of the hit complexes were calculated using molecular mechanics energies combined with Poisson-Boltzmann. The data reveal that all the complexes show negative BFEs, indicating a good affinity of the hit compounds to the protein. The top five compounds are, therefore, potential inhibitors for FKBP51. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sagar Barge
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Assam, India.,Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Assam, India
| | - Dhananjay Jade
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, Tamil Nadu, India
| | - Selvaraj Ayyamperumal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, Tamil Nadu, India
| | - Prasenjit Manna
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Assam, India
| | - Jagat Borah
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Assam, India
| | | | | | - Narayan Chandra Talukdar
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Assam, India.,Assam Down Town University, Panikhaiti, Guwahati, Assam, India
| |
Collapse
|
31
|
The Scaffold Immunophilin FKBP51 Is a Phosphoprotein That Undergoes Dynamic Mitochondrial-Nuclear Shuttling. Cells 2022; 11:cells11233771. [PMID: 36497030 PMCID: PMC9739885 DOI: 10.3390/cells11233771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The immunophilin FKBP51 forms heterocomplexes with molecular chaperones, protein-kinases, protein-phosphatases, autophagy-related factors, and transcription factors. Like most scaffold proteins, FKBP51 can use a simple tethering mechanism to favor the efficiency of interactions with partner molecules, but it can also exert more complex allosteric controls over client factors, the immunophilin itself being a putative regulation target. One of the simplest strategies for regulating pathways and subcellular localization of proteins is phosphorylation. In this study, it is shown that scaffold immunophilin FKBP51 is resolved by resolutive electrophoresis in various phosphorylated isoforms. This was evidenced by their reactivity with specific anti-phosphoamino acid antibodies and their fade-out by treatment with alkaline phosphatase. Interestingly, stress situations such as exposure to oxidants or in vivo fasting favors FKBP51 translocation from mitochondria to the nucleus. While fasting involves phosphothreonine residues, oxidative stress involves tyrosine residues. Molecular modeling predicts the existence of potential targets located at the FK1 domain of the immunophilin. Thus, oxidative stress favors FKBP51 dephosphorylation and protein degradation by the proteasome, whereas FK506 binding protects the persistence of the post-translational modification in tyrosine, leading to FKBP51 stability under oxidative conditions. Therefore, FKBP51 is revealed as a phosphoprotein that undergoes differential phosphorylations according to the stimulus.
Collapse
|
32
|
The FKBP51 Inhibitor SAFit2 Restores the Pain-Relieving C16 Dihydroceramide after Nerve Injury. Int J Mol Sci 2022; 23:ijms232214274. [PMID: 36430751 PMCID: PMC9695264 DOI: 10.3390/ijms232214274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Neuropathic pain is a pathological pain state with a broad symptom scope that affects patients after nerve injuries, but it can also arise after infections or exposure to toxic substances. Current treatment possibilities are still limited because of the low efficacy and severe adverse effects of available therapeutics, highlighting an emerging need for novel analgesics and for a detailed understanding of the pathophysiological alterations in the onset and maintenance of neuropathic pain. Here, we show that the novel and highly specific FKBP51 inhibitor SAFit2 restores lipid signaling and metabolism in nervous tissue after nerve injury. More specifically, we identify that SAFit2 restores the levels of the C16 dihydroceramide, which significantly reduces the sensitization of the pain-mediating TRPV1 channel and subsequently the secretion of the pro-inflammatory neuropeptide CGRP in primary sensory neurons. Furthermore, we show that the C16 dihydroceramide is capable of reducing acute thermal hypersensitivity in a capsaicin mouse model. In conclusion, we report for the first time the C16 dihydroceramide as a novel and crucial lipid mediator in the context of neuropathic pain as it has analgesic properties, contributing to the pain-relieving properties of SAFit2.
Collapse
|
33
|
Lerma Romero JA, Meyners C, Christmann A, Reinbold LM, Charalampidou A, Hausch F, Kolmar H. Binding pocket stabilization by high-throughput screening of yeast display libraries. Front Mol Biosci 2022; 9:1023131. [PMID: 36419931 PMCID: PMC9676650 DOI: 10.3389/fmolb.2022.1023131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 03/04/2025] Open
Abstract
Protein dynamics have a great influence on the binding pockets of some therapeutic targets. Flexible protein binding sites can result in transient binding pocket formation which might have a negative impact on drug screening efforts. Here, we describe a protein engineering strategy with FK506-binding protein 51 (FKBP51) as a model protein, which is a promising target for stress-related disorders. High-throughput screening of yeast display libraries of FKBP51 resulted in the identification of variants exhibiting higher affinity binding of conformation-specific FKBP51 selective inhibitors. The gene libraries of a random mutagenesis and site saturation mutagenesis of the FK1 domain of FKBP51 encoding sequence were used to create a yeast surface display library. Fluorescence-activated cell sorting for FKBP51 variants that bind conformation-specific fluorescently labeled ligands with high affinity allowed for the identification of 15 different protein variants with improved binding to either, or both FKBP51-specific ligands used in the screening, with improved affinities up to 34-fold compared to the wild type. These variants will pave the way to a better understanding of the conformational flexibility of the FKBP51 binding pocket and may enable the isolation of new selective ligands that preferably and selectively bind the active site of the protein in its open conformation state.
Collapse
Affiliation(s)
- Jorge A. Lerma Romero
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Andreas Christmann
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Lisa M. Reinbold
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Anna Charalampidou
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
34
|
Wedel S, Mathoor P, Rauh O, Heymann T, Ciotu CI, Fuhrmann DC, Fischer MJM, Weigert A, de Bruin N, Hausch F, Geisslinger G, Sisignano M. SAFit2 reduces neuroinflammation and ameliorates nerve injury-induced neuropathic pain. J Neuroinflammation 2022; 19:254. [PMID: 36217203 PMCID: PMC9552419 DOI: 10.1186/s12974-022-02615-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 01/17/2024] Open
Abstract
Background Neuropathic pain is experienced worldwide by patients suffering from nerve injuries, infectious or metabolic diseases or chemotherapy. However, the treatment options are still limited because of low efficacy and sometimes severe side effects. Recently, the deficiency of FKBP51 was shown to relieve chronic pain, revealing FKBP51 as a potential therapeutic target. However, a specific and potent FKBP51 inhibitor was not available until recently which hampered targeting of FKBP51. Methods In this study, we used the well-established and robust spared nerve injury model to analyze the effect of SAFit2 on nerve injury-induced neuropathic pain and to elucidate its pharmacodynamics profile. Therefore, the mice were treated with 10 mg/kg SAFit2 after surgery, the mice behavior was assessed over 21 days and biochemical analysis were performed after 14 and 21 days. Furthermore, the impact of SAFit2 on sensory neurons and macrophages was investigated in vitro. Results Here, we show that the FKBP51 inhibitor SAFit2 ameliorates nerve injury-induced neuropathic pain in vivo by reducing neuroinflammation. SAFit2 reduces the infiltration of immune cells into neuronal tissue and counteracts the increased NF-κB pathway activation which leads to reduced cytokine and chemokine levels in the DRGs and spinal cord. In addition, SAFit2 desensitizes the pain-relevant TRPV1 channel and subsequently reduces the release of pro-inflammatory neuropeptides from sensory neurons. Conclusions SAFit2 ameliorates neuroinflammation and counteracts enhanced neuronal activity after nerve injury leading to an amelioration of nerve injury-induced neuropathic pain. Based on these findings, SAFit2 constitutes as a novel and promising drug candidate for the treatment of nerve injury-induced neuropathic pain. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02615-7.
Collapse
Affiliation(s)
- Saskia Wedel
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
| | - Praveen Mathoor
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Oliver Rauh
- Membrane Biophysics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Tim Heymann
- Department of Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Natasja de Bruin
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Felix Hausch
- Department of Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany. .,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
35
|
Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progesterone as an Anti-Inflammatory Drug and Immunomodulator: New Aspects in Hormonal Regulation of the Inflammation. Biomolecules 2022; 12:biom12091299. [PMID: 36139138 PMCID: PMC9496164 DOI: 10.3390/biom12091299] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022] Open
Abstract
The specific regulation of inflammatory processes by steroid hormones has been actively studied in recent years, especially by progesterone (P4) and progestins. The mechanisms of the anti-inflammatory and immunomodulatory P4 action are not fully clear. The anti-inflammatory effects of P4 can be defined as nonspecific, associated with the inhibition of NF-κB and COX, as well as the inhibition of prostaglandin synthesis, or as specific, associated with the regulation of T-cell activation, the regulation of the production of pro- and anti-inflammatory cytokines, and the phenomenon of immune tolerance. The specific anti-inflammatory effects of P4 and its derivatives (progestins) can also include the inhibition of proliferative signaling pathways and the antagonistic action against estrogen receptor beta-mediated signaling as a proinflammatory and mitogenic factor. The anti-inflammatory action of P4 is accomplished through the participation of progesterone receptor (PR) chaperones HSP90, as well as immunophilins FKBP51 and FKBP52, which are the validated targets of clinically approved immunosuppressive drugs. The immunomodulatory and anti-inflammatory effects of HSP90 inhibitors, tacrolimus and cyclosporine, are manifested, among other factors, due to their participation in the formation of an active ligand–receptor complex of P4 and their interaction with its constituent immunophilins. Pharmacological agents such as HSP90 inhibitors can restore the lost anti-inflammatory effect of glucocorticoids and P4 in chronic inflammatory and autoimmune diseases. By regulating the activity of FKBP51 and FKBP52, it is possible to increase or decrease hormonal signaling, as well as restore it during the development of hormone resistance. The combined action of immunophilin suppressors with steroid hormones may be a promising strategy in the treatment of chronic inflammatory and autoimmune diseases, including endometriosis, stress-related disorders, rheumatoid arthritis, and miscarriages. Presumably, the hormone receptor- and immunophilin-targeted drugs may act synergistically, allowing for a lower dose of each.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
- Correspondence: ; Tel.: +7-9169353196
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, Pushchino 142290, Russia
| | - Nikolai L. Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
| |
Collapse
|
36
|
Ernst K. Requirement of Peptidyl-Prolyl Cis/Trans isomerases and chaperones for cellular uptake of bacterial AB-type toxins. Front Cell Infect Microbiol 2022; 12:938015. [PMID: 35992160 PMCID: PMC9387773 DOI: 10.3389/fcimb.2022.938015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial AB-type toxins are proteins released by the producing bacteria and are the causative agents for several severe diseases including cholera, whooping cough, diphtheria or enteric diseases. Their unique AB-type structure enables their uptake into mammalian cells via sophisticated mechanisms exploiting cellular uptake and transport pathways. The binding/translocation B-subunit facilitates binding of the toxin to a specific receptor on the cell surface. This is followed by receptor-mediated endocytosis. Then the enzymatically active A-subunit either escapes from endosomes in a pH-dependent manner or the toxin is further transported through the Golgi to the endoplasmic reticulum from where the A-subunit translocates into the cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate which leads to cellular reactions resulting in clinical symptoms that can be life-threatening. Both intracellular uptake routes require the A-subunit to unfold to either fit through a pore formed by the B-subunit into the endosomal membrane or to be recognized by the ER-associated degradation pathway. This led to the hypothesis that folding helper enzymes such as chaperones and peptidyl-prolyl cis/trans isomerases are required to assist the translocation of the A-subunit into the cytosol and/or facilitate their refolding into an enzymatically active conformation. This review article gives an overview about the role of heat shock proteins Hsp90 and Hsp70 as well as of peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding protein families during uptake of bacterial AB-type toxins with a focus on clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria toxin, pertussis toxin and cholera toxin.
Collapse
|
37
|
Sun H, Liu X, Wang L, Cui B, Mu W, Xia Y, Liu S, Liu X, Jiao Y, Zhao Y. Dexamethasone Sensitizes Acute Monocytic Leukemia Cells to Ara-C by Upregulating FKBP51. Front Oncol 2022; 12:888695. [PMID: 35860568 PMCID: PMC9290766 DOI: 10.3389/fonc.2022.888695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we demonstrated that the expression of FK506 binding protein 51 (FKBP51) is upregulated in acute monocytic leukemia (AML-M5) cells by dexamethasone and aimed to investigate the possible effects of FKBP51 on the growth and cytarabine sensitivity of AML-M5 cells. THP-1 and U937cells were used to establish AML-M5 cell models with FKBP51 overexpression and knockdown, respectively. Cell proliferation, apoptosis and response to cytarabine were investigated by cell cycle, CCK-8 and Flow cytometry analyses. The mice experiment was conducted to detect the role of FKBP51 on AML-M5 cells proliferation and antileukemia effect of Ara-C/Dexamethasone co-therapy in vivo. Western blots were employed to determine protein expression levels. FKBP51 upregulation significantly attenuated THP-1 cell proliferation and sensitized the cells to cytarabine treatment which was further enhanced by dexamethasone. These effects were indicated by decreases in cell viability, S-G2/M phase cell cycle distribution, cytarabine 50% inhibitory concentration (IC50) values and increases in apoptosis and were supported by decreased phosphorylation levels of AKT, GSK3β and FOXO1A and decreased levels of BCL-2 and increased levels of P21 and P27. In contrast, FKBP51 knockdown led to excessive U937 cell proliferation and cytarabine resistance, as indicated by increased cell viability and S-G2/M phase cell cycle distribution, decreased apoptosis, increased phosphorylation levels of AKT, GSK3β and FOXO1A, and increased BCL-2 and decreased P21 and P27 expression. In addition, an AKT inhibitor blocked cell cycle progression and reduced cell viability in all groups of cells. Furthermore, SAFit2, a specific FKBP51 inhibitor, increased U937 cell viability and cytarabine resistance as well as AKT phosphorylation. In conclusion, FKBP51 decelerates proliferation and improves the cytarabine sensitivity of AML-M5 cells by inhibiting AKT pathways, and dexamethasone in combination with Ara-C improves the chemosensitivity of AML-M5.
Collapse
Affiliation(s)
- Huanxin Sun
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaowen Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Laicheng Wang
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Bin Cui
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Wenli Mu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yu Xia
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shuang Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xin Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yulian Jiao
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
- *Correspondence: Yulian Jiao, ; Yueran Zhao,
| | - Yueran Zhao
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- *Correspondence: Yulian Jiao, ; Yueran Zhao,
| |
Collapse
|
38
|
Liu J, Zhang H, Di K, Hou L, Yu S. Circular noncoding RNA circ_0007865, serves as a competing endogenous RNA, targeting the miR-214-3p/FKBP5 axis to regulate oxygen-glucose deprivation-induced injury in brain microvascular endothelial cells. Neuroreport 2022; 33:163-172. [PMID: 35143446 DOI: 10.1097/wnr.0000000000001751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ischemic stroke (IS) is a major cause of permanent morbidity and lifelong disability worldwide. Circular RNA (circRNA) circ_0007865 has been reported to be upregulated in acute ischemic stroke (AIS) patients. Also, AIS patients exhibited increased death of human brain microvascular endothelial cells (HBMECs). This study is designed to explore the role and mechanism of circ_0007865 in the oxygen-glucose deprivation (OGD)-induced cell damage in AIS. METHODS Circ_0007865, microRNA-214-3p (miR-214-3p), and FK506-binding protein 5 (FKBP5) levels were detected by real-time quantitative PCR. Cell proliferative angiogenesis, migration, and apoptosis were assessed by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, colony formation, tube formation, wound healing, transwell, and flow cytometry assays. B-cell lymphoma-2 (Bcl-2), Bcl-2-related X protein (Bax), cleaved caspase-3, and FKBP5 protein levels were determined by western blot assay. The binding relationship between miR-214-3p and circ_0007865 or FKBP5 was predicted by StarBase, and verified by a dual-luciferase reporter, RNA pull-down assay. RESULTS Circ_0007865 and FKBP5 were increased, and miR-214-3p was decreased in OGD-treated HBMECs. Furthermore, the silencing of circ_0007865 could promote cell proliferative angiogenesis, migration, and inhibit apoptosis in OGD-triggered HBMECs in vitro. Mechanically, circ_0007865 acted as a sponge of miR-214-3p to regulate FKBP5. CONCLUSION According to these results, circ_0007865 deficiency could attenuate OGD-induced HBMEC damage by modulating the miR-214-3p/FKBP5 axis, hinting at a promising therapeutic target for future acute IS therapy.
Collapse
Affiliation(s)
- Jinghua Liu
- Department of Neurology, The Second People's Hospital of Dongying, Dongying
| | - Hong Zhang
- School of Medicine, Tianjin Tianshi College, Tianjin
| | - Kuiyi Di
- Department of Neurology, The Second People's Hospital of Dongying, Dongying
| | | | - Shanshan Yu
- Department of Pharmacy, The Second People's Hospital of Dongying, Dongying, China
| |
Collapse
|
39
|
Chambraud B, Byrne C, Meduri G, Baulieu EE, Giustiniani J. FKBP52 in Neuronal Signaling and Neurodegenerative Diseases: A Microtubule Story. Int J Mol Sci 2022; 23:ijms23031738. [PMID: 35163662 PMCID: PMC8836061 DOI: 10.3390/ijms23031738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The FK506-binding protein 52 (FKBP52) belongs to a large family of ubiquitously expressed and highly conserved proteins (FKBPs) that share an FKBP domain and possess Peptidyl-Prolyl Isomerase (PPIase) activity. PPIase activity catalyzes the isomerization of Peptidyl-Prolyl bonds and therefore influences target protein folding and function. FKBP52 is particularly abundant in the nervous system and is partially associated with the microtubule network in different cell types suggesting its implication in microtubule function. Various studies have focused on FKBP52, highlighting its importance in several neuronal microtubule-dependent signaling pathways and its possible implication in neurodegenerative diseases such as tauopathies (i.e., Alzheimer disease) and alpha-synucleinopathies (i.e., Parkinson disease). This review summarizes our current understanding of FKBP52 actions in the microtubule environment, its implication in neuronal signaling and function, its interactions with other members of the FKBPs family and its involvement in neurodegenerative disease.
Collapse
Affiliation(s)
- Béatrice Chambraud
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
| | - Cillian Byrne
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Laboratoire des Biomolécules, LBM7203, CNRS, École Normale Supérieure, PSL University, Sorbonne Université, 75005 Paris, France
| | - Geri Meduri
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
| | - Etienne Emile Baulieu
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Correspondence: (E.E.B.); (J.G.); Tel.: +33-1-49-59-18-72 (J.G.); Fax: +33-1-49-59-92-03 (J.G.)
| | - Julien Giustiniani
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Correspondence: (E.E.B.); (J.G.); Tel.: +33-1-49-59-18-72 (J.G.); Fax: +33-1-49-59-92-03 (J.G.)
| |
Collapse
|
40
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
41
|
Chen Y, Zhao M, Fan X, Zhu P, Jiang Z, Li F, Yuan W, You S, Chen J, Li Y, Shi Y, Zhu X, Ye X, Li F, Zhuang J, Li Y, Jiang Z, Wang Y, Wu X. Engagement of gcFKBP5/TRAF2 by spring viremia of carp virus to promote host cell apoptosis for supporting viral replication in grass carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104291. [PMID: 34710469 DOI: 10.1016/j.dci.2021.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Spring viremia of carp virus (SVCV) causes severe morbidity and mortality in grass carp (Ctenopharyngodon idellus) in Europe, America and several Asian countries. We found that FKBP5 (FK506-binding protein 5) is an SVCV infection response factor; however, its role in the innate immune mechanism caused by SVCV infection remains unknown. This study cloned gcFKBP5 (grass carp FKBP5) and made its mimic protein structure for function discussion. We found that gcFKBP5 expression in the primary innate immune organs of grass carp, including intestine, liver and spleen, was highly upregulated by SVCV in 24 h, with a similar result in fish cells by poly(I:C) treatment. gcFKBP overexpression aggravates viral damage to cells and increases viral replication. Furthermore, SVCV engages gcFKBP5 interacting with TRAF2 (tumour necrosis factor receptor-associated factor 2) to promote host cell apoptosis for supporting viral replication. The enhanced viral replication seems not to be due to the repression of IFN and other antiviral factors as expected. For the first time, these data show the pivotal role of gcFKBP5 in the innate immune response of grass carp to SVCV infection.
Collapse
Affiliation(s)
- Yu Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Mengjing Zhao
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xiongwei Fan
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Zhaobiao Jiang
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Faxiang Li
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wuzhou Yuan
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Shiqi You
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jimei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Yunxuan Li
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yan Shi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Xiaolan Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Xiangli Ye
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Fang Li
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Yongqing Li
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhigang Jiang
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Yuequn Wang
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Xiushan Wu
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
42
|
Acute social isolation and regrouping cause short- and long-term molecular changes in the rat medial amygdala. Mol Psychiatry 2022; 27:886-895. [PMID: 34650208 PMCID: PMC8515782 DOI: 10.1038/s41380-021-01342-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022]
Abstract
Social isolation poses a severe mental and physiological burden on humans. Most animal models that investigate this effect are based on prolonged isolation, which does not mimic the milder conditions experienced by people in the real world. We show that in adult male rats, acute social isolation causes social memory loss. This memory loss is accompanied by significant changes in the expression of specific mRNAs and proteins in the medial amygdala, a brain structure that is crucial for social memory. These changes particularly involve the neurotrophic signaling and axon guidance pathways that are associated with neuronal network remodeling. Upon regrouping, memory returns, and most molecular changes are reversed within hours. However, the expression of some genes, especially those associated with neurodegenerative diseases remain modified for at least a day longer. These results suggest that acute social isolation and rapid resocialization, as experienced by millions during the COVID-19 pandemic, are sufficient to induce significant changes to neuronal networks, some of which may be pathological.
Collapse
|
43
|
Rotoli D, Díaz-Flores L, Gutiérrez R, Morales M, Ávila J, Martín-Vasallo P. AmotL2, IQGAP1, and FKBP51 Scaffold Proteins in Glioblastoma Stem Cell Niches. J Histochem Cytochem 2022; 70:9-16. [PMID: 34165350 PMCID: PMC8721575 DOI: 10.1369/00221554211025480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glioma stem cells (GSCs) live in a continuous process of stemness reprogramming to achieve specific cell commitment within the so-called GSC niches, specifically located in periarteriolar regions. In this review, we analyze the expression levels, cellular and subcellular location, and role of three scaffold proteins (IQGAP1, FKBP51, and AmotL2) in GSC niches. Scaffold proteins contribute to cell differentiation, migration, and angiogenesis in glioblastoma. It could be of diagnostic interest for establishing stages, for therapeutic targets, and for improving glioblastoma prognosis, which is still at the experimental level.
Collapse
Affiliation(s)
- Deborah Rotoli
- Department of Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Instituto de Tecnología Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Istituto per l’Endocrinologia e l’Oncologia Gaetano Salvatore, Naples, Italy
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences and Department of Anatomy, Pathology, Histology and Radiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences and Department of Anatomy, Pathology, Histology and Radiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Manuel Morales
- Oncología Médica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Julio Ávila
- Department of Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Instituto de Tecnología Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Pablo Martín-Vasallo
- Pablo Martín-Vasallo, UD Bioquímica y Biología Molecular, Universidad de La Laguna, Av/Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain. E-mail:
| |
Collapse
|
44
|
Filimon A, Preda IA, Boloca AF, Negroiu G. Interleukin-8 in Melanoma Pathogenesis, Prognosis and Therapy-An Integrated View into Other Neoplasms and Chemokine Networks. Cells 2021; 11:120. [PMID: 35011682 PMCID: PMC8750532 DOI: 10.3390/cells11010120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma accounts for only about 7% of skin cancers but is causing almost 90% of deaths. Melanoma cells have a distinct repertoire of mutations from other cancers, a high plasticity and degree of mimicry toward vascular phenotype, stemness markers, versatility in evading and suppress host immune control. They exert a significant influence on immune, endothelial and various stromal cells which form tumor microenvironment. The metastatic stage, the leading cause of mortality in this neoplasm, is the outcome of a complex, still poorly understood, cross-talk between tumor and other cell phenotypes. There is accumulating evidence that Interleukin-8 (IL-8) is emblematic for advanced melanomas. This work aimed to present an updated status of IL-8 in melanoma tumor cellular complexity, through a comprehensive analysis including data from other chemokines and neoplasms. The multiple processes and mechanisms surveyed here demonstrate that IL-8 operates following orchestrated programs within signaling webs in melanoma, stromal and vascular cells. Importantly, the yet unknown molecularity regulating IL-8 impact on cells of the immune system could be exploited to overturn tumor fate. The molecular and cellular targets of IL-8 should be brought into the attention of even more intense scientific exploration and valorization in the therapeutical management of melanoma.
Collapse
Affiliation(s)
| | | | | | - Gabriela Negroiu
- Group of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania; (A.F.); (I.A.P.); (A.F.B.)
| |
Collapse
|
45
|
Lin YL, Wei CW, Lerdall TA, Nhieu J, Wei LN. Crabp1 Modulates HPA Axis Homeostasis and Anxiety-like Behaviors by Altering FKBP5 Expression. Int J Mol Sci 2021; 22:12240. [PMID: 34830120 PMCID: PMC8619219 DOI: 10.3390/ijms222212240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022] Open
Abstract
Retinoic acid (RA), the principal active metabolite of vitamin A, is known to be involved in stress-related disorders. However, its mechanism of action in this regard remains unclear. This study reports that, in mice, endogenous cellular RA binding protein 1 (Crabp1) is highly expressed in the hypothalamus and pituitary glands. Crabp1 knockout (CKO) mice exhibit reduced anxiety-like behaviors accompanied by a lowered stress induced-corticosterone level. Furthermore, CRH/DEX tests show an increased sensitivity (hypersensitivity) of their feedback inhibition in the hypothalamic-pituitary-adrenal (HPA) axis. Gene expression studies show reduced FKBP5 expression in CKO mice; this would decrease the suppression of glucocorticoid receptor (GR) signaling thereby enhancing their feedback inhibition, consistent with their dampened corticosterone level and anxiety-like behaviors upon stress induction. In AtT20, a pituitary gland adenoma cell line elevating or reducing Crabp1 level correspondingly increases or decreases FKBP5 expression, and its endogenous Crabp1 level is elevated by GR agonist dexamethasone or RA treatment. This study shows, for the first time, that Crabp1 regulates feedback inhibition of the the HPA axis by modulating FKBP5 expression. Furthermore, RA and stress can increase Crabp1 level, which would up-regulate FKBP5 thereby de-sensitizing feedback inhibition of HPA axis (by decreasing GR signaling) and increasing the risk of stress-related disorders.
Collapse
Affiliation(s)
| | | | | | | | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (Y.-L.L.); (C.-W.W.); (T.A.L.); (J.N.)
| |
Collapse
|
46
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
47
|
Barge S, Deka B, Kashyap B, Bharadwaj S, Kandimalla R, Ghosh A, Dutta PP, Samanta SK, Manna P, Borah JC, Talukdar NC. Astragalin mediates the pharmacological effects of Lysimachia candida Lindl on adipogenesis via downregulating PPARG and FKBP51 signaling cascade. Phytother Res 2021; 35:6990-7003. [PMID: 34734439 DOI: 10.1002/ptr.7320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/29/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Metabolic disturbances in different tissue cells and obesity are caused by excessive calorie intake, and medicinal plants are potential sources of phytochemicals for combating these health problems. This study investigated the role of methanolic extract of the folklore medicinal plant Lysimachia candida (LCM) and its phytochemical, astragalin, in managing obesity in vivo and in vitro. Administration of LCM (200 mg/kg/body weight) daily for 140 days significantly decreased both the body weight gain (15.66%) and blood triglyceride and free fatty acid levels in high-fat-diet-fed male Wistar rats but caused no substantial change in leptin and adiponectin levels. The protein expression of adipogenic transcription factors in visceral adipose tissue was significantly reduced. Further, the 3T3-L1 cell-based assay revealed that the butanol fraction of LCM and its isolated compound, astragalin, exhibited antiadipogenic activity through downregulating adipogenic transcription factors and regulatory proteins. Molecular docking studies were performed to depict the possible binding patterns of astragalin to adipogenesis proteins. Overall, we show the potential antiobesity effects of L. candida and its bioactive compound, astragalin, and suggest clinical studies with LCM and astragalin.
Collapse
Affiliation(s)
- Sagar Barge
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Barsha Deka
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Bhaswati Kashyap
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Simanta Bharadwaj
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Raghuram Kandimalla
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Aparajita Ghosh
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Partha Pratim Dutta
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Faculty of Pharmaceutical science, Assam Down Town University, Guwahati, India
| | - Suman Kumar Samanta
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Prasenjit Manna
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - Jagat C Borah
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Narayan Chandra Talukdar
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Faculty of Pharmaceutical science, Assam Down Town University, Guwahati, India
| |
Collapse
|
48
|
Smedlund KB, Sanchez ER, Hinds TD. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab 2021; 32:862-874. [PMID: 34481731 PMCID: PMC8516732 DOI: 10.1016/j.tem.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
The molecular chaperone FK506-binding protein 51 (FKBP51) is gaining attention as a meaningful biomarker of metabolic dysfunction. This review examines the emerging contributions of FKBP51 in adipogenesis and lipid metabolism, myogenesis and protein catabolism, and glucocorticoid-induced skin hypoplasia and dermal adipocytes. The FKBP51 signaling mechanisms that may explain these metabolic consequences are discussed. These mechanisms are diverse, with FKBP51 independently and directly regulating phosphorylation cascades and nuclear receptors. We provide a discussion of the newly developed compounds that antagonize FKBP51, which may offer therapeutic advantages for adiposity. These observations suggest we are only beginning to uncover the complex nature of FKBP51 and its molecular chaperoning of metabolism.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Edwin R Sanchez
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Terry D Hinds
- Barnstable Brown Diabetes Center, Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA.
| |
Collapse
|
49
|
Fenton-Chemistry-Based Oxidative Modification of Proteins Reflects Their Conformation. Int J Mol Sci 2021; 22:ijms22189927. [PMID: 34576105 PMCID: PMC8469487 DOI: 10.3390/ijms22189927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/25/2022] Open
Abstract
In order to understand protein structure to a sufficient extent for, e.g., drug discovery, no single technique can provide satisfactory information on both the lowest-energy conformation and on dynamic changes over time (the ‘four-dimensional’ protein structure). Instead, a combination of complementary techniques is required. Mass spectrometry methods have shown promise in addressing protein dynamics, but often rely on the use of high-end commercial or custom instruments. Here, we apply well-established chemistry to conformation-sensitive oxidative protein labelling on a timescale of a few seconds, followed by analysis through a routine protein analysis workflow. For a set of model proteins, we show that site selectivity of labelling can indeed be rationalised in terms of known structural information, and that conformational changes induced by ligand binding are reflected in the modification pattern. In addition to conventional bottom-up analysis, further insights are obtained from intact mass measurement and native mass spectrometry. We believe that this method will provide a valuable and robust addition to the ‘toolbox’ of mass spectrometry researchers studying higher-order protein structure.
Collapse
|
50
|
Sun Z, Qin X, Fang J, Tang Y, Fan Y. Multi-Omics Analysis of the Expression and Prognosis for FKBP Gene Family in Renal Cancer. Front Oncol 2021; 11:697534. [PMID: 34476212 PMCID: PMC8406630 DOI: 10.3389/fonc.2021.697534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/26/2021] [Indexed: 01/20/2023] Open
Abstract
Background The FK506-binding protein (FKBP) is a family of intracellular receptors that can bind specifically to the immunosuppressant FK506 and rapamycin. Although FKBPs play crucial roles in biological processes and carcinogenesis, their prognostic value and molecular mechanism in clear cell renal cell carcinoma (ccRCC) remain unclear. Methods Using pan-cancer data from The Cancer Genome Atlas (TCGA) and public databases, we analyzed the expression and correlation of FKBPs in 33 tumor types. Survival and Cox regression analyses were employed to explore the prognostic value of FKBPs. The relationship with tumor microenvironment and stemness indices was taken into account to evaluate the function of FKBPs. We constructed a risk score model to predict the prognosis of patients with ccRCC. The receiver operating characteristic (ROC) curve was performed to further test the prognostic ability of our model. Nomogram, joint effects analysis, and clinical relevance were performed to assist the clinician. Gene set enrichment analysis (GSEA) and cell line experiments were performed to investigate the function and molecular mechanisms of FKBPs in patients with ccRCC. Paired clinical specimens and multi-omics analysis were used to further validate and explore the factors affecting gene expression in ccRCC patients. Results The expression levels of FKBP10 and FKBP11 were higher in ccRCC tissues than in normal tissues. The alteration in expression may be because of the degree of DNA methylation. Increased expression levels of FKBP10 and FKBP11 were associated with worse overall survival (OS). More importantly, GSEA revealed that FKBP10 is mainly involved in cell metabolism and autophagy, whereas FKBP11 is mainly associated with immune-related biological processes and autophagy. Cell Counting Kit 8 (CCK-8) and Transwell assays revealed that knockdown of FKBP10 and FKBP11 inhibits proliferation, migration, and invasion of the ccRCC cell line. Conclusion FKBP10 and FKBP11 play important roles in ccRCC phenotypes and are potential prognostic markers as well as new therapeutic targets for patients with ccRCC.
Collapse
Affiliation(s)
- Zeqiang Sun
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Xin Qin
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Juanjuan Fang
- Department of Anesthesiology and Day Surgery, Dezhou People's Hospital, Dezhou, China
| | - Yueqing Tang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Yidong Fan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| |
Collapse
|