1
|
John ML, Akella S, Kamlekar RK. Elucidating the interactions of endocannabinoid-like neurotransmitters, N-acyltaurines and bovine serum albumin: Spectroscopic and computational approaches. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184421. [PMID: 40222440 DOI: 10.1016/j.bbamem.2025.184421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
N-Acyltaurines (NATs) are endogenous neurotransmitters, structurally similar to endocannabinoids, and have anti-inflammatory and anti-proliferative effects. In response to NATs, TRP channels, TRPV1, TRPV4 and the peptide hormone, GLP-1 are activated. Serum albumin proteins act as transporters for a variety of substances in blood plasma (i.e., hormones, fatty acids, bilirubin, ions, and medications). Due to the structural closeness of Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA), a study into NAT-BSA interactions is crucial. To study interactions of NATs (n = 10-18) with BSA, spectroscopic and computational techniques were used. From the steady-state fluorescence measurements, observed binding constants are in the range of 1.57 × 105 M-1 to 2.85 × 105 M-1. Due to the binding of NATs, the fluorescence of BSA is quenched (∼24.77 %). The negative enthalpy and entropy change and Gibbs free energy values, obtained from van't Hoff plot indicate that the interactions between NATs and BSA are spontaneous and primarily driven by hydrogen bonding. Competitive site-binding assays with warfarin and ibuprofen show that NATs bind to both the drug-binding sites in BSA concurrently. The CD spectroscopic and FT-IR analysis indicates relatively marginal changes in the secondary structure of BSA. Molecular docking analyses are done to identify binding locations and molecular-level interactions. The negative free energy values indicate that NATs have a positive binding relationship with BSA. These findings are congruent with the findings of site-binding studies, which reveal that NATs have a higher proclivity for interacting with sites I and II at the same time.
Collapse
Affiliation(s)
- Martin Luther John
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore 632014, Tamil Nadu, India
| | - Sivaramakrishna Akella
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore 632014, Tamil Nadu, India.
| | - Ravi Kanth Kamlekar
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore 632014, Tamil Nadu, India; Regional Centre Bijapur, Indira Gandhi National Open University, Vijayapura 586101, Karnataka, India.
| |
Collapse
|
2
|
Hiniesto-Iñigo I, Sridhar A, Louradour J, De la Cruz A, Lundholm S, Jauregi-Miguel A, Giannetti F, Sala L, Odening KE, Larsson HP, Ottosson NE, Liin SI. Rescue of loss-of-function long QT syndrome-associated mutations in K V7.1/KCNE1 by the endocannabinoid N-arachidonoyl-L-serine (ARA-S). Br J Pharmacol 2025. [PMID: 40083204 DOI: 10.1111/bph.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/19/2024] [Accepted: 01/17/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND AND PURPOSE Congenital long QT syndrome (LQTS) involves genetic mutations affecting ion channels, leading to a prolonged QT interval and increased risk of potentially lethal ventricular arrhythmias. Mutations in the genes encoding KV7.1/KCNE1 are the most frequent, with channel loss-of-function contributing to LQTS. The endocannabinoid N-arachidonoyl-L-serine (ARA-S) has been shown to facilitate activation of wild type KV7.1/KCNE1 channels and to counteract a prolonged QT interval in isolated guinea pig hearts. In this study, we examine the ability of ARA-S to facilitate activation of LQTS-associated mutations, in various regions of the channel, and hence to counteract loss-of-function. EXPERIMENTAL APPROACH The two-electrode voltage clamp technique on Xenopus oocytes expressing human KV7.1/KCNE1 channels was used to investigate the effects of ARA-S in 20 LQTS type 1-associated mutations distributed across the channel. Thereafter, different electrophysiology was used to assess ARA-S effects in mammalian cells. KEY RESULTS ARA-S enhanced the function of all mutated channels by shifting V50 and increasing current amplitude. However, the magnitude of effect varied, related to whether mutations were in one of the two putative ARA-S binding sites on the channel as suggested by molecular dynamics simulations. ARA-S displayed translational potential by facilitating channel opening in mammalian cells and shortening the action potential duration in cardiomyocytes. CONCLUSIONS AND IMPLICATIONS This study demonstrates the rescuing capability of ARA-S on a diverse set of LQTS mutants. These insights may aid in developing drug compounds using ARA-S sites and mechanisms and guide interpretation of which LQTS mutants respond well to such compounds.
Collapse
Affiliation(s)
- Irene Hiniesto-Iñigo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Akshay Sridhar
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Julien Louradour
- Translational Cardiology, Department of Physiology and Department of Cardiology, University of Bern, University Hospital Bern, Bern, Switzerland
| | - Alicia De la Cruz
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Siri Lundholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Amaia Jauregi-Miguel
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Chemical Biology Consortium Sweden (CBCS), SciLifeLab, Stockholm, Sweden
| | - Federica Giannetti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Physiology and Department of Cardiology, University of Bern, University Hospital Bern, Bern, Switzerland
| | - H Peter Larsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nina E Ottosson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Chemical Biology Consortium Sweden (CBCS), SciLifeLab, Stockholm, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Monge-Loría M, Zhong W, Abrahamse NH, Hartter S, Garg N. Discovery of Peptidic Siderophore Degradation by Screening Natural Product Profiles in Marine-Derived Bacterial Mono- and Cocultures. Biochemistry 2025; 64:634-654. [PMID: 39807563 PMCID: PMC11800396 DOI: 10.1021/acs.biochem.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases. Among pathogens, Vibrio spp. bacteria are key players resulting in high mortality. Thus, alternative strategies such as application of beneficial bacteria isolated from disease-resilient species are being explored to lower the burden of pathogenic species. Here, we apply coculturing of a coral-derived pathogenic species of Vibrio and beneficial bacteria and leverage recent advancements in untargeted metabolomics to discover engineerable beneficial traits. By chasing chemical change in coculture, we report Microbulbifer spp.-mediated degradation of amphibactins, produced by Vibrio spp. bacteria to sequester iron. Additional biochemical experiments revealed that the degradation occurs in the peptide backbone and requires the enzyme fraction of Microbulbifer. A reduction in iron affinity is expected due to the loss of one Fe(III) binding moiety. Therefore, we hypothesize that this degradation shapes community behaviors as it pertains to iron acquisition, a limiting nutrient in the marine environment, and survival. Furthermore, Vibrio sp. bacteria suppressed natural product synthesis by beneficial bacteria. Understanding biochemical mechanisms behind these interactions will enable engineering probiotic bacteria capable of lowering pathogenic burdens during heat waves and incidence of disease.
Collapse
Affiliation(s)
- Mónica Monge-Loría
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Weimao Zhong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Nadine H. Abrahamse
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Stephen Hartter
- Georgia
Aquarium, 225 Baker St.
NW, Atlanta, Georgia 30313, United States
| | - Neha Garg
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
- Center
for Microbial Dynamics and Infection, Georgia
Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Chu M, Huang J, Wang Q, Fang Y, Cui D, Jin Y. A Circadian Rhythm-related Signature to Predict Prognosis, Immune Infiltration, and Drug Response in Breast Cancer. Curr Med Chem 2025; 32:608-626. [PMID: 39279697 DOI: 10.2174/0109298673320179240803071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 09/18/2024]
Abstract
PURPOSE Circadian rhythm-related genes (CRRGs) play essential roles in cancer occurrence and development. However, the prognostic significance of CRRGs in breast cancer (BC) has not been fully elucidated. Our study aimed to develop a prognostic gene signature based on CRRGs that can accurately and stably predict the prognosis of BC. METHODS The transcriptome data and clinical information for BC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A consensus unsupervised clustering analysis was carried out to investigate the roles of CRRGs in BC. A CRRGs-related prognostic risk model was established by using logistic least absolute shrinkage and selection operator (LASSO) Cox regression and univariate Cox regression analyses. Kaplan-Meier (KM) curves analysis, time-dependent receptor operation characteristics (ROC) curves analysis, and nomogram were plotted to evaluate the predictive efficacy of the model. The relevance of risk score to the immune cell infiltration, tumor burden mutation (TMB), and therapeutic response was assessed. RESULTS A risk model comprising six CRRGs (SLC44A4, SLC16A6, TPRG1, FABP7, GLYATL2, and FDCSP) was constructed and validated, demonstrating an effective predictor for the prognosis of BC. The low-risk group displayed a higher expression of immune checkpoint genes and a lower burden of tumor mutation. Additionally, drug sensitivity analysis demonstrated that the prognostic signature may serve as a potential chemosensitivity predictor. CONCLUSION We established a CRRGs-related risk signature, which is of great value in predicting the prognosis of patients with BC and guiding the treatment for BC.
Collapse
Affiliation(s)
- Mingyu Chu
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Jing Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Qianyu Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yaqun Fang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Dina Cui
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yucui Jin
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| |
Collapse
|
5
|
Villate A, Olivares M, Usobiaga A, Unzueta-Larrinaga P, Barrena-Barbadillo R, Callado LF, Etxebarria N, Urigüen L. Uncovering metabolic dysregulation in schizophrenia and cannabis use disorder through untargeted plasma lipidomics. Sci Rep 2024; 14:31492. [PMID: 39733019 PMCID: PMC11682106 DOI: 10.1038/s41598-024-83288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
Cannabis use disorder affects up to 42% of individuals with schizophrenia, correlating with earlier onset, increased positive symptoms, and more frequent hospitalizations. This study employed an untargeted lipidomics approach to identify biomarkers in plasma samples from subjects with schizophrenia, cannabis use disorder, or both (dual diagnosis), aiming to elucidate the metabolic underpinnings of cannabis abuse and schizophrenia development. The use of liquid chromatography-high resolution mass spectrometry enabled the annotation of 119 metabolites, with the highest identification confidence level achieved for 16 compounds. Notably, a marked reduction in acylcarnitines, including octanoylcarnitine and decanoylcarnitine, was observed across all patient groups compared to controls. In cannabis use disorder patients, N-acyl amino acids (NAAAs), particularly N-palmitoyl threonine and N-palmitoyl serine, showed a strong downregulation, a pattern also seen in schizophrenia and dual diagnosis patients. Conversely, elevated levels of 7-dehydrodesmosterol were detected in schizophrenia and dual diagnosis patients relative to controls. These findings suggest a potential link between metabolic disruptions and the pathophysiology of both disorders. The untargeted lipidomics approach offers a powerful tool to identify novel biomarkers, enhancing our understanding of the biological relationship between cannabis abuse and schizophrenia, and paving the way for future therapeutic strategies targeting metabolic pathways in these conditions.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Aresatz Usobiaga
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Paula Unzueta-Larrinaga
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain
- BioBizkaia Health Research Institute, Bizkaia, Spain
| | - Rocío Barrena-Barbadillo
- BioBizkaia Health Research Institute, Bizkaia, Spain
- Department of Nursing, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
| | - Luis Felipe Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain
- BioBizkaia Health Research Institute, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain.
- BioBizkaia Health Research Institute, Bizkaia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain.
| |
Collapse
|
6
|
Li K, Deng F, Wang Y, Wang F. Biochemical Characterization of a Marine Pseudoalteromonas citrea-Derived Fatty Acyl-AMP Ligase That Exhibits N-Acyl Amino Acid Synthetic Activity. Appl Biochem Biotechnol 2024; 196:8513-8529. [PMID: 38878162 DOI: 10.1007/s12010-024-04977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 01/04/2025]
Abstract
Activation of fatty acids as acyl-adenylates by fatty acid-AMP ligase (FAAL) is a well-established process contributing to the formation of various functional natural products. Enzymatic characterization of FAALs is pivotal for unraveling both the catalytic mechanism and its role in specific biosynthetic pathways. In this study, we recombinantly expressed and characterized a novel FAAL derived from marine Pseudoalteromonas citrea (PcFAAL). PcFAAL was a cold-adapted neutral enzyme, demonstrating optimal activity at 30 °C and pH 7.5. Notably, its specific activity relied on the presence of Mg2+; however, higher concentrations exceeding 10 mM resulted in inhibition of enzyme activity. Various organic solvents, especially water-immiscible organic solvents, demonstrated an activating effect on the activity of PcFAAL on various fatty acids. The specific activity exhibited a remarkable 50-fold increase under 4% (v/v) n-hexane compared to the aqueous system. PcFAAL displayed a broad spectrum of fatty acid substrate selectivity, with the highest specific activity for octanoic acid (C8:0), and the catalytic efficiency (kcat/Km) for octanoic acid was determined to be 1.8 nM-1·min-1. Furthermore, the enzyme demonstrated biocatalytic promiscuity in producing a class of N-acyl amino acid natural products, as verified by LC-ESI MS. Results indicated that the PcFAAL exhibits promiscuity towards 10 different kinds of amino acids and further demonstrated their potential value in the biosynthesis of corresponding functional N-acyl amino acids.
Collapse
Affiliation(s)
- Keyan Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Fuli Deng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Guangdong Youmei Institute of Intelligent Bio-Manufacturing, Foshan, 528225, People's Republic of China
| | - Fanghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
7
|
Kocadağlı T, Yılmaz C, Gökmen V. Effects of fermentation and alkalisation on the formation of endocannabinoid-like compounds in olives. Food Chem 2024; 457:140164. [PMID: 38909454 DOI: 10.1016/j.foodchem.2024.140164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The increasing interest in endocannabinoid-like compounds (ECL) in food stems from their important physiological roles, including energy metabolism and satiety. In this study, the effect of fermentation or alkalisation on the formation of ECL compounds in table olives was investigated. N-acylethanolamines, monoacylglycerols, N-acylamino acids, and N-acylneurotransmitters were monitored. Results revealed that alkaline treatment led to a significant increase in the concentrations of N-oleoylethanolamide (80%), N-palmitoylethanolamide (93%), N-linoleoylethanolamide (51%), and 1-oleoylglycerol (679%) compared to control. While N-oleoylethanolamide, N-palmitoylethanolamide, N-linoleoylethanolamide, 1- and 2-oleoylglycerol, 1- and 2-linoleoylglycerol, and oleoylphenylalanine were initially absent or present in trace amounts, their levels significantly rose during fermentation. The formation rate of these compounds was higher in olives fermented in water than those in brine. The study provides detailed information on how specific ECL compounds respond to different processing methods, offering valuable information for optimising table olive production to enhance its nutritional benefits.
Collapse
Affiliation(s)
- Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Türkiye
| | - Cemile Yılmaz
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Türkiye
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Türkiye.
| |
Collapse
|
8
|
Haeger G, Wirges J, Bongaerts J, Schörken U, Siegert P. Perspectives of aminoacylases in biocatalytic synthesis of N-acyl-amino acids surfactants. Appl Microbiol Biotechnol 2024; 108:495. [PMID: 39453420 PMCID: PMC11511702 DOI: 10.1007/s00253-024-13328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Many industrial processes are performed using harmful chemicals. The current technical synthesis of N-acyl-amino acids relies on acyl chlorides, which are typically obtained from phosgene chemistry. A greener alternative is the application of whole cells or enzymes to carry out synthesis in an environmentally friendly manner. Aminoacylases belong to the hydrolase family and the resolution of racemic mixtures of N-acetyl-amino acids is a well-known industrial process. Several new enzymes accepting long-chain fatty acids as substrates were discovered in recent years. This article reviews the synthetic potential of aminoacylases to produce biobased N-acyl-amino acid surfactants. The focus lays on a survey of the different types of aminoacylases available for synthesis and their reaction products. The enzymes are categorized according to their protein family classification and their biochemical characteristics including substrate spectra, reaction optima and process stability, both in hydrolysis and under process conditions suitable for synthesis. Finally, the benefits and future challenges of enzymatic N-acyl-amino acid synthesis with aminoacylases will be discussed. KEY POINTS: • Enzymatic synthesis of N-acyl-amino acids, biobased surfactants by aminoacylases.
Collapse
Affiliation(s)
- Gerrit Haeger
- Novo Nordisk, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Jessika Wirges
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany
| | - Ulrich Schörken
- Faculty of Applied Natural Sciences, TH Köln University of Applied Sciences - Leverkusen Campus, 51379, Leverkusen, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany.
| |
Collapse
|
9
|
Cai L, Cheng Y, Pan Y, Wang L, Zhao X, Gao W, Huang P, Cui C. Enzymatic synthesis and sensory evaluation of the novel kokumi compound N-butyryl phenylalanine. Food Chem 2024; 455:139910. [PMID: 38833857 DOI: 10.1016/j.foodchem.2024.139910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
In this study, food-grade glutamine transaminase (TGase) was utilized for the green-catalyzed preparation of N-butyryl amino acids. For improving the reusability of the enzyme preparation, immobilized TG enzyme (94.23% immobilization rate) was prepared. Furthermore, the yield of N-butyryl phenylalanine (BP) synthesized by TGase was obtained as 20.73% by one-factor experiment. The BP synthesis yield of immobilized TGase was 95.03% of that of TGase and remained above 60% of the initial enzyme activity after five runs. The sensory evaluation and E-tongue results showed that the addition of BP significantly increased the umami, saltiness, and richness intensities of the samples, and decreased the intensities of sourness, bitterness, and aftertaste-B. The molecular docking results indicated that hydrogen bonding dominated the binding of BP to taste receptors in the taste presentation mechanism of BP. These results confirmed the potential of BP as a flavor enhancer with promising applications in the food industry.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yuqin Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yuqing Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Lu Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Wenxiang Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
10
|
Zhang H, Zhang S, Chen L, Xu R, Zhu J. LC-HRMS-based metabolomics and lipidomics analyses of a novel probiotic Akkermansia Muciniphila in response to different nutritional stimulations. J Microbiol Methods 2024; 223:106975. [PMID: 38889842 DOI: 10.1016/j.mimet.2024.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The mucin-degrading gut commensal Akkermansia muciniphila (A. muciniphila) negatively correlates with various diseases, including metabolic disorders, neurodegenerative disorders, and cancers, through interacting with host receptors by diverse molecules. Still, their exact metabolic capability within the nutrient-rich environment (such as in the human gut) is not fully characterized. Therefore, in the present study, we investigated the comprehensive metabolome and lipidome of A. muciniphila after supplementation of four major gut microbial nutrients: mucin, inorganic salts, bile salts, and short-chain fatty acids (SCFAs). Our results showed that mucin is the predominant driver of the different lipidomic and metabolomic profiles of A. muciniphila, and it promotes the overall growth of this bacteria. While the addition of inorganic salts, bile salts, and SCFAs was found to inhibit the growth of A. muciniphila. Interestingly, inorganic salts affected the purine metabolism in A. muciniphila cultures, while adding bile salts significantly increased the production of other bile acids and N-acyl amides. Lastly, SCFAs were identified to alter the A. muciniphila energy utilization of triglycerides, fatty acyls, and phosphatidylethanolamines. To our knowledge, this is the first study to examine the comprehensive lipidome and metabolome of A. muciniphila, which highlights the importance of nutritional impacts on the lipidome and metabolome of A. muciniphila and hence providing foundational knowledge to unveil the potential effects of A. muciniphila on host health.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States of America
| | - Shiqi Zhang
- Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States of America
| | - Li Chen
- Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States of America
| | - Rui Xu
- Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States of America
| | - Jiangjiang Zhu
- Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
11
|
Wang T, Yang J, Zhu Y, Niu N, Ding B, Wang P, Zhao H, Li N, Chao Y, Gao S, Dong X, Wang Z. Evaluation of metabolomics-based urinary biomarker models for recognizing major depression disorder and bipolar disorder. J Affect Disord 2024; 356:1-12. [PMID: 38548210 DOI: 10.1016/j.jad.2024.03.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and bipolar disorder (BD) are psychiatric disorders with overlapping symptoms, leading to high rates of misdiagnosis due to the lack of biomarkers for differentiation. This study aimed to identify metabolic biomarkers in urine samples for diagnosing MDD and BD, as well as to establish unbiased differential diagnostic models. METHODS We utilized a metabolomics approach employing ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) to analyze the metabolic profiles of urine samples from individuals with MDD (n = 50), BD (n = 12), and healthy controls (n = 50). The identification of urine metabolites was verified using MS data analysis tools and online metabolite databases. RESULTS Two diagnostic panels consisting of a combination of metabolites and clinical indicators were identified-one for MDD and another for BD. The discriminative capacity of these panels was assessed using the area under the receiver operating characteristic (ROC) curve, yielding an area under the curve (AUC) of 0.9084 for MDD and an AUC value of 0.9017 for BD. CONCLUSIONS High-resolution mass spectrometry-based assays show promise in identifying urinary biomarkers for depressive disorders. The combination of urine metabolites and clinical indicators is effective in differentiating healthy controls from individuals with MDD and BD. The metabolic pathway indicating oxidative stress is seen to significantly contribute to depressive disorders.
Collapse
Affiliation(s)
- Tianjiao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China; Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China
| | - Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yuncheng Zhu
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China; Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Na Niu
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Binbin Ding
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Ping Wang
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Hongxia Zhao
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yufan Chao
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China.
| | - Zuowei Wang
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China; Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China.
| |
Collapse
|
12
|
Chen L, Wang X, Zou Y, Tang MC. Genome Mining of a Fungal Polyketide Synthase-Nonribosomal Peptide Synthetase Hybrid Megasynthetase Pathway to Synthesize a Phytotoxic N-Acyl Amino Acid. Org Lett 2024; 26:3597-3601. [PMID: 38661293 DOI: 10.1021/acs.orglett.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Guided by the retrobiosynthesis hypothesis, we characterized a fungal polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) hybrid megasynthetase pathway to generate 2-trans-4-trans-2-methylsorbyl-d-leucine (1), a polyketide amino acid conjugate that inhibits Arabidopsis root growth. The biosynthesis of 1 includes a PKS-NRPS enzyme to assemble an N-acyl amino alcohol intermediate, which is further oxidized to an N-acyl amino acid (NAAA), demonstrating a new biosynthetic logic for synthesizing NAAAs and expanding the chemical space of products encoded by fungal PKS-NRPS clusters.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhang jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Xin Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Man-Cheng Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhang jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| |
Collapse
|
13
|
Gentry EC, Collins SL, Panitchpakdi M, Belda-Ferre P, Stewart AK, Carrillo Terrazas M, Lu HH, Zuffa S, Yan T, Avila-Pacheco J, Plichta DR, Aron AT, Wang M, Jarmusch AK, Hao F, Syrkin-Nikolau M, Vlamakis H, Ananthakrishnan AN, Boland BS, Hemperly A, Vande Casteele N, Gonzalez FJ, Clish CB, Xavier RJ, Chu H, Baker ES, Patterson AD, Knight R, Siegel D, Dorrestein PC. Reverse metabolomics for the discovery of chemical structures from humans. Nature 2024; 626:419-426. [PMID: 38052229 PMCID: PMC10849969 DOI: 10.1038/s41586-023-06906-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis1,2, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn's disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4+ T cells3 and agonism of the pregnane X receptor4. Culture of bacteria belonging to the Bifidobacterium, Clostridium and Enterococcus genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.
Collapse
Affiliation(s)
- Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Stephanie L Collins
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Morgan Panitchpakdi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, San Diego, CA, USA
| | - Allison K Stewart
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | | | - Hsueh-Han Lu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Mingxun Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Alan K Jarmusch
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Fuhua Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mashette Syrkin-Nikolau
- Division of Gastroenterology, Department of Pediatrics, Rady Children's Hospital University of California San Diego, La Jolla, CA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Brigid S Boland
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Amy Hemperly
- Division of Gastroenterology, Department of Pediatrics, Rady Children's Hospital University of California San Diego, La Jolla, CA, USA
| | - Niels Vande Casteele
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
- CU-UCSD, Center for Mucosal Immunology, Allergy and Vaccine Development, University of California, San Diego, La Jolla, California, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, San Diego, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Cheng W, Lin X, Wang T, Zhang X, Xu F, Wang L, Wang M, Zhang M, Xia T, Zhang D, Qian S, Yang W, Hu A, Tang M, Hu X, Wang Y, Zhao Q. Healthy plant-based diet might be inversely associated with gastric precancerous lesions: new evidence from a case-control study based on dietary pattern and fecal metabolic profiling. Int J Food Sci Nutr 2024; 75:102-118. [PMID: 37941094 DOI: 10.1080/09637486.2023.2279916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Preventing the progression of gastric precancerous lesions (GPLs) can reduce the morbidity and mortality of gastric cancer (GC). The preventive effect of a plant-based diet on cancers has been widely recognised. In this case-control study, 1,130 subjects were included using 1:1 propensity score matching for age and sex. Dietary habits, anthropometry and sample collection were conducted using standard and effective methods. Plant-based diet indices (PDIs) were calculated using a previously reported method. Faecal samples were analysed by untargeted metabolomics. Our study found that adherence to a healthy plant-based diet was inversely associated with the occurrence of GPLs. Metabolomic analysis identified six different metabolites correlated with GPLs, among which luteolin-related metabolites may be used as biomarkers of the association between PDIs and GPLs. In addition, the difference in N-acyl amides found in PDIs needs further verification. Our findings suggest that a healthy plant-based diet may have a protective effect against GPLs.
Collapse
Affiliation(s)
- Wenli Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiao Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiaohui Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Fang Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Meng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Tao Xia
- Department of Gastroenterology, Lujiang County People's Hospital, Hefei, China
| | - Daoming Zhang
- Department of Gastroenterology, Lujiang County People's Hospital, Hefei, China
| | - Shiqing Qian
- Department of Pathology, Lujiang County People's Hospital, Hefei, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Tang
- Department of Gastroenterology and Hepatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangpeng Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yalei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Haeger G, Probst J, Jaeger K, Bongaerts J, Siegert P. Novel aminoacylases from Streptomyces griseus DSM 40236 and their recombinant production in Streptomyces lividans. FEBS Open Bio 2023; 13:2224-2238. [PMID: 37879963 PMCID: PMC10699109 DOI: 10.1002/2211-5463.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236T . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC3.5.1.14), designated SgAA, and an ε-lysine acylase (EC3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-l-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine.
Collapse
Affiliation(s)
- Gerrit Haeger
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Johanna Probst
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University DüsseldorfJülichGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Johannes Bongaerts
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Petra Siegert
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| |
Collapse
|
16
|
Krishnamurthy HK, Pereira M, Bosco J, George J, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Gut commensals and their metabolites in health and disease. Front Microbiol 2023; 14:1244293. [PMID: 38029089 PMCID: PMC10666787 DOI: 10.3389/fmicb.2023.1244293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose of review This review comprehensively discusses the role of the gut microbiome and its metabolites in health and disease and sheds light on the importance of a holistic approach in assessing the gut. Recent findings The gut microbiome consisting of the bacteriome, mycobiome, archaeome, and virome has a profound effect on human health. Gut dysbiosis which is characterized by perturbations in the microbial population not only results in gastrointestinal (GI) symptoms or conditions but can also give rise to extra-GI manifestations. Gut microorganisms also produce metabolites (short-chain fatty acids, trimethylamine, hydrogen sulfide, methane, and so on) that are important for several interkingdom microbial interactions and functions. They also participate in various host metabolic processes. An alteration in the microbial species can affect their respective metabolite concentrations which can have serious health implications. Effective assessment of the gut microbiome and its metabolites is crucial as it can provide insights into one's overall health. Summary Emerging evidence highlights the role of the gut microbiome and its metabolites in health and disease. As it is implicated in GI as well as extra-GI symptoms, the gut microbiome plays a crucial role in the overall well-being of the host. Effective assessment of the gut microbiome may provide insights into one's health status leading to more holistic care.
Collapse
Affiliation(s)
| | | | - Jophi Bosco
- Vibrant America LLC., San Carlos, CA, United States
| | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States
| | | |
Collapse
|
17
|
Bennett JM, Ward KE, Muir RK, Kabeche S, Yoo E, Yeo T, Lam G, Zhang H, Almaliti J, Berger G, Faucher FF, Lin G, Gerwick WH, Yeh E, Fidock DA, Bogyo M. Covalent Macrocyclic Proteasome Inhibitors Mitigate Resistance in Plasmodium falciparum. ACS Infect Dis 2023; 9:2036-2047. [PMID: 37712594 PMCID: PMC10591878 DOI: 10.1021/acsinfecdis.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The Plasmodium proteasome is a promising antimalarial drug target due to its essential role in all parasite lifecycle stages. Furthermore, proteasome inhibitors have synergistic effects when combined with current first-line artemisinin and related analogues. Linear peptides that covalently inhibit the proteasome are effective at killing parasites and have a low propensity for inducing resistance. However, these scaffolds generally suffer from poor pharmacokinetics and bioavailability. Here we describe the development of covalent, irreversible, macrocyclic inhibitors of the Plasmodium falciparum proteasome. We identified compounds with excellent potency and low cytotoxicity; however, the first generation suffered from poor microsomal stability. Further optimization of an existing macrocyclic scaffold resulted in an irreversible covalent inhibitor carrying a vinyl sulfone electrophile that retained high potency and low cytotoxicity and had acceptable metabolic stability. Importantly, unlike the parent reversible inhibitor that selected for multiple mutations in the proteasome, with one resulting in a 5,000-fold loss of potency, the irreversible analogue only showed a 5-fold loss in potency for any single point mutation. Furthermore, an epoxyketone analogue of the same scaffold retained potency against a panel of known proteasome mutants. These results confirm that macrocycles are optimal scaffolds to target the malarial proteasome and that the use of a covalent electrophile can greatly reduce the ability of the parasite to generate drug resistance mutations.
Collapse
Affiliation(s)
- John M Bennett
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, United States
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York 10032, United States
| | - Ryan K Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Stephanie Kabeche
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Euna Yoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, United States
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York 10032, United States
| | - Grace Lam
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Hao Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Jehad Almaliti
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Gabriel Berger
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Franco F Faucher
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92037, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Ellen Yeh
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94304, United States
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, United States
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York 10032, United States
- Division of Infectious Diseases, Columbia University Medical Center, New York, New York 10032, United States
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Forte N, Roussel C, Marfella B, Lauritano A, Villano R, De Leonibus E, Salviati E, Khalilzadehsabet T, Giorgini G, Silvestri C, Piscitelli F, Mollica MP, Di Marzo V, Cristino L. Olive oil-derived endocannabinoid-like mediators inhibit palatable food-induced reward and obesity. Commun Biol 2023; 6:959. [PMID: 37735539 PMCID: PMC10514336 DOI: 10.1038/s42003-023-05295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
N-oleoylglycine (OlGly), a lipid derived from the basic component of olive oil, oleic acid, and N-oleoylalanine (OlAla) are endocannabinoid-like mediators. We report that OlGly and OlAla, by activating the peroxisome proliferator-activated receptor alpha (PPARα), reduce the rewarding properties of a highly palatable food, dopamine neuron firing in the ventral tegmental area, and the obesogenic effect of a high-fat diet rich in lard (HFD-L). An isocaloric olive oil HFD (HFD-O) reduced body weight gain compared to the HFD-L, in a manner reversed by PPARα antagonism, and enhanced brain and intestinal OlGly levels and gut microbial diversity. OlGly or OlAla treatment of HFD-L mice resulted in gut microbiota taxonomic changes partly similar to those induced by HFD-O. We suggest that OlGly and OlAla control body weight by counteracting highly palatable food overconsumption, and possibly rebalancing the gut microbiota, and provide a potential new mechanism of action for the obeso-preventive effects of olive oil-rich diets.
Collapse
Affiliation(s)
- Nicola Forte
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Charlène Roussel
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Brenda Marfella
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Anna Lauritano
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Rosaria Villano
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Monterotondo Scalo, Rome, Italy
| | | | - Tina Khalilzadehsabet
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Giada Giorgini
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Cristoforo Silvestri
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138, Naples, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy.
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada.
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, 61V0AG, Canada.
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy.
| |
Collapse
|
19
|
Vered S, Beiser AS, Sulimani L, Sznitman S, Gonzales MM, Aparicio HJ, DeCarli C, Scott MR, Ghosh S, Lewitus GM, Meiri D, Seshadri S, Weinstein G. The association of circulating endocannabinoids with neuroimaging and blood biomarkers of neuro-injury. Alzheimers Res Ther 2023; 15:154. [PMID: 37700370 PMCID: PMC10496329 DOI: 10.1186/s13195-023-01301-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Preclinical studies highlight the importance of endogenous cannabinoids (endocannabinoids; eCBs) in neurodegeneration. Yet, prior observational studies focused on limited outcome measures and assessed only few eCB compounds while largely ignoring the complexity of the eCB system. We examined the associations of multiple circulating eCBs and eCB-like molecules with early markers of neurodegeneration and neuro-injury and tested for effect modification by sex. METHODS This exploratory cross-sectional study included a random sample of 237 dementia-free older participants from the Framingham Heart Study Offspring cohort who attended examination cycle 9 (2011-2014), were 65 years or older, and cognitively healthy. Forty-four eCB compounds were quantified in serum, via liquid chromatography high-resolution mass spectrometry. Linear regression models were used to examine the associations of eCB levels with brain MRI measures (i.e., total cerebral brain volume, gray matter volume, hippocampal volume, and white matter hyperintensities volume) and blood biomarkers of Alzheimer's disease and neuro-injury (i.e., total tau, neurofilament light, glial fibrillary acidic protein and Ubiquitin C-terminal hydrolase L1). All models were adjusted for potential confounders and effect modification by sex was examined. RESULTS Participants mean age was 73.3 ± 6.2 years, and 40% were men. After adjustment for potential confounders and correction for multiple comparisons, no statistically significant associations were observed between eCB levels and the study outcomes. However, we identified multiple sex-specific associations between eCB levels and the various study outcomes. For example, high linoleoyl ethanolamide (LEA) levels were related to decreased hippocampal volume among men and to increased hippocampal volume among women (β ± SE = - 0.12 ± 0.06, p = 0.034 and β ± SE = 0.08 ± 0.04, p = 0.026, respectively). CONCLUSIONS Circulating eCBs may play a role in neuro-injury and may explain sex differences in susceptibility to accelerated brain aging. Particularly, our results highlight the possible involvement of eCBs from the N-acyl amino acids and fatty acid ethanolamide classes and suggest specific novel fatty acid compounds that may be implicated in brain aging. Furthermore, investigation of the eCBs contribution to neurodegenerative disease such as Alzheimer's disease in humans is warranted, especially with prospective study designs and among diverse populations, including premenopausal women.
Collapse
Affiliation(s)
- Shiraz Vered
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel
| | - Alexa S Beiser
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Liron Sulimani
- The Kleifeld Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sharon Sznitman
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel
| | - Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | - Hugo J Aparicio
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Sacramento, CA, 95816, USA
| | - Matthew R Scott
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Saptaparni Ghosh
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Gil M Lewitus
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - David Meiri
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sudha Seshadri
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | - Galit Weinstein
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel.
| |
Collapse
|
20
|
Akossi RF, Delbac F, El Alaoui H, Wawrzyniak I, Peyretaillade E. The intracellular parasite Anncaliia algerae induces a massive miRNA down-regulation in human cells. Noncoding RNA Res 2023; 8:363-375. [PMID: 37275245 PMCID: PMC10238475 DOI: 10.1016/j.ncrna.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 06/07/2023] Open
Abstract
Anncaliia algerae belongs to microsporidia, a group of obligate intracellular parasites related to fungi. These parasites are largely spread in water and food-webs and can infect a wide variety of hosts ranging from invertebrates to vertebrates including humans. In humans, microsporidian infections are mainly opportunistic as immunocompetent hosts can clear parasites naturally. Recent studies however have reported persistent microsporidian infections and have highlighted them as a risk factor in colon cancer. This may be a direct result of cell infection or may be an indirect effect of the infectious microenvironment and the host's response. In both cases, this raises the question of the effects of microsporidian infection at the host and host-cell levels. We aimed to address the question of human host intracellular response to microsporidian infection through a transcriptomic kinetic study of human foreskin fibroblasts (HFF) infected with A.algerae, a human infecting microsporidia with an exceptionally wide host range. We focused solely on host response studying both coding and small non-coding miRNA expression. Our study revealed a generalized down-regulation of cell miRNAs throughout infection with up to 547 different miRNAs downregulated at some timepoints and also transcriptomic dysregulations that could facilitate parasite development with immune and lipid metabolism genes modulation. We also hypothesize possible small nucleic acid expropriation explaining the miRNA downregulation. This work contributes to a better understanding of the dialogue that can occur between an intracellular parasite and its host at the cellular level, and can guide future studies on microsporidian infection biology to unravel the mode of action of these minimalist parasites at the tissue or host levels.We have also generated a kinetic and comprehensive transcriptomic data set of an infectious process that can help support comparative studies in the broader field of parasitology. Lastly, these results may warrant for caution regarding microsporidian exposure and persistent infections.
Collapse
Affiliation(s)
- Reginald Florian Akossi
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Fréderic Delbac
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Hicham El Alaoui
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Eric Peyretaillade
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| |
Collapse
|
21
|
Grigg JC, Copp JN, Krekhno JMC, Liu J, Ibrahimova A, Eltis LD. Deciphering the biosynthesis of a novel lipid in Mycobacterium tuberculosis expands the known roles of the nitroreductase superfamily. J Biol Chem 2023; 299:104924. [PMID: 37328106 PMCID: PMC10404671 DOI: 10.1016/j.jbc.2023.104924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Mycobacterium tuberculosis's (Mtb) success as a pathogen is due in part to its sophisticated lipid metabolic programs, both catabolic and biosynthetic. Several of Mtb lipids have specific roles in pathogenesis, but the identity and roles of many are unknown. Here, we demonstrated that the tyz gene cluster in Mtb, previously implicated in resistance to oxidative stress and survival in macrophages, encodes the biosynthesis of acyl-oxazolones. Heterologous expression of tyzA (Rv2336), tyzB (Rv2338c) and tyzC (Rv2337c) resulted in the biosynthesis of C12:0-tyrazolone as the predominant compound, and the C12:0-tyrazolone was identified in Mtb lipid extracts. TyzA catalyzed the N-acylation of l-amino acids, with highest specificity for l-Tyr and l-Phe and lauroyl-CoA (kcat/KM = 5.9 ± 0.8 × 103 M-1s-1). In cell extracts, TyzC, a flavin-dependent oxidase (FDO) of the nitroreductase (NTR) superfamily, catalyzed the O2-dependent desaturation of the N-acyl-L-Tyr produced by TyzA, while TyzB, a ThiF homolog, catalyzed its ATP-dependent cyclization. The substrate preference of TyzB and TyzC appear to determine the identity of the acyl-oxazolone. Phylogenetic analyses revealed that the NTR superfamily includes a large number of broadly distributed FDOs, including five in Mtb that likely catalyze the desaturation of lipid species. Finally, TCA1, a molecule with activity against drug-resistant and persistent tuberculosis, failed to inhibit the cyclization activity of TyzB, the proposed secondary target of TCA1. Overall, this study identifies a novel class of Mtb lipids, clarifies the role of a potential drug target, and expands our understanding of the NTR superfamily.
Collapse
Affiliation(s)
- Jason C Grigg
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Janine N Copp
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica M C Krekhno
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Aygun Ibrahimova
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay D Eltis
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
22
|
Yılmaz C, Kocadağlı T, Gökmen V. Determination of endocannabinoids in fermented foods of animal and plant origin by liquid chromatography tandem mass spectrometry. Food Chem 2023; 427:136766. [PMID: 37402339 DOI: 10.1016/j.foodchem.2023.136766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
An analytical method was developed for the determination of endocannabinoids and endocannabinoid-like compounds using ultra high performance liquid chromatography tandem mass spectrometry in fermented food products. Extraction optimization and method validation were carried out to detect 36 endocannabinoids and endocannabinoid-like compounds including N-acylethanolamines, N-acylamino acids, N-acylneurotransmitters, monoacylglycerols and primary fatty acid amides using 7 isotope labelled internal standards in foods. The method was able to detect precisely these compounds with good linearity (R2 > 0.982), reproducibility (0.1-14.4%), repeatability (0.3-18.4%), recovery (>67%) and high sensitivity. The limit of detection ranged between 0.01 and 4.30 ng/mL, and of quantitation between 0.02 and 14.2 ng/mL. Fermented sausage and cheese as animal-origin fermented foods and cocoa powder as plant-origin fermented foods were found to be rich in endocannabinoids and endocannabinoid-like compounds. N-Acylamino acids and N-acylneurotransmitters detected for the first time in fermented foods will provide important preliminary information for future studies.
Collapse
Affiliation(s)
- Cemile Yılmaz
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| |
Collapse
|
23
|
He Z, Nam S, Liu S, Zhao Q. Characterization of the Nonpolar and Polar Extractable Components of Glanded Cottonseed for Its Valorization. Molecules 2023; 28:molecules28104181. [PMID: 37241921 DOI: 10.3390/molecules28104181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Cottonseed is the second major product of cotton (Gossypium spp.) crops after fiber. Thus, the characterization and valorization of cottonseed are important parts of cotton utilization research. In this work, the nonpolar and polar fractions of glanded (Gd) cottonseed were sequentially extracted by 100% hexane and 80% ethanol aqueous solutions and subjected to 13C and 1H nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. The nonpolar (crude oil) extracts showed the characteristic NMR peak features of edible plant oils with the absence of ω-3 linolenic acid. Quantitative analysis revealed the percentage of polyunsaturated, monounsaturated, and saturated fatty acids as 48.7%, 16.9%, and 34.4%, respectively. Both general unsaturated fatty acid features and some specific olefinic compounds (e.g., oleic, linolenic, and gondonic acids) were found in the nonpolar fraction. In the polar extracts, FT-ICR MS detected 1673 formulas, with approximately 1/3 being potential phenolic compounds. Both the total and phenolic formulas fell mainly in the categories of lipid, peptide-like, carbohydrate, and lignin. A literature search and comparison further identifies some of these formulas as potential bioactive compounds. For example, one compound [2,5-dihydroxy-N'-(2,3,4-trihydroxybenzylidene) benzohydrazide] identified in the polar extracts is likely responsible for the anticancer function observed when used on human breast cancer cell lines. The chemical profile of the polar extracts provides a formulary for the exploration of bioactive component candidates derived from cottonseed for nutritive, health, and medical applications.
Collapse
Affiliation(s)
- Zhongqi He
- USDA-ARS, Southern Regional Research Center, 1100 Allen Toussaint Blvd., New Orleans, LA 70124, USA
| | - Sunghyun Nam
- USDA-ARS, Southern Regional Research Center, 1100 Allen Toussaint Blvd., New Orleans, LA 70124, USA
| | - Shasha Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Zhao
- Coordinated Instrument Facility, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
24
|
Hsiao YC, Matulewicz RS, Sherman SE, Jaspers I, Weitzman ML, Gordon T, Liu CW, Yang Y, Lu K, Bjurlin MA. Untargeted Metabolomics to Characterize the Urinary Chemical Landscape of E-Cigarette Users. Chem Res Toxicol 2023; 36:630-642. [PMID: 36912507 PMCID: PMC10371198 DOI: 10.1021/acs.chemrestox.2c00346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The health and safety of using e-cigarette products (vaping) have been challenging to assess and further regulate due to their complexity. Inhaled e-cigarette aerosols contain chemicals with under-recognized toxicological profiles, which could influence endogenous processes once inhaled. We urgently need more understanding on the metabolic effects of e-cigarette exposure and how they compare to combustible cigarettes. To date, the metabolic landscape of inhaled e-cigarette aerosols, including chemicals originated from vaping and perturbed endogenous metabolites in vapers, is poorly characterized. To better understand the metabolic landscape and potential health consequences of vaping, we applied liquid chromatography-mass spectrometry (LC-MS) based nontargeted metabolomics to analyze compounds in the urine of vapers, cigarette smokers, and nonusers. Urine from vapers (n = 34), smokers (n = 38), and nonusers (n = 45) was collected for verified LC-HRMS nontargeted chemical analysis. The altered features (839, 396, and 426 when compared smoker and control, vaper and control, and smoker and vaper, respectively) among exposure groups were deciphered for their structural identities, chemical similarities, and biochemical relationships. Chemicals originating from e-cigarettes and altered endogenous metabolites were characterized. There were similar levels of nicotine biomarkers of exposure among vapers and smokers. Vapers had higher urinary levels of diethyl phthalate and flavoring agents (e.g., delta-decalactone). The metabolic profiles featured clusters of acylcarnitines and fatty acid derivatives. More consistent trends of elevated acylcarnitines and acylglycines in vapers were observed, which may suggest higher lipid peroxidation. Our approach in monitoring shifts of the urinary chemical landscape captured distinctive alterations resulting from vaping. Our results suggest similar nicotine metabolites in vapers and cigarette smokers. Acylcarnitines are biomarkers of inflammatory status and fatty acid oxidation, which were dysregulated in vapers. With higher lipid peroxidation, radical-forming flavoring, and higher level of specific nitrosamine, we observed a trend of elevated cancer-related biomarkers in vapers as well. Together, these data present a comprehensive profiling of urinary biochemicals that were dysregulated due to vaping.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599
| | - Richard S. Matulewicz
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Scott E. Sherman
- Section on Tobacco, Alcohol and Drug Use, Department of Population Health, NYU School of Medicine, New York, NY 07920
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michael L. Weitzman
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599
| | - Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599
| | - Marc A. Bjurlin
- Department of Urology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
25
|
Hiniesto-Iñigo I, Castro-Gonzalez LM, Corradi V, Skarsfeldt MA, Yazdi S, Lundholm S, Nikesjö J, Noskov SY, Bentzen BH, Tieleman DP, Liin SI. Endocannabinoids enhance hK V7.1/KCNE1 channel function and shorten the cardiac action potential and QT interval. EBioMedicine 2023; 89:104459. [PMID: 36796231 PMCID: PMC9958262 DOI: 10.1016/j.ebiom.2023.104459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Genotype-positive patients who suffer from the cardiac channelopathy Long QT Syndrome (LQTS) may display a spectrum of clinical phenotypes, with often unknown causes. Therefore, there is a need to identify factors influencing disease severity to move towards an individualized clinical management of LQTS. One possible factor influencing the disease phenotype is the endocannabinoid system, which has emerged as a modulator of cardiovascular function. In this study, we aim to elucidate whether endocannabinoids target the cardiac voltage-gated potassium channel KV7.1/KCNE1, which is the most frequently mutated ion channel in LQTS. METHODS We used two-electrode voltage clamp, molecular dynamics simulations and the E4031 drug-induced LQT2 model of ex-vivo guinea pig hearts. FINDINGS We found a set of endocannabinoids that facilitate channel activation, seen as a shifted voltage-dependence of channel opening and increased overall current amplitude and conductance. We propose that negatively charged endocannabinoids interact with known lipid binding sites at positively charged amino acids on the channel, providing structural insights into why only specific endocannabinoids modulate KV7.1/KCNE1. Using the endocannabinoid ARA-S as a prototype, we show that the effect is not dependent on the KCNE1 subunit or the phosphorylation state of the channel. In guinea pig hearts, ARA-S was found to reverse the E4031-prolonged action potential duration and QT interval. INTERPRETATION We consider the endocannabinoids as an interesting class of hKV7.1/KCNE1 channel modulators with putative protective effects in LQTS contexts. FUNDING ERC (No. 850622), Canadian Institutes of Health Research, Canada Research Chairs and Compute Canada, Swedish National Infrastructure for Computing.
Collapse
Affiliation(s)
- Irene Hiniesto-Iñigo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Laura M Castro-Gonzalez
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Mark A Skarsfeldt
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samira Yazdi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Siri Lundholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nikesjö
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sergei Yu Noskov
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
26
|
Pious A, Kamlekar RK, Muthusamy S, Jothi A, Praneeth VK, Ramesh S, Anbazhagan V. Effectiveness of the hydrophobic core of pyridine tethered N-acyl glycine micelles in improving chromenoquinoline synthesis in water. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
27
|
Jansma J, Thome NU, Schwalbe M, Chatziioannou AC, Elsayed SS, van Wezel GP, van den Abbeele P, van Hemert S, El Aidy S. Dynamic effects of probiotic formula ecologic®825 on human small intestinal ileostoma microbiota: a network theory approach. Gut Microbes 2023; 15:2232506. [PMID: 37417553 PMCID: PMC10332219 DOI: 10.1080/19490976.2023.2232506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
The gut microbiota plays a pivotal role in health and disease. The use of probiotics as microbiota-targeted therapies is a promising strategy to improve host health. However, the molecular mechanisms involved in such therapies are often not well understood, particularly when targeting the small intestinal microbiota. In this study, we investigated the effects of a probiotic formula (Ecologic®825) on the adult human small intestinal ileostoma microbiota. The results showed that supplementation with the probiotic formula led to a reduction in the growth of pathobionts, such as Enterococcaceae and Enterobacteriaceae, and a decrease in ethanol production. These changes were associated with significant alterations in nutrient utilization and resistance to perturbations. These probiotic mediated alterations which coincided with an initial increase in lactate production and decrease in pH were followed by a sharp increase in the levels of butyrate and propionate. Moreover, the probiotic formula increased the production of multiple N-acyl amino acids in the stoma samples. The study demonstrates the utility of network theory in identifying novel microbiota-targeted therapies and improving existing ones. Overall, the findings provide insights into the dynamic molecular mechanisms underlying probiotic therapies, which can aid in the development of more effective treatments for a range of conditions.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Nicola U. Thome
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Markus Schwalbe
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | - Somayah S. Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gilles P. van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | | | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Joshi MP, Uday A, Rajamani S. Elucidating N-acyl amino acids as a model protoamphiphilic system. Commun Chem 2022; 5:147. [PMID: 36697941 PMCID: PMC9814278 DOI: 10.1038/s42004-022-00762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Protoamphiphiles are prebiotically-plausible moieties that would have constituted protocell membranes on early Earth. Although prebiotic soup would have contained a diverse set of amphiphiles capable of generating protocell membranes, earlier studies were mainly limited to fatty acid-based systems. Herein, we characterize N-acyl amino acids (NAAs) as a model protoamphiphilic system. To the best of our knowledge, we report a new abiotic route in this study for their synthesis under wet-dry cycles from amino acids and monoglycerides via an ester-amide exchange process. We also demonstrate how N-oleoyl glycine (NOG, a representative NAA) results in vesicle formation over a broad pH range when blended with a monoglyceride or a fatty acid. Notably, NOG also acts as a substrate for peptide synthesis under wet-dry cycles, generating different lipopeptides. Overall, our study establishes NAAs as a promising protoamphiphilic system, and highlights their significance in generating robust and functional protocell membranes on primitive Earth.
Collapse
Affiliation(s)
- Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, 411008, India.
| | - Ashwin Uday
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, 411008, India.
| |
Collapse
|
29
|
Gamma-ray Irradiation of Rodent Diets Alters the Urinary Metabolome in Rats with Chemically Induced Mammary Cancer. Metabolites 2022; 12:metabo12100976. [PMID: 36295878 PMCID: PMC9608802 DOI: 10.3390/metabo12100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, a comparative, untargeted metabolomics approach was applied to compare urinary metabolite profiles of rats fed irradiated and non-irradiated diets. γ-Irradiated and non-irradiated NIH 7001 diet was given orally to animals beginning 5 days after exposure to the carcinogen N-methyl-N-nitrosourea and continued for 120 days. There was a 36% reduction in mammary tumor incidence in rats consuming the γ-irradiated diet, compared to rats receiving the non-irradiated form of the same diet. Urine samples from rats fed with γ-irradiated and non-irradiated diets were analyzed using nanoLC-MS/MS on a Q-TOF mass spectrometer, collecting positive and negative ion data. Data processing involved feature detection and alignment with MS-DIAL, normalization, mean-centering and Pareto scaling, and univariate and multivariate statistical analysis using MetaboAnalyst, and pathway analysis with Mummichog. Unsupervised Principal Component Analysis and supervised Partial Least Squares-Discriminant Analysis of both negative and positive ions revealed separation of the two groups. The top 25 metabolites from variable importance in projection scores >1 showed their contributions in discriminating urines the γ-irradiated diet fed group from non-irradiated control diet group. Consumption of the γ-irradiated diet led to alteration of several gut microbial metabolites such as phenylacetylglycine, indoxyl sulfate, kynurenic acid, hippurate and betaine in the urine. This study provides insights into metabolic changes in rat urine in response to a γ-irradiated diet which may be associated with mammary cancer prevention.
Collapse
|
30
|
Synthesis, Characterization, and Biological Evaluation of Novel N-{4-[(4-Bromophenyl)sulfonyl]benzoyl}-L-valine Derivatives. Processes (Basel) 2022. [DOI: 10.3390/pr10091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this article, we present the design and synthesis of novel compounds, containing in their molecules an L-valine residue and a 4-[(4-bromophenyl)sulfonyl]phenyl moiety, which belong to N-acyl-α-amino acids, 4H-1,3-oxazol-5-ones, 2-acylamino ketones, and 1,3-oxazoles chemotypes. The synthesized compounds were characterized through elemental analysis, MS, NMR, UV/VIS, and FTIR spectroscopic techniques, the data obtained are in accordance with the assigned structures. Their purities were verified by reversed-phase HPLC. The new compounds were tested for antimicrobial action against bacterial and fungal strains for antioxidant activity by DPPH, ABTS, and ferric reducing power assays, and for toxicity on freshwater cladoceran Daphnia magna Straus. Furthermore, in silico studies were performed concerning the potential antimicrobial effect and toxicity. The results of antimicrobial activity, antioxidant effect, and toxicity assays, as well as of in silico analysis revealed a promising potential of N-{4-[(4-bromophenyl)sulfonyl]benzoyl}-L-valine and 2-{4-[(4-bromophenyl)sulfonyl]phenyl}-4-isopropyl-4H-1,3-oxazol-5-one for developing novel antimicrobial agents to fight Gram-positive pathogens, and particularly Enterococcus faecium biofilm-associated infections.
Collapse
|
31
|
In Silico and In Vitro Assessment of Antimicrobial and Antibiofilm Activity of Some 1,3-Oxazole-Based Compounds and Their Isosteric Analogues. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this paper, we report on the antimicrobial activity assessment of 49 compounds previously synthesized as derivatives of alanine or phenylalanine that incorporate a 4-(4-X-phenylsulfonyl)phenyl fragment (X = H, Cl, or Br), namely 21 acyclic compounds (6 × N-acyl-α-amino acids, 1 × N-acyl-α-amino acid ester, and 14 × N-acyl-α-amino ketones) and 28 pentatomic heterocycles from the oxazole-based compound class (6 × 4H-1,3-oxazol-5-ones, 16 × 5-aryl-1,3-oxazoles, and 6 × ethyl 1,3-oxazol-5-yl carbonates). Both in silico and in vitro qualitative and quantitative assays were used to investigate the antimicrobial potential of these derivatives against planktonic and biofilm-embedded microbial strains. Some of the tested compounds showed promising antimicrobial and antibiofilm activity depending on their chemical scaffold and lipophilic character.
Collapse
|
32
|
Darrington M, Leftwich PT, Holmes NA, Friend LA, Clarke NVE, Worsley SF, Margaritopolous JT, Hogenhout SA, Hutchings MI, Chapman T. Characterisation of the symbionts in the Mediterranean fruit fly gut. Microb Genom 2022; 8. [PMID: 35446250 PMCID: PMC9453069 DOI: 10.1099/mgen.0.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Symbioses between bacteria and their insect hosts can range from loose associations through to obligate interdependence. While fundamental evolutionary insights have been gained from the in-depth study of obligate mutualisms, there is increasing interest in the evolutionary potential of flexible symbiotic associations between hosts and their gut microbiomes. Understanding relationships between microbes and hosts also offers the potential for exploitation for insect control. Here, we investigate the gut microbiome of a global agricultural pest, the Mediterranean fruit fly (Ceratitis capitata). We used 16S rRNA profiling to compare the gut microbiomes of laboratory and wild strains raised on different diets and from flies collected from various natural plant hosts. The results showed that medfly guts harbour a simple microbiome that is primarily determined by the larval diet. However, regardless of the laboratory diet or natural plant host on which flies were raised, Klebsiella spp. dominated medfly microbiomes and were resistant to removal by antibiotic treatment. We sequenced the genome of the dominant putative Klebsiella spp. (‘Medkleb’) isolated from the gut of the Toliman wild-type strain. Genome-wide ANI analysis placed Medkleb within the K. oxytoca / michiganensis group. Species level taxonomy for Medkleb was resolved using a mutli-locus phylogenetic approach - and molecular, sequence and phenotypic analyses all supported its identity as K. michiganensis. Medkleb has a genome size (5825435 bp) which is 1.6 standard deviations smaller than the mean genome size of free-living Klebsiella spp. Medkleb also lacks some genes involved in environmental sensing. Moreover, the Medkleb genome contains at least two recently acquired unique genomic islands as well as genes that encode pectinolytic enzymes capable of degrading plant cell walls. This may be advantageous given that the medfly diet includes unripe fruits containing high proportions of pectin. The results suggest that the medfly harbours a commensal gut bacterium that may have developed a mutualistic association with its host and provide nutritional benefits.
Collapse
Affiliation(s)
- Mike Darrington
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Neil A Holmes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lucy A Friend
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Naomi V E Clarke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - John T Margaritopolous
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
33
|
Gao Y, Shabalina IG, Braz GRF, Cannon B, Yang G, Nedergaard J. Establishing the potency of N-acyl amino acids versus conventional fatty acids as thermogenic uncouplers in cells and mitochondria from different tissues. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148542. [PMID: 35192808 DOI: 10.1016/j.bbabio.2022.148542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The possibility that N-acyl amino acids could function as brown or brite/beige adipose tissue-derived lipokines that could induce UCP1-independent thermogenesis by uncoupling mitochondrial respiration in several peripheral tissues is of significant physiological interest. To quantify the potency of N-acyl amino acids versus conventional fatty acids as thermogenic inducers, we have examined the affinity and efficacy of two pairs of such compounds: oleate versus N-oleoyl-leucine and arachidonate versus N-arachidonoyl-glycine in cells and mitochondria from different tissues. We found that in cultures of the muscle-derived L6 cell line, as well as in primary cultures of murine white, brite/beige and brown adipocytes, the N-acyl amino acids were proficient uncouplers but that they did not systematically display higher affinity or potency than the conventional fatty acids, and they were not as efficient uncouplers as classical protonophores (FCCP). Higher concentrations of the N-acyl amino acids (as well as of conventional fatty acids) were associated with signs of deleterious effects on the cells. In liver mitochondria, we found that the N-acyl amino acids uncoupled similarly to conventional fatty acids, thus apparently via activation of the adenine nucleotide transporter-2. In brown adipose tissue mitochondria, the N-acyl amino acids were able to activate UCP1, again similarly to conventional fatty acids. We thus conclude that the formation of the acyl-amino acid derivatives does not confer upon the corresponding fatty acids an enhanced ability to induce thermogenesis in peripheral tissues, and it is therefore unlikely that the N-acyl amino acids are of specific physiological relevance as UCP1-independent thermogenic compounds.
Collapse
Affiliation(s)
- Yun Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Irina G Shabalina
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - G Ruda F Braz
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Jan Nedergaard
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
34
|
Bhandari S, Bisht KS, Merkler DJ. The Biosynthesis and Metabolism of the N-Acylated Aromatic Amino Acids: N-Acylphenylalanine, N-Acyltyrosine, N-Acyltryptophan, and N-Acylhistidine. Front Mol Biosci 2022; 8:801749. [PMID: 35047560 PMCID: PMC8762209 DOI: 10.3389/fmolb.2021.801749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
The fatty acid amides are a family of lipids composed of two chemical moieties, a fatty acid and a biogenic amine linked together in an amide bond. This lipid family is structurally related to the endocannabinoid anandamide (N-arachidonoylethanolamine) and, thus, is frequently referred to as a family of endocannabinoid-related lipids. The fatty acid amide family is divided into different classes based on the conjugate amine; anandamide being a member of the N-acylethanolamine class (NAE). Another class within the fatty acid amide family is the N-acyl amino acids (NA-AAs). The focus of this review is a sub-class of the NA-AAs, the N-acyl aromatic amino acids (NA-ArAAs). The NA-ArAAs are not broadly recognized, even by those interested in the endocannabinoids and endocannabinoid-related lipids. Herein, the NA-ArAAs that have been identified from a biological source will be highlighted and pathways for their biosynthesis, degradation, enzymatic modification, and transport will be presented. Also, information about the cellular functions of the NA-ArAAs will be placed in context with the data regarding the identification and metabolism of these N-acylated amino acids. A review of the current state-of-knowledge about the NA-ArAAs is to stimulate future research about this underappreciated sub-class of the fatty acid amide family.
Collapse
Affiliation(s)
- Suzeeta Bhandari
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Kirpal S Bisht
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
35
|
Sihag J, Di Marzo V. (Wh)olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N)utrition (WHEN) to Curb Obesity and Related Disorders. Lipids Health Dis 2022; 21:9. [PMID: 35027074 PMCID: PMC8759188 DOI: 10.1186/s12944-021-01609-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
The discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.
Collapse
Affiliation(s)
- Jyoti Sihag
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Department of Foods and Nutrition, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.
| | - Vincenzo Di Marzo
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Institute of Biomolecular Chemistry of the National Research Council (ICB-CNR), Naples, Italy.
- Endocannabinoid Research Group, Naples, Italy.
- Joint International Research Unit between the Italian National Research Council (CNR) and University of Laval, for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Quebec, Canada.
| |
Collapse
|
36
|
Vigeland MD, Flåm ST, Vigeland MD, Espeland A, Kristoffersen PM, Vetti N, Wigemyr M, Bråten LCH, Gjefsen E, Schistad EI, Haugen AJ, Froholdt A, Skouen JS, Zwart JA, Storheim K, Pedersen LM, Lie BA. Correlation between gene expression and MRI STIR signals in patients with chronic low back pain and Modic changes indicates immune involvement. Sci Rep 2022; 12:215. [PMID: 34997115 PMCID: PMC8741947 DOI: 10.1038/s41598-021-04189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/16/2021] [Indexed: 01/02/2023] Open
Abstract
Disability and distress caused by chronic low back pain (LBP) lacking clear pathoanatomical explanations cause huge problems both for patients and society. A subgroup of patients has Modic changes (MC), identifiable by MRI as vertebral bone marrow lesions. The cause of such changes and their relationship to pain are not yet understood. We explored the pathobiology of these lesions using profiling of gene expression in blood, coupled with an edema-sensitive MRI technique known as short tau inversion recovery (STIR) imaging. STIR images and total RNA from blood were collected from 96 patients with chronic LBP and MC type I, the most inflammatory MC state. We found the expression of 37 genes significantly associated with STIR signal volume, ten genes with edema abundancy (a constructed combination of STIR signal volume, height, and intensity), and one gene with expression levels significantly associated with maximum STIR signal intensity. Gene sets related to interferon signaling, mitochondrial metabolism and defense response to virus were identified as significantly enriched among the upregulated genes in all three analyses. Our results point to inflammation and immunological defense as important players in MC biology in patients with chronic LBP.
Collapse
Affiliation(s)
- Maria Dehli Vigeland
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ansgar Espeland
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Per Martin Kristoffersen
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Nils Vetti
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Monica Wigemyr
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Lars Christian Haugli Bråten
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Elisabeth Gjefsen
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Anne Froholdt
- Department of Physical Medicine and Rehabilitation, Drammen Hospital, Drammen, Norway
| | - Jan Sture Skouen
- Department of Physical Medicine and Rehabilitation, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - John-Anker Zwart
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kjersti Storheim
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | - Linda Margareth Pedersen
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | | | | |
Collapse
|
37
|
Vallianatou T, Bèchet NB, Correia MSP, Lundgaard I, Globisch D. Regional Brain Analysis of Modified Amino Acids and Dipeptides during the Sleep/Wake Cycle. Metabolites 2021; 12:metabo12010021. [PMID: 35050142 PMCID: PMC8780251 DOI: 10.3390/metabo12010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Sleep is a state in which important restorative and anabolic processes occur. Understanding changes of these metabolic processes during the circadian rhythm in the brain is crucial to elucidate neurophysiological mechanisms important for sleep function. Investigation of amino acid modifications and dipeptides has recently emerged as a valuable approach in the metabolic profiling of the central nervous system. Nonetheless, very little is known about the effects of sleep on the brain levels of amino acid analogues. In the present study, we examined brain regional sleep-induced alterations selective for modified amino acids and dipeptides using Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) based metabolomics. Our approach enabled the detection and identification of numerous amino acid-containing metabolites in the cortex, the hippocampus, the midbrain, and the cerebellum. In particular, analogues of the aromatic amino acids phenylalanine, tyrosine and tryptophan were significantly altered during sleep in the investigated brain regions. Cortical levels of medium and long chain N-acyl glycines were higher during sleep. Regional specific changes were also detected, especially related to tyrosine analogues in the hippocampus and the cerebellum. Our findings demonstrate a strong correlation between circadian rhythms and amino acid metabolism specific for different brain regions that provide previously unknown insights in brain metabolism.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden; (T.V.); (M.S.P.C.)
| | - Nicholas B. Bèchet
- Department of Experimental Medical Science, Lund University, SE-22362 Lund, Sweden; (N.B.B.); (I.L.)
- Wallenberg Centre for Molecular Medicine, Lund University, SE-22362 Lund, Sweden
| | - Mario S. P. Correia
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden; (T.V.); (M.S.P.C.)
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, SE-22362 Lund, Sweden; (N.B.B.); (I.L.)
- Wallenberg Centre for Molecular Medicine, Lund University, SE-22362 Lund, Sweden
| | - Daniel Globisch
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden; (T.V.); (M.S.P.C.)
- Correspondence:
| |
Collapse
|
38
|
Apostol TV, Chifiriuc MC, Draghici C, Socea LI, Marutescu LG, Olaru OT, Nitulescu GM, Pahontu EM, Saramet G, Barbuceanu SF. Synthesis, In Silico and In Vitro Evaluation of Antimicrobial and Toxicity Features of New 4-[(4-Chlorophenyl)sulfonyl]benzoic Acid Derivatives. Molecules 2021; 26:molecules26165107. [PMID: 34443693 PMCID: PMC8399259 DOI: 10.3390/molecules26165107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
The multi-step synthesis, physico-chemical characterization, and biological activity of novel valine-derived compounds, i.e., N-acyl-α-amino acids, 1,3-oxazol-5(4H)-ones, N-acyl-α-amino ketones, and 1,3-oxazoles derivatives, bearing a 4-[(4-chlorophenyl)sulfonyl]phenyl moiety are reported here. The structures of the newly synthesized compounds were confirmed by spectral (UV-Vis, FT-IR, MS, 1H- and 13C-NMR) data and elemental analysis results, and their purity was determined by RP-HPLC. The new compounds were assessed for their antimicrobial activity and toxicity to aquatic crustacean Daphnia magna. Also, in silico studies regarding their potential mechanism of action and toxicity were performed. The antimicrobial evaluation revealed that the 2-{4-[(4-chlorophenyl)sulfonyl]benzamido}-3-methylbutanoic acid and the corresponding 1,3-oxazol-5(4H)-one exhibited antimicrobial activity against Gram-positive bacterial strains and the new 1,3-oxazole containing a phenyl group at 5-position against the C. albicans strain.
Collapse
Affiliation(s)
- Theodora-Venera Apostol
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Mariana Carmen Chifiriuc
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 60101 Bucharest, Romania;
| | - Constantin Draghici
- “Costin D. Nenițescu” Centre of Organic Chemistry, Romanian Academy, 202 B Splaiul Independenței, 060023 Bucharest, Romania;
| | - Laura-Ileana Socea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Luminita Gabriela Marutescu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 60101 Bucharest, Romania;
- Correspondence: (L.G.M.); (O.T.O.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
- Correspondence: (L.G.M.); (O.T.O.)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Elena Mihaela Pahontu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Gabriel Saramet
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Stefania-Felicia Barbuceanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| |
Collapse
|
39
|
Abstract
Lipopeptides are an exceptional example of amphiphilic molecules that self-assemble into functional structures with applications in the areas of nanotechnology, catalysis or medicinal chemistry. Herein, we report a library of 21 short lipopeptides, together with their supramolecular characterization and antimicrobial activity against both Gram-negative (E. coli) and Gram-positive (S. aureus) strains. This study shows that simple lipoamino acids self-assemble into micellar or vesicular structures, while incorporating dipeptides capable of stablishing hydrogen bonds results in the adoption of advanced fibrilar structures. The self-assembly effect has proven to be key to achieve antimicrobial activity.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA Nanociencia, Faraday 9, Campus UAM, 28049 Madrid, Spain and Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
40
|
Ni R, Bhandari S, Mitchell PR, Suarez G, Patel NB, Lamb K, Bisht KS, Merkler DJ. Synthesis, Quantification, and Characterization of Fatty Acid Amides from In Vitro and In Vivo Sources. Molecules 2021; 26:molecules26092543. [PMID: 33925418 PMCID: PMC8123904 DOI: 10.3390/molecules26092543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Fatty acid amides are a diverse family of underappreciated, biologically occurring lipids. Herein, the methods for the chemical synthesis and subsequent characterization of specific members of the fatty acid amide family are described. The synthetically prepared fatty acid amides and those obtained commercially are used as standards for the characterization and quantification of the fatty acid amides produced by biological systems, a fatty acid amidome. The fatty acid amidomes from mouse N18TG2 cells, sheep choroid plexus cells, Drosophila melanogaster, Bombyx mori, Apis mellifera, and Tribolium castaneum are presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kirpal S. Bisht
- Correspondence: (K.S.B.); (D.J.M.); Tel.: +1-813-974-0350 (K.S.B.); +1-813-974-3579 (D.J.M.)
| | - David J. Merkler
- Correspondence: (K.S.B.); (D.J.M.); Tel.: +1-813-974-0350 (K.S.B.); +1-813-974-3579 (D.J.M.)
| |
Collapse
|
41
|
The endocannabinoid system. Essays Biochem 2021; 64:485-499. [PMID: 32648908 DOI: 10.1042/ebc20190086] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Thirty years ago, the discovery of a cannabinoid (CB) receptor that interacts with the psychoactive compound in Cannabis led to the identification of anandamide, an endogenous receptor ligand or endocannabinoid. Research on endocannabinoids has since exploded, and additional receptors along with their lipid mediators and signaling pathways continue to be revealed. Specifically, in humans, the release of endocannabinoids from membrane lipids occurs on demand and the signaling process is rapidly attenuated by the breakdown of the ligand suggesting a tight regulation of the endocannabinoid system (ECS). Additionally, the varying distribution of CB receptors between the central nervous system and other tissues allows for the ECS to participate in a wide range of cognitive and physiological processes. Select plant-derived 'phyto'cannabinoids such as Δ-9-tetrahydrocannabinol (Δ9-THC) bind to the CB receptors and trigger the ECS, and in the case of Δ9-THC, while it has therapeutic value, can also produce detrimental effects. Current research is aimed at the identification of additional phytocannabinoids with minimal psychotropic effects with potential for therapeutic development. Although decades of research on the ECS and its components have expanded our understanding of the mechanisms and implications of endocannabinoid signaling in mammals, it continues to evolve. Here, we provide a brief overview of the ECS and its overlap with other related lipid-mediated signaling pathways.
Collapse
|
42
|
Sagheddu C, Torres LH, Marcourakis T, Pistis M. Endocannabinoid-Like Lipid Neuromodulators in the Regulation of Dopamine Signaling: Relevance for Drug Addiction. Front Synaptic Neurosci 2021; 12:588660. [PMID: 33424577 PMCID: PMC7786397 DOI: 10.3389/fnsyn.2020.588660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023] Open
Abstract
The family of lipid neuromodulators has been rapidly growing, as the use of different -omics techniques led to the discovery of a large number of naturally occurring N-acylethanolamines (NAEs) and N-acyl amino acids belonging to the complex lipid signaling system termed endocannabinoidome. These molecules exert a variety of biological activities in the central nervous system, as they modulate physiological processes in neurons and glial cells and are involved in the pathophysiology of neurological and psychiatric disorders. Their effects on dopamine cells have attracted attention, as dysfunctions of dopamine systems characterize a range of psychiatric disorders, i.e., schizophrenia and substance use disorders (SUD). While canonical endocannabinoids are known to regulate excitatory and inhibitory synaptic inputs impinging on dopamine cells and modulate several dopamine-mediated behaviors, such as reward and addiction, the effects of other lipid neuromodulators are far less clear. Here, we review the emerging role of endocannabinoid-like neuromodulators in dopamine signaling, with a focus on non-cannabinoid N-acylethanolamines and their receptors. Mounting evidence suggests that these neuromodulators contribute to modulate synaptic transmission in dopamine regions and might represent a target for novel medications in alcohol and nicotine use disorder.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Larissa Helena Torres
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Neuroscience Institute, National Research Council of Italy (CNR), Section of Cagliari, Cagliari, Italy
| |
Collapse
|
43
|
Bari M, Bisogno T, Battista N. Bioactive Lipids in Health and Disease. Biomolecules 2020; 10:biom10121698. [PMID: 33371219 PMCID: PMC7767251 DOI: 10.3390/biom10121698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Although the primordial concept of lipids is associated with the role they play as key components of the cell membrane, growing research in the field of bioactive lipids and lipidomic technologies proves the prominent role of these molecules in other biological functions [...].
Collapse
Affiliation(s)
- Monica Bari
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.B.); (T.B.); (N.B.)
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Correspondence: (M.B.); (T.B.); (N.B.)
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence: (M.B.); (T.B.); (N.B.)
| |
Collapse
|